mac80211: use compare_ether_addr on MAC addresses instead of memcmp
[linux/fpc-iii.git] / net / mac80211 / rx.c
blob3cf011fc97f4eaeb0525ca9e6eef3b982cdcfd21
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
35 * monitor mode reception
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
43 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
44 if (likely(skb->len > FCS_LEN))
45 __pskb_trim(skb, skb->len - FCS_LEN);
46 else {
47 /* driver bug */
48 WARN_ON(1);
49 dev_kfree_skb(skb);
50 skb = NULL;
54 return skb;
57 static inline int should_drop_frame(struct sk_buff *skb,
58 int present_fcs_len)
60 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
61 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
63 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
64 return 1;
65 if (unlikely(skb->len < 16 + present_fcs_len))
66 return 1;
67 if (ieee80211_is_ctl(hdr->frame_control) &&
68 !ieee80211_is_pspoll(hdr->frame_control) &&
69 !ieee80211_is_back_req(hdr->frame_control))
70 return 1;
71 return 0;
74 static int
75 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
76 struct ieee80211_rx_status *status)
78 int len;
80 /* always present fields */
81 len = sizeof(struct ieee80211_radiotap_header) + 9;
83 if (status->flag & RX_FLAG_MACTIME_MPDU)
84 len += 8;
85 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
86 len += 1;
88 if (len & 1) /* padding for RX_FLAGS if necessary */
89 len++;
91 if (status->flag & RX_FLAG_HT) /* HT info */
92 len += 3;
94 return len;
98 * ieee80211_add_rx_radiotap_header - add radiotap header
100 * add a radiotap header containing all the fields which the hardware provided.
102 static void
103 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
104 struct sk_buff *skb,
105 struct ieee80211_rate *rate,
106 int rtap_len)
108 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
109 struct ieee80211_radiotap_header *rthdr;
110 unsigned char *pos;
111 u16 rx_flags = 0;
113 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
114 memset(rthdr, 0, rtap_len);
116 /* radiotap header, set always present flags */
117 rthdr->it_present =
118 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
119 (1 << IEEE80211_RADIOTAP_CHANNEL) |
120 (1 << IEEE80211_RADIOTAP_ANTENNA) |
121 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
122 rthdr->it_len = cpu_to_le16(rtap_len);
124 pos = (unsigned char *)(rthdr+1);
126 /* the order of the following fields is important */
128 /* IEEE80211_RADIOTAP_TSFT */
129 if (status->flag & RX_FLAG_MACTIME_MPDU) {
130 put_unaligned_le64(status->mactime, pos);
131 rthdr->it_present |=
132 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
133 pos += 8;
136 /* IEEE80211_RADIOTAP_FLAGS */
137 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
138 *pos |= IEEE80211_RADIOTAP_F_FCS;
139 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
140 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
141 if (status->flag & RX_FLAG_SHORTPRE)
142 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
143 pos++;
145 /* IEEE80211_RADIOTAP_RATE */
146 if (!rate || status->flag & RX_FLAG_HT) {
148 * Without rate information don't add it. If we have,
149 * MCS information is a separate field in radiotap,
150 * added below. The byte here is needed as padding
151 * for the channel though, so initialise it to 0.
153 *pos = 0;
154 } else {
155 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
156 *pos = rate->bitrate / 5;
158 pos++;
160 /* IEEE80211_RADIOTAP_CHANNEL */
161 put_unaligned_le16(status->freq, pos);
162 pos += 2;
163 if (status->band == IEEE80211_BAND_5GHZ)
164 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
165 pos);
166 else if (status->flag & RX_FLAG_HT)
167 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
168 pos);
169 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
170 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
171 pos);
172 else if (rate)
173 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
174 pos);
175 else
176 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos);
177 pos += 2;
179 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
180 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
181 *pos = status->signal;
182 rthdr->it_present |=
183 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
184 pos++;
187 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
189 /* IEEE80211_RADIOTAP_ANTENNA */
190 *pos = status->antenna;
191 pos++;
193 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
195 /* IEEE80211_RADIOTAP_RX_FLAGS */
196 /* ensure 2 byte alignment for the 2 byte field as required */
197 if ((pos - (u8 *)rthdr) & 1)
198 pos++;
199 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
200 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
201 put_unaligned_le16(rx_flags, pos);
202 pos += 2;
204 if (status->flag & RX_FLAG_HT) {
205 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
206 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
207 IEEE80211_RADIOTAP_MCS_HAVE_GI |
208 IEEE80211_RADIOTAP_MCS_HAVE_BW;
209 *pos = 0;
210 if (status->flag & RX_FLAG_SHORT_GI)
211 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
212 if (status->flag & RX_FLAG_40MHZ)
213 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
214 pos++;
215 *pos++ = status->rate_idx;
220 * This function copies a received frame to all monitor interfaces and
221 * returns a cleaned-up SKB that no longer includes the FCS nor the
222 * radiotap header the driver might have added.
224 static struct sk_buff *
225 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
226 struct ieee80211_rate *rate)
228 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
229 struct ieee80211_sub_if_data *sdata;
230 int needed_headroom = 0;
231 struct sk_buff *skb, *skb2;
232 struct net_device *prev_dev = NULL;
233 int present_fcs_len = 0;
236 * First, we may need to make a copy of the skb because
237 * (1) we need to modify it for radiotap (if not present), and
238 * (2) the other RX handlers will modify the skb we got.
240 * We don't need to, of course, if we aren't going to return
241 * the SKB because it has a bad FCS/PLCP checksum.
244 /* room for the radiotap header based on driver features */
245 needed_headroom = ieee80211_rx_radiotap_len(local, status);
247 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
248 present_fcs_len = FCS_LEN;
250 /* make sure hdr->frame_control is on the linear part */
251 if (!pskb_may_pull(origskb, 2)) {
252 dev_kfree_skb(origskb);
253 return NULL;
256 if (!local->monitors) {
257 if (should_drop_frame(origskb, present_fcs_len)) {
258 dev_kfree_skb(origskb);
259 return NULL;
262 return remove_monitor_info(local, origskb);
265 if (should_drop_frame(origskb, present_fcs_len)) {
266 /* only need to expand headroom if necessary */
267 skb = origskb;
268 origskb = NULL;
271 * This shouldn't trigger often because most devices have an
272 * RX header they pull before we get here, and that should
273 * be big enough for our radiotap information. We should
274 * probably export the length to drivers so that we can have
275 * them allocate enough headroom to start with.
277 if (skb_headroom(skb) < needed_headroom &&
278 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
279 dev_kfree_skb(skb);
280 return NULL;
282 } else {
284 * Need to make a copy and possibly remove radiotap header
285 * and FCS from the original.
287 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
289 origskb = remove_monitor_info(local, origskb);
291 if (!skb)
292 return origskb;
295 /* prepend radiotap information */
296 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
298 skb_reset_mac_header(skb);
299 skb->ip_summed = CHECKSUM_UNNECESSARY;
300 skb->pkt_type = PACKET_OTHERHOST;
301 skb->protocol = htons(ETH_P_802_2);
303 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
304 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
305 continue;
307 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
308 continue;
310 if (!ieee80211_sdata_running(sdata))
311 continue;
313 if (prev_dev) {
314 skb2 = skb_clone(skb, GFP_ATOMIC);
315 if (skb2) {
316 skb2->dev = prev_dev;
317 netif_receive_skb(skb2);
321 prev_dev = sdata->dev;
322 sdata->dev->stats.rx_packets++;
323 sdata->dev->stats.rx_bytes += skb->len;
326 if (prev_dev) {
327 skb->dev = prev_dev;
328 netif_receive_skb(skb);
329 } else
330 dev_kfree_skb(skb);
332 return origskb;
336 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
338 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
339 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
340 int tid, seqno_idx, security_idx;
342 /* does the frame have a qos control field? */
343 if (ieee80211_is_data_qos(hdr->frame_control)) {
344 u8 *qc = ieee80211_get_qos_ctl(hdr);
345 /* frame has qos control */
346 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
347 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
348 status->rx_flags |= IEEE80211_RX_AMSDU;
350 seqno_idx = tid;
351 security_idx = tid;
352 } else {
354 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
356 * Sequence numbers for management frames, QoS data
357 * frames with a broadcast/multicast address in the
358 * Address 1 field, and all non-QoS data frames sent
359 * by QoS STAs are assigned using an additional single
360 * modulo-4096 counter, [...]
362 * We also use that counter for non-QoS STAs.
364 seqno_idx = NUM_RX_DATA_QUEUES;
365 security_idx = 0;
366 if (ieee80211_is_mgmt(hdr->frame_control))
367 security_idx = NUM_RX_DATA_QUEUES;
368 tid = 0;
371 rx->seqno_idx = seqno_idx;
372 rx->security_idx = security_idx;
373 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
374 * For now, set skb->priority to 0 for other cases. */
375 rx->skb->priority = (tid > 7) ? 0 : tid;
379 * DOC: Packet alignment
381 * Drivers always need to pass packets that are aligned to two-byte boundaries
382 * to the stack.
384 * Additionally, should, if possible, align the payload data in a way that
385 * guarantees that the contained IP header is aligned to a four-byte
386 * boundary. In the case of regular frames, this simply means aligning the
387 * payload to a four-byte boundary (because either the IP header is directly
388 * contained, or IV/RFC1042 headers that have a length divisible by four are
389 * in front of it). If the payload data is not properly aligned and the
390 * architecture doesn't support efficient unaligned operations, mac80211
391 * will align the data.
393 * With A-MSDU frames, however, the payload data address must yield two modulo
394 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
395 * push the IP header further back to a multiple of four again. Thankfully, the
396 * specs were sane enough this time around to require padding each A-MSDU
397 * subframe to a length that is a multiple of four.
399 * Padding like Atheros hardware adds which is between the 802.11 header and
400 * the payload is not supported, the driver is required to move the 802.11
401 * header to be directly in front of the payload in that case.
403 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
405 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
406 WARN_ONCE((unsigned long)rx->skb->data & 1,
407 "unaligned packet at 0x%p\n", rx->skb->data);
408 #endif
412 /* rx handlers */
414 static ieee80211_rx_result debug_noinline
415 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
417 struct ieee80211_local *local = rx->local;
418 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
419 struct sk_buff *skb = rx->skb;
421 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
422 !local->sched_scanning))
423 return RX_CONTINUE;
425 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
426 test_bit(SCAN_SW_SCANNING, &local->scanning) ||
427 local->sched_scanning)
428 return ieee80211_scan_rx(rx->sdata, skb);
430 /* scanning finished during invoking of handlers */
431 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
432 return RX_DROP_UNUSABLE;
436 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
438 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
440 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
441 return 0;
443 return ieee80211_is_robust_mgmt_frame(hdr);
447 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
449 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
451 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
452 return 0;
454 return ieee80211_is_robust_mgmt_frame(hdr);
458 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
459 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
461 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
462 struct ieee80211_mmie *mmie;
464 if (skb->len < 24 + sizeof(*mmie) ||
465 !is_multicast_ether_addr(hdr->da))
466 return -1;
468 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
469 return -1; /* not a robust management frame */
471 mmie = (struct ieee80211_mmie *)
472 (skb->data + skb->len - sizeof(*mmie));
473 if (mmie->element_id != WLAN_EID_MMIE ||
474 mmie->length != sizeof(*mmie) - 2)
475 return -1;
477 return le16_to_cpu(mmie->key_id);
481 static ieee80211_rx_result
482 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
484 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
485 char *dev_addr = rx->sdata->vif.addr;
487 if (ieee80211_is_data(hdr->frame_control)) {
488 if (is_multicast_ether_addr(hdr->addr1)) {
489 if (ieee80211_has_tods(hdr->frame_control) ||
490 !ieee80211_has_fromds(hdr->frame_control))
491 return RX_DROP_MONITOR;
492 if (compare_ether_addr(hdr->addr3, dev_addr) == 0)
493 return RX_DROP_MONITOR;
494 } else {
495 if (!ieee80211_has_a4(hdr->frame_control))
496 return RX_DROP_MONITOR;
497 if (compare_ether_addr(hdr->addr4, dev_addr) == 0)
498 return RX_DROP_MONITOR;
502 /* If there is not an established peer link and this is not a peer link
503 * establisment frame, beacon or probe, drop the frame.
506 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
507 struct ieee80211_mgmt *mgmt;
509 if (!ieee80211_is_mgmt(hdr->frame_control))
510 return RX_DROP_MONITOR;
512 if (ieee80211_is_action(hdr->frame_control)) {
513 u8 category;
514 mgmt = (struct ieee80211_mgmt *)hdr;
515 category = mgmt->u.action.category;
516 if (category != WLAN_CATEGORY_MESH_ACTION &&
517 category != WLAN_CATEGORY_SELF_PROTECTED)
518 return RX_DROP_MONITOR;
519 return RX_CONTINUE;
522 if (ieee80211_is_probe_req(hdr->frame_control) ||
523 ieee80211_is_probe_resp(hdr->frame_control) ||
524 ieee80211_is_beacon(hdr->frame_control) ||
525 ieee80211_is_auth(hdr->frame_control))
526 return RX_CONTINUE;
528 return RX_DROP_MONITOR;
532 return RX_CONTINUE;
535 #define SEQ_MODULO 0x1000
536 #define SEQ_MASK 0xfff
538 static inline int seq_less(u16 sq1, u16 sq2)
540 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
543 static inline u16 seq_inc(u16 sq)
545 return (sq + 1) & SEQ_MASK;
548 static inline u16 seq_sub(u16 sq1, u16 sq2)
550 return (sq1 - sq2) & SEQ_MASK;
554 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
555 struct tid_ampdu_rx *tid_agg_rx,
556 int index)
558 struct ieee80211_local *local = hw_to_local(hw);
559 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
560 struct ieee80211_rx_status *status;
562 lockdep_assert_held(&tid_agg_rx->reorder_lock);
564 if (!skb)
565 goto no_frame;
567 /* release the frame from the reorder ring buffer */
568 tid_agg_rx->stored_mpdu_num--;
569 tid_agg_rx->reorder_buf[index] = NULL;
570 status = IEEE80211_SKB_RXCB(skb);
571 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
572 skb_queue_tail(&local->rx_skb_queue, skb);
574 no_frame:
575 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
578 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
579 struct tid_ampdu_rx *tid_agg_rx,
580 u16 head_seq_num)
582 int index;
584 lockdep_assert_held(&tid_agg_rx->reorder_lock);
586 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
587 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
588 tid_agg_rx->buf_size;
589 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
594 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
595 * the skb was added to the buffer longer than this time ago, the earlier
596 * frames that have not yet been received are assumed to be lost and the skb
597 * can be released for processing. This may also release other skb's from the
598 * reorder buffer if there are no additional gaps between the frames.
600 * Callers must hold tid_agg_rx->reorder_lock.
602 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
604 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
605 struct tid_ampdu_rx *tid_agg_rx)
607 int index, j;
609 lockdep_assert_held(&tid_agg_rx->reorder_lock);
611 /* release the buffer until next missing frame */
612 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
613 tid_agg_rx->buf_size;
614 if (!tid_agg_rx->reorder_buf[index] &&
615 tid_agg_rx->stored_mpdu_num) {
617 * No buffers ready to be released, but check whether any
618 * frames in the reorder buffer have timed out.
620 int skipped = 1;
621 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
622 j = (j + 1) % tid_agg_rx->buf_size) {
623 if (!tid_agg_rx->reorder_buf[j]) {
624 skipped++;
625 continue;
627 if (skipped &&
628 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
629 HT_RX_REORDER_BUF_TIMEOUT))
630 goto set_release_timer;
632 #ifdef CONFIG_MAC80211_HT_DEBUG
633 if (net_ratelimit())
634 wiphy_debug(hw->wiphy,
635 "release an RX reorder frame due to timeout on earlier frames\n");
636 #endif
637 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
640 * Increment the head seq# also for the skipped slots.
642 tid_agg_rx->head_seq_num =
643 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
644 skipped = 0;
646 } else while (tid_agg_rx->reorder_buf[index]) {
647 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
648 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
649 tid_agg_rx->buf_size;
652 if (tid_agg_rx->stored_mpdu_num) {
653 j = index = seq_sub(tid_agg_rx->head_seq_num,
654 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
656 for (; j != (index - 1) % tid_agg_rx->buf_size;
657 j = (j + 1) % tid_agg_rx->buf_size) {
658 if (tid_agg_rx->reorder_buf[j])
659 break;
662 set_release_timer:
664 mod_timer(&tid_agg_rx->reorder_timer,
665 tid_agg_rx->reorder_time[j] + 1 +
666 HT_RX_REORDER_BUF_TIMEOUT);
667 } else {
668 del_timer(&tid_agg_rx->reorder_timer);
673 * As this function belongs to the RX path it must be under
674 * rcu_read_lock protection. It returns false if the frame
675 * can be processed immediately, true if it was consumed.
677 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
678 struct tid_ampdu_rx *tid_agg_rx,
679 struct sk_buff *skb)
681 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
682 u16 sc = le16_to_cpu(hdr->seq_ctrl);
683 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
684 u16 head_seq_num, buf_size;
685 int index;
686 bool ret = true;
688 spin_lock(&tid_agg_rx->reorder_lock);
690 buf_size = tid_agg_rx->buf_size;
691 head_seq_num = tid_agg_rx->head_seq_num;
693 /* frame with out of date sequence number */
694 if (seq_less(mpdu_seq_num, head_seq_num)) {
695 dev_kfree_skb(skb);
696 goto out;
700 * If frame the sequence number exceeds our buffering window
701 * size release some previous frames to make room for this one.
703 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
704 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
705 /* release stored frames up to new head to stack */
706 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
709 /* Now the new frame is always in the range of the reordering buffer */
711 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
713 /* check if we already stored this frame */
714 if (tid_agg_rx->reorder_buf[index]) {
715 dev_kfree_skb(skb);
716 goto out;
720 * If the current MPDU is in the right order and nothing else
721 * is stored we can process it directly, no need to buffer it.
722 * If it is first but there's something stored, we may be able
723 * to release frames after this one.
725 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
726 tid_agg_rx->stored_mpdu_num == 0) {
727 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
728 ret = false;
729 goto out;
732 /* put the frame in the reordering buffer */
733 tid_agg_rx->reorder_buf[index] = skb;
734 tid_agg_rx->reorder_time[index] = jiffies;
735 tid_agg_rx->stored_mpdu_num++;
736 ieee80211_sta_reorder_release(hw, tid_agg_rx);
738 out:
739 spin_unlock(&tid_agg_rx->reorder_lock);
740 return ret;
744 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
745 * true if the MPDU was buffered, false if it should be processed.
747 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
749 struct sk_buff *skb = rx->skb;
750 struct ieee80211_local *local = rx->local;
751 struct ieee80211_hw *hw = &local->hw;
752 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
753 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
754 struct sta_info *sta = rx->sta;
755 struct tid_ampdu_rx *tid_agg_rx;
756 u16 sc;
757 u8 tid, ack_policy;
759 if (!ieee80211_is_data_qos(hdr->frame_control))
760 goto dont_reorder;
763 * filter the QoS data rx stream according to
764 * STA/TID and check if this STA/TID is on aggregation
767 if (!sta)
768 goto dont_reorder;
770 ack_policy = *ieee80211_get_qos_ctl(hdr) &
771 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
772 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
774 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
775 if (!tid_agg_rx)
776 goto dont_reorder;
778 /* qos null data frames are excluded */
779 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
780 goto dont_reorder;
782 /* not part of a BA session */
783 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
784 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
785 goto dont_reorder;
787 /* not actually part of this BA session */
788 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
789 goto dont_reorder;
791 /* new, potentially un-ordered, ampdu frame - process it */
793 /* reset session timer */
794 if (tid_agg_rx->timeout)
795 mod_timer(&tid_agg_rx->session_timer,
796 TU_TO_EXP_TIME(tid_agg_rx->timeout));
798 /* if this mpdu is fragmented - terminate rx aggregation session */
799 sc = le16_to_cpu(hdr->seq_ctrl);
800 if (sc & IEEE80211_SCTL_FRAG) {
801 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
802 skb_queue_tail(&rx->sdata->skb_queue, skb);
803 ieee80211_queue_work(&local->hw, &rx->sdata->work);
804 return;
808 * No locking needed -- we will only ever process one
809 * RX packet at a time, and thus own tid_agg_rx. All
810 * other code manipulating it needs to (and does) make
811 * sure that we cannot get to it any more before doing
812 * anything with it.
814 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
815 return;
817 dont_reorder:
818 skb_queue_tail(&local->rx_skb_queue, skb);
821 static ieee80211_rx_result debug_noinline
822 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
824 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
825 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
827 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
828 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
829 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
830 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
831 hdr->seq_ctrl)) {
832 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
833 rx->local->dot11FrameDuplicateCount++;
834 rx->sta->num_duplicates++;
836 return RX_DROP_UNUSABLE;
837 } else
838 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
841 if (unlikely(rx->skb->len < 16)) {
842 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
843 return RX_DROP_MONITOR;
846 /* Drop disallowed frame classes based on STA auth/assoc state;
847 * IEEE 802.11, Chap 5.5.
849 * mac80211 filters only based on association state, i.e. it drops
850 * Class 3 frames from not associated stations. hostapd sends
851 * deauth/disassoc frames when needed. In addition, hostapd is
852 * responsible for filtering on both auth and assoc states.
855 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
856 return ieee80211_rx_mesh_check(rx);
858 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
859 ieee80211_is_pspoll(hdr->frame_control)) &&
860 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
861 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
862 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
864 * accept port control frames from the AP even when it's not
865 * yet marked ASSOC to prevent a race where we don't set the
866 * assoc bit quickly enough before it sends the first frame
868 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
869 ieee80211_is_data_present(hdr->frame_control)) {
870 u16 ethertype;
871 u8 *payload;
873 payload = rx->skb->data +
874 ieee80211_hdrlen(hdr->frame_control);
875 ethertype = (payload[6] << 8) | payload[7];
876 if (cpu_to_be16(ethertype) ==
877 rx->sdata->control_port_protocol)
878 return RX_CONTINUE;
881 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
882 cfg80211_rx_spurious_frame(rx->sdata->dev,
883 hdr->addr2,
884 GFP_ATOMIC))
885 return RX_DROP_UNUSABLE;
887 return RX_DROP_MONITOR;
890 return RX_CONTINUE;
894 static ieee80211_rx_result debug_noinline
895 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
897 struct sk_buff *skb = rx->skb;
898 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
899 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
900 int keyidx;
901 int hdrlen;
902 ieee80211_rx_result result = RX_DROP_UNUSABLE;
903 struct ieee80211_key *sta_ptk = NULL;
904 int mmie_keyidx = -1;
905 __le16 fc;
908 * Key selection 101
910 * There are four types of keys:
911 * - GTK (group keys)
912 * - IGTK (group keys for management frames)
913 * - PTK (pairwise keys)
914 * - STK (station-to-station pairwise keys)
916 * When selecting a key, we have to distinguish between multicast
917 * (including broadcast) and unicast frames, the latter can only
918 * use PTKs and STKs while the former always use GTKs and IGTKs.
919 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
920 * unicast frames can also use key indices like GTKs. Hence, if we
921 * don't have a PTK/STK we check the key index for a WEP key.
923 * Note that in a regular BSS, multicast frames are sent by the
924 * AP only, associated stations unicast the frame to the AP first
925 * which then multicasts it on their behalf.
927 * There is also a slight problem in IBSS mode: GTKs are negotiated
928 * with each station, that is something we don't currently handle.
929 * The spec seems to expect that one negotiates the same key with
930 * every station but there's no such requirement; VLANs could be
931 * possible.
935 * No point in finding a key and decrypting if the frame is neither
936 * addressed to us nor a multicast frame.
938 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
939 return RX_CONTINUE;
941 /* start without a key */
942 rx->key = NULL;
944 if (rx->sta)
945 sta_ptk = rcu_dereference(rx->sta->ptk);
947 fc = hdr->frame_control;
949 if (!ieee80211_has_protected(fc))
950 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
952 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
953 rx->key = sta_ptk;
954 if ((status->flag & RX_FLAG_DECRYPTED) &&
955 (status->flag & RX_FLAG_IV_STRIPPED))
956 return RX_CONTINUE;
957 /* Skip decryption if the frame is not protected. */
958 if (!ieee80211_has_protected(fc))
959 return RX_CONTINUE;
960 } else if (mmie_keyidx >= 0) {
961 /* Broadcast/multicast robust management frame / BIP */
962 if ((status->flag & RX_FLAG_DECRYPTED) &&
963 (status->flag & RX_FLAG_IV_STRIPPED))
964 return RX_CONTINUE;
966 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
967 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
968 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
969 if (rx->sta)
970 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
971 if (!rx->key)
972 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
973 } else if (!ieee80211_has_protected(fc)) {
975 * The frame was not protected, so skip decryption. However, we
976 * need to set rx->key if there is a key that could have been
977 * used so that the frame may be dropped if encryption would
978 * have been expected.
980 struct ieee80211_key *key = NULL;
981 struct ieee80211_sub_if_data *sdata = rx->sdata;
982 int i;
984 if (ieee80211_is_mgmt(fc) &&
985 is_multicast_ether_addr(hdr->addr1) &&
986 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
987 rx->key = key;
988 else {
989 if (rx->sta) {
990 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
991 key = rcu_dereference(rx->sta->gtk[i]);
992 if (key)
993 break;
996 if (!key) {
997 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
998 key = rcu_dereference(sdata->keys[i]);
999 if (key)
1000 break;
1003 if (key)
1004 rx->key = key;
1006 return RX_CONTINUE;
1007 } else {
1008 u8 keyid;
1010 * The device doesn't give us the IV so we won't be
1011 * able to look up the key. That's ok though, we
1012 * don't need to decrypt the frame, we just won't
1013 * be able to keep statistics accurate.
1014 * Except for key threshold notifications, should
1015 * we somehow allow the driver to tell us which key
1016 * the hardware used if this flag is set?
1018 if ((status->flag & RX_FLAG_DECRYPTED) &&
1019 (status->flag & RX_FLAG_IV_STRIPPED))
1020 return RX_CONTINUE;
1022 hdrlen = ieee80211_hdrlen(fc);
1024 if (rx->skb->len < 8 + hdrlen)
1025 return RX_DROP_UNUSABLE; /* TODO: count this? */
1028 * no need to call ieee80211_wep_get_keyidx,
1029 * it verifies a bunch of things we've done already
1031 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1032 keyidx = keyid >> 6;
1034 /* check per-station GTK first, if multicast packet */
1035 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1036 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1038 /* if not found, try default key */
1039 if (!rx->key) {
1040 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1043 * RSNA-protected unicast frames should always be
1044 * sent with pairwise or station-to-station keys,
1045 * but for WEP we allow using a key index as well.
1047 if (rx->key &&
1048 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1049 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1050 !is_multicast_ether_addr(hdr->addr1))
1051 rx->key = NULL;
1055 if (rx->key) {
1056 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1057 return RX_DROP_MONITOR;
1059 rx->key->tx_rx_count++;
1060 /* TODO: add threshold stuff again */
1061 } else {
1062 return RX_DROP_MONITOR;
1065 if (skb_linearize(rx->skb))
1066 return RX_DROP_UNUSABLE;
1067 /* the hdr variable is invalid now! */
1069 switch (rx->key->conf.cipher) {
1070 case WLAN_CIPHER_SUITE_WEP40:
1071 case WLAN_CIPHER_SUITE_WEP104:
1072 /* Check for weak IVs if possible */
1073 if (rx->sta && ieee80211_is_data(fc) &&
1074 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1075 !(status->flag & RX_FLAG_DECRYPTED)) &&
1076 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1077 rx->sta->wep_weak_iv_count++;
1079 result = ieee80211_crypto_wep_decrypt(rx);
1080 break;
1081 case WLAN_CIPHER_SUITE_TKIP:
1082 result = ieee80211_crypto_tkip_decrypt(rx);
1083 break;
1084 case WLAN_CIPHER_SUITE_CCMP:
1085 result = ieee80211_crypto_ccmp_decrypt(rx);
1086 break;
1087 case WLAN_CIPHER_SUITE_AES_CMAC:
1088 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1089 break;
1090 default:
1092 * We can reach here only with HW-only algorithms
1093 * but why didn't it decrypt the frame?!
1095 return RX_DROP_UNUSABLE;
1098 /* either the frame has been decrypted or will be dropped */
1099 status->flag |= RX_FLAG_DECRYPTED;
1101 return result;
1104 static ieee80211_rx_result debug_noinline
1105 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1107 struct ieee80211_local *local;
1108 struct ieee80211_hdr *hdr;
1109 struct sk_buff *skb;
1111 local = rx->local;
1112 skb = rx->skb;
1113 hdr = (struct ieee80211_hdr *) skb->data;
1115 if (!local->pspolling)
1116 return RX_CONTINUE;
1118 if (!ieee80211_has_fromds(hdr->frame_control))
1119 /* this is not from AP */
1120 return RX_CONTINUE;
1122 if (!ieee80211_is_data(hdr->frame_control))
1123 return RX_CONTINUE;
1125 if (!ieee80211_has_moredata(hdr->frame_control)) {
1126 /* AP has no more frames buffered for us */
1127 local->pspolling = false;
1128 return RX_CONTINUE;
1131 /* more data bit is set, let's request a new frame from the AP */
1132 ieee80211_send_pspoll(local, rx->sdata);
1134 return RX_CONTINUE;
1137 static void ap_sta_ps_start(struct sta_info *sta)
1139 struct ieee80211_sub_if_data *sdata = sta->sdata;
1140 struct ieee80211_local *local = sdata->local;
1142 atomic_inc(&sdata->bss->num_sta_ps);
1143 set_sta_flag(sta, WLAN_STA_PS_STA);
1144 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1145 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1146 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1147 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1148 sdata->name, sta->sta.addr, sta->sta.aid);
1149 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1152 static void ap_sta_ps_end(struct sta_info *sta)
1154 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1155 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1156 sta->sdata->name, sta->sta.addr, sta->sta.aid);
1157 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1159 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1160 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1161 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1162 sta->sdata->name, sta->sta.addr, sta->sta.aid);
1163 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1164 return;
1167 ieee80211_sta_ps_deliver_wakeup(sta);
1170 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1172 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1173 bool in_ps;
1175 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1177 /* Don't let the same PS state be set twice */
1178 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1179 if ((start && in_ps) || (!start && !in_ps))
1180 return -EINVAL;
1182 if (start)
1183 ap_sta_ps_start(sta_inf);
1184 else
1185 ap_sta_ps_end(sta_inf);
1187 return 0;
1189 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1191 static ieee80211_rx_result debug_noinline
1192 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1194 struct ieee80211_sub_if_data *sdata = rx->sdata;
1195 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1196 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1197 int tid, ac;
1199 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1200 return RX_CONTINUE;
1202 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1203 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1204 return RX_CONTINUE;
1207 * The device handles station powersave, so don't do anything about
1208 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1209 * it to mac80211 since they're handled.)
1211 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1212 return RX_CONTINUE;
1215 * Don't do anything if the station isn't already asleep. In
1216 * the uAPSD case, the station will probably be marked asleep,
1217 * in the PS-Poll case the station must be confused ...
1219 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1220 return RX_CONTINUE;
1222 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1223 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1224 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1225 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1226 else
1227 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1230 /* Free PS Poll skb here instead of returning RX_DROP that would
1231 * count as an dropped frame. */
1232 dev_kfree_skb(rx->skb);
1234 return RX_QUEUED;
1235 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1236 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1237 ieee80211_has_pm(hdr->frame_control) &&
1238 (ieee80211_is_data_qos(hdr->frame_control) ||
1239 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1240 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1241 ac = ieee802_1d_to_ac[tid & 7];
1244 * If this AC is not trigger-enabled do nothing.
1246 * NB: This could/should check a separate bitmap of trigger-
1247 * enabled queues, but for now we only implement uAPSD w/o
1248 * TSPEC changes to the ACs, so they're always the same.
1250 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1251 return RX_CONTINUE;
1253 /* if we are in a service period, do nothing */
1254 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1255 return RX_CONTINUE;
1257 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1258 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1259 else
1260 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1263 return RX_CONTINUE;
1266 static ieee80211_rx_result debug_noinline
1267 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1269 struct sta_info *sta = rx->sta;
1270 struct sk_buff *skb = rx->skb;
1271 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1272 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1274 if (!sta)
1275 return RX_CONTINUE;
1278 * Update last_rx only for IBSS packets which are for the current
1279 * BSSID to avoid keeping the current IBSS network alive in cases
1280 * where other STAs start using different BSSID.
1282 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1283 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1284 NL80211_IFTYPE_ADHOC);
1285 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1286 sta->last_rx = jiffies;
1287 if (ieee80211_is_data(hdr->frame_control)) {
1288 sta->last_rx_rate_idx = status->rate_idx;
1289 sta->last_rx_rate_flag = status->flag;
1292 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1294 * Mesh beacons will update last_rx when if they are found to
1295 * match the current local configuration when processed.
1297 sta->last_rx = jiffies;
1298 if (ieee80211_is_data(hdr->frame_control)) {
1299 sta->last_rx_rate_idx = status->rate_idx;
1300 sta->last_rx_rate_flag = status->flag;
1304 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1305 return RX_CONTINUE;
1307 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1308 ieee80211_sta_rx_notify(rx->sdata, hdr);
1310 sta->rx_fragments++;
1311 sta->rx_bytes += rx->skb->len;
1312 sta->last_signal = status->signal;
1313 ewma_add(&sta->avg_signal, -status->signal);
1316 * Change STA power saving mode only at the end of a frame
1317 * exchange sequence.
1319 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1320 !ieee80211_has_morefrags(hdr->frame_control) &&
1321 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1322 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1323 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1324 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1326 * Ignore doze->wake transitions that are
1327 * indicated by non-data frames, the standard
1328 * is unclear here, but for example going to
1329 * PS mode and then scanning would cause a
1330 * doze->wake transition for the probe request,
1331 * and that is clearly undesirable.
1333 if (ieee80211_is_data(hdr->frame_control) &&
1334 !ieee80211_has_pm(hdr->frame_control))
1335 ap_sta_ps_end(sta);
1336 } else {
1337 if (ieee80211_has_pm(hdr->frame_control))
1338 ap_sta_ps_start(sta);
1343 * Drop (qos-)data::nullfunc frames silently, since they
1344 * are used only to control station power saving mode.
1346 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1347 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1348 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1351 * If we receive a 4-addr nullfunc frame from a STA
1352 * that was not moved to a 4-addr STA vlan yet send
1353 * the event to userspace and for older hostapd drop
1354 * the frame to the monitor interface.
1356 if (ieee80211_has_a4(hdr->frame_control) &&
1357 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1358 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1359 !rx->sdata->u.vlan.sta))) {
1360 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1361 cfg80211_rx_unexpected_4addr_frame(
1362 rx->sdata->dev, sta->sta.addr,
1363 GFP_ATOMIC);
1364 return RX_DROP_MONITOR;
1367 * Update counter and free packet here to avoid
1368 * counting this as a dropped packed.
1370 sta->rx_packets++;
1371 dev_kfree_skb(rx->skb);
1372 return RX_QUEUED;
1375 return RX_CONTINUE;
1376 } /* ieee80211_rx_h_sta_process */
1378 static inline struct ieee80211_fragment_entry *
1379 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1380 unsigned int frag, unsigned int seq, int rx_queue,
1381 struct sk_buff **skb)
1383 struct ieee80211_fragment_entry *entry;
1384 int idx;
1386 idx = sdata->fragment_next;
1387 entry = &sdata->fragments[sdata->fragment_next++];
1388 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1389 sdata->fragment_next = 0;
1391 if (!skb_queue_empty(&entry->skb_list)) {
1392 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1393 struct ieee80211_hdr *hdr =
1394 (struct ieee80211_hdr *) entry->skb_list.next->data;
1395 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1396 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1397 "addr1=%pM addr2=%pM\n",
1398 sdata->name, idx,
1399 jiffies - entry->first_frag_time, entry->seq,
1400 entry->last_frag, hdr->addr1, hdr->addr2);
1401 #endif
1402 __skb_queue_purge(&entry->skb_list);
1405 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1406 *skb = NULL;
1407 entry->first_frag_time = jiffies;
1408 entry->seq = seq;
1409 entry->rx_queue = rx_queue;
1410 entry->last_frag = frag;
1411 entry->ccmp = 0;
1412 entry->extra_len = 0;
1414 return entry;
1417 static inline struct ieee80211_fragment_entry *
1418 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1419 unsigned int frag, unsigned int seq,
1420 int rx_queue, struct ieee80211_hdr *hdr)
1422 struct ieee80211_fragment_entry *entry;
1423 int i, idx;
1425 idx = sdata->fragment_next;
1426 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1427 struct ieee80211_hdr *f_hdr;
1429 idx--;
1430 if (idx < 0)
1431 idx = IEEE80211_FRAGMENT_MAX - 1;
1433 entry = &sdata->fragments[idx];
1434 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1435 entry->rx_queue != rx_queue ||
1436 entry->last_frag + 1 != frag)
1437 continue;
1439 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1442 * Check ftype and addresses are equal, else check next fragment
1444 if (((hdr->frame_control ^ f_hdr->frame_control) &
1445 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1446 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1447 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1448 continue;
1450 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1451 __skb_queue_purge(&entry->skb_list);
1452 continue;
1454 return entry;
1457 return NULL;
1460 static ieee80211_rx_result debug_noinline
1461 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1463 struct ieee80211_hdr *hdr;
1464 u16 sc;
1465 __le16 fc;
1466 unsigned int frag, seq;
1467 struct ieee80211_fragment_entry *entry;
1468 struct sk_buff *skb;
1469 struct ieee80211_rx_status *status;
1471 hdr = (struct ieee80211_hdr *)rx->skb->data;
1472 fc = hdr->frame_control;
1473 sc = le16_to_cpu(hdr->seq_ctrl);
1474 frag = sc & IEEE80211_SCTL_FRAG;
1476 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1477 (rx->skb)->len < 24 ||
1478 is_multicast_ether_addr(hdr->addr1))) {
1479 /* not fragmented */
1480 goto out;
1482 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1484 if (skb_linearize(rx->skb))
1485 return RX_DROP_UNUSABLE;
1488 * skb_linearize() might change the skb->data and
1489 * previously cached variables (in this case, hdr) need to
1490 * be refreshed with the new data.
1492 hdr = (struct ieee80211_hdr *)rx->skb->data;
1493 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1495 if (frag == 0) {
1496 /* This is the first fragment of a new frame. */
1497 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1498 rx->seqno_idx, &(rx->skb));
1499 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1500 ieee80211_has_protected(fc)) {
1501 int queue = rx->security_idx;
1502 /* Store CCMP PN so that we can verify that the next
1503 * fragment has a sequential PN value. */
1504 entry->ccmp = 1;
1505 memcpy(entry->last_pn,
1506 rx->key->u.ccmp.rx_pn[queue],
1507 CCMP_PN_LEN);
1509 return RX_QUEUED;
1512 /* This is a fragment for a frame that should already be pending in
1513 * fragment cache. Add this fragment to the end of the pending entry.
1515 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1516 rx->seqno_idx, hdr);
1517 if (!entry) {
1518 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1519 return RX_DROP_MONITOR;
1522 /* Verify that MPDUs within one MSDU have sequential PN values.
1523 * (IEEE 802.11i, 8.3.3.4.5) */
1524 if (entry->ccmp) {
1525 int i;
1526 u8 pn[CCMP_PN_LEN], *rpn;
1527 int queue;
1528 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1529 return RX_DROP_UNUSABLE;
1530 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1531 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1532 pn[i]++;
1533 if (pn[i])
1534 break;
1536 queue = rx->security_idx;
1537 rpn = rx->key->u.ccmp.rx_pn[queue];
1538 if (memcmp(pn, rpn, CCMP_PN_LEN))
1539 return RX_DROP_UNUSABLE;
1540 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1543 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1544 __skb_queue_tail(&entry->skb_list, rx->skb);
1545 entry->last_frag = frag;
1546 entry->extra_len += rx->skb->len;
1547 if (ieee80211_has_morefrags(fc)) {
1548 rx->skb = NULL;
1549 return RX_QUEUED;
1552 rx->skb = __skb_dequeue(&entry->skb_list);
1553 if (skb_tailroom(rx->skb) < entry->extra_len) {
1554 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1555 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1556 GFP_ATOMIC))) {
1557 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1558 __skb_queue_purge(&entry->skb_list);
1559 return RX_DROP_UNUSABLE;
1562 while ((skb = __skb_dequeue(&entry->skb_list))) {
1563 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1564 dev_kfree_skb(skb);
1567 /* Complete frame has been reassembled - process it now */
1568 status = IEEE80211_SKB_RXCB(rx->skb);
1569 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1571 out:
1572 if (rx->sta)
1573 rx->sta->rx_packets++;
1574 if (is_multicast_ether_addr(hdr->addr1))
1575 rx->local->dot11MulticastReceivedFrameCount++;
1576 else
1577 ieee80211_led_rx(rx->local);
1578 return RX_CONTINUE;
1581 static int
1582 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1584 if (unlikely(!rx->sta ||
1585 !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1586 return -EACCES;
1588 return 0;
1591 static int
1592 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1594 struct sk_buff *skb = rx->skb;
1595 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1598 * Pass through unencrypted frames if the hardware has
1599 * decrypted them already.
1601 if (status->flag & RX_FLAG_DECRYPTED)
1602 return 0;
1604 /* Drop unencrypted frames if key is set. */
1605 if (unlikely(!ieee80211_has_protected(fc) &&
1606 !ieee80211_is_nullfunc(fc) &&
1607 ieee80211_is_data(fc) &&
1608 (rx->key || rx->sdata->drop_unencrypted)))
1609 return -EACCES;
1611 return 0;
1614 static int
1615 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1617 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1618 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1619 __le16 fc = hdr->frame_control;
1622 * Pass through unencrypted frames if the hardware has
1623 * decrypted them already.
1625 if (status->flag & RX_FLAG_DECRYPTED)
1626 return 0;
1628 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1629 if (unlikely(!ieee80211_has_protected(fc) &&
1630 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1631 rx->key)) {
1632 if (ieee80211_is_deauth(fc))
1633 cfg80211_send_unprot_deauth(rx->sdata->dev,
1634 rx->skb->data,
1635 rx->skb->len);
1636 else if (ieee80211_is_disassoc(fc))
1637 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1638 rx->skb->data,
1639 rx->skb->len);
1640 return -EACCES;
1642 /* BIP does not use Protected field, so need to check MMIE */
1643 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1644 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1645 if (ieee80211_is_deauth(fc))
1646 cfg80211_send_unprot_deauth(rx->sdata->dev,
1647 rx->skb->data,
1648 rx->skb->len);
1649 else if (ieee80211_is_disassoc(fc))
1650 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1651 rx->skb->data,
1652 rx->skb->len);
1653 return -EACCES;
1656 * When using MFP, Action frames are not allowed prior to
1657 * having configured keys.
1659 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1660 ieee80211_is_robust_mgmt_frame(
1661 (struct ieee80211_hdr *) rx->skb->data)))
1662 return -EACCES;
1665 return 0;
1668 static int
1669 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1671 struct ieee80211_sub_if_data *sdata = rx->sdata;
1672 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1673 bool check_port_control = false;
1674 struct ethhdr *ehdr;
1675 int ret;
1677 *port_control = false;
1678 if (ieee80211_has_a4(hdr->frame_control) &&
1679 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1680 return -1;
1682 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1683 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1685 if (!sdata->u.mgd.use_4addr)
1686 return -1;
1687 else
1688 check_port_control = true;
1691 if (is_multicast_ether_addr(hdr->addr1) &&
1692 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1693 return -1;
1695 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1696 if (ret < 0)
1697 return ret;
1699 ehdr = (struct ethhdr *) rx->skb->data;
1700 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1701 *port_control = true;
1702 else if (check_port_control)
1703 return -1;
1705 return 0;
1709 * requires that rx->skb is a frame with ethernet header
1711 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1713 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1714 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1715 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1718 * Allow EAPOL frames to us/the PAE group address regardless
1719 * of whether the frame was encrypted or not.
1721 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1722 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1723 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1724 return true;
1726 if (ieee80211_802_1x_port_control(rx) ||
1727 ieee80211_drop_unencrypted(rx, fc))
1728 return false;
1730 return true;
1734 * requires that rx->skb is a frame with ethernet header
1736 static void
1737 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1739 struct ieee80211_sub_if_data *sdata = rx->sdata;
1740 struct net_device *dev = sdata->dev;
1741 struct sk_buff *skb, *xmit_skb;
1742 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1743 struct sta_info *dsta;
1744 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1746 skb = rx->skb;
1747 xmit_skb = NULL;
1749 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1750 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1751 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1752 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1753 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1754 if (is_multicast_ether_addr(ehdr->h_dest)) {
1756 * send multicast frames both to higher layers in
1757 * local net stack and back to the wireless medium
1759 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1760 if (!xmit_skb && net_ratelimit())
1761 printk(KERN_DEBUG "%s: failed to clone "
1762 "multicast frame\n", dev->name);
1763 } else {
1764 dsta = sta_info_get(sdata, skb->data);
1765 if (dsta) {
1767 * The destination station is associated to
1768 * this AP (in this VLAN), so send the frame
1769 * directly to it and do not pass it to local
1770 * net stack.
1772 xmit_skb = skb;
1773 skb = NULL;
1778 if (skb) {
1779 int align __maybe_unused;
1781 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1783 * 'align' will only take the values 0 or 2 here
1784 * since all frames are required to be aligned
1785 * to 2-byte boundaries when being passed to
1786 * mac80211. That also explains the __skb_push()
1787 * below.
1789 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1790 if (align) {
1791 if (WARN_ON(skb_headroom(skb) < 3)) {
1792 dev_kfree_skb(skb);
1793 skb = NULL;
1794 } else {
1795 u8 *data = skb->data;
1796 size_t len = skb_headlen(skb);
1797 skb->data -= align;
1798 memmove(skb->data, data, len);
1799 skb_set_tail_pointer(skb, len);
1802 #endif
1804 if (skb) {
1805 /* deliver to local stack */
1806 skb->protocol = eth_type_trans(skb, dev);
1807 memset(skb->cb, 0, sizeof(skb->cb));
1808 netif_receive_skb(skb);
1812 if (xmit_skb) {
1814 * Send to wireless media and increase priority by 256 to
1815 * keep the received priority instead of reclassifying
1816 * the frame (see cfg80211_classify8021d).
1818 xmit_skb->priority += 256;
1819 xmit_skb->protocol = htons(ETH_P_802_3);
1820 skb_reset_network_header(xmit_skb);
1821 skb_reset_mac_header(xmit_skb);
1822 dev_queue_xmit(xmit_skb);
1826 static ieee80211_rx_result debug_noinline
1827 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1829 struct net_device *dev = rx->sdata->dev;
1830 struct sk_buff *skb = rx->skb;
1831 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1832 __le16 fc = hdr->frame_control;
1833 struct sk_buff_head frame_list;
1834 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1836 if (unlikely(!ieee80211_is_data(fc)))
1837 return RX_CONTINUE;
1839 if (unlikely(!ieee80211_is_data_present(fc)))
1840 return RX_DROP_MONITOR;
1842 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1843 return RX_CONTINUE;
1845 if (ieee80211_has_a4(hdr->frame_control) &&
1846 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1847 !rx->sdata->u.vlan.sta)
1848 return RX_DROP_UNUSABLE;
1850 if (is_multicast_ether_addr(hdr->addr1) &&
1851 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1852 rx->sdata->u.vlan.sta) ||
1853 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1854 rx->sdata->u.mgd.use_4addr)))
1855 return RX_DROP_UNUSABLE;
1857 skb->dev = dev;
1858 __skb_queue_head_init(&frame_list);
1860 if (skb_linearize(skb))
1861 return RX_DROP_UNUSABLE;
1863 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1864 rx->sdata->vif.type,
1865 rx->local->hw.extra_tx_headroom, true);
1867 while (!skb_queue_empty(&frame_list)) {
1868 rx->skb = __skb_dequeue(&frame_list);
1870 if (!ieee80211_frame_allowed(rx, fc)) {
1871 dev_kfree_skb(rx->skb);
1872 continue;
1874 dev->stats.rx_packets++;
1875 dev->stats.rx_bytes += rx->skb->len;
1877 ieee80211_deliver_skb(rx);
1880 return RX_QUEUED;
1883 #ifdef CONFIG_MAC80211_MESH
1884 static ieee80211_rx_result
1885 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1887 struct ieee80211_hdr *fwd_hdr, *hdr;
1888 struct ieee80211_tx_info *info;
1889 struct ieee80211s_hdr *mesh_hdr;
1890 struct sk_buff *skb = rx->skb, *fwd_skb;
1891 struct ieee80211_local *local = rx->local;
1892 struct ieee80211_sub_if_data *sdata = rx->sdata;
1893 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1894 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
1895 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
1896 u16 q, hdrlen;
1898 hdr = (struct ieee80211_hdr *) skb->data;
1899 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1900 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1902 /* frame is in RMC, don't forward */
1903 if (ieee80211_is_data(hdr->frame_control) &&
1904 is_multicast_ether_addr(hdr->addr1) &&
1905 mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata))
1906 return RX_DROP_MONITOR;
1908 if (!ieee80211_is_data(hdr->frame_control))
1909 return RX_CONTINUE;
1911 if (!mesh_hdr->ttl)
1912 return RX_DROP_MONITOR;
1914 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1915 struct mesh_path *mppath;
1916 char *proxied_addr;
1917 char *mpp_addr;
1919 if (is_multicast_ether_addr(hdr->addr1)) {
1920 mpp_addr = hdr->addr3;
1921 proxied_addr = mesh_hdr->eaddr1;
1922 } else {
1923 mpp_addr = hdr->addr4;
1924 proxied_addr = mesh_hdr->eaddr2;
1927 rcu_read_lock();
1928 mppath = mpp_path_lookup(proxied_addr, sdata);
1929 if (!mppath) {
1930 mpp_path_add(proxied_addr, mpp_addr, sdata);
1931 } else {
1932 spin_lock_bh(&mppath->state_lock);
1933 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1934 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1935 spin_unlock_bh(&mppath->state_lock);
1937 rcu_read_unlock();
1940 /* Frame has reached destination. Don't forward */
1941 if (!is_multicast_ether_addr(hdr->addr1) &&
1942 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1943 return RX_CONTINUE;
1945 q = ieee80211_select_queue_80211(local, skb, hdr);
1946 if (ieee80211_queue_stopped(&local->hw, q)) {
1947 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
1948 return RX_DROP_MONITOR;
1950 skb_set_queue_mapping(skb, q);
1952 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1953 goto out;
1955 if (!--mesh_hdr->ttl) {
1956 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
1957 return RX_DROP_MONITOR;
1960 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1961 if (!fwd_skb) {
1962 if (net_ratelimit())
1963 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1964 sdata->name);
1965 goto out;
1968 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1969 info = IEEE80211_SKB_CB(fwd_skb);
1970 memset(info, 0, sizeof(*info));
1971 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1972 info->control.vif = &rx->sdata->vif;
1973 info->control.jiffies = jiffies;
1974 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
1975 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
1976 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1977 } else if (!mesh_nexthop_lookup(fwd_skb, sdata)) {
1978 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
1979 } else {
1980 /* unable to resolve next hop */
1981 mesh_path_error_tx(ifmsh->mshcfg.element_ttl, fwd_hdr->addr3,
1982 0, reason, fwd_hdr->addr2, sdata);
1983 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
1984 kfree_skb(fwd_skb);
1985 return RX_DROP_MONITOR;
1988 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
1989 ieee80211_add_pending_skb(local, fwd_skb);
1990 out:
1991 if (is_multicast_ether_addr(hdr->addr1) ||
1992 sdata->dev->flags & IFF_PROMISC)
1993 return RX_CONTINUE;
1994 else
1995 return RX_DROP_MONITOR;
1997 #endif
1999 static ieee80211_rx_result debug_noinline
2000 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2002 struct ieee80211_sub_if_data *sdata = rx->sdata;
2003 struct ieee80211_local *local = rx->local;
2004 struct net_device *dev = sdata->dev;
2005 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2006 __le16 fc = hdr->frame_control;
2007 bool port_control;
2008 int err;
2010 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2011 return RX_CONTINUE;
2013 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2014 return RX_DROP_MONITOR;
2017 * Send unexpected-4addr-frame event to hostapd. For older versions,
2018 * also drop the frame to cooked monitor interfaces.
2020 if (ieee80211_has_a4(hdr->frame_control) &&
2021 sdata->vif.type == NL80211_IFTYPE_AP) {
2022 if (rx->sta &&
2023 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2024 cfg80211_rx_unexpected_4addr_frame(
2025 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2026 return RX_DROP_MONITOR;
2029 err = __ieee80211_data_to_8023(rx, &port_control);
2030 if (unlikely(err))
2031 return RX_DROP_UNUSABLE;
2033 if (!ieee80211_frame_allowed(rx, fc))
2034 return RX_DROP_MONITOR;
2036 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2037 unlikely(port_control) && sdata->bss) {
2038 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2039 u.ap);
2040 dev = sdata->dev;
2041 rx->sdata = sdata;
2044 rx->skb->dev = dev;
2046 dev->stats.rx_packets++;
2047 dev->stats.rx_bytes += rx->skb->len;
2049 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2050 !is_multicast_ether_addr(
2051 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2052 (!local->scanning &&
2053 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2054 mod_timer(&local->dynamic_ps_timer, jiffies +
2055 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2058 ieee80211_deliver_skb(rx);
2060 return RX_QUEUED;
2063 static ieee80211_rx_result debug_noinline
2064 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
2066 struct ieee80211_local *local = rx->local;
2067 struct ieee80211_hw *hw = &local->hw;
2068 struct sk_buff *skb = rx->skb;
2069 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2070 struct tid_ampdu_rx *tid_agg_rx;
2071 u16 start_seq_num;
2072 u16 tid;
2074 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2075 return RX_CONTINUE;
2077 if (ieee80211_is_back_req(bar->frame_control)) {
2078 struct {
2079 __le16 control, start_seq_num;
2080 } __packed bar_data;
2082 if (!rx->sta)
2083 return RX_DROP_MONITOR;
2085 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2086 &bar_data, sizeof(bar_data)))
2087 return RX_DROP_MONITOR;
2089 tid = le16_to_cpu(bar_data.control) >> 12;
2091 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2092 if (!tid_agg_rx)
2093 return RX_DROP_MONITOR;
2095 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2097 /* reset session timer */
2098 if (tid_agg_rx->timeout)
2099 mod_timer(&tid_agg_rx->session_timer,
2100 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2102 spin_lock(&tid_agg_rx->reorder_lock);
2103 /* release stored frames up to start of BAR */
2104 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2105 spin_unlock(&tid_agg_rx->reorder_lock);
2107 kfree_skb(skb);
2108 return RX_QUEUED;
2112 * After this point, we only want management frames,
2113 * so we can drop all remaining control frames to
2114 * cooked monitor interfaces.
2116 return RX_DROP_MONITOR;
2119 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2120 struct ieee80211_mgmt *mgmt,
2121 size_t len)
2123 struct ieee80211_local *local = sdata->local;
2124 struct sk_buff *skb;
2125 struct ieee80211_mgmt *resp;
2127 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2128 /* Not to own unicast address */
2129 return;
2132 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2133 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2134 /* Not from the current AP or not associated yet. */
2135 return;
2138 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2139 /* Too short SA Query request frame */
2140 return;
2143 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2144 if (skb == NULL)
2145 return;
2147 skb_reserve(skb, local->hw.extra_tx_headroom);
2148 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2149 memset(resp, 0, 24);
2150 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2151 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2152 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2153 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2154 IEEE80211_STYPE_ACTION);
2155 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2156 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2157 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2158 memcpy(resp->u.action.u.sa_query.trans_id,
2159 mgmt->u.action.u.sa_query.trans_id,
2160 WLAN_SA_QUERY_TR_ID_LEN);
2162 ieee80211_tx_skb(sdata, skb);
2165 static ieee80211_rx_result debug_noinline
2166 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2168 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2169 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2172 * From here on, look only at management frames.
2173 * Data and control frames are already handled,
2174 * and unknown (reserved) frames are useless.
2176 if (rx->skb->len < 24)
2177 return RX_DROP_MONITOR;
2179 if (!ieee80211_is_mgmt(mgmt->frame_control))
2180 return RX_DROP_MONITOR;
2182 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2183 ieee80211_is_beacon(mgmt->frame_control) &&
2184 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2185 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2186 rx->skb->data, rx->skb->len,
2187 status->freq, GFP_ATOMIC);
2188 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2191 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2192 return RX_DROP_MONITOR;
2194 if (ieee80211_drop_unencrypted_mgmt(rx))
2195 return RX_DROP_UNUSABLE;
2197 return RX_CONTINUE;
2200 static ieee80211_rx_result debug_noinline
2201 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2203 struct ieee80211_local *local = rx->local;
2204 struct ieee80211_sub_if_data *sdata = rx->sdata;
2205 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2206 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2207 int len = rx->skb->len;
2209 if (!ieee80211_is_action(mgmt->frame_control))
2210 return RX_CONTINUE;
2212 /* drop too small frames */
2213 if (len < IEEE80211_MIN_ACTION_SIZE)
2214 return RX_DROP_UNUSABLE;
2216 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2217 return RX_DROP_UNUSABLE;
2219 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2220 return RX_DROP_UNUSABLE;
2222 switch (mgmt->u.action.category) {
2223 case WLAN_CATEGORY_HT:
2224 /* reject HT action frames from stations not supporting HT */
2225 if (!rx->sta->sta.ht_cap.ht_supported)
2226 goto invalid;
2228 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2229 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2230 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2231 sdata->vif.type != NL80211_IFTYPE_AP &&
2232 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2233 break;
2235 /* verify action & smps_control are present */
2236 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2237 goto invalid;
2239 switch (mgmt->u.action.u.ht_smps.action) {
2240 case WLAN_HT_ACTION_SMPS: {
2241 struct ieee80211_supported_band *sband;
2242 u8 smps;
2244 /* convert to HT capability */
2245 switch (mgmt->u.action.u.ht_smps.smps_control) {
2246 case WLAN_HT_SMPS_CONTROL_DISABLED:
2247 smps = WLAN_HT_CAP_SM_PS_DISABLED;
2248 break;
2249 case WLAN_HT_SMPS_CONTROL_STATIC:
2250 smps = WLAN_HT_CAP_SM_PS_STATIC;
2251 break;
2252 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2253 smps = WLAN_HT_CAP_SM_PS_DYNAMIC;
2254 break;
2255 default:
2256 goto invalid;
2258 smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT;
2260 /* if no change do nothing */
2261 if ((rx->sta->sta.ht_cap.cap &
2262 IEEE80211_HT_CAP_SM_PS) == smps)
2263 goto handled;
2265 rx->sta->sta.ht_cap.cap &= ~IEEE80211_HT_CAP_SM_PS;
2266 rx->sta->sta.ht_cap.cap |= smps;
2268 sband = rx->local->hw.wiphy->bands[status->band];
2270 rate_control_rate_update(local, sband, rx->sta,
2271 IEEE80211_RC_SMPS_CHANGED,
2272 local->_oper_channel_type);
2273 goto handled;
2275 default:
2276 goto invalid;
2279 break;
2280 case WLAN_CATEGORY_BACK:
2281 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2282 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2283 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2284 sdata->vif.type != NL80211_IFTYPE_AP &&
2285 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2286 break;
2288 /* verify action_code is present */
2289 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2290 break;
2292 switch (mgmt->u.action.u.addba_req.action_code) {
2293 case WLAN_ACTION_ADDBA_REQ:
2294 if (len < (IEEE80211_MIN_ACTION_SIZE +
2295 sizeof(mgmt->u.action.u.addba_req)))
2296 goto invalid;
2297 break;
2298 case WLAN_ACTION_ADDBA_RESP:
2299 if (len < (IEEE80211_MIN_ACTION_SIZE +
2300 sizeof(mgmt->u.action.u.addba_resp)))
2301 goto invalid;
2302 break;
2303 case WLAN_ACTION_DELBA:
2304 if (len < (IEEE80211_MIN_ACTION_SIZE +
2305 sizeof(mgmt->u.action.u.delba)))
2306 goto invalid;
2307 break;
2308 default:
2309 goto invalid;
2312 goto queue;
2313 case WLAN_CATEGORY_SPECTRUM_MGMT:
2314 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2315 break;
2317 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2318 break;
2320 /* verify action_code is present */
2321 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2322 break;
2324 switch (mgmt->u.action.u.measurement.action_code) {
2325 case WLAN_ACTION_SPCT_MSR_REQ:
2326 if (len < (IEEE80211_MIN_ACTION_SIZE +
2327 sizeof(mgmt->u.action.u.measurement)))
2328 break;
2329 ieee80211_process_measurement_req(sdata, mgmt, len);
2330 goto handled;
2331 case WLAN_ACTION_SPCT_CHL_SWITCH:
2332 if (len < (IEEE80211_MIN_ACTION_SIZE +
2333 sizeof(mgmt->u.action.u.chan_switch)))
2334 break;
2336 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2337 break;
2339 if (compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid))
2340 break;
2342 goto queue;
2344 break;
2345 case WLAN_CATEGORY_SA_QUERY:
2346 if (len < (IEEE80211_MIN_ACTION_SIZE +
2347 sizeof(mgmt->u.action.u.sa_query)))
2348 break;
2350 switch (mgmt->u.action.u.sa_query.action) {
2351 case WLAN_ACTION_SA_QUERY_REQUEST:
2352 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2353 break;
2354 ieee80211_process_sa_query_req(sdata, mgmt, len);
2355 goto handled;
2357 break;
2358 case WLAN_CATEGORY_SELF_PROTECTED:
2359 switch (mgmt->u.action.u.self_prot.action_code) {
2360 case WLAN_SP_MESH_PEERING_OPEN:
2361 case WLAN_SP_MESH_PEERING_CLOSE:
2362 case WLAN_SP_MESH_PEERING_CONFIRM:
2363 if (!ieee80211_vif_is_mesh(&sdata->vif))
2364 goto invalid;
2365 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
2366 /* userspace handles this frame */
2367 break;
2368 goto queue;
2369 case WLAN_SP_MGK_INFORM:
2370 case WLAN_SP_MGK_ACK:
2371 if (!ieee80211_vif_is_mesh(&sdata->vif))
2372 goto invalid;
2373 break;
2375 break;
2376 case WLAN_CATEGORY_MESH_ACTION:
2377 if (!ieee80211_vif_is_mesh(&sdata->vif))
2378 break;
2379 if (mesh_action_is_path_sel(mgmt) &&
2380 (!mesh_path_sel_is_hwmp(sdata)))
2381 break;
2382 goto queue;
2385 return RX_CONTINUE;
2387 invalid:
2388 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2389 /* will return in the next handlers */
2390 return RX_CONTINUE;
2392 handled:
2393 if (rx->sta)
2394 rx->sta->rx_packets++;
2395 dev_kfree_skb(rx->skb);
2396 return RX_QUEUED;
2398 queue:
2399 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2400 skb_queue_tail(&sdata->skb_queue, rx->skb);
2401 ieee80211_queue_work(&local->hw, &sdata->work);
2402 if (rx->sta)
2403 rx->sta->rx_packets++;
2404 return RX_QUEUED;
2407 static ieee80211_rx_result debug_noinline
2408 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2410 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2412 /* skip known-bad action frames and return them in the next handler */
2413 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2414 return RX_CONTINUE;
2417 * Getting here means the kernel doesn't know how to handle
2418 * it, but maybe userspace does ... include returned frames
2419 * so userspace can register for those to know whether ones
2420 * it transmitted were processed or returned.
2423 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2424 rx->skb->data, rx->skb->len,
2425 GFP_ATOMIC)) {
2426 if (rx->sta)
2427 rx->sta->rx_packets++;
2428 dev_kfree_skb(rx->skb);
2429 return RX_QUEUED;
2433 return RX_CONTINUE;
2436 static ieee80211_rx_result debug_noinline
2437 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2439 struct ieee80211_local *local = rx->local;
2440 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2441 struct sk_buff *nskb;
2442 struct ieee80211_sub_if_data *sdata = rx->sdata;
2443 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2445 if (!ieee80211_is_action(mgmt->frame_control))
2446 return RX_CONTINUE;
2449 * For AP mode, hostapd is responsible for handling any action
2450 * frames that we didn't handle, including returning unknown
2451 * ones. For all other modes we will return them to the sender,
2452 * setting the 0x80 bit in the action category, as required by
2453 * 802.11-2007 7.3.1.11.
2454 * Newer versions of hostapd shall also use the management frame
2455 * registration mechanisms, but older ones still use cooked
2456 * monitor interfaces so push all frames there.
2458 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2459 (sdata->vif.type == NL80211_IFTYPE_AP ||
2460 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2461 return RX_DROP_MONITOR;
2463 /* do not return rejected action frames */
2464 if (mgmt->u.action.category & 0x80)
2465 return RX_DROP_UNUSABLE;
2467 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2468 GFP_ATOMIC);
2469 if (nskb) {
2470 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2472 nmgmt->u.action.category |= 0x80;
2473 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2474 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2476 memset(nskb->cb, 0, sizeof(nskb->cb));
2478 ieee80211_tx_skb(rx->sdata, nskb);
2480 dev_kfree_skb(rx->skb);
2481 return RX_QUEUED;
2484 static ieee80211_rx_result debug_noinline
2485 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2487 struct ieee80211_sub_if_data *sdata = rx->sdata;
2488 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2489 __le16 stype;
2491 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2493 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2494 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2495 sdata->vif.type != NL80211_IFTYPE_STATION)
2496 return RX_DROP_MONITOR;
2498 switch (stype) {
2499 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2500 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2501 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2502 /* process for all: mesh, mlme, ibss */
2503 break;
2504 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2505 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2506 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2507 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2508 if (is_multicast_ether_addr(mgmt->da) &&
2509 !is_broadcast_ether_addr(mgmt->da))
2510 return RX_DROP_MONITOR;
2512 /* process only for station */
2513 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2514 return RX_DROP_MONITOR;
2515 break;
2516 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2517 /* process only for ibss */
2518 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2519 return RX_DROP_MONITOR;
2520 break;
2521 default:
2522 return RX_DROP_MONITOR;
2525 /* queue up frame and kick off work to process it */
2526 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2527 skb_queue_tail(&sdata->skb_queue, rx->skb);
2528 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2529 if (rx->sta)
2530 rx->sta->rx_packets++;
2532 return RX_QUEUED;
2535 /* TODO: use IEEE80211_RX_FRAGMENTED */
2536 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2537 struct ieee80211_rate *rate)
2539 struct ieee80211_sub_if_data *sdata;
2540 struct ieee80211_local *local = rx->local;
2541 struct ieee80211_rtap_hdr {
2542 struct ieee80211_radiotap_header hdr;
2543 u8 flags;
2544 u8 rate_or_pad;
2545 __le16 chan_freq;
2546 __le16 chan_flags;
2547 } __packed *rthdr;
2548 struct sk_buff *skb = rx->skb, *skb2;
2549 struct net_device *prev_dev = NULL;
2550 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2553 * If cooked monitor has been processed already, then
2554 * don't do it again. If not, set the flag.
2556 if (rx->flags & IEEE80211_RX_CMNTR)
2557 goto out_free_skb;
2558 rx->flags |= IEEE80211_RX_CMNTR;
2560 /* If there are no cooked monitor interfaces, just free the SKB */
2561 if (!local->cooked_mntrs)
2562 goto out_free_skb;
2564 if (skb_headroom(skb) < sizeof(*rthdr) &&
2565 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2566 goto out_free_skb;
2568 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2569 memset(rthdr, 0, sizeof(*rthdr));
2570 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2571 rthdr->hdr.it_present =
2572 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2573 (1 << IEEE80211_RADIOTAP_CHANNEL));
2575 if (rate) {
2576 rthdr->rate_or_pad = rate->bitrate / 5;
2577 rthdr->hdr.it_present |=
2578 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2580 rthdr->chan_freq = cpu_to_le16(status->freq);
2582 if (status->band == IEEE80211_BAND_5GHZ)
2583 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2584 IEEE80211_CHAN_5GHZ);
2585 else
2586 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2587 IEEE80211_CHAN_2GHZ);
2589 skb_set_mac_header(skb, 0);
2590 skb->ip_summed = CHECKSUM_UNNECESSARY;
2591 skb->pkt_type = PACKET_OTHERHOST;
2592 skb->protocol = htons(ETH_P_802_2);
2594 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2595 if (!ieee80211_sdata_running(sdata))
2596 continue;
2598 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2599 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2600 continue;
2602 if (prev_dev) {
2603 skb2 = skb_clone(skb, GFP_ATOMIC);
2604 if (skb2) {
2605 skb2->dev = prev_dev;
2606 netif_receive_skb(skb2);
2610 prev_dev = sdata->dev;
2611 sdata->dev->stats.rx_packets++;
2612 sdata->dev->stats.rx_bytes += skb->len;
2615 if (prev_dev) {
2616 skb->dev = prev_dev;
2617 netif_receive_skb(skb);
2618 return;
2621 out_free_skb:
2622 dev_kfree_skb(skb);
2625 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2626 ieee80211_rx_result res)
2628 switch (res) {
2629 case RX_DROP_MONITOR:
2630 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2631 if (rx->sta)
2632 rx->sta->rx_dropped++;
2633 /* fall through */
2634 case RX_CONTINUE: {
2635 struct ieee80211_rate *rate = NULL;
2636 struct ieee80211_supported_band *sband;
2637 struct ieee80211_rx_status *status;
2639 status = IEEE80211_SKB_RXCB((rx->skb));
2641 sband = rx->local->hw.wiphy->bands[status->band];
2642 if (!(status->flag & RX_FLAG_HT))
2643 rate = &sband->bitrates[status->rate_idx];
2645 ieee80211_rx_cooked_monitor(rx, rate);
2646 break;
2648 case RX_DROP_UNUSABLE:
2649 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2650 if (rx->sta)
2651 rx->sta->rx_dropped++;
2652 dev_kfree_skb(rx->skb);
2653 break;
2654 case RX_QUEUED:
2655 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2656 break;
2660 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2662 ieee80211_rx_result res = RX_DROP_MONITOR;
2663 struct sk_buff *skb;
2665 #define CALL_RXH(rxh) \
2666 do { \
2667 res = rxh(rx); \
2668 if (res != RX_CONTINUE) \
2669 goto rxh_next; \
2670 } while (0);
2672 spin_lock(&rx->local->rx_skb_queue.lock);
2673 if (rx->local->running_rx_handler)
2674 goto unlock;
2676 rx->local->running_rx_handler = true;
2678 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2679 spin_unlock(&rx->local->rx_skb_queue.lock);
2682 * all the other fields are valid across frames
2683 * that belong to an aMPDU since they are on the
2684 * same TID from the same station
2686 rx->skb = skb;
2688 CALL_RXH(ieee80211_rx_h_decrypt)
2689 CALL_RXH(ieee80211_rx_h_check_more_data)
2690 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2691 CALL_RXH(ieee80211_rx_h_sta_process)
2692 CALL_RXH(ieee80211_rx_h_defragment)
2693 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2694 /* must be after MMIC verify so header is counted in MPDU mic */
2695 #ifdef CONFIG_MAC80211_MESH
2696 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2697 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2698 #endif
2699 CALL_RXH(ieee80211_rx_h_amsdu)
2700 CALL_RXH(ieee80211_rx_h_data)
2701 CALL_RXH(ieee80211_rx_h_ctrl);
2702 CALL_RXH(ieee80211_rx_h_mgmt_check)
2703 CALL_RXH(ieee80211_rx_h_action)
2704 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2705 CALL_RXH(ieee80211_rx_h_action_return)
2706 CALL_RXH(ieee80211_rx_h_mgmt)
2708 rxh_next:
2709 ieee80211_rx_handlers_result(rx, res);
2710 spin_lock(&rx->local->rx_skb_queue.lock);
2711 #undef CALL_RXH
2714 rx->local->running_rx_handler = false;
2716 unlock:
2717 spin_unlock(&rx->local->rx_skb_queue.lock);
2720 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2722 ieee80211_rx_result res = RX_DROP_MONITOR;
2724 #define CALL_RXH(rxh) \
2725 do { \
2726 res = rxh(rx); \
2727 if (res != RX_CONTINUE) \
2728 goto rxh_next; \
2729 } while (0);
2731 CALL_RXH(ieee80211_rx_h_passive_scan)
2732 CALL_RXH(ieee80211_rx_h_check)
2734 ieee80211_rx_reorder_ampdu(rx);
2736 ieee80211_rx_handlers(rx);
2737 return;
2739 rxh_next:
2740 ieee80211_rx_handlers_result(rx, res);
2742 #undef CALL_RXH
2746 * This function makes calls into the RX path, therefore
2747 * it has to be invoked under RCU read lock.
2749 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2751 struct ieee80211_rx_data rx = {
2752 .sta = sta,
2753 .sdata = sta->sdata,
2754 .local = sta->local,
2755 /* This is OK -- must be QoS data frame */
2756 .security_idx = tid,
2757 .seqno_idx = tid,
2758 .flags = 0,
2760 struct tid_ampdu_rx *tid_agg_rx;
2762 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2763 if (!tid_agg_rx)
2764 return;
2766 spin_lock(&tid_agg_rx->reorder_lock);
2767 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2768 spin_unlock(&tid_agg_rx->reorder_lock);
2770 ieee80211_rx_handlers(&rx);
2773 /* main receive path */
2775 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2776 struct ieee80211_hdr *hdr)
2778 struct ieee80211_sub_if_data *sdata = rx->sdata;
2779 struct sk_buff *skb = rx->skb;
2780 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2781 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2782 int multicast = is_multicast_ether_addr(hdr->addr1);
2784 switch (sdata->vif.type) {
2785 case NL80211_IFTYPE_STATION:
2786 if (!bssid && !sdata->u.mgd.use_4addr)
2787 return 0;
2788 if (!multicast &&
2789 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2790 if (!(sdata->dev->flags & IFF_PROMISC) ||
2791 sdata->u.mgd.use_4addr)
2792 return 0;
2793 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2795 break;
2796 case NL80211_IFTYPE_ADHOC:
2797 if (!bssid)
2798 return 0;
2799 if (ieee80211_is_beacon(hdr->frame_control)) {
2800 return 1;
2802 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2803 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2804 return 0;
2805 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2806 } else if (!multicast &&
2807 compare_ether_addr(sdata->vif.addr,
2808 hdr->addr1) != 0) {
2809 if (!(sdata->dev->flags & IFF_PROMISC))
2810 return 0;
2811 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2812 } else if (!rx->sta) {
2813 int rate_idx;
2814 if (status->flag & RX_FLAG_HT)
2815 rate_idx = 0; /* TODO: HT rates */
2816 else
2817 rate_idx = status->rate_idx;
2818 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
2819 BIT(rate_idx));
2821 break;
2822 case NL80211_IFTYPE_MESH_POINT:
2823 if (!multicast &&
2824 compare_ether_addr(sdata->vif.addr,
2825 hdr->addr1) != 0) {
2826 if (!(sdata->dev->flags & IFF_PROMISC))
2827 return 0;
2829 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2831 break;
2832 case NL80211_IFTYPE_AP_VLAN:
2833 case NL80211_IFTYPE_AP:
2834 if (!bssid) {
2835 if (compare_ether_addr(sdata->vif.addr,
2836 hdr->addr1))
2837 return 0;
2838 } else if (!ieee80211_bssid_match(bssid,
2839 sdata->vif.addr)) {
2841 * Accept public action frames even when the
2842 * BSSID doesn't match, this is used for P2P
2843 * and location updates. Note that mac80211
2844 * itself never looks at these frames.
2846 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2847 ieee80211_is_public_action(hdr, skb->len))
2848 return 1;
2849 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2850 !ieee80211_is_beacon(hdr->frame_control))
2851 return 0;
2852 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2854 break;
2855 case NL80211_IFTYPE_WDS:
2856 if (bssid || !ieee80211_is_data(hdr->frame_control))
2857 return 0;
2858 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2859 return 0;
2860 break;
2861 default:
2862 /* should never get here */
2863 WARN_ON(1);
2864 break;
2867 return 1;
2871 * This function returns whether or not the SKB
2872 * was destined for RX processing or not, which,
2873 * if consume is true, is equivalent to whether
2874 * or not the skb was consumed.
2876 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2877 struct sk_buff *skb, bool consume)
2879 struct ieee80211_local *local = rx->local;
2880 struct ieee80211_sub_if_data *sdata = rx->sdata;
2881 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2882 struct ieee80211_hdr *hdr = (void *)skb->data;
2883 int prepares;
2885 rx->skb = skb;
2886 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2887 prepares = prepare_for_handlers(rx, hdr);
2889 if (!prepares)
2890 return false;
2892 if (!consume) {
2893 skb = skb_copy(skb, GFP_ATOMIC);
2894 if (!skb) {
2895 if (net_ratelimit())
2896 wiphy_debug(local->hw.wiphy,
2897 "failed to copy skb for %s\n",
2898 sdata->name);
2899 return true;
2902 rx->skb = skb;
2905 ieee80211_invoke_rx_handlers(rx);
2906 return true;
2910 * This is the actual Rx frames handler. as it blongs to Rx path it must
2911 * be called with rcu_read_lock protection.
2913 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2914 struct sk_buff *skb)
2916 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2917 struct ieee80211_local *local = hw_to_local(hw);
2918 struct ieee80211_sub_if_data *sdata;
2919 struct ieee80211_hdr *hdr;
2920 __le16 fc;
2921 struct ieee80211_rx_data rx;
2922 struct ieee80211_sub_if_data *prev;
2923 struct sta_info *sta, *tmp, *prev_sta;
2924 int err = 0;
2926 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2927 memset(&rx, 0, sizeof(rx));
2928 rx.skb = skb;
2929 rx.local = local;
2931 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2932 local->dot11ReceivedFragmentCount++;
2934 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2935 test_bit(SCAN_SW_SCANNING, &local->scanning)))
2936 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2938 if (ieee80211_is_mgmt(fc))
2939 err = skb_linearize(skb);
2940 else
2941 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2943 if (err) {
2944 dev_kfree_skb(skb);
2945 return;
2948 hdr = (struct ieee80211_hdr *)skb->data;
2949 ieee80211_parse_qos(&rx);
2950 ieee80211_verify_alignment(&rx);
2952 if (ieee80211_is_data(fc)) {
2953 prev_sta = NULL;
2955 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2956 if (!prev_sta) {
2957 prev_sta = sta;
2958 continue;
2961 rx.sta = prev_sta;
2962 rx.sdata = prev_sta->sdata;
2963 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2965 prev_sta = sta;
2968 if (prev_sta) {
2969 rx.sta = prev_sta;
2970 rx.sdata = prev_sta->sdata;
2972 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2973 return;
2974 goto out;
2978 prev = NULL;
2980 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2981 if (!ieee80211_sdata_running(sdata))
2982 continue;
2984 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2985 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2986 continue;
2989 * frame is destined for this interface, but if it's
2990 * not also for the previous one we handle that after
2991 * the loop to avoid copying the SKB once too much
2994 if (!prev) {
2995 prev = sdata;
2996 continue;
2999 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3000 rx.sdata = prev;
3001 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3003 prev = sdata;
3006 if (prev) {
3007 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3008 rx.sdata = prev;
3010 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3011 return;
3014 out:
3015 dev_kfree_skb(skb);
3019 * This is the receive path handler. It is called by a low level driver when an
3020 * 802.11 MPDU is received from the hardware.
3022 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3024 struct ieee80211_local *local = hw_to_local(hw);
3025 struct ieee80211_rate *rate = NULL;
3026 struct ieee80211_supported_band *sband;
3027 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3029 WARN_ON_ONCE(softirq_count() == 0);
3031 if (WARN_ON(status->band < 0 ||
3032 status->band >= IEEE80211_NUM_BANDS))
3033 goto drop;
3035 sband = local->hw.wiphy->bands[status->band];
3036 if (WARN_ON(!sband))
3037 goto drop;
3040 * If we're suspending, it is possible although not too likely
3041 * that we'd be receiving frames after having already partially
3042 * quiesced the stack. We can't process such frames then since
3043 * that might, for example, cause stations to be added or other
3044 * driver callbacks be invoked.
3046 if (unlikely(local->quiescing || local->suspended))
3047 goto drop;
3050 * The same happens when we're not even started,
3051 * but that's worth a warning.
3053 if (WARN_ON(!local->started))
3054 goto drop;
3056 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3058 * Validate the rate, unless a PLCP error means that
3059 * we probably can't have a valid rate here anyway.
3062 if (status->flag & RX_FLAG_HT) {
3064 * rate_idx is MCS index, which can be [0-76]
3065 * as documented on:
3067 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3069 * Anything else would be some sort of driver or
3070 * hardware error. The driver should catch hardware
3071 * errors.
3073 if (WARN((status->rate_idx < 0 ||
3074 status->rate_idx > 76),
3075 "Rate marked as an HT rate but passed "
3076 "status->rate_idx is not "
3077 "an MCS index [0-76]: %d (0x%02x)\n",
3078 status->rate_idx,
3079 status->rate_idx))
3080 goto drop;
3081 } else {
3082 if (WARN_ON(status->rate_idx < 0 ||
3083 status->rate_idx >= sband->n_bitrates))
3084 goto drop;
3085 rate = &sband->bitrates[status->rate_idx];
3089 status->rx_flags = 0;
3092 * key references and virtual interfaces are protected using RCU
3093 * and this requires that we are in a read-side RCU section during
3094 * receive processing
3096 rcu_read_lock();
3099 * Frames with failed FCS/PLCP checksum are not returned,
3100 * all other frames are returned without radiotap header
3101 * if it was previously present.
3102 * Also, frames with less than 16 bytes are dropped.
3104 skb = ieee80211_rx_monitor(local, skb, rate);
3105 if (!skb) {
3106 rcu_read_unlock();
3107 return;
3110 ieee80211_tpt_led_trig_rx(local,
3111 ((struct ieee80211_hdr *)skb->data)->frame_control,
3112 skb->len);
3113 __ieee80211_rx_handle_packet(hw, skb);
3115 rcu_read_unlock();
3117 return;
3118 drop:
3119 kfree_skb(skb);
3121 EXPORT_SYMBOL(ieee80211_rx);
3123 /* This is a version of the rx handler that can be called from hard irq
3124 * context. Post the skb on the queue and schedule the tasklet */
3125 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3127 struct ieee80211_local *local = hw_to_local(hw);
3129 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3131 skb->pkt_type = IEEE80211_RX_MSG;
3132 skb_queue_tail(&local->skb_queue, skb);
3133 tasklet_schedule(&local->tasklet);
3135 EXPORT_SYMBOL(ieee80211_rx_irqsafe);