2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
35 * monitor mode reception
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
40 static struct sk_buff
*remove_monitor_info(struct ieee80211_local
*local
,
43 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
) {
44 if (likely(skb
->len
> FCS_LEN
))
45 __pskb_trim(skb
, skb
->len
- FCS_LEN
);
57 static inline int should_drop_frame(struct sk_buff
*skb
,
60 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
61 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
63 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
65 if (unlikely(skb
->len
< 16 + present_fcs_len
))
67 if (ieee80211_is_ctl(hdr
->frame_control
) &&
68 !ieee80211_is_pspoll(hdr
->frame_control
) &&
69 !ieee80211_is_back_req(hdr
->frame_control
))
75 ieee80211_rx_radiotap_len(struct ieee80211_local
*local
,
76 struct ieee80211_rx_status
*status
)
80 /* always present fields */
81 len
= sizeof(struct ieee80211_radiotap_header
) + 9;
83 if (status
->flag
& RX_FLAG_MACTIME_MPDU
)
85 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
)
88 if (len
& 1) /* padding for RX_FLAGS if necessary */
91 if (status
->flag
& RX_FLAG_HT
) /* HT info */
98 * ieee80211_add_rx_radiotap_header - add radiotap header
100 * add a radiotap header containing all the fields which the hardware provided.
103 ieee80211_add_rx_radiotap_header(struct ieee80211_local
*local
,
105 struct ieee80211_rate
*rate
,
108 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
109 struct ieee80211_radiotap_header
*rthdr
;
113 rthdr
= (struct ieee80211_radiotap_header
*)skb_push(skb
, rtap_len
);
114 memset(rthdr
, 0, rtap_len
);
116 /* radiotap header, set always present flags */
118 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS
) |
119 (1 << IEEE80211_RADIOTAP_CHANNEL
) |
120 (1 << IEEE80211_RADIOTAP_ANTENNA
) |
121 (1 << IEEE80211_RADIOTAP_RX_FLAGS
));
122 rthdr
->it_len
= cpu_to_le16(rtap_len
);
124 pos
= (unsigned char *)(rthdr
+1);
126 /* the order of the following fields is important */
128 /* IEEE80211_RADIOTAP_TSFT */
129 if (status
->flag
& RX_FLAG_MACTIME_MPDU
) {
130 put_unaligned_le64(status
->mactime
, pos
);
132 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT
);
136 /* IEEE80211_RADIOTAP_FLAGS */
137 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
)
138 *pos
|= IEEE80211_RADIOTAP_F_FCS
;
139 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
140 *pos
|= IEEE80211_RADIOTAP_F_BADFCS
;
141 if (status
->flag
& RX_FLAG_SHORTPRE
)
142 *pos
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
145 /* IEEE80211_RADIOTAP_RATE */
146 if (!rate
|| status
->flag
& RX_FLAG_HT
) {
148 * Without rate information don't add it. If we have,
149 * MCS information is a separate field in radiotap,
150 * added below. The byte here is needed as padding
151 * for the channel though, so initialise it to 0.
155 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE
);
156 *pos
= rate
->bitrate
/ 5;
160 /* IEEE80211_RADIOTAP_CHANNEL */
161 put_unaligned_le16(status
->freq
, pos
);
163 if (status
->band
== IEEE80211_BAND_5GHZ
)
164 put_unaligned_le16(IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
,
166 else if (status
->flag
& RX_FLAG_HT
)
167 put_unaligned_le16(IEEE80211_CHAN_DYN
| IEEE80211_CHAN_2GHZ
,
169 else if (rate
&& rate
->flags
& IEEE80211_RATE_ERP_G
)
170 put_unaligned_le16(IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
,
173 put_unaligned_le16(IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
,
176 put_unaligned_le16(IEEE80211_CHAN_2GHZ
, pos
);
179 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
180 if (local
->hw
.flags
& IEEE80211_HW_SIGNAL_DBM
) {
181 *pos
= status
->signal
;
183 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
187 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
189 /* IEEE80211_RADIOTAP_ANTENNA */
190 *pos
= status
->antenna
;
193 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
195 /* IEEE80211_RADIOTAP_RX_FLAGS */
196 /* ensure 2 byte alignment for the 2 byte field as required */
197 if ((pos
- (u8
*)rthdr
) & 1)
199 if (status
->flag
& RX_FLAG_FAILED_PLCP_CRC
)
200 rx_flags
|= IEEE80211_RADIOTAP_F_RX_BADPLCP
;
201 put_unaligned_le16(rx_flags
, pos
);
204 if (status
->flag
& RX_FLAG_HT
) {
205 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS
);
206 *pos
++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS
|
207 IEEE80211_RADIOTAP_MCS_HAVE_GI
|
208 IEEE80211_RADIOTAP_MCS_HAVE_BW
;
210 if (status
->flag
& RX_FLAG_SHORT_GI
)
211 *pos
|= IEEE80211_RADIOTAP_MCS_SGI
;
212 if (status
->flag
& RX_FLAG_40MHZ
)
213 *pos
|= IEEE80211_RADIOTAP_MCS_BW_40
;
215 *pos
++ = status
->rate_idx
;
220 * This function copies a received frame to all monitor interfaces and
221 * returns a cleaned-up SKB that no longer includes the FCS nor the
222 * radiotap header the driver might have added.
224 static struct sk_buff
*
225 ieee80211_rx_monitor(struct ieee80211_local
*local
, struct sk_buff
*origskb
,
226 struct ieee80211_rate
*rate
)
228 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(origskb
);
229 struct ieee80211_sub_if_data
*sdata
;
230 int needed_headroom
= 0;
231 struct sk_buff
*skb
, *skb2
;
232 struct net_device
*prev_dev
= NULL
;
233 int present_fcs_len
= 0;
236 * First, we may need to make a copy of the skb because
237 * (1) we need to modify it for radiotap (if not present), and
238 * (2) the other RX handlers will modify the skb we got.
240 * We don't need to, of course, if we aren't going to return
241 * the SKB because it has a bad FCS/PLCP checksum.
244 /* room for the radiotap header based on driver features */
245 needed_headroom
= ieee80211_rx_radiotap_len(local
, status
);
247 if (local
->hw
.flags
& IEEE80211_HW_RX_INCLUDES_FCS
)
248 present_fcs_len
= FCS_LEN
;
250 /* make sure hdr->frame_control is on the linear part */
251 if (!pskb_may_pull(origskb
, 2)) {
252 dev_kfree_skb(origskb
);
256 if (!local
->monitors
) {
257 if (should_drop_frame(origskb
, present_fcs_len
)) {
258 dev_kfree_skb(origskb
);
262 return remove_monitor_info(local
, origskb
);
265 if (should_drop_frame(origskb
, present_fcs_len
)) {
266 /* only need to expand headroom if necessary */
271 * This shouldn't trigger often because most devices have an
272 * RX header they pull before we get here, and that should
273 * be big enough for our radiotap information. We should
274 * probably export the length to drivers so that we can have
275 * them allocate enough headroom to start with.
277 if (skb_headroom(skb
) < needed_headroom
&&
278 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
)) {
284 * Need to make a copy and possibly remove radiotap header
285 * and FCS from the original.
287 skb
= skb_copy_expand(origskb
, needed_headroom
, 0, GFP_ATOMIC
);
289 origskb
= remove_monitor_info(local
, origskb
);
295 /* prepend radiotap information */
296 ieee80211_add_rx_radiotap_header(local
, skb
, rate
, needed_headroom
);
298 skb_reset_mac_header(skb
);
299 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
300 skb
->pkt_type
= PACKET_OTHERHOST
;
301 skb
->protocol
= htons(ETH_P_802_2
);
303 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
304 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
)
307 if (sdata
->u
.mntr_flags
& MONITOR_FLAG_COOK_FRAMES
)
310 if (!ieee80211_sdata_running(sdata
))
314 skb2
= skb_clone(skb
, GFP_ATOMIC
);
316 skb2
->dev
= prev_dev
;
317 netif_receive_skb(skb2
);
321 prev_dev
= sdata
->dev
;
322 sdata
->dev
->stats
.rx_packets
++;
323 sdata
->dev
->stats
.rx_bytes
+= skb
->len
;
328 netif_receive_skb(skb
);
336 static void ieee80211_parse_qos(struct ieee80211_rx_data
*rx
)
338 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
339 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
340 int tid
, seqno_idx
, security_idx
;
342 /* does the frame have a qos control field? */
343 if (ieee80211_is_data_qos(hdr
->frame_control
)) {
344 u8
*qc
= ieee80211_get_qos_ctl(hdr
);
345 /* frame has qos control */
346 tid
= *qc
& IEEE80211_QOS_CTL_TID_MASK
;
347 if (*qc
& IEEE80211_QOS_CTL_A_MSDU_PRESENT
)
348 status
->rx_flags
|= IEEE80211_RX_AMSDU
;
354 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
356 * Sequence numbers for management frames, QoS data
357 * frames with a broadcast/multicast address in the
358 * Address 1 field, and all non-QoS data frames sent
359 * by QoS STAs are assigned using an additional single
360 * modulo-4096 counter, [...]
362 * We also use that counter for non-QoS STAs.
364 seqno_idx
= NUM_RX_DATA_QUEUES
;
366 if (ieee80211_is_mgmt(hdr
->frame_control
))
367 security_idx
= NUM_RX_DATA_QUEUES
;
371 rx
->seqno_idx
= seqno_idx
;
372 rx
->security_idx
= security_idx
;
373 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
374 * For now, set skb->priority to 0 for other cases. */
375 rx
->skb
->priority
= (tid
> 7) ? 0 : tid
;
379 * DOC: Packet alignment
381 * Drivers always need to pass packets that are aligned to two-byte boundaries
384 * Additionally, should, if possible, align the payload data in a way that
385 * guarantees that the contained IP header is aligned to a four-byte
386 * boundary. In the case of regular frames, this simply means aligning the
387 * payload to a four-byte boundary (because either the IP header is directly
388 * contained, or IV/RFC1042 headers that have a length divisible by four are
389 * in front of it). If the payload data is not properly aligned and the
390 * architecture doesn't support efficient unaligned operations, mac80211
391 * will align the data.
393 * With A-MSDU frames, however, the payload data address must yield two modulo
394 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
395 * push the IP header further back to a multiple of four again. Thankfully, the
396 * specs were sane enough this time around to require padding each A-MSDU
397 * subframe to a length that is a multiple of four.
399 * Padding like Atheros hardware adds which is between the 802.11 header and
400 * the payload is not supported, the driver is required to move the 802.11
401 * header to be directly in front of the payload in that case.
403 static void ieee80211_verify_alignment(struct ieee80211_rx_data
*rx
)
405 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
406 WARN_ONCE((unsigned long)rx
->skb
->data
& 1,
407 "unaligned packet at 0x%p\n", rx
->skb
->data
);
414 static ieee80211_rx_result debug_noinline
415 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data
*rx
)
417 struct ieee80211_local
*local
= rx
->local
;
418 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
419 struct sk_buff
*skb
= rx
->skb
;
421 if (likely(!(status
->rx_flags
& IEEE80211_RX_IN_SCAN
) &&
422 !local
->sched_scanning
))
425 if (test_bit(SCAN_HW_SCANNING
, &local
->scanning
) ||
426 test_bit(SCAN_SW_SCANNING
, &local
->scanning
) ||
427 local
->sched_scanning
)
428 return ieee80211_scan_rx(rx
->sdata
, skb
);
430 /* scanning finished during invoking of handlers */
431 I802_DEBUG_INC(local
->rx_handlers_drop_passive_scan
);
432 return RX_DROP_UNUSABLE
;
436 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff
*skb
)
438 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
440 if (skb
->len
< 24 || is_multicast_ether_addr(hdr
->addr1
))
443 return ieee80211_is_robust_mgmt_frame(hdr
);
447 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff
*skb
)
449 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
451 if (skb
->len
< 24 || !is_multicast_ether_addr(hdr
->addr1
))
454 return ieee80211_is_robust_mgmt_frame(hdr
);
458 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
459 static int ieee80211_get_mmie_keyidx(struct sk_buff
*skb
)
461 struct ieee80211_mgmt
*hdr
= (struct ieee80211_mgmt
*) skb
->data
;
462 struct ieee80211_mmie
*mmie
;
464 if (skb
->len
< 24 + sizeof(*mmie
) ||
465 !is_multicast_ether_addr(hdr
->da
))
468 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr
*) hdr
))
469 return -1; /* not a robust management frame */
471 mmie
= (struct ieee80211_mmie
*)
472 (skb
->data
+ skb
->len
- sizeof(*mmie
));
473 if (mmie
->element_id
!= WLAN_EID_MMIE
||
474 mmie
->length
!= sizeof(*mmie
) - 2)
477 return le16_to_cpu(mmie
->key_id
);
481 static ieee80211_rx_result
482 ieee80211_rx_mesh_check(struct ieee80211_rx_data
*rx
)
484 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
485 char *dev_addr
= rx
->sdata
->vif
.addr
;
487 if (ieee80211_is_data(hdr
->frame_control
)) {
488 if (is_multicast_ether_addr(hdr
->addr1
)) {
489 if (ieee80211_has_tods(hdr
->frame_control
) ||
490 !ieee80211_has_fromds(hdr
->frame_control
))
491 return RX_DROP_MONITOR
;
492 if (compare_ether_addr(hdr
->addr3
, dev_addr
) == 0)
493 return RX_DROP_MONITOR
;
495 if (!ieee80211_has_a4(hdr
->frame_control
))
496 return RX_DROP_MONITOR
;
497 if (compare_ether_addr(hdr
->addr4
, dev_addr
) == 0)
498 return RX_DROP_MONITOR
;
502 /* If there is not an established peer link and this is not a peer link
503 * establisment frame, beacon or probe, drop the frame.
506 if (!rx
->sta
|| sta_plink_state(rx
->sta
) != NL80211_PLINK_ESTAB
) {
507 struct ieee80211_mgmt
*mgmt
;
509 if (!ieee80211_is_mgmt(hdr
->frame_control
))
510 return RX_DROP_MONITOR
;
512 if (ieee80211_is_action(hdr
->frame_control
)) {
514 mgmt
= (struct ieee80211_mgmt
*)hdr
;
515 category
= mgmt
->u
.action
.category
;
516 if (category
!= WLAN_CATEGORY_MESH_ACTION
&&
517 category
!= WLAN_CATEGORY_SELF_PROTECTED
)
518 return RX_DROP_MONITOR
;
522 if (ieee80211_is_probe_req(hdr
->frame_control
) ||
523 ieee80211_is_probe_resp(hdr
->frame_control
) ||
524 ieee80211_is_beacon(hdr
->frame_control
) ||
525 ieee80211_is_auth(hdr
->frame_control
))
528 return RX_DROP_MONITOR
;
535 #define SEQ_MODULO 0x1000
536 #define SEQ_MASK 0xfff
538 static inline int seq_less(u16 sq1
, u16 sq2
)
540 return ((sq1
- sq2
) & SEQ_MASK
) > (SEQ_MODULO
>> 1);
543 static inline u16
seq_inc(u16 sq
)
545 return (sq
+ 1) & SEQ_MASK
;
548 static inline u16
seq_sub(u16 sq1
, u16 sq2
)
550 return (sq1
- sq2
) & SEQ_MASK
;
554 static void ieee80211_release_reorder_frame(struct ieee80211_hw
*hw
,
555 struct tid_ampdu_rx
*tid_agg_rx
,
558 struct ieee80211_local
*local
= hw_to_local(hw
);
559 struct sk_buff
*skb
= tid_agg_rx
->reorder_buf
[index
];
560 struct ieee80211_rx_status
*status
;
562 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
567 /* release the frame from the reorder ring buffer */
568 tid_agg_rx
->stored_mpdu_num
--;
569 tid_agg_rx
->reorder_buf
[index
] = NULL
;
570 status
= IEEE80211_SKB_RXCB(skb
);
571 status
->rx_flags
|= IEEE80211_RX_DEFERRED_RELEASE
;
572 skb_queue_tail(&local
->rx_skb_queue
, skb
);
575 tid_agg_rx
->head_seq_num
= seq_inc(tid_agg_rx
->head_seq_num
);
578 static void ieee80211_release_reorder_frames(struct ieee80211_hw
*hw
,
579 struct tid_ampdu_rx
*tid_agg_rx
,
584 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
586 while (seq_less(tid_agg_rx
->head_seq_num
, head_seq_num
)) {
587 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
) %
588 tid_agg_rx
->buf_size
;
589 ieee80211_release_reorder_frame(hw
, tid_agg_rx
, index
);
594 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
595 * the skb was added to the buffer longer than this time ago, the earlier
596 * frames that have not yet been received are assumed to be lost and the skb
597 * can be released for processing. This may also release other skb's from the
598 * reorder buffer if there are no additional gaps between the frames.
600 * Callers must hold tid_agg_rx->reorder_lock.
602 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
604 static void ieee80211_sta_reorder_release(struct ieee80211_hw
*hw
,
605 struct tid_ampdu_rx
*tid_agg_rx
)
609 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
611 /* release the buffer until next missing frame */
612 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
) %
613 tid_agg_rx
->buf_size
;
614 if (!tid_agg_rx
->reorder_buf
[index
] &&
615 tid_agg_rx
->stored_mpdu_num
) {
617 * No buffers ready to be released, but check whether any
618 * frames in the reorder buffer have timed out.
621 for (j
= (index
+ 1) % tid_agg_rx
->buf_size
; j
!= index
;
622 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
623 if (!tid_agg_rx
->reorder_buf
[j
]) {
628 !time_after(jiffies
, tid_agg_rx
->reorder_time
[j
] +
629 HT_RX_REORDER_BUF_TIMEOUT
))
630 goto set_release_timer
;
632 #ifdef CONFIG_MAC80211_HT_DEBUG
634 wiphy_debug(hw
->wiphy
,
635 "release an RX reorder frame due to timeout on earlier frames\n");
637 ieee80211_release_reorder_frame(hw
, tid_agg_rx
, j
);
640 * Increment the head seq# also for the skipped slots.
642 tid_agg_rx
->head_seq_num
=
643 (tid_agg_rx
->head_seq_num
+ skipped
) & SEQ_MASK
;
646 } else while (tid_agg_rx
->reorder_buf
[index
]) {
647 ieee80211_release_reorder_frame(hw
, tid_agg_rx
, index
);
648 index
= seq_sub(tid_agg_rx
->head_seq_num
, tid_agg_rx
->ssn
) %
649 tid_agg_rx
->buf_size
;
652 if (tid_agg_rx
->stored_mpdu_num
) {
653 j
= index
= seq_sub(tid_agg_rx
->head_seq_num
,
654 tid_agg_rx
->ssn
) % tid_agg_rx
->buf_size
;
656 for (; j
!= (index
- 1) % tid_agg_rx
->buf_size
;
657 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
658 if (tid_agg_rx
->reorder_buf
[j
])
664 mod_timer(&tid_agg_rx
->reorder_timer
,
665 tid_agg_rx
->reorder_time
[j
] + 1 +
666 HT_RX_REORDER_BUF_TIMEOUT
);
668 del_timer(&tid_agg_rx
->reorder_timer
);
673 * As this function belongs to the RX path it must be under
674 * rcu_read_lock protection. It returns false if the frame
675 * can be processed immediately, true if it was consumed.
677 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw
*hw
,
678 struct tid_ampdu_rx
*tid_agg_rx
,
681 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
682 u16 sc
= le16_to_cpu(hdr
->seq_ctrl
);
683 u16 mpdu_seq_num
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
684 u16 head_seq_num
, buf_size
;
688 spin_lock(&tid_agg_rx
->reorder_lock
);
690 buf_size
= tid_agg_rx
->buf_size
;
691 head_seq_num
= tid_agg_rx
->head_seq_num
;
693 /* frame with out of date sequence number */
694 if (seq_less(mpdu_seq_num
, head_seq_num
)) {
700 * If frame the sequence number exceeds our buffering window
701 * size release some previous frames to make room for this one.
703 if (!seq_less(mpdu_seq_num
, head_seq_num
+ buf_size
)) {
704 head_seq_num
= seq_inc(seq_sub(mpdu_seq_num
, buf_size
));
705 /* release stored frames up to new head to stack */
706 ieee80211_release_reorder_frames(hw
, tid_agg_rx
, head_seq_num
);
709 /* Now the new frame is always in the range of the reordering buffer */
711 index
= seq_sub(mpdu_seq_num
, tid_agg_rx
->ssn
) % tid_agg_rx
->buf_size
;
713 /* check if we already stored this frame */
714 if (tid_agg_rx
->reorder_buf
[index
]) {
720 * If the current MPDU is in the right order and nothing else
721 * is stored we can process it directly, no need to buffer it.
722 * If it is first but there's something stored, we may be able
723 * to release frames after this one.
725 if (mpdu_seq_num
== tid_agg_rx
->head_seq_num
&&
726 tid_agg_rx
->stored_mpdu_num
== 0) {
727 tid_agg_rx
->head_seq_num
= seq_inc(tid_agg_rx
->head_seq_num
);
732 /* put the frame in the reordering buffer */
733 tid_agg_rx
->reorder_buf
[index
] = skb
;
734 tid_agg_rx
->reorder_time
[index
] = jiffies
;
735 tid_agg_rx
->stored_mpdu_num
++;
736 ieee80211_sta_reorder_release(hw
, tid_agg_rx
);
739 spin_unlock(&tid_agg_rx
->reorder_lock
);
744 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
745 * true if the MPDU was buffered, false if it should be processed.
747 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data
*rx
)
749 struct sk_buff
*skb
= rx
->skb
;
750 struct ieee80211_local
*local
= rx
->local
;
751 struct ieee80211_hw
*hw
= &local
->hw
;
752 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
753 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
754 struct sta_info
*sta
= rx
->sta
;
755 struct tid_ampdu_rx
*tid_agg_rx
;
759 if (!ieee80211_is_data_qos(hdr
->frame_control
))
763 * filter the QoS data rx stream according to
764 * STA/TID and check if this STA/TID is on aggregation
770 ack_policy
= *ieee80211_get_qos_ctl(hdr
) &
771 IEEE80211_QOS_CTL_ACK_POLICY_MASK
;
772 tid
= *ieee80211_get_qos_ctl(hdr
) & IEEE80211_QOS_CTL_TID_MASK
;
774 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
778 /* qos null data frames are excluded */
779 if (unlikely(hdr
->frame_control
& cpu_to_le16(IEEE80211_STYPE_NULLFUNC
)))
782 /* not part of a BA session */
783 if (ack_policy
!= IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK
&&
784 ack_policy
!= IEEE80211_QOS_CTL_ACK_POLICY_NORMAL
)
787 /* not actually part of this BA session */
788 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
791 /* new, potentially un-ordered, ampdu frame - process it */
793 /* reset session timer */
794 if (tid_agg_rx
->timeout
)
795 mod_timer(&tid_agg_rx
->session_timer
,
796 TU_TO_EXP_TIME(tid_agg_rx
->timeout
));
798 /* if this mpdu is fragmented - terminate rx aggregation session */
799 sc
= le16_to_cpu(hdr
->seq_ctrl
);
800 if (sc
& IEEE80211_SCTL_FRAG
) {
801 skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
802 skb_queue_tail(&rx
->sdata
->skb_queue
, skb
);
803 ieee80211_queue_work(&local
->hw
, &rx
->sdata
->work
);
808 * No locking needed -- we will only ever process one
809 * RX packet at a time, and thus own tid_agg_rx. All
810 * other code manipulating it needs to (and does) make
811 * sure that we cannot get to it any more before doing
814 if (ieee80211_sta_manage_reorder_buf(hw
, tid_agg_rx
, skb
))
818 skb_queue_tail(&local
->rx_skb_queue
, skb
);
821 static ieee80211_rx_result debug_noinline
822 ieee80211_rx_h_check(struct ieee80211_rx_data
*rx
)
824 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
825 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
827 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
828 if (rx
->sta
&& !is_multicast_ether_addr(hdr
->addr1
)) {
829 if (unlikely(ieee80211_has_retry(hdr
->frame_control
) &&
830 rx
->sta
->last_seq_ctrl
[rx
->seqno_idx
] ==
832 if (status
->rx_flags
& IEEE80211_RX_RA_MATCH
) {
833 rx
->local
->dot11FrameDuplicateCount
++;
834 rx
->sta
->num_duplicates
++;
836 return RX_DROP_UNUSABLE
;
838 rx
->sta
->last_seq_ctrl
[rx
->seqno_idx
] = hdr
->seq_ctrl
;
841 if (unlikely(rx
->skb
->len
< 16)) {
842 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_short
);
843 return RX_DROP_MONITOR
;
846 /* Drop disallowed frame classes based on STA auth/assoc state;
847 * IEEE 802.11, Chap 5.5.
849 * mac80211 filters only based on association state, i.e. it drops
850 * Class 3 frames from not associated stations. hostapd sends
851 * deauth/disassoc frames when needed. In addition, hostapd is
852 * responsible for filtering on both auth and assoc states.
855 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
856 return ieee80211_rx_mesh_check(rx
);
858 if (unlikely((ieee80211_is_data(hdr
->frame_control
) ||
859 ieee80211_is_pspoll(hdr
->frame_control
)) &&
860 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
861 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_WDS
&&
862 (!rx
->sta
|| !test_sta_flag(rx
->sta
, WLAN_STA_ASSOC
)))) {
864 * accept port control frames from the AP even when it's not
865 * yet marked ASSOC to prevent a race where we don't set the
866 * assoc bit quickly enough before it sends the first frame
868 if (rx
->sta
&& rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
869 ieee80211_is_data_present(hdr
->frame_control
)) {
873 payload
= rx
->skb
->data
+
874 ieee80211_hdrlen(hdr
->frame_control
);
875 ethertype
= (payload
[6] << 8) | payload
[7];
876 if (cpu_to_be16(ethertype
) ==
877 rx
->sdata
->control_port_protocol
)
881 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
&&
882 cfg80211_rx_spurious_frame(rx
->sdata
->dev
,
885 return RX_DROP_UNUSABLE
;
887 return RX_DROP_MONITOR
;
894 static ieee80211_rx_result debug_noinline
895 ieee80211_rx_h_decrypt(struct ieee80211_rx_data
*rx
)
897 struct sk_buff
*skb
= rx
->skb
;
898 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
899 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
902 ieee80211_rx_result result
= RX_DROP_UNUSABLE
;
903 struct ieee80211_key
*sta_ptk
= NULL
;
904 int mmie_keyidx
= -1;
910 * There are four types of keys:
912 * - IGTK (group keys for management frames)
913 * - PTK (pairwise keys)
914 * - STK (station-to-station pairwise keys)
916 * When selecting a key, we have to distinguish between multicast
917 * (including broadcast) and unicast frames, the latter can only
918 * use PTKs and STKs while the former always use GTKs and IGTKs.
919 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
920 * unicast frames can also use key indices like GTKs. Hence, if we
921 * don't have a PTK/STK we check the key index for a WEP key.
923 * Note that in a regular BSS, multicast frames are sent by the
924 * AP only, associated stations unicast the frame to the AP first
925 * which then multicasts it on their behalf.
927 * There is also a slight problem in IBSS mode: GTKs are negotiated
928 * with each station, that is something we don't currently handle.
929 * The spec seems to expect that one negotiates the same key with
930 * every station but there's no such requirement; VLANs could be
935 * No point in finding a key and decrypting if the frame is neither
936 * addressed to us nor a multicast frame.
938 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
941 /* start without a key */
945 sta_ptk
= rcu_dereference(rx
->sta
->ptk
);
947 fc
= hdr
->frame_control
;
949 if (!ieee80211_has_protected(fc
))
950 mmie_keyidx
= ieee80211_get_mmie_keyidx(rx
->skb
);
952 if (!is_multicast_ether_addr(hdr
->addr1
) && sta_ptk
) {
954 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
955 (status
->flag
& RX_FLAG_IV_STRIPPED
))
957 /* Skip decryption if the frame is not protected. */
958 if (!ieee80211_has_protected(fc
))
960 } else if (mmie_keyidx
>= 0) {
961 /* Broadcast/multicast robust management frame / BIP */
962 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
963 (status
->flag
& RX_FLAG_IV_STRIPPED
))
966 if (mmie_keyidx
< NUM_DEFAULT_KEYS
||
967 mmie_keyidx
>= NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
)
968 return RX_DROP_MONITOR
; /* unexpected BIP keyidx */
970 rx
->key
= rcu_dereference(rx
->sta
->gtk
[mmie_keyidx
]);
972 rx
->key
= rcu_dereference(rx
->sdata
->keys
[mmie_keyidx
]);
973 } else if (!ieee80211_has_protected(fc
)) {
975 * The frame was not protected, so skip decryption. However, we
976 * need to set rx->key if there is a key that could have been
977 * used so that the frame may be dropped if encryption would
978 * have been expected.
980 struct ieee80211_key
*key
= NULL
;
981 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
984 if (ieee80211_is_mgmt(fc
) &&
985 is_multicast_ether_addr(hdr
->addr1
) &&
986 (key
= rcu_dereference(rx
->sdata
->default_mgmt_key
)))
990 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
991 key
= rcu_dereference(rx
->sta
->gtk
[i
]);
997 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
998 key
= rcu_dereference(sdata
->keys
[i
]);
1010 * The device doesn't give us the IV so we won't be
1011 * able to look up the key. That's ok though, we
1012 * don't need to decrypt the frame, we just won't
1013 * be able to keep statistics accurate.
1014 * Except for key threshold notifications, should
1015 * we somehow allow the driver to tell us which key
1016 * the hardware used if this flag is set?
1018 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
1019 (status
->flag
& RX_FLAG_IV_STRIPPED
))
1022 hdrlen
= ieee80211_hdrlen(fc
);
1024 if (rx
->skb
->len
< 8 + hdrlen
)
1025 return RX_DROP_UNUSABLE
; /* TODO: count this? */
1028 * no need to call ieee80211_wep_get_keyidx,
1029 * it verifies a bunch of things we've done already
1031 skb_copy_bits(rx
->skb
, hdrlen
+ 3, &keyid
, 1);
1032 keyidx
= keyid
>> 6;
1034 /* check per-station GTK first, if multicast packet */
1035 if (is_multicast_ether_addr(hdr
->addr1
) && rx
->sta
)
1036 rx
->key
= rcu_dereference(rx
->sta
->gtk
[keyidx
]);
1038 /* if not found, try default key */
1040 rx
->key
= rcu_dereference(rx
->sdata
->keys
[keyidx
]);
1043 * RSNA-protected unicast frames should always be
1044 * sent with pairwise or station-to-station keys,
1045 * but for WEP we allow using a key index as well.
1048 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP40
&&
1049 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP104
&&
1050 !is_multicast_ether_addr(hdr
->addr1
))
1056 if (unlikely(rx
->key
->flags
& KEY_FLAG_TAINTED
))
1057 return RX_DROP_MONITOR
;
1059 rx
->key
->tx_rx_count
++;
1060 /* TODO: add threshold stuff again */
1062 return RX_DROP_MONITOR
;
1065 if (skb_linearize(rx
->skb
))
1066 return RX_DROP_UNUSABLE
;
1067 /* the hdr variable is invalid now! */
1069 switch (rx
->key
->conf
.cipher
) {
1070 case WLAN_CIPHER_SUITE_WEP40
:
1071 case WLAN_CIPHER_SUITE_WEP104
:
1072 /* Check for weak IVs if possible */
1073 if (rx
->sta
&& ieee80211_is_data(fc
) &&
1074 (!(status
->flag
& RX_FLAG_IV_STRIPPED
) ||
1075 !(status
->flag
& RX_FLAG_DECRYPTED
)) &&
1076 ieee80211_wep_is_weak_iv(rx
->skb
, rx
->key
))
1077 rx
->sta
->wep_weak_iv_count
++;
1079 result
= ieee80211_crypto_wep_decrypt(rx
);
1081 case WLAN_CIPHER_SUITE_TKIP
:
1082 result
= ieee80211_crypto_tkip_decrypt(rx
);
1084 case WLAN_CIPHER_SUITE_CCMP
:
1085 result
= ieee80211_crypto_ccmp_decrypt(rx
);
1087 case WLAN_CIPHER_SUITE_AES_CMAC
:
1088 result
= ieee80211_crypto_aes_cmac_decrypt(rx
);
1092 * We can reach here only with HW-only algorithms
1093 * but why didn't it decrypt the frame?!
1095 return RX_DROP_UNUSABLE
;
1098 /* either the frame has been decrypted or will be dropped */
1099 status
->flag
|= RX_FLAG_DECRYPTED
;
1104 static ieee80211_rx_result debug_noinline
1105 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data
*rx
)
1107 struct ieee80211_local
*local
;
1108 struct ieee80211_hdr
*hdr
;
1109 struct sk_buff
*skb
;
1113 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1115 if (!local
->pspolling
)
1118 if (!ieee80211_has_fromds(hdr
->frame_control
))
1119 /* this is not from AP */
1122 if (!ieee80211_is_data(hdr
->frame_control
))
1125 if (!ieee80211_has_moredata(hdr
->frame_control
)) {
1126 /* AP has no more frames buffered for us */
1127 local
->pspolling
= false;
1131 /* more data bit is set, let's request a new frame from the AP */
1132 ieee80211_send_pspoll(local
, rx
->sdata
);
1137 static void ap_sta_ps_start(struct sta_info
*sta
)
1139 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
1140 struct ieee80211_local
*local
= sdata
->local
;
1142 atomic_inc(&sdata
->bss
->num_sta_ps
);
1143 set_sta_flag(sta
, WLAN_STA_PS_STA
);
1144 if (!(local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
))
1145 drv_sta_notify(local
, sdata
, STA_NOTIFY_SLEEP
, &sta
->sta
);
1146 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1147 printk(KERN_DEBUG
"%s: STA %pM aid %d enters power save mode\n",
1148 sdata
->name
, sta
->sta
.addr
, sta
->sta
.aid
);
1149 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1152 static void ap_sta_ps_end(struct sta_info
*sta
)
1154 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1155 printk(KERN_DEBUG
"%s: STA %pM aid %d exits power save mode\n",
1156 sta
->sdata
->name
, sta
->sta
.addr
, sta
->sta
.aid
);
1157 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1159 if (test_sta_flag(sta
, WLAN_STA_PS_DRIVER
)) {
1160 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1161 printk(KERN_DEBUG
"%s: STA %pM aid %d driver-ps-blocked\n",
1162 sta
->sdata
->name
, sta
->sta
.addr
, sta
->sta
.aid
);
1163 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1167 ieee80211_sta_ps_deliver_wakeup(sta
);
1170 int ieee80211_sta_ps_transition(struct ieee80211_sta
*sta
, bool start
)
1172 struct sta_info
*sta_inf
= container_of(sta
, struct sta_info
, sta
);
1175 WARN_ON(!(sta_inf
->local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
));
1177 /* Don't let the same PS state be set twice */
1178 in_ps
= test_sta_flag(sta_inf
, WLAN_STA_PS_STA
);
1179 if ((start
&& in_ps
) || (!start
&& !in_ps
))
1183 ap_sta_ps_start(sta_inf
);
1185 ap_sta_ps_end(sta_inf
);
1189 EXPORT_SYMBOL(ieee80211_sta_ps_transition
);
1191 static ieee80211_rx_result debug_noinline
1192 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data
*rx
)
1194 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1195 struct ieee80211_hdr
*hdr
= (void *)rx
->skb
->data
;
1196 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1199 if (!rx
->sta
|| !(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
1202 if (sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
1203 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
)
1207 * The device handles station powersave, so don't do anything about
1208 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1209 * it to mac80211 since they're handled.)
1211 if (sdata
->local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
)
1215 * Don't do anything if the station isn't already asleep. In
1216 * the uAPSD case, the station will probably be marked asleep,
1217 * in the PS-Poll case the station must be confused ...
1219 if (!test_sta_flag(rx
->sta
, WLAN_STA_PS_STA
))
1222 if (unlikely(ieee80211_is_pspoll(hdr
->frame_control
))) {
1223 if (!test_sta_flag(rx
->sta
, WLAN_STA_SP
)) {
1224 if (!test_sta_flag(rx
->sta
, WLAN_STA_PS_DRIVER
))
1225 ieee80211_sta_ps_deliver_poll_response(rx
->sta
);
1227 set_sta_flag(rx
->sta
, WLAN_STA_PSPOLL
);
1230 /* Free PS Poll skb here instead of returning RX_DROP that would
1231 * count as an dropped frame. */
1232 dev_kfree_skb(rx
->skb
);
1235 } else if (!ieee80211_has_morefrags(hdr
->frame_control
) &&
1236 !(status
->rx_flags
& IEEE80211_RX_DEFERRED_RELEASE
) &&
1237 ieee80211_has_pm(hdr
->frame_control
) &&
1238 (ieee80211_is_data_qos(hdr
->frame_control
) ||
1239 ieee80211_is_qos_nullfunc(hdr
->frame_control
))) {
1240 tid
= *ieee80211_get_qos_ctl(hdr
) & IEEE80211_QOS_CTL_TID_MASK
;
1241 ac
= ieee802_1d_to_ac
[tid
& 7];
1244 * If this AC is not trigger-enabled do nothing.
1246 * NB: This could/should check a separate bitmap of trigger-
1247 * enabled queues, but for now we only implement uAPSD w/o
1248 * TSPEC changes to the ACs, so they're always the same.
1250 if (!(rx
->sta
->sta
.uapsd_queues
& BIT(ac
)))
1253 /* if we are in a service period, do nothing */
1254 if (test_sta_flag(rx
->sta
, WLAN_STA_SP
))
1257 if (!test_sta_flag(rx
->sta
, WLAN_STA_PS_DRIVER
))
1258 ieee80211_sta_ps_deliver_uapsd(rx
->sta
);
1260 set_sta_flag(rx
->sta
, WLAN_STA_UAPSD
);
1266 static ieee80211_rx_result debug_noinline
1267 ieee80211_rx_h_sta_process(struct ieee80211_rx_data
*rx
)
1269 struct sta_info
*sta
= rx
->sta
;
1270 struct sk_buff
*skb
= rx
->skb
;
1271 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1272 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1278 * Update last_rx only for IBSS packets which are for the current
1279 * BSSID to avoid keeping the current IBSS network alive in cases
1280 * where other STAs start using different BSSID.
1282 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_ADHOC
) {
1283 u8
*bssid
= ieee80211_get_bssid(hdr
, rx
->skb
->len
,
1284 NL80211_IFTYPE_ADHOC
);
1285 if (compare_ether_addr(bssid
, rx
->sdata
->u
.ibss
.bssid
) == 0) {
1286 sta
->last_rx
= jiffies
;
1287 if (ieee80211_is_data(hdr
->frame_control
)) {
1288 sta
->last_rx_rate_idx
= status
->rate_idx
;
1289 sta
->last_rx_rate_flag
= status
->flag
;
1292 } else if (!is_multicast_ether_addr(hdr
->addr1
)) {
1294 * Mesh beacons will update last_rx when if they are found to
1295 * match the current local configuration when processed.
1297 sta
->last_rx
= jiffies
;
1298 if (ieee80211_is_data(hdr
->frame_control
)) {
1299 sta
->last_rx_rate_idx
= status
->rate_idx
;
1300 sta
->last_rx_rate_flag
= status
->flag
;
1304 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
1307 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
)
1308 ieee80211_sta_rx_notify(rx
->sdata
, hdr
);
1310 sta
->rx_fragments
++;
1311 sta
->rx_bytes
+= rx
->skb
->len
;
1312 sta
->last_signal
= status
->signal
;
1313 ewma_add(&sta
->avg_signal
, -status
->signal
);
1316 * Change STA power saving mode only at the end of a frame
1317 * exchange sequence.
1319 if (!(sta
->local
->hw
.flags
& IEEE80211_HW_AP_LINK_PS
) &&
1320 !ieee80211_has_morefrags(hdr
->frame_control
) &&
1321 !(status
->rx_flags
& IEEE80211_RX_DEFERRED_RELEASE
) &&
1322 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1323 rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)) {
1324 if (test_sta_flag(sta
, WLAN_STA_PS_STA
)) {
1326 * Ignore doze->wake transitions that are
1327 * indicated by non-data frames, the standard
1328 * is unclear here, but for example going to
1329 * PS mode and then scanning would cause a
1330 * doze->wake transition for the probe request,
1331 * and that is clearly undesirable.
1333 if (ieee80211_is_data(hdr
->frame_control
) &&
1334 !ieee80211_has_pm(hdr
->frame_control
))
1337 if (ieee80211_has_pm(hdr
->frame_control
))
1338 ap_sta_ps_start(sta
);
1343 * Drop (qos-)data::nullfunc frames silently, since they
1344 * are used only to control station power saving mode.
1346 if (ieee80211_is_nullfunc(hdr
->frame_control
) ||
1347 ieee80211_is_qos_nullfunc(hdr
->frame_control
)) {
1348 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_nullfunc
);
1351 * If we receive a 4-addr nullfunc frame from a STA
1352 * that was not moved to a 4-addr STA vlan yet send
1353 * the event to userspace and for older hostapd drop
1354 * the frame to the monitor interface.
1356 if (ieee80211_has_a4(hdr
->frame_control
) &&
1357 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1358 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1359 !rx
->sdata
->u
.vlan
.sta
))) {
1360 if (!test_and_set_sta_flag(sta
, WLAN_STA_4ADDR_EVENT
))
1361 cfg80211_rx_unexpected_4addr_frame(
1362 rx
->sdata
->dev
, sta
->sta
.addr
,
1364 return RX_DROP_MONITOR
;
1367 * Update counter and free packet here to avoid
1368 * counting this as a dropped packed.
1371 dev_kfree_skb(rx
->skb
);
1376 } /* ieee80211_rx_h_sta_process */
1378 static inline struct ieee80211_fragment_entry
*
1379 ieee80211_reassemble_add(struct ieee80211_sub_if_data
*sdata
,
1380 unsigned int frag
, unsigned int seq
, int rx_queue
,
1381 struct sk_buff
**skb
)
1383 struct ieee80211_fragment_entry
*entry
;
1386 idx
= sdata
->fragment_next
;
1387 entry
= &sdata
->fragments
[sdata
->fragment_next
++];
1388 if (sdata
->fragment_next
>= IEEE80211_FRAGMENT_MAX
)
1389 sdata
->fragment_next
= 0;
1391 if (!skb_queue_empty(&entry
->skb_list
)) {
1392 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1393 struct ieee80211_hdr
*hdr
=
1394 (struct ieee80211_hdr
*) entry
->skb_list
.next
->data
;
1395 printk(KERN_DEBUG
"%s: RX reassembly removed oldest "
1396 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1397 "addr1=%pM addr2=%pM\n",
1399 jiffies
- entry
->first_frag_time
, entry
->seq
,
1400 entry
->last_frag
, hdr
->addr1
, hdr
->addr2
);
1402 __skb_queue_purge(&entry
->skb_list
);
1405 __skb_queue_tail(&entry
->skb_list
, *skb
); /* no need for locking */
1407 entry
->first_frag_time
= jiffies
;
1409 entry
->rx_queue
= rx_queue
;
1410 entry
->last_frag
= frag
;
1412 entry
->extra_len
= 0;
1417 static inline struct ieee80211_fragment_entry
*
1418 ieee80211_reassemble_find(struct ieee80211_sub_if_data
*sdata
,
1419 unsigned int frag
, unsigned int seq
,
1420 int rx_queue
, struct ieee80211_hdr
*hdr
)
1422 struct ieee80211_fragment_entry
*entry
;
1425 idx
= sdata
->fragment_next
;
1426 for (i
= 0; i
< IEEE80211_FRAGMENT_MAX
; i
++) {
1427 struct ieee80211_hdr
*f_hdr
;
1431 idx
= IEEE80211_FRAGMENT_MAX
- 1;
1433 entry
= &sdata
->fragments
[idx
];
1434 if (skb_queue_empty(&entry
->skb_list
) || entry
->seq
!= seq
||
1435 entry
->rx_queue
!= rx_queue
||
1436 entry
->last_frag
+ 1 != frag
)
1439 f_hdr
= (struct ieee80211_hdr
*)entry
->skb_list
.next
->data
;
1442 * Check ftype and addresses are equal, else check next fragment
1444 if (((hdr
->frame_control
^ f_hdr
->frame_control
) &
1445 cpu_to_le16(IEEE80211_FCTL_FTYPE
)) ||
1446 compare_ether_addr(hdr
->addr1
, f_hdr
->addr1
) != 0 ||
1447 compare_ether_addr(hdr
->addr2
, f_hdr
->addr2
) != 0)
1450 if (time_after(jiffies
, entry
->first_frag_time
+ 2 * HZ
)) {
1451 __skb_queue_purge(&entry
->skb_list
);
1460 static ieee80211_rx_result debug_noinline
1461 ieee80211_rx_h_defragment(struct ieee80211_rx_data
*rx
)
1463 struct ieee80211_hdr
*hdr
;
1466 unsigned int frag
, seq
;
1467 struct ieee80211_fragment_entry
*entry
;
1468 struct sk_buff
*skb
;
1469 struct ieee80211_rx_status
*status
;
1471 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1472 fc
= hdr
->frame_control
;
1473 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1474 frag
= sc
& IEEE80211_SCTL_FRAG
;
1476 if (likely((!ieee80211_has_morefrags(fc
) && frag
== 0) ||
1477 (rx
->skb
)->len
< 24 ||
1478 is_multicast_ether_addr(hdr
->addr1
))) {
1479 /* not fragmented */
1482 I802_DEBUG_INC(rx
->local
->rx_handlers_fragments
);
1484 if (skb_linearize(rx
->skb
))
1485 return RX_DROP_UNUSABLE
;
1488 * skb_linearize() might change the skb->data and
1489 * previously cached variables (in this case, hdr) need to
1490 * be refreshed with the new data.
1492 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1493 seq
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
1496 /* This is the first fragment of a new frame. */
1497 entry
= ieee80211_reassemble_add(rx
->sdata
, frag
, seq
,
1498 rx
->seqno_idx
, &(rx
->skb
));
1499 if (rx
->key
&& rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP
&&
1500 ieee80211_has_protected(fc
)) {
1501 int queue
= rx
->security_idx
;
1502 /* Store CCMP PN so that we can verify that the next
1503 * fragment has a sequential PN value. */
1505 memcpy(entry
->last_pn
,
1506 rx
->key
->u
.ccmp
.rx_pn
[queue
],
1512 /* This is a fragment for a frame that should already be pending in
1513 * fragment cache. Add this fragment to the end of the pending entry.
1515 entry
= ieee80211_reassemble_find(rx
->sdata
, frag
, seq
,
1516 rx
->seqno_idx
, hdr
);
1518 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
1519 return RX_DROP_MONITOR
;
1522 /* Verify that MPDUs within one MSDU have sequential PN values.
1523 * (IEEE 802.11i, 8.3.3.4.5) */
1526 u8 pn
[CCMP_PN_LEN
], *rpn
;
1528 if (!rx
->key
|| rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_CCMP
)
1529 return RX_DROP_UNUSABLE
;
1530 memcpy(pn
, entry
->last_pn
, CCMP_PN_LEN
);
1531 for (i
= CCMP_PN_LEN
- 1; i
>= 0; i
--) {
1536 queue
= rx
->security_idx
;
1537 rpn
= rx
->key
->u
.ccmp
.rx_pn
[queue
];
1538 if (memcmp(pn
, rpn
, CCMP_PN_LEN
))
1539 return RX_DROP_UNUSABLE
;
1540 memcpy(entry
->last_pn
, pn
, CCMP_PN_LEN
);
1543 skb_pull(rx
->skb
, ieee80211_hdrlen(fc
));
1544 __skb_queue_tail(&entry
->skb_list
, rx
->skb
);
1545 entry
->last_frag
= frag
;
1546 entry
->extra_len
+= rx
->skb
->len
;
1547 if (ieee80211_has_morefrags(fc
)) {
1552 rx
->skb
= __skb_dequeue(&entry
->skb_list
);
1553 if (skb_tailroom(rx
->skb
) < entry
->extra_len
) {
1554 I802_DEBUG_INC(rx
->local
->rx_expand_skb_head2
);
1555 if (unlikely(pskb_expand_head(rx
->skb
, 0, entry
->extra_len
,
1557 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
1558 __skb_queue_purge(&entry
->skb_list
);
1559 return RX_DROP_UNUSABLE
;
1562 while ((skb
= __skb_dequeue(&entry
->skb_list
))) {
1563 memcpy(skb_put(rx
->skb
, skb
->len
), skb
->data
, skb
->len
);
1567 /* Complete frame has been reassembled - process it now */
1568 status
= IEEE80211_SKB_RXCB(rx
->skb
);
1569 status
->rx_flags
|= IEEE80211_RX_FRAGMENTED
;
1573 rx
->sta
->rx_packets
++;
1574 if (is_multicast_ether_addr(hdr
->addr1
))
1575 rx
->local
->dot11MulticastReceivedFrameCount
++;
1577 ieee80211_led_rx(rx
->local
);
1582 ieee80211_802_1x_port_control(struct ieee80211_rx_data
*rx
)
1584 if (unlikely(!rx
->sta
||
1585 !test_sta_flag(rx
->sta
, WLAN_STA_AUTHORIZED
)))
1592 ieee80211_drop_unencrypted(struct ieee80211_rx_data
*rx
, __le16 fc
)
1594 struct sk_buff
*skb
= rx
->skb
;
1595 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1598 * Pass through unencrypted frames if the hardware has
1599 * decrypted them already.
1601 if (status
->flag
& RX_FLAG_DECRYPTED
)
1604 /* Drop unencrypted frames if key is set. */
1605 if (unlikely(!ieee80211_has_protected(fc
) &&
1606 !ieee80211_is_nullfunc(fc
) &&
1607 ieee80211_is_data(fc
) &&
1608 (rx
->key
|| rx
->sdata
->drop_unencrypted
)))
1615 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data
*rx
)
1617 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1618 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1619 __le16 fc
= hdr
->frame_control
;
1622 * Pass through unencrypted frames if the hardware has
1623 * decrypted them already.
1625 if (status
->flag
& RX_FLAG_DECRYPTED
)
1628 if (rx
->sta
&& test_sta_flag(rx
->sta
, WLAN_STA_MFP
)) {
1629 if (unlikely(!ieee80211_has_protected(fc
) &&
1630 ieee80211_is_unicast_robust_mgmt_frame(rx
->skb
) &&
1632 if (ieee80211_is_deauth(fc
))
1633 cfg80211_send_unprot_deauth(rx
->sdata
->dev
,
1636 else if (ieee80211_is_disassoc(fc
))
1637 cfg80211_send_unprot_disassoc(rx
->sdata
->dev
,
1642 /* BIP does not use Protected field, so need to check MMIE */
1643 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx
->skb
) &&
1644 ieee80211_get_mmie_keyidx(rx
->skb
) < 0)) {
1645 if (ieee80211_is_deauth(fc
))
1646 cfg80211_send_unprot_deauth(rx
->sdata
->dev
,
1649 else if (ieee80211_is_disassoc(fc
))
1650 cfg80211_send_unprot_disassoc(rx
->sdata
->dev
,
1656 * When using MFP, Action frames are not allowed prior to
1657 * having configured keys.
1659 if (unlikely(ieee80211_is_action(fc
) && !rx
->key
&&
1660 ieee80211_is_robust_mgmt_frame(
1661 (struct ieee80211_hdr
*) rx
->skb
->data
)))
1669 __ieee80211_data_to_8023(struct ieee80211_rx_data
*rx
, bool *port_control
)
1671 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1672 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1673 bool check_port_control
= false;
1674 struct ethhdr
*ehdr
;
1677 *port_control
= false;
1678 if (ieee80211_has_a4(hdr
->frame_control
) &&
1679 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& !sdata
->u
.vlan
.sta
)
1682 if (sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
1683 !!sdata
->u
.mgd
.use_4addr
!= !!ieee80211_has_a4(hdr
->frame_control
)) {
1685 if (!sdata
->u
.mgd
.use_4addr
)
1688 check_port_control
= true;
1691 if (is_multicast_ether_addr(hdr
->addr1
) &&
1692 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& sdata
->u
.vlan
.sta
)
1695 ret
= ieee80211_data_to_8023(rx
->skb
, sdata
->vif
.addr
, sdata
->vif
.type
);
1699 ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1700 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
)
1701 *port_control
= true;
1702 else if (check_port_control
)
1709 * requires that rx->skb is a frame with ethernet header
1711 static bool ieee80211_frame_allowed(struct ieee80211_rx_data
*rx
, __le16 fc
)
1713 static const u8 pae_group_addr
[ETH_ALEN
] __aligned(2)
1714 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1715 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1718 * Allow EAPOL frames to us/the PAE group address regardless
1719 * of whether the frame was encrypted or not.
1721 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
&&
1722 (compare_ether_addr(ehdr
->h_dest
, rx
->sdata
->vif
.addr
) == 0 ||
1723 compare_ether_addr(ehdr
->h_dest
, pae_group_addr
) == 0))
1726 if (ieee80211_802_1x_port_control(rx
) ||
1727 ieee80211_drop_unencrypted(rx
, fc
))
1734 * requires that rx->skb is a frame with ethernet header
1737 ieee80211_deliver_skb(struct ieee80211_rx_data
*rx
)
1739 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1740 struct net_device
*dev
= sdata
->dev
;
1741 struct sk_buff
*skb
, *xmit_skb
;
1742 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
1743 struct sta_info
*dsta
;
1744 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1749 if ((sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1750 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) &&
1751 !(sdata
->flags
& IEEE80211_SDATA_DONT_BRIDGE_PACKETS
) &&
1752 (status
->rx_flags
& IEEE80211_RX_RA_MATCH
) &&
1753 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
|| !sdata
->u
.vlan
.sta
)) {
1754 if (is_multicast_ether_addr(ehdr
->h_dest
)) {
1756 * send multicast frames both to higher layers in
1757 * local net stack and back to the wireless medium
1759 xmit_skb
= skb_copy(skb
, GFP_ATOMIC
);
1760 if (!xmit_skb
&& net_ratelimit())
1761 printk(KERN_DEBUG
"%s: failed to clone "
1762 "multicast frame\n", dev
->name
);
1764 dsta
= sta_info_get(sdata
, skb
->data
);
1767 * The destination station is associated to
1768 * this AP (in this VLAN), so send the frame
1769 * directly to it and do not pass it to local
1779 int align __maybe_unused
;
1781 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1783 * 'align' will only take the values 0 or 2 here
1784 * since all frames are required to be aligned
1785 * to 2-byte boundaries when being passed to
1786 * mac80211. That also explains the __skb_push()
1789 align
= ((unsigned long)(skb
->data
+ sizeof(struct ethhdr
))) & 3;
1791 if (WARN_ON(skb_headroom(skb
) < 3)) {
1795 u8
*data
= skb
->data
;
1796 size_t len
= skb_headlen(skb
);
1798 memmove(skb
->data
, data
, len
);
1799 skb_set_tail_pointer(skb
, len
);
1805 /* deliver to local stack */
1806 skb
->protocol
= eth_type_trans(skb
, dev
);
1807 memset(skb
->cb
, 0, sizeof(skb
->cb
));
1808 netif_receive_skb(skb
);
1814 * Send to wireless media and increase priority by 256 to
1815 * keep the received priority instead of reclassifying
1816 * the frame (see cfg80211_classify8021d).
1818 xmit_skb
->priority
+= 256;
1819 xmit_skb
->protocol
= htons(ETH_P_802_3
);
1820 skb_reset_network_header(xmit_skb
);
1821 skb_reset_mac_header(xmit_skb
);
1822 dev_queue_xmit(xmit_skb
);
1826 static ieee80211_rx_result debug_noinline
1827 ieee80211_rx_h_amsdu(struct ieee80211_rx_data
*rx
)
1829 struct net_device
*dev
= rx
->sdata
->dev
;
1830 struct sk_buff
*skb
= rx
->skb
;
1831 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1832 __le16 fc
= hdr
->frame_control
;
1833 struct sk_buff_head frame_list
;
1834 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1836 if (unlikely(!ieee80211_is_data(fc
)))
1839 if (unlikely(!ieee80211_is_data_present(fc
)))
1840 return RX_DROP_MONITOR
;
1842 if (!(status
->rx_flags
& IEEE80211_RX_AMSDU
))
1845 if (ieee80211_has_a4(hdr
->frame_control
) &&
1846 rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1847 !rx
->sdata
->u
.vlan
.sta
)
1848 return RX_DROP_UNUSABLE
;
1850 if (is_multicast_ether_addr(hdr
->addr1
) &&
1851 ((rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1852 rx
->sdata
->u
.vlan
.sta
) ||
1853 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
1854 rx
->sdata
->u
.mgd
.use_4addr
)))
1855 return RX_DROP_UNUSABLE
;
1858 __skb_queue_head_init(&frame_list
);
1860 if (skb_linearize(skb
))
1861 return RX_DROP_UNUSABLE
;
1863 ieee80211_amsdu_to_8023s(skb
, &frame_list
, dev
->dev_addr
,
1864 rx
->sdata
->vif
.type
,
1865 rx
->local
->hw
.extra_tx_headroom
, true);
1867 while (!skb_queue_empty(&frame_list
)) {
1868 rx
->skb
= __skb_dequeue(&frame_list
);
1870 if (!ieee80211_frame_allowed(rx
, fc
)) {
1871 dev_kfree_skb(rx
->skb
);
1874 dev
->stats
.rx_packets
++;
1875 dev
->stats
.rx_bytes
+= rx
->skb
->len
;
1877 ieee80211_deliver_skb(rx
);
1883 #ifdef CONFIG_MAC80211_MESH
1884 static ieee80211_rx_result
1885 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data
*rx
)
1887 struct ieee80211_hdr
*fwd_hdr
, *hdr
;
1888 struct ieee80211_tx_info
*info
;
1889 struct ieee80211s_hdr
*mesh_hdr
;
1890 struct sk_buff
*skb
= rx
->skb
, *fwd_skb
;
1891 struct ieee80211_local
*local
= rx
->local
;
1892 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1893 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1894 struct ieee80211_if_mesh
*ifmsh
= &sdata
->u
.mesh
;
1895 __le16 reason
= cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD
);
1898 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1899 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
1900 mesh_hdr
= (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
);
1902 /* frame is in RMC, don't forward */
1903 if (ieee80211_is_data(hdr
->frame_control
) &&
1904 is_multicast_ether_addr(hdr
->addr1
) &&
1905 mesh_rmc_check(hdr
->addr3
, mesh_hdr
, rx
->sdata
))
1906 return RX_DROP_MONITOR
;
1908 if (!ieee80211_is_data(hdr
->frame_control
))
1912 return RX_DROP_MONITOR
;
1914 if (mesh_hdr
->flags
& MESH_FLAGS_AE
) {
1915 struct mesh_path
*mppath
;
1919 if (is_multicast_ether_addr(hdr
->addr1
)) {
1920 mpp_addr
= hdr
->addr3
;
1921 proxied_addr
= mesh_hdr
->eaddr1
;
1923 mpp_addr
= hdr
->addr4
;
1924 proxied_addr
= mesh_hdr
->eaddr2
;
1928 mppath
= mpp_path_lookup(proxied_addr
, sdata
);
1930 mpp_path_add(proxied_addr
, mpp_addr
, sdata
);
1932 spin_lock_bh(&mppath
->state_lock
);
1933 if (compare_ether_addr(mppath
->mpp
, mpp_addr
) != 0)
1934 memcpy(mppath
->mpp
, mpp_addr
, ETH_ALEN
);
1935 spin_unlock_bh(&mppath
->state_lock
);
1940 /* Frame has reached destination. Don't forward */
1941 if (!is_multicast_ether_addr(hdr
->addr1
) &&
1942 compare_ether_addr(sdata
->vif
.addr
, hdr
->addr3
) == 0)
1945 q
= ieee80211_select_queue_80211(local
, skb
, hdr
);
1946 if (ieee80211_queue_stopped(&local
->hw
, q
)) {
1947 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_congestion
);
1948 return RX_DROP_MONITOR
;
1950 skb_set_queue_mapping(skb
, q
);
1952 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
1955 if (!--mesh_hdr
->ttl
) {
1956 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_ttl
);
1957 return RX_DROP_MONITOR
;
1960 fwd_skb
= skb_copy(skb
, GFP_ATOMIC
);
1962 if (net_ratelimit())
1963 printk(KERN_DEBUG
"%s: failed to clone mesh frame\n",
1968 fwd_hdr
= (struct ieee80211_hdr
*) fwd_skb
->data
;
1969 info
= IEEE80211_SKB_CB(fwd_skb
);
1970 memset(info
, 0, sizeof(*info
));
1971 info
->flags
|= IEEE80211_TX_INTFL_NEED_TXPROCESSING
;
1972 info
->control
.vif
= &rx
->sdata
->vif
;
1973 info
->control
.jiffies
= jiffies
;
1974 if (is_multicast_ether_addr(fwd_hdr
->addr1
)) {
1975 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_mcast
);
1976 memcpy(fwd_hdr
->addr2
, sdata
->vif
.addr
, ETH_ALEN
);
1977 } else if (!mesh_nexthop_lookup(fwd_skb
, sdata
)) {
1978 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_unicast
);
1980 /* unable to resolve next hop */
1981 mesh_path_error_tx(ifmsh
->mshcfg
.element_ttl
, fwd_hdr
->addr3
,
1982 0, reason
, fwd_hdr
->addr2
, sdata
);
1983 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_no_route
);
1985 return RX_DROP_MONITOR
;
1988 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_frames
);
1989 ieee80211_add_pending_skb(local
, fwd_skb
);
1991 if (is_multicast_ether_addr(hdr
->addr1
) ||
1992 sdata
->dev
->flags
& IFF_PROMISC
)
1995 return RX_DROP_MONITOR
;
1999 static ieee80211_rx_result debug_noinline
2000 ieee80211_rx_h_data(struct ieee80211_rx_data
*rx
)
2002 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2003 struct ieee80211_local
*local
= rx
->local
;
2004 struct net_device
*dev
= sdata
->dev
;
2005 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2006 __le16 fc
= hdr
->frame_control
;
2010 if (unlikely(!ieee80211_is_data(hdr
->frame_control
)))
2013 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
2014 return RX_DROP_MONITOR
;
2017 * Send unexpected-4addr-frame event to hostapd. For older versions,
2018 * also drop the frame to cooked monitor interfaces.
2020 if (ieee80211_has_a4(hdr
->frame_control
) &&
2021 sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
2023 !test_and_set_sta_flag(rx
->sta
, WLAN_STA_4ADDR_EVENT
))
2024 cfg80211_rx_unexpected_4addr_frame(
2025 rx
->sdata
->dev
, rx
->sta
->sta
.addr
, GFP_ATOMIC
);
2026 return RX_DROP_MONITOR
;
2029 err
= __ieee80211_data_to_8023(rx
, &port_control
);
2031 return RX_DROP_UNUSABLE
;
2033 if (!ieee80211_frame_allowed(rx
, fc
))
2034 return RX_DROP_MONITOR
;
2036 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
2037 unlikely(port_control
) && sdata
->bss
) {
2038 sdata
= container_of(sdata
->bss
, struct ieee80211_sub_if_data
,
2046 dev
->stats
.rx_packets
++;
2047 dev
->stats
.rx_bytes
+= rx
->skb
->len
;
2049 if (local
->ps_sdata
&& local
->hw
.conf
.dynamic_ps_timeout
> 0 &&
2050 !is_multicast_ether_addr(
2051 ((struct ethhdr
*)rx
->skb
->data
)->h_dest
) &&
2052 (!local
->scanning
&&
2053 !test_bit(SDATA_STATE_OFFCHANNEL
, &sdata
->state
))) {
2054 mod_timer(&local
->dynamic_ps_timer
, jiffies
+
2055 msecs_to_jiffies(local
->hw
.conf
.dynamic_ps_timeout
));
2058 ieee80211_deliver_skb(rx
);
2063 static ieee80211_rx_result debug_noinline
2064 ieee80211_rx_h_ctrl(struct ieee80211_rx_data
*rx
)
2066 struct ieee80211_local
*local
= rx
->local
;
2067 struct ieee80211_hw
*hw
= &local
->hw
;
2068 struct sk_buff
*skb
= rx
->skb
;
2069 struct ieee80211_bar
*bar
= (struct ieee80211_bar
*)skb
->data
;
2070 struct tid_ampdu_rx
*tid_agg_rx
;
2074 if (likely(!ieee80211_is_ctl(bar
->frame_control
)))
2077 if (ieee80211_is_back_req(bar
->frame_control
)) {
2079 __le16 control
, start_seq_num
;
2080 } __packed bar_data
;
2083 return RX_DROP_MONITOR
;
2085 if (skb_copy_bits(skb
, offsetof(struct ieee80211_bar
, control
),
2086 &bar_data
, sizeof(bar_data
)))
2087 return RX_DROP_MONITOR
;
2089 tid
= le16_to_cpu(bar_data
.control
) >> 12;
2091 tid_agg_rx
= rcu_dereference(rx
->sta
->ampdu_mlme
.tid_rx
[tid
]);
2093 return RX_DROP_MONITOR
;
2095 start_seq_num
= le16_to_cpu(bar_data
.start_seq_num
) >> 4;
2097 /* reset session timer */
2098 if (tid_agg_rx
->timeout
)
2099 mod_timer(&tid_agg_rx
->session_timer
,
2100 TU_TO_EXP_TIME(tid_agg_rx
->timeout
));
2102 spin_lock(&tid_agg_rx
->reorder_lock
);
2103 /* release stored frames up to start of BAR */
2104 ieee80211_release_reorder_frames(hw
, tid_agg_rx
, start_seq_num
);
2105 spin_unlock(&tid_agg_rx
->reorder_lock
);
2112 * After this point, we only want management frames,
2113 * so we can drop all remaining control frames to
2114 * cooked monitor interfaces.
2116 return RX_DROP_MONITOR
;
2119 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data
*sdata
,
2120 struct ieee80211_mgmt
*mgmt
,
2123 struct ieee80211_local
*local
= sdata
->local
;
2124 struct sk_buff
*skb
;
2125 struct ieee80211_mgmt
*resp
;
2127 if (compare_ether_addr(mgmt
->da
, sdata
->vif
.addr
) != 0) {
2128 /* Not to own unicast address */
2132 if (compare_ether_addr(mgmt
->sa
, sdata
->u
.mgd
.bssid
) != 0 ||
2133 compare_ether_addr(mgmt
->bssid
, sdata
->u
.mgd
.bssid
) != 0) {
2134 /* Not from the current AP or not associated yet. */
2138 if (len
< 24 + 1 + sizeof(resp
->u
.action
.u
.sa_query
)) {
2139 /* Too short SA Query request frame */
2143 skb
= dev_alloc_skb(sizeof(*resp
) + local
->hw
.extra_tx_headroom
);
2147 skb_reserve(skb
, local
->hw
.extra_tx_headroom
);
2148 resp
= (struct ieee80211_mgmt
*) skb_put(skb
, 24);
2149 memset(resp
, 0, 24);
2150 memcpy(resp
->da
, mgmt
->sa
, ETH_ALEN
);
2151 memcpy(resp
->sa
, sdata
->vif
.addr
, ETH_ALEN
);
2152 memcpy(resp
->bssid
, sdata
->u
.mgd
.bssid
, ETH_ALEN
);
2153 resp
->frame_control
= cpu_to_le16(IEEE80211_FTYPE_MGMT
|
2154 IEEE80211_STYPE_ACTION
);
2155 skb_put(skb
, 1 + sizeof(resp
->u
.action
.u
.sa_query
));
2156 resp
->u
.action
.category
= WLAN_CATEGORY_SA_QUERY
;
2157 resp
->u
.action
.u
.sa_query
.action
= WLAN_ACTION_SA_QUERY_RESPONSE
;
2158 memcpy(resp
->u
.action
.u
.sa_query
.trans_id
,
2159 mgmt
->u
.action
.u
.sa_query
.trans_id
,
2160 WLAN_SA_QUERY_TR_ID_LEN
);
2162 ieee80211_tx_skb(sdata
, skb
);
2165 static ieee80211_rx_result debug_noinline
2166 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data
*rx
)
2168 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2169 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2172 * From here on, look only at management frames.
2173 * Data and control frames are already handled,
2174 * and unknown (reserved) frames are useless.
2176 if (rx
->skb
->len
< 24)
2177 return RX_DROP_MONITOR
;
2179 if (!ieee80211_is_mgmt(mgmt
->frame_control
))
2180 return RX_DROP_MONITOR
;
2182 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
&&
2183 ieee80211_is_beacon(mgmt
->frame_control
) &&
2184 !(rx
->flags
& IEEE80211_RX_BEACON_REPORTED
)) {
2185 cfg80211_report_obss_beacon(rx
->local
->hw
.wiphy
,
2186 rx
->skb
->data
, rx
->skb
->len
,
2187 status
->freq
, GFP_ATOMIC
);
2188 rx
->flags
|= IEEE80211_RX_BEACON_REPORTED
;
2191 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
2192 return RX_DROP_MONITOR
;
2194 if (ieee80211_drop_unencrypted_mgmt(rx
))
2195 return RX_DROP_UNUSABLE
;
2200 static ieee80211_rx_result debug_noinline
2201 ieee80211_rx_h_action(struct ieee80211_rx_data
*rx
)
2203 struct ieee80211_local
*local
= rx
->local
;
2204 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2205 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2206 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2207 int len
= rx
->skb
->len
;
2209 if (!ieee80211_is_action(mgmt
->frame_control
))
2212 /* drop too small frames */
2213 if (len
< IEEE80211_MIN_ACTION_SIZE
)
2214 return RX_DROP_UNUSABLE
;
2216 if (!rx
->sta
&& mgmt
->u
.action
.category
!= WLAN_CATEGORY_PUBLIC
)
2217 return RX_DROP_UNUSABLE
;
2219 if (!(status
->rx_flags
& IEEE80211_RX_RA_MATCH
))
2220 return RX_DROP_UNUSABLE
;
2222 switch (mgmt
->u
.action
.category
) {
2223 case WLAN_CATEGORY_HT
:
2224 /* reject HT action frames from stations not supporting HT */
2225 if (!rx
->sta
->sta
.ht_cap
.ht_supported
)
2228 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2229 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
2230 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
2231 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
2232 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
2235 /* verify action & smps_control are present */
2236 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 2)
2239 switch (mgmt
->u
.action
.u
.ht_smps
.action
) {
2240 case WLAN_HT_ACTION_SMPS
: {
2241 struct ieee80211_supported_band
*sband
;
2244 /* convert to HT capability */
2245 switch (mgmt
->u
.action
.u
.ht_smps
.smps_control
) {
2246 case WLAN_HT_SMPS_CONTROL_DISABLED
:
2247 smps
= WLAN_HT_CAP_SM_PS_DISABLED
;
2249 case WLAN_HT_SMPS_CONTROL_STATIC
:
2250 smps
= WLAN_HT_CAP_SM_PS_STATIC
;
2252 case WLAN_HT_SMPS_CONTROL_DYNAMIC
:
2253 smps
= WLAN_HT_CAP_SM_PS_DYNAMIC
;
2258 smps
<<= IEEE80211_HT_CAP_SM_PS_SHIFT
;
2260 /* if no change do nothing */
2261 if ((rx
->sta
->sta
.ht_cap
.cap
&
2262 IEEE80211_HT_CAP_SM_PS
) == smps
)
2265 rx
->sta
->sta
.ht_cap
.cap
&= ~IEEE80211_HT_CAP_SM_PS
;
2266 rx
->sta
->sta
.ht_cap
.cap
|= smps
;
2268 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
2270 rate_control_rate_update(local
, sband
, rx
->sta
,
2271 IEEE80211_RC_SMPS_CHANGED
,
2272 local
->_oper_channel_type
);
2280 case WLAN_CATEGORY_BACK
:
2281 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
2282 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
2283 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
2284 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
2285 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
2288 /* verify action_code is present */
2289 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2292 switch (mgmt
->u
.action
.u
.addba_req
.action_code
) {
2293 case WLAN_ACTION_ADDBA_REQ
:
2294 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2295 sizeof(mgmt
->u
.action
.u
.addba_req
)))
2298 case WLAN_ACTION_ADDBA_RESP
:
2299 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2300 sizeof(mgmt
->u
.action
.u
.addba_resp
)))
2303 case WLAN_ACTION_DELBA
:
2304 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2305 sizeof(mgmt
->u
.action
.u
.delba
)))
2313 case WLAN_CATEGORY_SPECTRUM_MGMT
:
2314 if (local
->hw
.conf
.channel
->band
!= IEEE80211_BAND_5GHZ
)
2317 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2320 /* verify action_code is present */
2321 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
2324 switch (mgmt
->u
.action
.u
.measurement
.action_code
) {
2325 case WLAN_ACTION_SPCT_MSR_REQ
:
2326 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2327 sizeof(mgmt
->u
.action
.u
.measurement
)))
2329 ieee80211_process_measurement_req(sdata
, mgmt
, len
);
2331 case WLAN_ACTION_SPCT_CHL_SWITCH
:
2332 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2333 sizeof(mgmt
->u
.action
.u
.chan_switch
)))
2336 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2339 if (compare_ether_addr(mgmt
->bssid
, sdata
->u
.mgd
.bssid
))
2345 case WLAN_CATEGORY_SA_QUERY
:
2346 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
2347 sizeof(mgmt
->u
.action
.u
.sa_query
)))
2350 switch (mgmt
->u
.action
.u
.sa_query
.action
) {
2351 case WLAN_ACTION_SA_QUERY_REQUEST
:
2352 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2354 ieee80211_process_sa_query_req(sdata
, mgmt
, len
);
2358 case WLAN_CATEGORY_SELF_PROTECTED
:
2359 switch (mgmt
->u
.action
.u
.self_prot
.action_code
) {
2360 case WLAN_SP_MESH_PEERING_OPEN
:
2361 case WLAN_SP_MESH_PEERING_CLOSE
:
2362 case WLAN_SP_MESH_PEERING_CONFIRM
:
2363 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
2365 if (sdata
->u
.mesh
.security
!= IEEE80211_MESH_SEC_NONE
)
2366 /* userspace handles this frame */
2369 case WLAN_SP_MGK_INFORM
:
2370 case WLAN_SP_MGK_ACK
:
2371 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
2376 case WLAN_CATEGORY_MESH_ACTION
:
2377 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
2379 if (mesh_action_is_path_sel(mgmt
) &&
2380 (!mesh_path_sel_is_hwmp(sdata
)))
2388 status
->rx_flags
|= IEEE80211_RX_MALFORMED_ACTION_FRM
;
2389 /* will return in the next handlers */
2394 rx
->sta
->rx_packets
++;
2395 dev_kfree_skb(rx
->skb
);
2399 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
2400 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
2401 ieee80211_queue_work(&local
->hw
, &sdata
->work
);
2403 rx
->sta
->rx_packets
++;
2407 static ieee80211_rx_result debug_noinline
2408 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data
*rx
)
2410 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2412 /* skip known-bad action frames and return them in the next handler */
2413 if (status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
)
2417 * Getting here means the kernel doesn't know how to handle
2418 * it, but maybe userspace does ... include returned frames
2419 * so userspace can register for those to know whether ones
2420 * it transmitted were processed or returned.
2423 if (cfg80211_rx_mgmt(rx
->sdata
->dev
, status
->freq
,
2424 rx
->skb
->data
, rx
->skb
->len
,
2427 rx
->sta
->rx_packets
++;
2428 dev_kfree_skb(rx
->skb
);
2436 static ieee80211_rx_result debug_noinline
2437 ieee80211_rx_h_action_return(struct ieee80211_rx_data
*rx
)
2439 struct ieee80211_local
*local
= rx
->local
;
2440 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2441 struct sk_buff
*nskb
;
2442 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2443 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2445 if (!ieee80211_is_action(mgmt
->frame_control
))
2449 * For AP mode, hostapd is responsible for handling any action
2450 * frames that we didn't handle, including returning unknown
2451 * ones. For all other modes we will return them to the sender,
2452 * setting the 0x80 bit in the action category, as required by
2453 * 802.11-2007 7.3.1.11.
2454 * Newer versions of hostapd shall also use the management frame
2455 * registration mechanisms, but older ones still use cooked
2456 * monitor interfaces so push all frames there.
2458 if (!(status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
) &&
2459 (sdata
->vif
.type
== NL80211_IFTYPE_AP
||
2460 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
))
2461 return RX_DROP_MONITOR
;
2463 /* do not return rejected action frames */
2464 if (mgmt
->u
.action
.category
& 0x80)
2465 return RX_DROP_UNUSABLE
;
2467 nskb
= skb_copy_expand(rx
->skb
, local
->hw
.extra_tx_headroom
, 0,
2470 struct ieee80211_mgmt
*nmgmt
= (void *)nskb
->data
;
2472 nmgmt
->u
.action
.category
|= 0x80;
2473 memcpy(nmgmt
->da
, nmgmt
->sa
, ETH_ALEN
);
2474 memcpy(nmgmt
->sa
, rx
->sdata
->vif
.addr
, ETH_ALEN
);
2476 memset(nskb
->cb
, 0, sizeof(nskb
->cb
));
2478 ieee80211_tx_skb(rx
->sdata
, nskb
);
2480 dev_kfree_skb(rx
->skb
);
2484 static ieee80211_rx_result debug_noinline
2485 ieee80211_rx_h_mgmt(struct ieee80211_rx_data
*rx
)
2487 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2488 struct ieee80211_mgmt
*mgmt
= (void *)rx
->skb
->data
;
2491 stype
= mgmt
->frame_control
& cpu_to_le16(IEEE80211_FCTL_STYPE
);
2493 if (!ieee80211_vif_is_mesh(&sdata
->vif
) &&
2494 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
2495 sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2496 return RX_DROP_MONITOR
;
2499 case cpu_to_le16(IEEE80211_STYPE_AUTH
):
2500 case cpu_to_le16(IEEE80211_STYPE_BEACON
):
2501 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP
):
2502 /* process for all: mesh, mlme, ibss */
2504 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP
):
2505 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP
):
2506 case cpu_to_le16(IEEE80211_STYPE_DEAUTH
):
2507 case cpu_to_le16(IEEE80211_STYPE_DISASSOC
):
2508 if (is_multicast_ether_addr(mgmt
->da
) &&
2509 !is_broadcast_ether_addr(mgmt
->da
))
2510 return RX_DROP_MONITOR
;
2512 /* process only for station */
2513 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
2514 return RX_DROP_MONITOR
;
2516 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ
):
2517 /* process only for ibss */
2518 if (sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
2519 return RX_DROP_MONITOR
;
2522 return RX_DROP_MONITOR
;
2525 /* queue up frame and kick off work to process it */
2526 rx
->skb
->pkt_type
= IEEE80211_SDATA_QUEUE_TYPE_FRAME
;
2527 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
2528 ieee80211_queue_work(&rx
->local
->hw
, &sdata
->work
);
2530 rx
->sta
->rx_packets
++;
2535 /* TODO: use IEEE80211_RX_FRAGMENTED */
2536 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data
*rx
,
2537 struct ieee80211_rate
*rate
)
2539 struct ieee80211_sub_if_data
*sdata
;
2540 struct ieee80211_local
*local
= rx
->local
;
2541 struct ieee80211_rtap_hdr
{
2542 struct ieee80211_radiotap_header hdr
;
2548 struct sk_buff
*skb
= rx
->skb
, *skb2
;
2549 struct net_device
*prev_dev
= NULL
;
2550 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2553 * If cooked monitor has been processed already, then
2554 * don't do it again. If not, set the flag.
2556 if (rx
->flags
& IEEE80211_RX_CMNTR
)
2558 rx
->flags
|= IEEE80211_RX_CMNTR
;
2560 /* If there are no cooked monitor interfaces, just free the SKB */
2561 if (!local
->cooked_mntrs
)
2564 if (skb_headroom(skb
) < sizeof(*rthdr
) &&
2565 pskb_expand_head(skb
, sizeof(*rthdr
), 0, GFP_ATOMIC
))
2568 rthdr
= (void *)skb_push(skb
, sizeof(*rthdr
));
2569 memset(rthdr
, 0, sizeof(*rthdr
));
2570 rthdr
->hdr
.it_len
= cpu_to_le16(sizeof(*rthdr
));
2571 rthdr
->hdr
.it_present
=
2572 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS
) |
2573 (1 << IEEE80211_RADIOTAP_CHANNEL
));
2576 rthdr
->rate_or_pad
= rate
->bitrate
/ 5;
2577 rthdr
->hdr
.it_present
|=
2578 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE
);
2580 rthdr
->chan_freq
= cpu_to_le16(status
->freq
);
2582 if (status
->band
== IEEE80211_BAND_5GHZ
)
2583 rthdr
->chan_flags
= cpu_to_le16(IEEE80211_CHAN_OFDM
|
2584 IEEE80211_CHAN_5GHZ
);
2586 rthdr
->chan_flags
= cpu_to_le16(IEEE80211_CHAN_DYN
|
2587 IEEE80211_CHAN_2GHZ
);
2589 skb_set_mac_header(skb
, 0);
2590 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2591 skb
->pkt_type
= PACKET_OTHERHOST
;
2592 skb
->protocol
= htons(ETH_P_802_2
);
2594 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
2595 if (!ieee80211_sdata_running(sdata
))
2598 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
||
2599 !(sdata
->u
.mntr_flags
& MONITOR_FLAG_COOK_FRAMES
))
2603 skb2
= skb_clone(skb
, GFP_ATOMIC
);
2605 skb2
->dev
= prev_dev
;
2606 netif_receive_skb(skb2
);
2610 prev_dev
= sdata
->dev
;
2611 sdata
->dev
->stats
.rx_packets
++;
2612 sdata
->dev
->stats
.rx_bytes
+= skb
->len
;
2616 skb
->dev
= prev_dev
;
2617 netif_receive_skb(skb
);
2625 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data
*rx
,
2626 ieee80211_rx_result res
)
2629 case RX_DROP_MONITOR
:
2630 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
2632 rx
->sta
->rx_dropped
++;
2635 struct ieee80211_rate
*rate
= NULL
;
2636 struct ieee80211_supported_band
*sband
;
2637 struct ieee80211_rx_status
*status
;
2639 status
= IEEE80211_SKB_RXCB((rx
->skb
));
2641 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
2642 if (!(status
->flag
& RX_FLAG_HT
))
2643 rate
= &sband
->bitrates
[status
->rate_idx
];
2645 ieee80211_rx_cooked_monitor(rx
, rate
);
2648 case RX_DROP_UNUSABLE
:
2649 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
2651 rx
->sta
->rx_dropped
++;
2652 dev_kfree_skb(rx
->skb
);
2655 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_queued
);
2660 static void ieee80211_rx_handlers(struct ieee80211_rx_data
*rx
)
2662 ieee80211_rx_result res
= RX_DROP_MONITOR
;
2663 struct sk_buff
*skb
;
2665 #define CALL_RXH(rxh) \
2668 if (res != RX_CONTINUE) \
2672 spin_lock(&rx
->local
->rx_skb_queue
.lock
);
2673 if (rx
->local
->running_rx_handler
)
2676 rx
->local
->running_rx_handler
= true;
2678 while ((skb
= __skb_dequeue(&rx
->local
->rx_skb_queue
))) {
2679 spin_unlock(&rx
->local
->rx_skb_queue
.lock
);
2682 * all the other fields are valid across frames
2683 * that belong to an aMPDU since they are on the
2684 * same TID from the same station
2688 CALL_RXH(ieee80211_rx_h_decrypt
)
2689 CALL_RXH(ieee80211_rx_h_check_more_data
)
2690 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll
)
2691 CALL_RXH(ieee80211_rx_h_sta_process
)
2692 CALL_RXH(ieee80211_rx_h_defragment
)
2693 CALL_RXH(ieee80211_rx_h_michael_mic_verify
)
2694 /* must be after MMIC verify so header is counted in MPDU mic */
2695 #ifdef CONFIG_MAC80211_MESH
2696 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
2697 CALL_RXH(ieee80211_rx_h_mesh_fwding
);
2699 CALL_RXH(ieee80211_rx_h_amsdu
)
2700 CALL_RXH(ieee80211_rx_h_data
)
2701 CALL_RXH(ieee80211_rx_h_ctrl
);
2702 CALL_RXH(ieee80211_rx_h_mgmt_check
)
2703 CALL_RXH(ieee80211_rx_h_action
)
2704 CALL_RXH(ieee80211_rx_h_userspace_mgmt
)
2705 CALL_RXH(ieee80211_rx_h_action_return
)
2706 CALL_RXH(ieee80211_rx_h_mgmt
)
2709 ieee80211_rx_handlers_result(rx
, res
);
2710 spin_lock(&rx
->local
->rx_skb_queue
.lock
);
2714 rx
->local
->running_rx_handler
= false;
2717 spin_unlock(&rx
->local
->rx_skb_queue
.lock
);
2720 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data
*rx
)
2722 ieee80211_rx_result res
= RX_DROP_MONITOR
;
2724 #define CALL_RXH(rxh) \
2727 if (res != RX_CONTINUE) \
2731 CALL_RXH(ieee80211_rx_h_passive_scan
)
2732 CALL_RXH(ieee80211_rx_h_check
)
2734 ieee80211_rx_reorder_ampdu(rx
);
2736 ieee80211_rx_handlers(rx
);
2740 ieee80211_rx_handlers_result(rx
, res
);
2746 * This function makes calls into the RX path, therefore
2747 * it has to be invoked under RCU read lock.
2749 void ieee80211_release_reorder_timeout(struct sta_info
*sta
, int tid
)
2751 struct ieee80211_rx_data rx
= {
2753 .sdata
= sta
->sdata
,
2754 .local
= sta
->local
,
2755 /* This is OK -- must be QoS data frame */
2756 .security_idx
= tid
,
2760 struct tid_ampdu_rx
*tid_agg_rx
;
2762 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
2766 spin_lock(&tid_agg_rx
->reorder_lock
);
2767 ieee80211_sta_reorder_release(&sta
->local
->hw
, tid_agg_rx
);
2768 spin_unlock(&tid_agg_rx
->reorder_lock
);
2770 ieee80211_rx_handlers(&rx
);
2773 /* main receive path */
2775 static int prepare_for_handlers(struct ieee80211_rx_data
*rx
,
2776 struct ieee80211_hdr
*hdr
)
2778 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2779 struct sk_buff
*skb
= rx
->skb
;
2780 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2781 u8
*bssid
= ieee80211_get_bssid(hdr
, skb
->len
, sdata
->vif
.type
);
2782 int multicast
= is_multicast_ether_addr(hdr
->addr1
);
2784 switch (sdata
->vif
.type
) {
2785 case NL80211_IFTYPE_STATION
:
2786 if (!bssid
&& !sdata
->u
.mgd
.use_4addr
)
2789 compare_ether_addr(sdata
->vif
.addr
, hdr
->addr1
) != 0) {
2790 if (!(sdata
->dev
->flags
& IFF_PROMISC
) ||
2791 sdata
->u
.mgd
.use_4addr
)
2793 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2796 case NL80211_IFTYPE_ADHOC
:
2799 if (ieee80211_is_beacon(hdr
->frame_control
)) {
2802 else if (!ieee80211_bssid_match(bssid
, sdata
->u
.ibss
.bssid
)) {
2803 if (!(status
->rx_flags
& IEEE80211_RX_IN_SCAN
))
2805 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2806 } else if (!multicast
&&
2807 compare_ether_addr(sdata
->vif
.addr
,
2809 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
2811 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2812 } else if (!rx
->sta
) {
2814 if (status
->flag
& RX_FLAG_HT
)
2815 rate_idx
= 0; /* TODO: HT rates */
2817 rate_idx
= status
->rate_idx
;
2818 ieee80211_ibss_rx_no_sta(sdata
, bssid
, hdr
->addr2
,
2822 case NL80211_IFTYPE_MESH_POINT
:
2824 compare_ether_addr(sdata
->vif
.addr
,
2826 if (!(sdata
->dev
->flags
& IFF_PROMISC
))
2829 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2832 case NL80211_IFTYPE_AP_VLAN
:
2833 case NL80211_IFTYPE_AP
:
2835 if (compare_ether_addr(sdata
->vif
.addr
,
2838 } else if (!ieee80211_bssid_match(bssid
,
2841 * Accept public action frames even when the
2842 * BSSID doesn't match, this is used for P2P
2843 * and location updates. Note that mac80211
2844 * itself never looks at these frames.
2846 if (!(status
->rx_flags
& IEEE80211_RX_IN_SCAN
) &&
2847 ieee80211_is_public_action(hdr
, skb
->len
))
2849 if (!(status
->rx_flags
& IEEE80211_RX_IN_SCAN
) &&
2850 !ieee80211_is_beacon(hdr
->frame_control
))
2852 status
->rx_flags
&= ~IEEE80211_RX_RA_MATCH
;
2855 case NL80211_IFTYPE_WDS
:
2856 if (bssid
|| !ieee80211_is_data(hdr
->frame_control
))
2858 if (compare_ether_addr(sdata
->u
.wds
.remote_addr
, hdr
->addr2
))
2862 /* should never get here */
2871 * This function returns whether or not the SKB
2872 * was destined for RX processing or not, which,
2873 * if consume is true, is equivalent to whether
2874 * or not the skb was consumed.
2876 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data
*rx
,
2877 struct sk_buff
*skb
, bool consume
)
2879 struct ieee80211_local
*local
= rx
->local
;
2880 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2881 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2882 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
2886 status
->rx_flags
|= IEEE80211_RX_RA_MATCH
;
2887 prepares
= prepare_for_handlers(rx
, hdr
);
2893 skb
= skb_copy(skb
, GFP_ATOMIC
);
2895 if (net_ratelimit())
2896 wiphy_debug(local
->hw
.wiphy
,
2897 "failed to copy skb for %s\n",
2905 ieee80211_invoke_rx_handlers(rx
);
2910 * This is the actual Rx frames handler. as it blongs to Rx path it must
2911 * be called with rcu_read_lock protection.
2913 static void __ieee80211_rx_handle_packet(struct ieee80211_hw
*hw
,
2914 struct sk_buff
*skb
)
2916 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2917 struct ieee80211_local
*local
= hw_to_local(hw
);
2918 struct ieee80211_sub_if_data
*sdata
;
2919 struct ieee80211_hdr
*hdr
;
2921 struct ieee80211_rx_data rx
;
2922 struct ieee80211_sub_if_data
*prev
;
2923 struct sta_info
*sta
, *tmp
, *prev_sta
;
2926 fc
= ((struct ieee80211_hdr
*)skb
->data
)->frame_control
;
2927 memset(&rx
, 0, sizeof(rx
));
2931 if (ieee80211_is_data(fc
) || ieee80211_is_mgmt(fc
))
2932 local
->dot11ReceivedFragmentCount
++;
2934 if (unlikely(test_bit(SCAN_HW_SCANNING
, &local
->scanning
) ||
2935 test_bit(SCAN_SW_SCANNING
, &local
->scanning
)))
2936 status
->rx_flags
|= IEEE80211_RX_IN_SCAN
;
2938 if (ieee80211_is_mgmt(fc
))
2939 err
= skb_linearize(skb
);
2941 err
= !pskb_may_pull(skb
, ieee80211_hdrlen(fc
));
2948 hdr
= (struct ieee80211_hdr
*)skb
->data
;
2949 ieee80211_parse_qos(&rx
);
2950 ieee80211_verify_alignment(&rx
);
2952 if (ieee80211_is_data(fc
)) {
2955 for_each_sta_info(local
, hdr
->addr2
, sta
, tmp
) {
2962 rx
.sdata
= prev_sta
->sdata
;
2963 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
2970 rx
.sdata
= prev_sta
->sdata
;
2972 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
2980 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
2981 if (!ieee80211_sdata_running(sdata
))
2984 if (sdata
->vif
.type
== NL80211_IFTYPE_MONITOR
||
2985 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
2989 * frame is destined for this interface, but if it's
2990 * not also for the previous one we handle that after
2991 * the loop to avoid copying the SKB once too much
2999 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
3001 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
3007 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
3010 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
3019 * This is the receive path handler. It is called by a low level driver when an
3020 * 802.11 MPDU is received from the hardware.
3022 void ieee80211_rx(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
3024 struct ieee80211_local
*local
= hw_to_local(hw
);
3025 struct ieee80211_rate
*rate
= NULL
;
3026 struct ieee80211_supported_band
*sband
;
3027 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
3029 WARN_ON_ONCE(softirq_count() == 0);
3031 if (WARN_ON(status
->band
< 0 ||
3032 status
->band
>= IEEE80211_NUM_BANDS
))
3035 sband
= local
->hw
.wiphy
->bands
[status
->band
];
3036 if (WARN_ON(!sband
))
3040 * If we're suspending, it is possible although not too likely
3041 * that we'd be receiving frames after having already partially
3042 * quiesced the stack. We can't process such frames then since
3043 * that might, for example, cause stations to be added or other
3044 * driver callbacks be invoked.
3046 if (unlikely(local
->quiescing
|| local
->suspended
))
3050 * The same happens when we're not even started,
3051 * but that's worth a warning.
3053 if (WARN_ON(!local
->started
))
3056 if (likely(!(status
->flag
& RX_FLAG_FAILED_PLCP_CRC
))) {
3058 * Validate the rate, unless a PLCP error means that
3059 * we probably can't have a valid rate here anyway.
3062 if (status
->flag
& RX_FLAG_HT
) {
3064 * rate_idx is MCS index, which can be [0-76]
3067 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3069 * Anything else would be some sort of driver or
3070 * hardware error. The driver should catch hardware
3073 if (WARN((status
->rate_idx
< 0 ||
3074 status
->rate_idx
> 76),
3075 "Rate marked as an HT rate but passed "
3076 "status->rate_idx is not "
3077 "an MCS index [0-76]: %d (0x%02x)\n",
3082 if (WARN_ON(status
->rate_idx
< 0 ||
3083 status
->rate_idx
>= sband
->n_bitrates
))
3085 rate
= &sband
->bitrates
[status
->rate_idx
];
3089 status
->rx_flags
= 0;
3092 * key references and virtual interfaces are protected using RCU
3093 * and this requires that we are in a read-side RCU section during
3094 * receive processing
3099 * Frames with failed FCS/PLCP checksum are not returned,
3100 * all other frames are returned without radiotap header
3101 * if it was previously present.
3102 * Also, frames with less than 16 bytes are dropped.
3104 skb
= ieee80211_rx_monitor(local
, skb
, rate
);
3110 ieee80211_tpt_led_trig_rx(local
,
3111 ((struct ieee80211_hdr
*)skb
->data
)->frame_control
,
3113 __ieee80211_rx_handle_packet(hw
, skb
);
3121 EXPORT_SYMBOL(ieee80211_rx
);
3123 /* This is a version of the rx handler that can be called from hard irq
3124 * context. Post the skb on the queue and schedule the tasklet */
3125 void ieee80211_rx_irqsafe(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
3127 struct ieee80211_local
*local
= hw_to_local(hw
);
3129 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status
) > sizeof(skb
->cb
));
3131 skb
->pkt_type
= IEEE80211_RX_MSG
;
3132 skb_queue_tail(&local
->skb_queue
, skb
);
3133 tasklet_schedule(&local
->tasklet
);
3135 EXPORT_SYMBOL(ieee80211_rx_irqsafe
);