net/mlx5: Fix FTE cleanup
[linux/fpc-iii.git] / block / blk-core.c
blobca6b677356864367748a0488a35baa397d008aab
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/psi.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/block.h>
45 #include "blk.h"
46 #include "blk-mq.h"
47 #include "blk-mq-sched.h"
48 #include "blk-pm.h"
49 #include "blk-rq-qos.h"
51 #ifdef CONFIG_DEBUG_FS
52 struct dentry *blk_debugfs_root;
53 #endif
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 DEFINE_IDA(blk_queue_ida);
64 * For queue allocation
66 struct kmem_cache *blk_requestq_cachep;
69 * Controlling structure to kblockd
71 static struct workqueue_struct *kblockd_workqueue;
73 /**
74 * blk_queue_flag_set - atomically set a queue flag
75 * @flag: flag to be set
76 * @q: request queue
78 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 set_bit(flag, &q->queue_flags);
82 EXPORT_SYMBOL(blk_queue_flag_set);
84 /**
85 * blk_queue_flag_clear - atomically clear a queue flag
86 * @flag: flag to be cleared
87 * @q: request queue
89 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91 clear_bit(flag, &q->queue_flags);
93 EXPORT_SYMBOL(blk_queue_flag_clear);
95 /**
96 * blk_queue_flag_test_and_set - atomically test and set a queue flag
97 * @flag: flag to be set
98 * @q: request queue
100 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
101 * the flag was already set.
103 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105 return test_and_set_bit(flag, &q->queue_flags);
107 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109 void blk_rq_init(struct request_queue *q, struct request *rq)
111 memset(rq, 0, sizeof(*rq));
113 INIT_LIST_HEAD(&rq->queuelist);
114 rq->q = q;
115 rq->__sector = (sector_t) -1;
116 INIT_HLIST_NODE(&rq->hash);
117 RB_CLEAR_NODE(&rq->rb_node);
118 rq->tag = -1;
119 rq->internal_tag = -1;
120 rq->start_time_ns = ktime_get_ns();
121 rq->part = NULL;
122 refcount_set(&rq->ref, 1);
124 EXPORT_SYMBOL(blk_rq_init);
126 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
127 static const char *const blk_op_name[] = {
128 REQ_OP_NAME(READ),
129 REQ_OP_NAME(WRITE),
130 REQ_OP_NAME(FLUSH),
131 REQ_OP_NAME(DISCARD),
132 REQ_OP_NAME(SECURE_ERASE),
133 REQ_OP_NAME(ZONE_RESET),
134 REQ_OP_NAME(ZONE_RESET_ALL),
135 REQ_OP_NAME(WRITE_SAME),
136 REQ_OP_NAME(WRITE_ZEROES),
137 REQ_OP_NAME(SCSI_IN),
138 REQ_OP_NAME(SCSI_OUT),
139 REQ_OP_NAME(DRV_IN),
140 REQ_OP_NAME(DRV_OUT),
142 #undef REQ_OP_NAME
145 * blk_op_str - Return string XXX in the REQ_OP_XXX.
146 * @op: REQ_OP_XXX.
148 * Description: Centralize block layer function to convert REQ_OP_XXX into
149 * string format. Useful in the debugging and tracing bio or request. For
150 * invalid REQ_OP_XXX it returns string "UNKNOWN".
152 inline const char *blk_op_str(unsigned int op)
154 const char *op_str = "UNKNOWN";
156 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
157 op_str = blk_op_name[op];
159 return op_str;
161 EXPORT_SYMBOL_GPL(blk_op_str);
163 static const struct {
164 int errno;
165 const char *name;
166 } blk_errors[] = {
167 [BLK_STS_OK] = { 0, "" },
168 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
169 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
170 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
171 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
172 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
173 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
174 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
175 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
176 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
177 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
178 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
180 /* device mapper special case, should not leak out: */
181 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
183 /* everything else not covered above: */
184 [BLK_STS_IOERR] = { -EIO, "I/O" },
187 blk_status_t errno_to_blk_status(int errno)
189 int i;
191 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
192 if (blk_errors[i].errno == errno)
193 return (__force blk_status_t)i;
196 return BLK_STS_IOERR;
198 EXPORT_SYMBOL_GPL(errno_to_blk_status);
200 int blk_status_to_errno(blk_status_t status)
202 int idx = (__force int)status;
204 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
205 return -EIO;
206 return blk_errors[idx].errno;
208 EXPORT_SYMBOL_GPL(blk_status_to_errno);
210 static void print_req_error(struct request *req, blk_status_t status,
211 const char *caller)
213 int idx = (__force int)status;
215 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
216 return;
218 printk_ratelimited(KERN_ERR
219 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
220 "phys_seg %u prio class %u\n",
221 caller, blk_errors[idx].name,
222 req->rq_disk ? req->rq_disk->disk_name : "?",
223 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
224 req->cmd_flags & ~REQ_OP_MASK,
225 req->nr_phys_segments,
226 IOPRIO_PRIO_CLASS(req->ioprio));
229 static void req_bio_endio(struct request *rq, struct bio *bio,
230 unsigned int nbytes, blk_status_t error)
232 if (error)
233 bio->bi_status = error;
235 if (unlikely(rq->rq_flags & RQF_QUIET))
236 bio_set_flag(bio, BIO_QUIET);
238 bio_advance(bio, nbytes);
240 /* don't actually finish bio if it's part of flush sequence */
241 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
242 bio_endio(bio);
245 void blk_dump_rq_flags(struct request *rq, char *msg)
247 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
248 rq->rq_disk ? rq->rq_disk->disk_name : "?",
249 (unsigned long long) rq->cmd_flags);
251 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
252 (unsigned long long)blk_rq_pos(rq),
253 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
254 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
255 rq->bio, rq->biotail, blk_rq_bytes(rq));
257 EXPORT_SYMBOL(blk_dump_rq_flags);
260 * blk_sync_queue - cancel any pending callbacks on a queue
261 * @q: the queue
263 * Description:
264 * The block layer may perform asynchronous callback activity
265 * on a queue, such as calling the unplug function after a timeout.
266 * A block device may call blk_sync_queue to ensure that any
267 * such activity is cancelled, thus allowing it to release resources
268 * that the callbacks might use. The caller must already have made sure
269 * that its ->make_request_fn will not re-add plugging prior to calling
270 * this function.
272 * This function does not cancel any asynchronous activity arising
273 * out of elevator or throttling code. That would require elevator_exit()
274 * and blkcg_exit_queue() to be called with queue lock initialized.
277 void blk_sync_queue(struct request_queue *q)
279 del_timer_sync(&q->timeout);
280 cancel_work_sync(&q->timeout_work);
282 EXPORT_SYMBOL(blk_sync_queue);
285 * blk_set_pm_only - increment pm_only counter
286 * @q: request queue pointer
288 void blk_set_pm_only(struct request_queue *q)
290 atomic_inc(&q->pm_only);
292 EXPORT_SYMBOL_GPL(blk_set_pm_only);
294 void blk_clear_pm_only(struct request_queue *q)
296 int pm_only;
298 pm_only = atomic_dec_return(&q->pm_only);
299 WARN_ON_ONCE(pm_only < 0);
300 if (pm_only == 0)
301 wake_up_all(&q->mq_freeze_wq);
303 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
305 void blk_put_queue(struct request_queue *q)
307 kobject_put(&q->kobj);
309 EXPORT_SYMBOL(blk_put_queue);
311 void blk_set_queue_dying(struct request_queue *q)
313 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
316 * When queue DYING flag is set, we need to block new req
317 * entering queue, so we call blk_freeze_queue_start() to
318 * prevent I/O from crossing blk_queue_enter().
320 blk_freeze_queue_start(q);
322 if (queue_is_mq(q))
323 blk_mq_wake_waiters(q);
325 /* Make blk_queue_enter() reexamine the DYING flag. */
326 wake_up_all(&q->mq_freeze_wq);
328 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
331 * blk_cleanup_queue - shutdown a request queue
332 * @q: request queue to shutdown
334 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
335 * put it. All future requests will be failed immediately with -ENODEV.
337 void blk_cleanup_queue(struct request_queue *q)
339 /* mark @q DYING, no new request or merges will be allowed afterwards */
340 mutex_lock(&q->sysfs_lock);
341 blk_set_queue_dying(q);
343 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
344 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
345 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
346 mutex_unlock(&q->sysfs_lock);
349 * Drain all requests queued before DYING marking. Set DEAD flag to
350 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
351 * after draining finished.
353 blk_freeze_queue(q);
355 rq_qos_exit(q);
357 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
359 /* for synchronous bio-based driver finish in-flight integrity i/o */
360 blk_flush_integrity();
362 /* @q won't process any more request, flush async actions */
363 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
364 blk_sync_queue(q);
366 if (queue_is_mq(q))
367 blk_mq_exit_queue(q);
370 * In theory, request pool of sched_tags belongs to request queue.
371 * However, the current implementation requires tag_set for freeing
372 * requests, so free the pool now.
374 * Queue has become frozen, there can't be any in-queue requests, so
375 * it is safe to free requests now.
377 mutex_lock(&q->sysfs_lock);
378 if (q->elevator)
379 blk_mq_sched_free_requests(q);
380 mutex_unlock(&q->sysfs_lock);
382 percpu_ref_exit(&q->q_usage_counter);
384 /* @q is and will stay empty, shutdown and put */
385 blk_put_queue(q);
387 EXPORT_SYMBOL(blk_cleanup_queue);
389 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
391 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
393 EXPORT_SYMBOL(blk_alloc_queue);
396 * blk_queue_enter() - try to increase q->q_usage_counter
397 * @q: request queue pointer
398 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
400 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
402 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
404 while (true) {
405 bool success = false;
407 rcu_read_lock();
408 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
410 * The code that increments the pm_only counter is
411 * responsible for ensuring that that counter is
412 * globally visible before the queue is unfrozen.
414 if (pm || !blk_queue_pm_only(q)) {
415 success = true;
416 } else {
417 percpu_ref_put(&q->q_usage_counter);
420 rcu_read_unlock();
422 if (success)
423 return 0;
425 if (flags & BLK_MQ_REQ_NOWAIT)
426 return -EBUSY;
429 * read pair of barrier in blk_freeze_queue_start(),
430 * we need to order reading __PERCPU_REF_DEAD flag of
431 * .q_usage_counter and reading .mq_freeze_depth or
432 * queue dying flag, otherwise the following wait may
433 * never return if the two reads are reordered.
435 smp_rmb();
437 wait_event(q->mq_freeze_wq,
438 (!q->mq_freeze_depth &&
439 (pm || (blk_pm_request_resume(q),
440 !blk_queue_pm_only(q)))) ||
441 blk_queue_dying(q));
442 if (blk_queue_dying(q))
443 return -ENODEV;
447 void blk_queue_exit(struct request_queue *q)
449 percpu_ref_put(&q->q_usage_counter);
452 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
454 struct request_queue *q =
455 container_of(ref, struct request_queue, q_usage_counter);
457 wake_up_all(&q->mq_freeze_wq);
460 static void blk_rq_timed_out_timer(struct timer_list *t)
462 struct request_queue *q = from_timer(q, t, timeout);
464 kblockd_schedule_work(&q->timeout_work);
467 static void blk_timeout_work(struct work_struct *work)
472 * blk_alloc_queue_node - allocate a request queue
473 * @gfp_mask: memory allocation flags
474 * @node_id: NUMA node to allocate memory from
476 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
478 struct request_queue *q;
479 int ret;
481 q = kmem_cache_alloc_node(blk_requestq_cachep,
482 gfp_mask | __GFP_ZERO, node_id);
483 if (!q)
484 return NULL;
486 q->last_merge = NULL;
488 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
489 if (q->id < 0)
490 goto fail_q;
492 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
493 if (ret)
494 goto fail_id;
496 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
497 if (!q->backing_dev_info)
498 goto fail_split;
500 q->stats = blk_alloc_queue_stats();
501 if (!q->stats)
502 goto fail_stats;
504 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
505 q->backing_dev_info->io_pages = VM_READAHEAD_PAGES;
506 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
507 q->backing_dev_info->name = "block";
508 q->node = node_id;
510 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
511 laptop_mode_timer_fn, 0);
512 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
513 INIT_WORK(&q->timeout_work, blk_timeout_work);
514 INIT_LIST_HEAD(&q->icq_list);
515 #ifdef CONFIG_BLK_CGROUP
516 INIT_LIST_HEAD(&q->blkg_list);
517 #endif
519 kobject_init(&q->kobj, &blk_queue_ktype);
521 #ifdef CONFIG_BLK_DEV_IO_TRACE
522 mutex_init(&q->blk_trace_mutex);
523 #endif
524 mutex_init(&q->sysfs_lock);
525 mutex_init(&q->sysfs_dir_lock);
526 spin_lock_init(&q->queue_lock);
528 init_waitqueue_head(&q->mq_freeze_wq);
529 mutex_init(&q->mq_freeze_lock);
532 * Init percpu_ref in atomic mode so that it's faster to shutdown.
533 * See blk_register_queue() for details.
535 if (percpu_ref_init(&q->q_usage_counter,
536 blk_queue_usage_counter_release,
537 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
538 goto fail_bdi;
540 if (blkcg_init_queue(q))
541 goto fail_ref;
543 return q;
545 fail_ref:
546 percpu_ref_exit(&q->q_usage_counter);
547 fail_bdi:
548 blk_free_queue_stats(q->stats);
549 fail_stats:
550 bdi_put(q->backing_dev_info);
551 fail_split:
552 bioset_exit(&q->bio_split);
553 fail_id:
554 ida_simple_remove(&blk_queue_ida, q->id);
555 fail_q:
556 kmem_cache_free(blk_requestq_cachep, q);
557 return NULL;
559 EXPORT_SYMBOL(blk_alloc_queue_node);
561 bool blk_get_queue(struct request_queue *q)
563 if (likely(!blk_queue_dying(q))) {
564 __blk_get_queue(q);
565 return true;
568 return false;
570 EXPORT_SYMBOL(blk_get_queue);
573 * blk_get_request - allocate a request
574 * @q: request queue to allocate a request for
575 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
576 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
578 struct request *blk_get_request(struct request_queue *q, unsigned int op,
579 blk_mq_req_flags_t flags)
581 struct request *req;
583 WARN_ON_ONCE(op & REQ_NOWAIT);
584 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
586 req = blk_mq_alloc_request(q, op, flags);
587 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
588 q->mq_ops->initialize_rq_fn(req);
590 return req;
592 EXPORT_SYMBOL(blk_get_request);
594 void blk_put_request(struct request *req)
596 blk_mq_free_request(req);
598 EXPORT_SYMBOL(blk_put_request);
600 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
601 unsigned int nr_segs)
603 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
605 if (!ll_back_merge_fn(req, bio, nr_segs))
606 return false;
608 trace_block_bio_backmerge(req->q, req, bio);
609 rq_qos_merge(req->q, req, bio);
611 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
612 blk_rq_set_mixed_merge(req);
614 req->biotail->bi_next = bio;
615 req->biotail = bio;
616 req->__data_len += bio->bi_iter.bi_size;
618 blk_account_io_start(req, false);
619 return true;
622 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
623 unsigned int nr_segs)
625 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
627 if (!ll_front_merge_fn(req, bio, nr_segs))
628 return false;
630 trace_block_bio_frontmerge(req->q, req, bio);
631 rq_qos_merge(req->q, req, bio);
633 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
634 blk_rq_set_mixed_merge(req);
636 bio->bi_next = req->bio;
637 req->bio = bio;
639 req->__sector = bio->bi_iter.bi_sector;
640 req->__data_len += bio->bi_iter.bi_size;
642 blk_account_io_start(req, false);
643 return true;
646 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
647 struct bio *bio)
649 unsigned short segments = blk_rq_nr_discard_segments(req);
651 if (segments >= queue_max_discard_segments(q))
652 goto no_merge;
653 if (blk_rq_sectors(req) + bio_sectors(bio) >
654 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
655 goto no_merge;
657 rq_qos_merge(q, req, bio);
659 req->biotail->bi_next = bio;
660 req->biotail = bio;
661 req->__data_len += bio->bi_iter.bi_size;
662 req->nr_phys_segments = segments + 1;
664 blk_account_io_start(req, false);
665 return true;
666 no_merge:
667 req_set_nomerge(q, req);
668 return false;
672 * blk_attempt_plug_merge - try to merge with %current's plugged list
673 * @q: request_queue new bio is being queued at
674 * @bio: new bio being queued
675 * @nr_segs: number of segments in @bio
676 * @same_queue_rq: pointer to &struct request that gets filled in when
677 * another request associated with @q is found on the plug list
678 * (optional, may be %NULL)
680 * Determine whether @bio being queued on @q can be merged with a request
681 * on %current's plugged list. Returns %true if merge was successful,
682 * otherwise %false.
684 * Plugging coalesces IOs from the same issuer for the same purpose without
685 * going through @q->queue_lock. As such it's more of an issuing mechanism
686 * than scheduling, and the request, while may have elvpriv data, is not
687 * added on the elevator at this point. In addition, we don't have
688 * reliable access to the elevator outside queue lock. Only check basic
689 * merging parameters without querying the elevator.
691 * Caller must ensure !blk_queue_nomerges(q) beforehand.
693 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
694 unsigned int nr_segs, struct request **same_queue_rq)
696 struct blk_plug *plug;
697 struct request *rq;
698 struct list_head *plug_list;
700 plug = blk_mq_plug(q, bio);
701 if (!plug)
702 return false;
704 plug_list = &plug->mq_list;
706 list_for_each_entry_reverse(rq, plug_list, queuelist) {
707 bool merged = false;
709 if (rq->q == q && same_queue_rq) {
711 * Only blk-mq multiple hardware queues case checks the
712 * rq in the same queue, there should be only one such
713 * rq in a queue
715 *same_queue_rq = rq;
718 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
719 continue;
721 switch (blk_try_merge(rq, bio)) {
722 case ELEVATOR_BACK_MERGE:
723 merged = bio_attempt_back_merge(rq, bio, nr_segs);
724 break;
725 case ELEVATOR_FRONT_MERGE:
726 merged = bio_attempt_front_merge(rq, bio, nr_segs);
727 break;
728 case ELEVATOR_DISCARD_MERGE:
729 merged = bio_attempt_discard_merge(q, rq, bio);
730 break;
731 default:
732 break;
735 if (merged)
736 return true;
739 return false;
742 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
744 char b[BDEVNAME_SIZE];
746 printk(KERN_INFO "attempt to access beyond end of device\n");
747 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
748 bio_devname(bio, b), bio->bi_opf,
749 (unsigned long long)bio_end_sector(bio),
750 (long long)maxsector);
753 #ifdef CONFIG_FAIL_MAKE_REQUEST
755 static DECLARE_FAULT_ATTR(fail_make_request);
757 static int __init setup_fail_make_request(char *str)
759 return setup_fault_attr(&fail_make_request, str);
761 __setup("fail_make_request=", setup_fail_make_request);
763 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
765 return part->make_it_fail && should_fail(&fail_make_request, bytes);
768 static int __init fail_make_request_debugfs(void)
770 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
771 NULL, &fail_make_request);
773 return PTR_ERR_OR_ZERO(dir);
776 late_initcall(fail_make_request_debugfs);
778 #else /* CONFIG_FAIL_MAKE_REQUEST */
780 static inline bool should_fail_request(struct hd_struct *part,
781 unsigned int bytes)
783 return false;
786 #endif /* CONFIG_FAIL_MAKE_REQUEST */
788 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
790 const int op = bio_op(bio);
792 if (part->policy && op_is_write(op)) {
793 char b[BDEVNAME_SIZE];
795 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
796 return false;
798 WARN_ONCE(1,
799 "generic_make_request: Trying to write "
800 "to read-only block-device %s (partno %d)\n",
801 bio_devname(bio, b), part->partno);
802 /* Older lvm-tools actually trigger this */
803 return false;
806 return false;
809 static noinline int should_fail_bio(struct bio *bio)
811 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
812 return -EIO;
813 return 0;
815 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
818 * Check whether this bio extends beyond the end of the device or partition.
819 * This may well happen - the kernel calls bread() without checking the size of
820 * the device, e.g., when mounting a file system.
822 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
824 unsigned int nr_sectors = bio_sectors(bio);
826 if (nr_sectors && maxsector &&
827 (nr_sectors > maxsector ||
828 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
829 handle_bad_sector(bio, maxsector);
830 return -EIO;
832 return 0;
836 * Remap block n of partition p to block n+start(p) of the disk.
838 static inline int blk_partition_remap(struct bio *bio)
840 struct hd_struct *p;
841 int ret = -EIO;
843 rcu_read_lock();
844 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
845 if (unlikely(!p))
846 goto out;
847 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
848 goto out;
849 if (unlikely(bio_check_ro(bio, p)))
850 goto out;
853 * Zone reset does not include bi_size so bio_sectors() is always 0.
854 * Include a test for the reset op code and perform the remap if needed.
856 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
857 if (bio_check_eod(bio, part_nr_sects_read(p)))
858 goto out;
859 bio->bi_iter.bi_sector += p->start_sect;
860 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
861 bio->bi_iter.bi_sector - p->start_sect);
863 bio->bi_partno = 0;
864 ret = 0;
865 out:
866 rcu_read_unlock();
867 return ret;
870 static noinline_for_stack bool
871 generic_make_request_checks(struct bio *bio)
873 struct request_queue *q;
874 int nr_sectors = bio_sectors(bio);
875 blk_status_t status = BLK_STS_IOERR;
876 char b[BDEVNAME_SIZE];
878 might_sleep();
880 q = bio->bi_disk->queue;
881 if (unlikely(!q)) {
882 printk(KERN_ERR
883 "generic_make_request: Trying to access "
884 "nonexistent block-device %s (%Lu)\n",
885 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
886 goto end_io;
890 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
891 * if queue is not a request based queue.
893 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
894 goto not_supported;
896 if (should_fail_bio(bio))
897 goto end_io;
899 if (bio->bi_partno) {
900 if (unlikely(blk_partition_remap(bio)))
901 goto end_io;
902 } else {
903 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
904 goto end_io;
905 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
906 goto end_io;
910 * Filter flush bio's early so that make_request based
911 * drivers without flush support don't have to worry
912 * about them.
914 if (op_is_flush(bio->bi_opf) &&
915 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
916 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
917 if (!nr_sectors) {
918 status = BLK_STS_OK;
919 goto end_io;
923 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
924 bio->bi_opf &= ~REQ_HIPRI;
926 switch (bio_op(bio)) {
927 case REQ_OP_DISCARD:
928 if (!blk_queue_discard(q))
929 goto not_supported;
930 break;
931 case REQ_OP_SECURE_ERASE:
932 if (!blk_queue_secure_erase(q))
933 goto not_supported;
934 break;
935 case REQ_OP_WRITE_SAME:
936 if (!q->limits.max_write_same_sectors)
937 goto not_supported;
938 break;
939 case REQ_OP_ZONE_RESET:
940 if (!blk_queue_is_zoned(q))
941 goto not_supported;
942 break;
943 case REQ_OP_ZONE_RESET_ALL:
944 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
945 goto not_supported;
946 break;
947 case REQ_OP_WRITE_ZEROES:
948 if (!q->limits.max_write_zeroes_sectors)
949 goto not_supported;
950 break;
951 default:
952 break;
956 * Various block parts want %current->io_context and lazy ioc
957 * allocation ends up trading a lot of pain for a small amount of
958 * memory. Just allocate it upfront. This may fail and block
959 * layer knows how to live with it.
961 create_io_context(GFP_ATOMIC, q->node);
963 if (!blkcg_bio_issue_check(q, bio))
964 return false;
966 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
967 trace_block_bio_queue(q, bio);
968 /* Now that enqueuing has been traced, we need to trace
969 * completion as well.
971 bio_set_flag(bio, BIO_TRACE_COMPLETION);
973 return true;
975 not_supported:
976 status = BLK_STS_NOTSUPP;
977 end_io:
978 bio->bi_status = status;
979 bio_endio(bio);
980 return false;
984 * generic_make_request - hand a buffer to its device driver for I/O
985 * @bio: The bio describing the location in memory and on the device.
987 * generic_make_request() is used to make I/O requests of block
988 * devices. It is passed a &struct bio, which describes the I/O that needs
989 * to be done.
991 * generic_make_request() does not return any status. The
992 * success/failure status of the request, along with notification of
993 * completion, is delivered asynchronously through the bio->bi_end_io
994 * function described (one day) else where.
996 * The caller of generic_make_request must make sure that bi_io_vec
997 * are set to describe the memory buffer, and that bi_dev and bi_sector are
998 * set to describe the device address, and the
999 * bi_end_io and optionally bi_private are set to describe how
1000 * completion notification should be signaled.
1002 * generic_make_request and the drivers it calls may use bi_next if this
1003 * bio happens to be merged with someone else, and may resubmit the bio to
1004 * a lower device by calling into generic_make_request recursively, which
1005 * means the bio should NOT be touched after the call to ->make_request_fn.
1007 blk_qc_t generic_make_request(struct bio *bio)
1010 * bio_list_on_stack[0] contains bios submitted by the current
1011 * make_request_fn.
1012 * bio_list_on_stack[1] contains bios that were submitted before
1013 * the current make_request_fn, but that haven't been processed
1014 * yet.
1016 struct bio_list bio_list_on_stack[2];
1017 blk_qc_t ret = BLK_QC_T_NONE;
1019 if (!generic_make_request_checks(bio))
1020 goto out;
1023 * We only want one ->make_request_fn to be active at a time, else
1024 * stack usage with stacked devices could be a problem. So use
1025 * current->bio_list to keep a list of requests submited by a
1026 * make_request_fn function. current->bio_list is also used as a
1027 * flag to say if generic_make_request is currently active in this
1028 * task or not. If it is NULL, then no make_request is active. If
1029 * it is non-NULL, then a make_request is active, and new requests
1030 * should be added at the tail
1032 if (current->bio_list) {
1033 bio_list_add(&current->bio_list[0], bio);
1034 goto out;
1037 /* following loop may be a bit non-obvious, and so deserves some
1038 * explanation.
1039 * Before entering the loop, bio->bi_next is NULL (as all callers
1040 * ensure that) so we have a list with a single bio.
1041 * We pretend that we have just taken it off a longer list, so
1042 * we assign bio_list to a pointer to the bio_list_on_stack,
1043 * thus initialising the bio_list of new bios to be
1044 * added. ->make_request() may indeed add some more bios
1045 * through a recursive call to generic_make_request. If it
1046 * did, we find a non-NULL value in bio_list and re-enter the loop
1047 * from the top. In this case we really did just take the bio
1048 * of the top of the list (no pretending) and so remove it from
1049 * bio_list, and call into ->make_request() again.
1051 BUG_ON(bio->bi_next);
1052 bio_list_init(&bio_list_on_stack[0]);
1053 current->bio_list = bio_list_on_stack;
1054 do {
1055 struct request_queue *q = bio->bi_disk->queue;
1056 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1057 BLK_MQ_REQ_NOWAIT : 0;
1059 if (likely(blk_queue_enter(q, flags) == 0)) {
1060 struct bio_list lower, same;
1062 /* Create a fresh bio_list for all subordinate requests */
1063 bio_list_on_stack[1] = bio_list_on_stack[0];
1064 bio_list_init(&bio_list_on_stack[0]);
1065 ret = q->make_request_fn(q, bio);
1067 blk_queue_exit(q);
1069 /* sort new bios into those for a lower level
1070 * and those for the same level
1072 bio_list_init(&lower);
1073 bio_list_init(&same);
1074 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1075 if (q == bio->bi_disk->queue)
1076 bio_list_add(&same, bio);
1077 else
1078 bio_list_add(&lower, bio);
1079 /* now assemble so we handle the lowest level first */
1080 bio_list_merge(&bio_list_on_stack[0], &lower);
1081 bio_list_merge(&bio_list_on_stack[0], &same);
1082 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1083 } else {
1084 if (unlikely(!blk_queue_dying(q) &&
1085 (bio->bi_opf & REQ_NOWAIT)))
1086 bio_wouldblock_error(bio);
1087 else
1088 bio_io_error(bio);
1090 bio = bio_list_pop(&bio_list_on_stack[0]);
1091 } while (bio);
1092 current->bio_list = NULL; /* deactivate */
1094 out:
1095 return ret;
1097 EXPORT_SYMBOL(generic_make_request);
1100 * direct_make_request - hand a buffer directly to its device driver for I/O
1101 * @bio: The bio describing the location in memory and on the device.
1103 * This function behaves like generic_make_request(), but does not protect
1104 * against recursion. Must only be used if the called driver is known
1105 * to not call generic_make_request (or direct_make_request) again from
1106 * its make_request function. (Calling direct_make_request again from
1107 * a workqueue is perfectly fine as that doesn't recurse).
1109 blk_qc_t direct_make_request(struct bio *bio)
1111 struct request_queue *q = bio->bi_disk->queue;
1112 bool nowait = bio->bi_opf & REQ_NOWAIT;
1113 blk_qc_t ret;
1115 if (!generic_make_request_checks(bio))
1116 return BLK_QC_T_NONE;
1118 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1119 if (nowait && !blk_queue_dying(q))
1120 bio->bi_status = BLK_STS_AGAIN;
1121 else
1122 bio->bi_status = BLK_STS_IOERR;
1123 bio_endio(bio);
1124 return BLK_QC_T_NONE;
1127 ret = q->make_request_fn(q, bio);
1128 blk_queue_exit(q);
1129 return ret;
1131 EXPORT_SYMBOL_GPL(direct_make_request);
1134 * submit_bio - submit a bio to the block device layer for I/O
1135 * @bio: The &struct bio which describes the I/O
1137 * submit_bio() is very similar in purpose to generic_make_request(), and
1138 * uses that function to do most of the work. Both are fairly rough
1139 * interfaces; @bio must be presetup and ready for I/O.
1142 blk_qc_t submit_bio(struct bio *bio)
1144 bool workingset_read = false;
1145 unsigned long pflags;
1146 blk_qc_t ret;
1148 if (blkcg_punt_bio_submit(bio))
1149 return BLK_QC_T_NONE;
1152 * If it's a regular read/write or a barrier with data attached,
1153 * go through the normal accounting stuff before submission.
1155 if (bio_has_data(bio)) {
1156 unsigned int count;
1158 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1159 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1160 else
1161 count = bio_sectors(bio);
1163 if (op_is_write(bio_op(bio))) {
1164 count_vm_events(PGPGOUT, count);
1165 } else {
1166 if (bio_flagged(bio, BIO_WORKINGSET))
1167 workingset_read = true;
1168 task_io_account_read(bio->bi_iter.bi_size);
1169 count_vm_events(PGPGIN, count);
1172 if (unlikely(block_dump)) {
1173 char b[BDEVNAME_SIZE];
1174 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1175 current->comm, task_pid_nr(current),
1176 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1177 (unsigned long long)bio->bi_iter.bi_sector,
1178 bio_devname(bio, b), count);
1183 * If we're reading data that is part of the userspace
1184 * workingset, count submission time as memory stall. When the
1185 * device is congested, or the submitting cgroup IO-throttled,
1186 * submission can be a significant part of overall IO time.
1188 if (workingset_read)
1189 psi_memstall_enter(&pflags);
1191 ret = generic_make_request(bio);
1193 if (workingset_read)
1194 psi_memstall_leave(&pflags);
1196 return ret;
1198 EXPORT_SYMBOL(submit_bio);
1201 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1202 * for new the queue limits
1203 * @q: the queue
1204 * @rq: the request being checked
1206 * Description:
1207 * @rq may have been made based on weaker limitations of upper-level queues
1208 * in request stacking drivers, and it may violate the limitation of @q.
1209 * Since the block layer and the underlying device driver trust @rq
1210 * after it is inserted to @q, it should be checked against @q before
1211 * the insertion using this generic function.
1213 * Request stacking drivers like request-based dm may change the queue
1214 * limits when retrying requests on other queues. Those requests need
1215 * to be checked against the new queue limits again during dispatch.
1217 static int blk_cloned_rq_check_limits(struct request_queue *q,
1218 struct request *rq)
1220 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1221 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1222 __func__, blk_rq_sectors(rq),
1223 blk_queue_get_max_sectors(q, req_op(rq)));
1224 return -EIO;
1228 * queue's settings related to segment counting like q->bounce_pfn
1229 * may differ from that of other stacking queues.
1230 * Recalculate it to check the request correctly on this queue's
1231 * limitation.
1233 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1234 if (rq->nr_phys_segments > queue_max_segments(q)) {
1235 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1236 __func__, rq->nr_phys_segments, queue_max_segments(q));
1237 return -EIO;
1240 return 0;
1244 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1245 * @q: the queue to submit the request
1246 * @rq: the request being queued
1248 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1250 if (blk_cloned_rq_check_limits(q, rq))
1251 return BLK_STS_IOERR;
1253 if (rq->rq_disk &&
1254 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1255 return BLK_STS_IOERR;
1257 if (blk_queue_io_stat(q))
1258 blk_account_io_start(rq, true);
1261 * Since we have a scheduler attached on the top device,
1262 * bypass a potential scheduler on the bottom device for
1263 * insert.
1265 return blk_mq_request_issue_directly(rq, true);
1267 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1270 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1271 * @rq: request to examine
1273 * Description:
1274 * A request could be merge of IOs which require different failure
1275 * handling. This function determines the number of bytes which
1276 * can be failed from the beginning of the request without
1277 * crossing into area which need to be retried further.
1279 * Return:
1280 * The number of bytes to fail.
1282 unsigned int blk_rq_err_bytes(const struct request *rq)
1284 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1285 unsigned int bytes = 0;
1286 struct bio *bio;
1288 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1289 return blk_rq_bytes(rq);
1292 * Currently the only 'mixing' which can happen is between
1293 * different fastfail types. We can safely fail portions
1294 * which have all the failfast bits that the first one has -
1295 * the ones which are at least as eager to fail as the first
1296 * one.
1298 for (bio = rq->bio; bio; bio = bio->bi_next) {
1299 if ((bio->bi_opf & ff) != ff)
1300 break;
1301 bytes += bio->bi_iter.bi_size;
1304 /* this could lead to infinite loop */
1305 BUG_ON(blk_rq_bytes(rq) && !bytes);
1306 return bytes;
1308 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1310 void blk_account_io_completion(struct request *req, unsigned int bytes)
1312 if (blk_do_io_stat(req)) {
1313 const int sgrp = op_stat_group(req_op(req));
1314 struct hd_struct *part;
1316 part_stat_lock();
1317 part = req->part;
1318 part_stat_add(part, sectors[sgrp], bytes >> 9);
1319 part_stat_unlock();
1323 void blk_account_io_done(struct request *req, u64 now)
1326 * Account IO completion. flush_rq isn't accounted as a
1327 * normal IO on queueing nor completion. Accounting the
1328 * containing request is enough.
1330 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1331 const int sgrp = op_stat_group(req_op(req));
1332 struct hd_struct *part;
1334 part_stat_lock();
1335 part = req->part;
1337 update_io_ticks(part, jiffies);
1338 part_stat_inc(part, ios[sgrp]);
1339 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1340 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1341 part_dec_in_flight(req->q, part, rq_data_dir(req));
1343 hd_struct_put(part);
1344 part_stat_unlock();
1348 void blk_account_io_start(struct request *rq, bool new_io)
1350 struct hd_struct *part;
1351 int rw = rq_data_dir(rq);
1353 if (!blk_do_io_stat(rq))
1354 return;
1356 part_stat_lock();
1358 if (!new_io) {
1359 part = rq->part;
1360 part_stat_inc(part, merges[rw]);
1361 } else {
1362 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1363 if (!hd_struct_try_get(part)) {
1365 * The partition is already being removed,
1366 * the request will be accounted on the disk only
1368 * We take a reference on disk->part0 although that
1369 * partition will never be deleted, so we can treat
1370 * it as any other partition.
1372 part = &rq->rq_disk->part0;
1373 hd_struct_get(part);
1375 part_inc_in_flight(rq->q, part, rw);
1376 rq->part = part;
1379 update_io_ticks(part, jiffies);
1381 part_stat_unlock();
1385 * Steal bios from a request and add them to a bio list.
1386 * The request must not have been partially completed before.
1388 void blk_steal_bios(struct bio_list *list, struct request *rq)
1390 if (rq->bio) {
1391 if (list->tail)
1392 list->tail->bi_next = rq->bio;
1393 else
1394 list->head = rq->bio;
1395 list->tail = rq->biotail;
1397 rq->bio = NULL;
1398 rq->biotail = NULL;
1401 rq->__data_len = 0;
1403 EXPORT_SYMBOL_GPL(blk_steal_bios);
1406 * blk_update_request - Special helper function for request stacking drivers
1407 * @req: the request being processed
1408 * @error: block status code
1409 * @nr_bytes: number of bytes to complete @req
1411 * Description:
1412 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1413 * the request structure even if @req doesn't have leftover.
1414 * If @req has leftover, sets it up for the next range of segments.
1416 * This special helper function is only for request stacking drivers
1417 * (e.g. request-based dm) so that they can handle partial completion.
1418 * Actual device drivers should use blk_mq_end_request instead.
1420 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1421 * %false return from this function.
1423 * Note:
1424 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1425 * blk_rq_bytes() and in blk_update_request().
1427 * Return:
1428 * %false - this request doesn't have any more data
1429 * %true - this request has more data
1431 bool blk_update_request(struct request *req, blk_status_t error,
1432 unsigned int nr_bytes)
1434 int total_bytes;
1436 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1438 if (!req->bio)
1439 return false;
1441 #ifdef CONFIG_BLK_DEV_INTEGRITY
1442 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1443 error == BLK_STS_OK)
1444 req->q->integrity.profile->complete_fn(req, nr_bytes);
1445 #endif
1447 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1448 !(req->rq_flags & RQF_QUIET)))
1449 print_req_error(req, error, __func__);
1451 blk_account_io_completion(req, nr_bytes);
1453 total_bytes = 0;
1454 while (req->bio) {
1455 struct bio *bio = req->bio;
1456 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1458 if (bio_bytes == bio->bi_iter.bi_size)
1459 req->bio = bio->bi_next;
1461 /* Completion has already been traced */
1462 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1463 req_bio_endio(req, bio, bio_bytes, error);
1465 total_bytes += bio_bytes;
1466 nr_bytes -= bio_bytes;
1468 if (!nr_bytes)
1469 break;
1473 * completely done
1475 if (!req->bio) {
1477 * Reset counters so that the request stacking driver
1478 * can find how many bytes remain in the request
1479 * later.
1481 req->__data_len = 0;
1482 return false;
1485 req->__data_len -= total_bytes;
1487 /* update sector only for requests with clear definition of sector */
1488 if (!blk_rq_is_passthrough(req))
1489 req->__sector += total_bytes >> 9;
1491 /* mixed attributes always follow the first bio */
1492 if (req->rq_flags & RQF_MIXED_MERGE) {
1493 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1494 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1497 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1499 * If total number of sectors is less than the first segment
1500 * size, something has gone terribly wrong.
1502 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1503 blk_dump_rq_flags(req, "request botched");
1504 req->__data_len = blk_rq_cur_bytes(req);
1507 /* recalculate the number of segments */
1508 req->nr_phys_segments = blk_recalc_rq_segments(req);
1511 return true;
1513 EXPORT_SYMBOL_GPL(blk_update_request);
1515 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1517 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1518 * @rq: the request to be flushed
1520 * Description:
1521 * Flush all pages in @rq.
1523 void rq_flush_dcache_pages(struct request *rq)
1525 struct req_iterator iter;
1526 struct bio_vec bvec;
1528 rq_for_each_segment(bvec, rq, iter)
1529 flush_dcache_page(bvec.bv_page);
1531 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1532 #endif
1535 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1536 * @q : the queue of the device being checked
1538 * Description:
1539 * Check if underlying low-level drivers of a device are busy.
1540 * If the drivers want to export their busy state, they must set own
1541 * exporting function using blk_queue_lld_busy() first.
1543 * Basically, this function is used only by request stacking drivers
1544 * to stop dispatching requests to underlying devices when underlying
1545 * devices are busy. This behavior helps more I/O merging on the queue
1546 * of the request stacking driver and prevents I/O throughput regression
1547 * on burst I/O load.
1549 * Return:
1550 * 0 - Not busy (The request stacking driver should dispatch request)
1551 * 1 - Busy (The request stacking driver should stop dispatching request)
1553 int blk_lld_busy(struct request_queue *q)
1555 if (queue_is_mq(q) && q->mq_ops->busy)
1556 return q->mq_ops->busy(q);
1558 return 0;
1560 EXPORT_SYMBOL_GPL(blk_lld_busy);
1563 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1564 * @rq: the clone request to be cleaned up
1566 * Description:
1567 * Free all bios in @rq for a cloned request.
1569 void blk_rq_unprep_clone(struct request *rq)
1571 struct bio *bio;
1573 while ((bio = rq->bio) != NULL) {
1574 rq->bio = bio->bi_next;
1576 bio_put(bio);
1579 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1582 * Copy attributes of the original request to the clone request.
1583 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1585 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1587 dst->__sector = blk_rq_pos(src);
1588 dst->__data_len = blk_rq_bytes(src);
1589 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1590 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1591 dst->special_vec = src->special_vec;
1593 dst->nr_phys_segments = src->nr_phys_segments;
1594 dst->ioprio = src->ioprio;
1595 dst->extra_len = src->extra_len;
1599 * blk_rq_prep_clone - Helper function to setup clone request
1600 * @rq: the request to be setup
1601 * @rq_src: original request to be cloned
1602 * @bs: bio_set that bios for clone are allocated from
1603 * @gfp_mask: memory allocation mask for bio
1604 * @bio_ctr: setup function to be called for each clone bio.
1605 * Returns %0 for success, non %0 for failure.
1606 * @data: private data to be passed to @bio_ctr
1608 * Description:
1609 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1610 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1611 * are not copied, and copying such parts is the caller's responsibility.
1612 * Also, pages which the original bios are pointing to are not copied
1613 * and the cloned bios just point same pages.
1614 * So cloned bios must be completed before original bios, which means
1615 * the caller must complete @rq before @rq_src.
1617 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1618 struct bio_set *bs, gfp_t gfp_mask,
1619 int (*bio_ctr)(struct bio *, struct bio *, void *),
1620 void *data)
1622 struct bio *bio, *bio_src;
1624 if (!bs)
1625 bs = &fs_bio_set;
1627 __rq_for_each_bio(bio_src, rq_src) {
1628 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1629 if (!bio)
1630 goto free_and_out;
1632 if (bio_ctr && bio_ctr(bio, bio_src, data))
1633 goto free_and_out;
1635 if (rq->bio) {
1636 rq->biotail->bi_next = bio;
1637 rq->biotail = bio;
1638 } else
1639 rq->bio = rq->biotail = bio;
1642 __blk_rq_prep_clone(rq, rq_src);
1644 return 0;
1646 free_and_out:
1647 if (bio)
1648 bio_put(bio);
1649 blk_rq_unprep_clone(rq);
1651 return -ENOMEM;
1653 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1655 int kblockd_schedule_work(struct work_struct *work)
1657 return queue_work(kblockd_workqueue, work);
1659 EXPORT_SYMBOL(kblockd_schedule_work);
1661 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1663 return queue_work_on(cpu, kblockd_workqueue, work);
1665 EXPORT_SYMBOL(kblockd_schedule_work_on);
1667 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1668 unsigned long delay)
1670 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1672 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1675 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1676 * @plug: The &struct blk_plug that needs to be initialized
1678 * Description:
1679 * blk_start_plug() indicates to the block layer an intent by the caller
1680 * to submit multiple I/O requests in a batch. The block layer may use
1681 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1682 * is called. However, the block layer may choose to submit requests
1683 * before a call to blk_finish_plug() if the number of queued I/Os
1684 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1685 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1686 * the task schedules (see below).
1688 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1689 * pending I/O should the task end up blocking between blk_start_plug() and
1690 * blk_finish_plug(). This is important from a performance perspective, but
1691 * also ensures that we don't deadlock. For instance, if the task is blocking
1692 * for a memory allocation, memory reclaim could end up wanting to free a
1693 * page belonging to that request that is currently residing in our private
1694 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1695 * this kind of deadlock.
1697 void blk_start_plug(struct blk_plug *plug)
1699 struct task_struct *tsk = current;
1702 * If this is a nested plug, don't actually assign it.
1704 if (tsk->plug)
1705 return;
1707 INIT_LIST_HEAD(&plug->mq_list);
1708 INIT_LIST_HEAD(&plug->cb_list);
1709 plug->rq_count = 0;
1710 plug->multiple_queues = false;
1713 * Store ordering should not be needed here, since a potential
1714 * preempt will imply a full memory barrier
1716 tsk->plug = plug;
1718 EXPORT_SYMBOL(blk_start_plug);
1720 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1722 LIST_HEAD(callbacks);
1724 while (!list_empty(&plug->cb_list)) {
1725 list_splice_init(&plug->cb_list, &callbacks);
1727 while (!list_empty(&callbacks)) {
1728 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1729 struct blk_plug_cb,
1730 list);
1731 list_del(&cb->list);
1732 cb->callback(cb, from_schedule);
1737 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1738 int size)
1740 struct blk_plug *plug = current->plug;
1741 struct blk_plug_cb *cb;
1743 if (!plug)
1744 return NULL;
1746 list_for_each_entry(cb, &plug->cb_list, list)
1747 if (cb->callback == unplug && cb->data == data)
1748 return cb;
1750 /* Not currently on the callback list */
1751 BUG_ON(size < sizeof(*cb));
1752 cb = kzalloc(size, GFP_ATOMIC);
1753 if (cb) {
1754 cb->data = data;
1755 cb->callback = unplug;
1756 list_add(&cb->list, &plug->cb_list);
1758 return cb;
1760 EXPORT_SYMBOL(blk_check_plugged);
1762 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1764 flush_plug_callbacks(plug, from_schedule);
1766 if (!list_empty(&plug->mq_list))
1767 blk_mq_flush_plug_list(plug, from_schedule);
1771 * blk_finish_plug - mark the end of a batch of submitted I/O
1772 * @plug: The &struct blk_plug passed to blk_start_plug()
1774 * Description:
1775 * Indicate that a batch of I/O submissions is complete. This function
1776 * must be paired with an initial call to blk_start_plug(). The intent
1777 * is to allow the block layer to optimize I/O submission. See the
1778 * documentation for blk_start_plug() for more information.
1780 void blk_finish_plug(struct blk_plug *plug)
1782 if (plug != current->plug)
1783 return;
1784 blk_flush_plug_list(plug, false);
1786 current->plug = NULL;
1788 EXPORT_SYMBOL(blk_finish_plug);
1790 int __init blk_dev_init(void)
1792 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1793 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1794 FIELD_SIZEOF(struct request, cmd_flags));
1795 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1796 FIELD_SIZEOF(struct bio, bi_opf));
1798 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1799 kblockd_workqueue = alloc_workqueue("kblockd",
1800 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1801 if (!kblockd_workqueue)
1802 panic("Failed to create kblockd\n");
1804 blk_requestq_cachep = kmem_cache_create("request_queue",
1805 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1807 #ifdef CONFIG_DEBUG_FS
1808 blk_debugfs_root = debugfs_create_dir("block", NULL);
1809 #endif
1811 return 0;