1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/psi.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/block.h>
47 #include "blk-mq-sched.h"
49 #include "blk-rq-qos.h"
51 #ifdef CONFIG_DEBUG_FS
52 struct dentry
*blk_debugfs_root
;
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split
);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
61 DEFINE_IDA(blk_queue_ida
);
64 * For queue allocation
66 struct kmem_cache
*blk_requestq_cachep
;
69 * Controlling structure to kblockd
71 static struct workqueue_struct
*kblockd_workqueue
;
74 * blk_queue_flag_set - atomically set a queue flag
75 * @flag: flag to be set
78 void blk_queue_flag_set(unsigned int flag
, struct request_queue
*q
)
80 set_bit(flag
, &q
->queue_flags
);
82 EXPORT_SYMBOL(blk_queue_flag_set
);
85 * blk_queue_flag_clear - atomically clear a queue flag
86 * @flag: flag to be cleared
89 void blk_queue_flag_clear(unsigned int flag
, struct request_queue
*q
)
91 clear_bit(flag
, &q
->queue_flags
);
93 EXPORT_SYMBOL(blk_queue_flag_clear
);
96 * blk_queue_flag_test_and_set - atomically test and set a queue flag
97 * @flag: flag to be set
100 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
101 * the flag was already set.
103 bool blk_queue_flag_test_and_set(unsigned int flag
, struct request_queue
*q
)
105 return test_and_set_bit(flag
, &q
->queue_flags
);
107 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set
);
109 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
111 memset(rq
, 0, sizeof(*rq
));
113 INIT_LIST_HEAD(&rq
->queuelist
);
115 rq
->__sector
= (sector_t
) -1;
116 INIT_HLIST_NODE(&rq
->hash
);
117 RB_CLEAR_NODE(&rq
->rb_node
);
119 rq
->internal_tag
= -1;
120 rq
->start_time_ns
= ktime_get_ns();
122 refcount_set(&rq
->ref
, 1);
124 EXPORT_SYMBOL(blk_rq_init
);
126 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
127 static const char *const blk_op_name
[] = {
131 REQ_OP_NAME(DISCARD
),
132 REQ_OP_NAME(SECURE_ERASE
),
133 REQ_OP_NAME(ZONE_RESET
),
134 REQ_OP_NAME(ZONE_RESET_ALL
),
135 REQ_OP_NAME(WRITE_SAME
),
136 REQ_OP_NAME(WRITE_ZEROES
),
137 REQ_OP_NAME(SCSI_IN
),
138 REQ_OP_NAME(SCSI_OUT
),
140 REQ_OP_NAME(DRV_OUT
),
145 * blk_op_str - Return string XXX in the REQ_OP_XXX.
148 * Description: Centralize block layer function to convert REQ_OP_XXX into
149 * string format. Useful in the debugging and tracing bio or request. For
150 * invalid REQ_OP_XXX it returns string "UNKNOWN".
152 inline const char *blk_op_str(unsigned int op
)
154 const char *op_str
= "UNKNOWN";
156 if (op
< ARRAY_SIZE(blk_op_name
) && blk_op_name
[op
])
157 op_str
= blk_op_name
[op
];
161 EXPORT_SYMBOL_GPL(blk_op_str
);
163 static const struct {
167 [BLK_STS_OK
] = { 0, "" },
168 [BLK_STS_NOTSUPP
] = { -EOPNOTSUPP
, "operation not supported" },
169 [BLK_STS_TIMEOUT
] = { -ETIMEDOUT
, "timeout" },
170 [BLK_STS_NOSPC
] = { -ENOSPC
, "critical space allocation" },
171 [BLK_STS_TRANSPORT
] = { -ENOLINK
, "recoverable transport" },
172 [BLK_STS_TARGET
] = { -EREMOTEIO
, "critical target" },
173 [BLK_STS_NEXUS
] = { -EBADE
, "critical nexus" },
174 [BLK_STS_MEDIUM
] = { -ENODATA
, "critical medium" },
175 [BLK_STS_PROTECTION
] = { -EILSEQ
, "protection" },
176 [BLK_STS_RESOURCE
] = { -ENOMEM
, "kernel resource" },
177 [BLK_STS_DEV_RESOURCE
] = { -EBUSY
, "device resource" },
178 [BLK_STS_AGAIN
] = { -EAGAIN
, "nonblocking retry" },
180 /* device mapper special case, should not leak out: */
181 [BLK_STS_DM_REQUEUE
] = { -EREMCHG
, "dm internal retry" },
183 /* everything else not covered above: */
184 [BLK_STS_IOERR
] = { -EIO
, "I/O" },
187 blk_status_t
errno_to_blk_status(int errno
)
191 for (i
= 0; i
< ARRAY_SIZE(blk_errors
); i
++) {
192 if (blk_errors
[i
].errno
== errno
)
193 return (__force blk_status_t
)i
;
196 return BLK_STS_IOERR
;
198 EXPORT_SYMBOL_GPL(errno_to_blk_status
);
200 int blk_status_to_errno(blk_status_t status
)
202 int idx
= (__force
int)status
;
204 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
206 return blk_errors
[idx
].errno
;
208 EXPORT_SYMBOL_GPL(blk_status_to_errno
);
210 static void print_req_error(struct request
*req
, blk_status_t status
,
213 int idx
= (__force
int)status
;
215 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
218 printk_ratelimited(KERN_ERR
219 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
220 "phys_seg %u prio class %u\n",
221 caller
, blk_errors
[idx
].name
,
222 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
223 blk_rq_pos(req
), req_op(req
), blk_op_str(req_op(req
)),
224 req
->cmd_flags
& ~REQ_OP_MASK
,
225 req
->nr_phys_segments
,
226 IOPRIO_PRIO_CLASS(req
->ioprio
));
229 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
230 unsigned int nbytes
, blk_status_t error
)
233 bio
->bi_status
= error
;
235 if (unlikely(rq
->rq_flags
& RQF_QUIET
))
236 bio_set_flag(bio
, BIO_QUIET
);
238 bio_advance(bio
, nbytes
);
240 /* don't actually finish bio if it's part of flush sequence */
241 if (bio
->bi_iter
.bi_size
== 0 && !(rq
->rq_flags
& RQF_FLUSH_SEQ
))
245 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
247 printk(KERN_INFO
"%s: dev %s: flags=%llx\n", msg
,
248 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?",
249 (unsigned long long) rq
->cmd_flags
);
251 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
252 (unsigned long long)blk_rq_pos(rq
),
253 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
254 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
255 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
257 EXPORT_SYMBOL(blk_dump_rq_flags
);
260 * blk_sync_queue - cancel any pending callbacks on a queue
264 * The block layer may perform asynchronous callback activity
265 * on a queue, such as calling the unplug function after a timeout.
266 * A block device may call blk_sync_queue to ensure that any
267 * such activity is cancelled, thus allowing it to release resources
268 * that the callbacks might use. The caller must already have made sure
269 * that its ->make_request_fn will not re-add plugging prior to calling
272 * This function does not cancel any asynchronous activity arising
273 * out of elevator or throttling code. That would require elevator_exit()
274 * and blkcg_exit_queue() to be called with queue lock initialized.
277 void blk_sync_queue(struct request_queue
*q
)
279 del_timer_sync(&q
->timeout
);
280 cancel_work_sync(&q
->timeout_work
);
282 EXPORT_SYMBOL(blk_sync_queue
);
285 * blk_set_pm_only - increment pm_only counter
286 * @q: request queue pointer
288 void blk_set_pm_only(struct request_queue
*q
)
290 atomic_inc(&q
->pm_only
);
292 EXPORT_SYMBOL_GPL(blk_set_pm_only
);
294 void blk_clear_pm_only(struct request_queue
*q
)
298 pm_only
= atomic_dec_return(&q
->pm_only
);
299 WARN_ON_ONCE(pm_only
< 0);
301 wake_up_all(&q
->mq_freeze_wq
);
303 EXPORT_SYMBOL_GPL(blk_clear_pm_only
);
305 void blk_put_queue(struct request_queue
*q
)
307 kobject_put(&q
->kobj
);
309 EXPORT_SYMBOL(blk_put_queue
);
311 void blk_set_queue_dying(struct request_queue
*q
)
313 blk_queue_flag_set(QUEUE_FLAG_DYING
, q
);
316 * When queue DYING flag is set, we need to block new req
317 * entering queue, so we call blk_freeze_queue_start() to
318 * prevent I/O from crossing blk_queue_enter().
320 blk_freeze_queue_start(q
);
323 blk_mq_wake_waiters(q
);
325 /* Make blk_queue_enter() reexamine the DYING flag. */
326 wake_up_all(&q
->mq_freeze_wq
);
328 EXPORT_SYMBOL_GPL(blk_set_queue_dying
);
331 * blk_cleanup_queue - shutdown a request queue
332 * @q: request queue to shutdown
334 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
335 * put it. All future requests will be failed immediately with -ENODEV.
337 void blk_cleanup_queue(struct request_queue
*q
)
339 /* mark @q DYING, no new request or merges will be allowed afterwards */
340 mutex_lock(&q
->sysfs_lock
);
341 blk_set_queue_dying(q
);
343 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
344 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
345 blk_queue_flag_set(QUEUE_FLAG_DYING
, q
);
346 mutex_unlock(&q
->sysfs_lock
);
349 * Drain all requests queued before DYING marking. Set DEAD flag to
350 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
351 * after draining finished.
357 blk_queue_flag_set(QUEUE_FLAG_DEAD
, q
);
359 /* for synchronous bio-based driver finish in-flight integrity i/o */
360 blk_flush_integrity();
362 /* @q won't process any more request, flush async actions */
363 del_timer_sync(&q
->backing_dev_info
->laptop_mode_wb_timer
);
367 blk_mq_exit_queue(q
);
370 * In theory, request pool of sched_tags belongs to request queue.
371 * However, the current implementation requires tag_set for freeing
372 * requests, so free the pool now.
374 * Queue has become frozen, there can't be any in-queue requests, so
375 * it is safe to free requests now.
377 mutex_lock(&q
->sysfs_lock
);
379 blk_mq_sched_free_requests(q
);
380 mutex_unlock(&q
->sysfs_lock
);
382 percpu_ref_exit(&q
->q_usage_counter
);
384 /* @q is and will stay empty, shutdown and put */
387 EXPORT_SYMBOL(blk_cleanup_queue
);
389 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
391 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
);
393 EXPORT_SYMBOL(blk_alloc_queue
);
396 * blk_queue_enter() - try to increase q->q_usage_counter
397 * @q: request queue pointer
398 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
400 int blk_queue_enter(struct request_queue
*q
, blk_mq_req_flags_t flags
)
402 const bool pm
= flags
& BLK_MQ_REQ_PREEMPT
;
405 bool success
= false;
408 if (percpu_ref_tryget_live(&q
->q_usage_counter
)) {
410 * The code that increments the pm_only counter is
411 * responsible for ensuring that that counter is
412 * globally visible before the queue is unfrozen.
414 if (pm
|| !blk_queue_pm_only(q
)) {
417 percpu_ref_put(&q
->q_usage_counter
);
425 if (flags
& BLK_MQ_REQ_NOWAIT
)
429 * read pair of barrier in blk_freeze_queue_start(),
430 * we need to order reading __PERCPU_REF_DEAD flag of
431 * .q_usage_counter and reading .mq_freeze_depth or
432 * queue dying flag, otherwise the following wait may
433 * never return if the two reads are reordered.
437 wait_event(q
->mq_freeze_wq
,
438 (!q
->mq_freeze_depth
&&
439 (pm
|| (blk_pm_request_resume(q
),
440 !blk_queue_pm_only(q
)))) ||
442 if (blk_queue_dying(q
))
447 void blk_queue_exit(struct request_queue
*q
)
449 percpu_ref_put(&q
->q_usage_counter
);
452 static void blk_queue_usage_counter_release(struct percpu_ref
*ref
)
454 struct request_queue
*q
=
455 container_of(ref
, struct request_queue
, q_usage_counter
);
457 wake_up_all(&q
->mq_freeze_wq
);
460 static void blk_rq_timed_out_timer(struct timer_list
*t
)
462 struct request_queue
*q
= from_timer(q
, t
, timeout
);
464 kblockd_schedule_work(&q
->timeout_work
);
467 static void blk_timeout_work(struct work_struct
*work
)
472 * blk_alloc_queue_node - allocate a request queue
473 * @gfp_mask: memory allocation flags
474 * @node_id: NUMA node to allocate memory from
476 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
478 struct request_queue
*q
;
481 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
482 gfp_mask
| __GFP_ZERO
, node_id
);
486 q
->last_merge
= NULL
;
488 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
492 ret
= bioset_init(&q
->bio_split
, BIO_POOL_SIZE
, 0, BIOSET_NEED_BVECS
);
496 q
->backing_dev_info
= bdi_alloc_node(gfp_mask
, node_id
);
497 if (!q
->backing_dev_info
)
500 q
->stats
= blk_alloc_queue_stats();
504 q
->backing_dev_info
->ra_pages
= VM_READAHEAD_PAGES
;
505 q
->backing_dev_info
->io_pages
= VM_READAHEAD_PAGES
;
506 q
->backing_dev_info
->capabilities
= BDI_CAP_CGROUP_WRITEBACK
;
507 q
->backing_dev_info
->name
= "block";
510 timer_setup(&q
->backing_dev_info
->laptop_mode_wb_timer
,
511 laptop_mode_timer_fn
, 0);
512 timer_setup(&q
->timeout
, blk_rq_timed_out_timer
, 0);
513 INIT_WORK(&q
->timeout_work
, blk_timeout_work
);
514 INIT_LIST_HEAD(&q
->icq_list
);
515 #ifdef CONFIG_BLK_CGROUP
516 INIT_LIST_HEAD(&q
->blkg_list
);
519 kobject_init(&q
->kobj
, &blk_queue_ktype
);
521 #ifdef CONFIG_BLK_DEV_IO_TRACE
522 mutex_init(&q
->blk_trace_mutex
);
524 mutex_init(&q
->sysfs_lock
);
525 mutex_init(&q
->sysfs_dir_lock
);
526 spin_lock_init(&q
->queue_lock
);
528 init_waitqueue_head(&q
->mq_freeze_wq
);
529 mutex_init(&q
->mq_freeze_lock
);
532 * Init percpu_ref in atomic mode so that it's faster to shutdown.
533 * See blk_register_queue() for details.
535 if (percpu_ref_init(&q
->q_usage_counter
,
536 blk_queue_usage_counter_release
,
537 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
540 if (blkcg_init_queue(q
))
546 percpu_ref_exit(&q
->q_usage_counter
);
548 blk_free_queue_stats(q
->stats
);
550 bdi_put(q
->backing_dev_info
);
552 bioset_exit(&q
->bio_split
);
554 ida_simple_remove(&blk_queue_ida
, q
->id
);
556 kmem_cache_free(blk_requestq_cachep
, q
);
559 EXPORT_SYMBOL(blk_alloc_queue_node
);
561 bool blk_get_queue(struct request_queue
*q
)
563 if (likely(!blk_queue_dying(q
))) {
570 EXPORT_SYMBOL(blk_get_queue
);
573 * blk_get_request - allocate a request
574 * @q: request queue to allocate a request for
575 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
576 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
578 struct request
*blk_get_request(struct request_queue
*q
, unsigned int op
,
579 blk_mq_req_flags_t flags
)
583 WARN_ON_ONCE(op
& REQ_NOWAIT
);
584 WARN_ON_ONCE(flags
& ~(BLK_MQ_REQ_NOWAIT
| BLK_MQ_REQ_PREEMPT
));
586 req
= blk_mq_alloc_request(q
, op
, flags
);
587 if (!IS_ERR(req
) && q
->mq_ops
->initialize_rq_fn
)
588 q
->mq_ops
->initialize_rq_fn(req
);
592 EXPORT_SYMBOL(blk_get_request
);
594 void blk_put_request(struct request
*req
)
596 blk_mq_free_request(req
);
598 EXPORT_SYMBOL(blk_put_request
);
600 bool bio_attempt_back_merge(struct request
*req
, struct bio
*bio
,
601 unsigned int nr_segs
)
603 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
605 if (!ll_back_merge_fn(req
, bio
, nr_segs
))
608 trace_block_bio_backmerge(req
->q
, req
, bio
);
609 rq_qos_merge(req
->q
, req
, bio
);
611 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
612 blk_rq_set_mixed_merge(req
);
614 req
->biotail
->bi_next
= bio
;
616 req
->__data_len
+= bio
->bi_iter
.bi_size
;
618 blk_account_io_start(req
, false);
622 bool bio_attempt_front_merge(struct request
*req
, struct bio
*bio
,
623 unsigned int nr_segs
)
625 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
627 if (!ll_front_merge_fn(req
, bio
, nr_segs
))
630 trace_block_bio_frontmerge(req
->q
, req
, bio
);
631 rq_qos_merge(req
->q
, req
, bio
);
633 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
634 blk_rq_set_mixed_merge(req
);
636 bio
->bi_next
= req
->bio
;
639 req
->__sector
= bio
->bi_iter
.bi_sector
;
640 req
->__data_len
+= bio
->bi_iter
.bi_size
;
642 blk_account_io_start(req
, false);
646 bool bio_attempt_discard_merge(struct request_queue
*q
, struct request
*req
,
649 unsigned short segments
= blk_rq_nr_discard_segments(req
);
651 if (segments
>= queue_max_discard_segments(q
))
653 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
654 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
657 rq_qos_merge(q
, req
, bio
);
659 req
->biotail
->bi_next
= bio
;
661 req
->__data_len
+= bio
->bi_iter
.bi_size
;
662 req
->nr_phys_segments
= segments
+ 1;
664 blk_account_io_start(req
, false);
667 req_set_nomerge(q
, req
);
672 * blk_attempt_plug_merge - try to merge with %current's plugged list
673 * @q: request_queue new bio is being queued at
674 * @bio: new bio being queued
675 * @nr_segs: number of segments in @bio
676 * @same_queue_rq: pointer to &struct request that gets filled in when
677 * another request associated with @q is found on the plug list
678 * (optional, may be %NULL)
680 * Determine whether @bio being queued on @q can be merged with a request
681 * on %current's plugged list. Returns %true if merge was successful,
684 * Plugging coalesces IOs from the same issuer for the same purpose without
685 * going through @q->queue_lock. As such it's more of an issuing mechanism
686 * than scheduling, and the request, while may have elvpriv data, is not
687 * added on the elevator at this point. In addition, we don't have
688 * reliable access to the elevator outside queue lock. Only check basic
689 * merging parameters without querying the elevator.
691 * Caller must ensure !blk_queue_nomerges(q) beforehand.
693 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
694 unsigned int nr_segs
, struct request
**same_queue_rq
)
696 struct blk_plug
*plug
;
698 struct list_head
*plug_list
;
700 plug
= blk_mq_plug(q
, bio
);
704 plug_list
= &plug
->mq_list
;
706 list_for_each_entry_reverse(rq
, plug_list
, queuelist
) {
709 if (rq
->q
== q
&& same_queue_rq
) {
711 * Only blk-mq multiple hardware queues case checks the
712 * rq in the same queue, there should be only one such
718 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
721 switch (blk_try_merge(rq
, bio
)) {
722 case ELEVATOR_BACK_MERGE
:
723 merged
= bio_attempt_back_merge(rq
, bio
, nr_segs
);
725 case ELEVATOR_FRONT_MERGE
:
726 merged
= bio_attempt_front_merge(rq
, bio
, nr_segs
);
728 case ELEVATOR_DISCARD_MERGE
:
729 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
742 static void handle_bad_sector(struct bio
*bio
, sector_t maxsector
)
744 char b
[BDEVNAME_SIZE
];
746 printk(KERN_INFO
"attempt to access beyond end of device\n");
747 printk(KERN_INFO
"%s: rw=%d, want=%Lu, limit=%Lu\n",
748 bio_devname(bio
, b
), bio
->bi_opf
,
749 (unsigned long long)bio_end_sector(bio
),
750 (long long)maxsector
);
753 #ifdef CONFIG_FAIL_MAKE_REQUEST
755 static DECLARE_FAULT_ATTR(fail_make_request
);
757 static int __init
setup_fail_make_request(char *str
)
759 return setup_fault_attr(&fail_make_request
, str
);
761 __setup("fail_make_request=", setup_fail_make_request
);
763 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
765 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
768 static int __init
fail_make_request_debugfs(void)
770 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
771 NULL
, &fail_make_request
);
773 return PTR_ERR_OR_ZERO(dir
);
776 late_initcall(fail_make_request_debugfs
);
778 #else /* CONFIG_FAIL_MAKE_REQUEST */
780 static inline bool should_fail_request(struct hd_struct
*part
,
786 #endif /* CONFIG_FAIL_MAKE_REQUEST */
788 static inline bool bio_check_ro(struct bio
*bio
, struct hd_struct
*part
)
790 const int op
= bio_op(bio
);
792 if (part
->policy
&& op_is_write(op
)) {
793 char b
[BDEVNAME_SIZE
];
795 if (op_is_flush(bio
->bi_opf
) && !bio_sectors(bio
))
799 "generic_make_request: Trying to write "
800 "to read-only block-device %s (partno %d)\n",
801 bio_devname(bio
, b
), part
->partno
);
802 /* Older lvm-tools actually trigger this */
809 static noinline
int should_fail_bio(struct bio
*bio
)
811 if (should_fail_request(&bio
->bi_disk
->part0
, bio
->bi_iter
.bi_size
))
815 ALLOW_ERROR_INJECTION(should_fail_bio
, ERRNO
);
818 * Check whether this bio extends beyond the end of the device or partition.
819 * This may well happen - the kernel calls bread() without checking the size of
820 * the device, e.g., when mounting a file system.
822 static inline int bio_check_eod(struct bio
*bio
, sector_t maxsector
)
824 unsigned int nr_sectors
= bio_sectors(bio
);
826 if (nr_sectors
&& maxsector
&&
827 (nr_sectors
> maxsector
||
828 bio
->bi_iter
.bi_sector
> maxsector
- nr_sectors
)) {
829 handle_bad_sector(bio
, maxsector
);
836 * Remap block n of partition p to block n+start(p) of the disk.
838 static inline int blk_partition_remap(struct bio
*bio
)
844 p
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
847 if (unlikely(should_fail_request(p
, bio
->bi_iter
.bi_size
)))
849 if (unlikely(bio_check_ro(bio
, p
)))
853 * Zone reset does not include bi_size so bio_sectors() is always 0.
854 * Include a test for the reset op code and perform the remap if needed.
856 if (bio_sectors(bio
) || bio_op(bio
) == REQ_OP_ZONE_RESET
) {
857 if (bio_check_eod(bio
, part_nr_sects_read(p
)))
859 bio
->bi_iter
.bi_sector
+= p
->start_sect
;
860 trace_block_bio_remap(bio
->bi_disk
->queue
, bio
, part_devt(p
),
861 bio
->bi_iter
.bi_sector
- p
->start_sect
);
870 static noinline_for_stack
bool
871 generic_make_request_checks(struct bio
*bio
)
873 struct request_queue
*q
;
874 int nr_sectors
= bio_sectors(bio
);
875 blk_status_t status
= BLK_STS_IOERR
;
876 char b
[BDEVNAME_SIZE
];
880 q
= bio
->bi_disk
->queue
;
883 "generic_make_request: Trying to access "
884 "nonexistent block-device %s (%Lu)\n",
885 bio_devname(bio
, b
), (long long)bio
->bi_iter
.bi_sector
);
890 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
891 * if queue is not a request based queue.
893 if ((bio
->bi_opf
& REQ_NOWAIT
) && !queue_is_mq(q
))
896 if (should_fail_bio(bio
))
899 if (bio
->bi_partno
) {
900 if (unlikely(blk_partition_remap(bio
)))
903 if (unlikely(bio_check_ro(bio
, &bio
->bi_disk
->part0
)))
905 if (unlikely(bio_check_eod(bio
, get_capacity(bio
->bi_disk
))))
910 * Filter flush bio's early so that make_request based
911 * drivers without flush support don't have to worry
914 if (op_is_flush(bio
->bi_opf
) &&
915 !test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
)) {
916 bio
->bi_opf
&= ~(REQ_PREFLUSH
| REQ_FUA
);
923 if (!test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
924 bio
->bi_opf
&= ~REQ_HIPRI
;
926 switch (bio_op(bio
)) {
928 if (!blk_queue_discard(q
))
931 case REQ_OP_SECURE_ERASE
:
932 if (!blk_queue_secure_erase(q
))
935 case REQ_OP_WRITE_SAME
:
936 if (!q
->limits
.max_write_same_sectors
)
939 case REQ_OP_ZONE_RESET
:
940 if (!blk_queue_is_zoned(q
))
943 case REQ_OP_ZONE_RESET_ALL
:
944 if (!blk_queue_is_zoned(q
) || !blk_queue_zone_resetall(q
))
947 case REQ_OP_WRITE_ZEROES
:
948 if (!q
->limits
.max_write_zeroes_sectors
)
956 * Various block parts want %current->io_context and lazy ioc
957 * allocation ends up trading a lot of pain for a small amount of
958 * memory. Just allocate it upfront. This may fail and block
959 * layer knows how to live with it.
961 create_io_context(GFP_ATOMIC
, q
->node
);
963 if (!blkcg_bio_issue_check(q
, bio
))
966 if (!bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
967 trace_block_bio_queue(q
, bio
);
968 /* Now that enqueuing has been traced, we need to trace
969 * completion as well.
971 bio_set_flag(bio
, BIO_TRACE_COMPLETION
);
976 status
= BLK_STS_NOTSUPP
;
978 bio
->bi_status
= status
;
984 * generic_make_request - hand a buffer to its device driver for I/O
985 * @bio: The bio describing the location in memory and on the device.
987 * generic_make_request() is used to make I/O requests of block
988 * devices. It is passed a &struct bio, which describes the I/O that needs
991 * generic_make_request() does not return any status. The
992 * success/failure status of the request, along with notification of
993 * completion, is delivered asynchronously through the bio->bi_end_io
994 * function described (one day) else where.
996 * The caller of generic_make_request must make sure that bi_io_vec
997 * are set to describe the memory buffer, and that bi_dev and bi_sector are
998 * set to describe the device address, and the
999 * bi_end_io and optionally bi_private are set to describe how
1000 * completion notification should be signaled.
1002 * generic_make_request and the drivers it calls may use bi_next if this
1003 * bio happens to be merged with someone else, and may resubmit the bio to
1004 * a lower device by calling into generic_make_request recursively, which
1005 * means the bio should NOT be touched after the call to ->make_request_fn.
1007 blk_qc_t
generic_make_request(struct bio
*bio
)
1010 * bio_list_on_stack[0] contains bios submitted by the current
1012 * bio_list_on_stack[1] contains bios that were submitted before
1013 * the current make_request_fn, but that haven't been processed
1016 struct bio_list bio_list_on_stack
[2];
1017 blk_qc_t ret
= BLK_QC_T_NONE
;
1019 if (!generic_make_request_checks(bio
))
1023 * We only want one ->make_request_fn to be active at a time, else
1024 * stack usage with stacked devices could be a problem. So use
1025 * current->bio_list to keep a list of requests submited by a
1026 * make_request_fn function. current->bio_list is also used as a
1027 * flag to say if generic_make_request is currently active in this
1028 * task or not. If it is NULL, then no make_request is active. If
1029 * it is non-NULL, then a make_request is active, and new requests
1030 * should be added at the tail
1032 if (current
->bio_list
) {
1033 bio_list_add(¤t
->bio_list
[0], bio
);
1037 /* following loop may be a bit non-obvious, and so deserves some
1039 * Before entering the loop, bio->bi_next is NULL (as all callers
1040 * ensure that) so we have a list with a single bio.
1041 * We pretend that we have just taken it off a longer list, so
1042 * we assign bio_list to a pointer to the bio_list_on_stack,
1043 * thus initialising the bio_list of new bios to be
1044 * added. ->make_request() may indeed add some more bios
1045 * through a recursive call to generic_make_request. If it
1046 * did, we find a non-NULL value in bio_list and re-enter the loop
1047 * from the top. In this case we really did just take the bio
1048 * of the top of the list (no pretending) and so remove it from
1049 * bio_list, and call into ->make_request() again.
1051 BUG_ON(bio
->bi_next
);
1052 bio_list_init(&bio_list_on_stack
[0]);
1053 current
->bio_list
= bio_list_on_stack
;
1055 struct request_queue
*q
= bio
->bi_disk
->queue
;
1056 blk_mq_req_flags_t flags
= bio
->bi_opf
& REQ_NOWAIT
?
1057 BLK_MQ_REQ_NOWAIT
: 0;
1059 if (likely(blk_queue_enter(q
, flags
) == 0)) {
1060 struct bio_list lower
, same
;
1062 /* Create a fresh bio_list for all subordinate requests */
1063 bio_list_on_stack
[1] = bio_list_on_stack
[0];
1064 bio_list_init(&bio_list_on_stack
[0]);
1065 ret
= q
->make_request_fn(q
, bio
);
1069 /* sort new bios into those for a lower level
1070 * and those for the same level
1072 bio_list_init(&lower
);
1073 bio_list_init(&same
);
1074 while ((bio
= bio_list_pop(&bio_list_on_stack
[0])) != NULL
)
1075 if (q
== bio
->bi_disk
->queue
)
1076 bio_list_add(&same
, bio
);
1078 bio_list_add(&lower
, bio
);
1079 /* now assemble so we handle the lowest level first */
1080 bio_list_merge(&bio_list_on_stack
[0], &lower
);
1081 bio_list_merge(&bio_list_on_stack
[0], &same
);
1082 bio_list_merge(&bio_list_on_stack
[0], &bio_list_on_stack
[1]);
1084 if (unlikely(!blk_queue_dying(q
) &&
1085 (bio
->bi_opf
& REQ_NOWAIT
)))
1086 bio_wouldblock_error(bio
);
1090 bio
= bio_list_pop(&bio_list_on_stack
[0]);
1092 current
->bio_list
= NULL
; /* deactivate */
1097 EXPORT_SYMBOL(generic_make_request
);
1100 * direct_make_request - hand a buffer directly to its device driver for I/O
1101 * @bio: The bio describing the location in memory and on the device.
1103 * This function behaves like generic_make_request(), but does not protect
1104 * against recursion. Must only be used if the called driver is known
1105 * to not call generic_make_request (or direct_make_request) again from
1106 * its make_request function. (Calling direct_make_request again from
1107 * a workqueue is perfectly fine as that doesn't recurse).
1109 blk_qc_t
direct_make_request(struct bio
*bio
)
1111 struct request_queue
*q
= bio
->bi_disk
->queue
;
1112 bool nowait
= bio
->bi_opf
& REQ_NOWAIT
;
1115 if (!generic_make_request_checks(bio
))
1116 return BLK_QC_T_NONE
;
1118 if (unlikely(blk_queue_enter(q
, nowait
? BLK_MQ_REQ_NOWAIT
: 0))) {
1119 if (nowait
&& !blk_queue_dying(q
))
1120 bio
->bi_status
= BLK_STS_AGAIN
;
1122 bio
->bi_status
= BLK_STS_IOERR
;
1124 return BLK_QC_T_NONE
;
1127 ret
= q
->make_request_fn(q
, bio
);
1131 EXPORT_SYMBOL_GPL(direct_make_request
);
1134 * submit_bio - submit a bio to the block device layer for I/O
1135 * @bio: The &struct bio which describes the I/O
1137 * submit_bio() is very similar in purpose to generic_make_request(), and
1138 * uses that function to do most of the work. Both are fairly rough
1139 * interfaces; @bio must be presetup and ready for I/O.
1142 blk_qc_t
submit_bio(struct bio
*bio
)
1144 bool workingset_read
= false;
1145 unsigned long pflags
;
1148 if (blkcg_punt_bio_submit(bio
))
1149 return BLK_QC_T_NONE
;
1152 * If it's a regular read/write or a barrier with data attached,
1153 * go through the normal accounting stuff before submission.
1155 if (bio_has_data(bio
)) {
1158 if (unlikely(bio_op(bio
) == REQ_OP_WRITE_SAME
))
1159 count
= queue_logical_block_size(bio
->bi_disk
->queue
) >> 9;
1161 count
= bio_sectors(bio
);
1163 if (op_is_write(bio_op(bio
))) {
1164 count_vm_events(PGPGOUT
, count
);
1166 if (bio_flagged(bio
, BIO_WORKINGSET
))
1167 workingset_read
= true;
1168 task_io_account_read(bio
->bi_iter
.bi_size
);
1169 count_vm_events(PGPGIN
, count
);
1172 if (unlikely(block_dump
)) {
1173 char b
[BDEVNAME_SIZE
];
1174 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1175 current
->comm
, task_pid_nr(current
),
1176 op_is_write(bio_op(bio
)) ? "WRITE" : "READ",
1177 (unsigned long long)bio
->bi_iter
.bi_sector
,
1178 bio_devname(bio
, b
), count
);
1183 * If we're reading data that is part of the userspace
1184 * workingset, count submission time as memory stall. When the
1185 * device is congested, or the submitting cgroup IO-throttled,
1186 * submission can be a significant part of overall IO time.
1188 if (workingset_read
)
1189 psi_memstall_enter(&pflags
);
1191 ret
= generic_make_request(bio
);
1193 if (workingset_read
)
1194 psi_memstall_leave(&pflags
);
1198 EXPORT_SYMBOL(submit_bio
);
1201 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1202 * for new the queue limits
1204 * @rq: the request being checked
1207 * @rq may have been made based on weaker limitations of upper-level queues
1208 * in request stacking drivers, and it may violate the limitation of @q.
1209 * Since the block layer and the underlying device driver trust @rq
1210 * after it is inserted to @q, it should be checked against @q before
1211 * the insertion using this generic function.
1213 * Request stacking drivers like request-based dm may change the queue
1214 * limits when retrying requests on other queues. Those requests need
1215 * to be checked against the new queue limits again during dispatch.
1217 static int blk_cloned_rq_check_limits(struct request_queue
*q
,
1220 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, req_op(rq
))) {
1221 printk(KERN_ERR
"%s: over max size limit. (%u > %u)\n",
1222 __func__
, blk_rq_sectors(rq
),
1223 blk_queue_get_max_sectors(q
, req_op(rq
)));
1228 * queue's settings related to segment counting like q->bounce_pfn
1229 * may differ from that of other stacking queues.
1230 * Recalculate it to check the request correctly on this queue's
1233 rq
->nr_phys_segments
= blk_recalc_rq_segments(rq
);
1234 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1235 printk(KERN_ERR
"%s: over max segments limit. (%hu > %hu)\n",
1236 __func__
, rq
->nr_phys_segments
, queue_max_segments(q
));
1244 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1245 * @q: the queue to submit the request
1246 * @rq: the request being queued
1248 blk_status_t
blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1250 if (blk_cloned_rq_check_limits(q
, rq
))
1251 return BLK_STS_IOERR
;
1254 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
1255 return BLK_STS_IOERR
;
1257 if (blk_queue_io_stat(q
))
1258 blk_account_io_start(rq
, true);
1261 * Since we have a scheduler attached on the top device,
1262 * bypass a potential scheduler on the bottom device for
1265 return blk_mq_request_issue_directly(rq
, true);
1267 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1270 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1271 * @rq: request to examine
1274 * A request could be merge of IOs which require different failure
1275 * handling. This function determines the number of bytes which
1276 * can be failed from the beginning of the request without
1277 * crossing into area which need to be retried further.
1280 * The number of bytes to fail.
1282 unsigned int blk_rq_err_bytes(const struct request
*rq
)
1284 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
1285 unsigned int bytes
= 0;
1288 if (!(rq
->rq_flags
& RQF_MIXED_MERGE
))
1289 return blk_rq_bytes(rq
);
1292 * Currently the only 'mixing' which can happen is between
1293 * different fastfail types. We can safely fail portions
1294 * which have all the failfast bits that the first one has -
1295 * the ones which are at least as eager to fail as the first
1298 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
1299 if ((bio
->bi_opf
& ff
) != ff
)
1301 bytes
+= bio
->bi_iter
.bi_size
;
1304 /* this could lead to infinite loop */
1305 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
1308 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
1310 void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
1312 if (blk_do_io_stat(req
)) {
1313 const int sgrp
= op_stat_group(req_op(req
));
1314 struct hd_struct
*part
;
1318 part_stat_add(part
, sectors
[sgrp
], bytes
>> 9);
1323 void blk_account_io_done(struct request
*req
, u64 now
)
1326 * Account IO completion. flush_rq isn't accounted as a
1327 * normal IO on queueing nor completion. Accounting the
1328 * containing request is enough.
1330 if (blk_do_io_stat(req
) && !(req
->rq_flags
& RQF_FLUSH_SEQ
)) {
1331 const int sgrp
= op_stat_group(req_op(req
));
1332 struct hd_struct
*part
;
1337 update_io_ticks(part
, jiffies
);
1338 part_stat_inc(part
, ios
[sgrp
]);
1339 part_stat_add(part
, nsecs
[sgrp
], now
- req
->start_time_ns
);
1340 part_stat_add(part
, time_in_queue
, nsecs_to_jiffies64(now
- req
->start_time_ns
));
1341 part_dec_in_flight(req
->q
, part
, rq_data_dir(req
));
1343 hd_struct_put(part
);
1348 void blk_account_io_start(struct request
*rq
, bool new_io
)
1350 struct hd_struct
*part
;
1351 int rw
= rq_data_dir(rq
);
1353 if (!blk_do_io_stat(rq
))
1360 part_stat_inc(part
, merges
[rw
]);
1362 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
1363 if (!hd_struct_try_get(part
)) {
1365 * The partition is already being removed,
1366 * the request will be accounted on the disk only
1368 * We take a reference on disk->part0 although that
1369 * partition will never be deleted, so we can treat
1370 * it as any other partition.
1372 part
= &rq
->rq_disk
->part0
;
1373 hd_struct_get(part
);
1375 part_inc_in_flight(rq
->q
, part
, rw
);
1379 update_io_ticks(part
, jiffies
);
1385 * Steal bios from a request and add them to a bio list.
1386 * The request must not have been partially completed before.
1388 void blk_steal_bios(struct bio_list
*list
, struct request
*rq
)
1392 list
->tail
->bi_next
= rq
->bio
;
1394 list
->head
= rq
->bio
;
1395 list
->tail
= rq
->biotail
;
1403 EXPORT_SYMBOL_GPL(blk_steal_bios
);
1406 * blk_update_request - Special helper function for request stacking drivers
1407 * @req: the request being processed
1408 * @error: block status code
1409 * @nr_bytes: number of bytes to complete @req
1412 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1413 * the request structure even if @req doesn't have leftover.
1414 * If @req has leftover, sets it up for the next range of segments.
1416 * This special helper function is only for request stacking drivers
1417 * (e.g. request-based dm) so that they can handle partial completion.
1418 * Actual device drivers should use blk_mq_end_request instead.
1420 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1421 * %false return from this function.
1424 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1425 * blk_rq_bytes() and in blk_update_request().
1428 * %false - this request doesn't have any more data
1429 * %true - this request has more data
1431 bool blk_update_request(struct request
*req
, blk_status_t error
,
1432 unsigned int nr_bytes
)
1436 trace_block_rq_complete(req
, blk_status_to_errno(error
), nr_bytes
);
1441 #ifdef CONFIG_BLK_DEV_INTEGRITY
1442 if (blk_integrity_rq(req
) && req_op(req
) == REQ_OP_READ
&&
1443 error
== BLK_STS_OK
)
1444 req
->q
->integrity
.profile
->complete_fn(req
, nr_bytes
);
1447 if (unlikely(error
&& !blk_rq_is_passthrough(req
) &&
1448 !(req
->rq_flags
& RQF_QUIET
)))
1449 print_req_error(req
, error
, __func__
);
1451 blk_account_io_completion(req
, nr_bytes
);
1455 struct bio
*bio
= req
->bio
;
1456 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
1458 if (bio_bytes
== bio
->bi_iter
.bi_size
)
1459 req
->bio
= bio
->bi_next
;
1461 /* Completion has already been traced */
1462 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
1463 req_bio_endio(req
, bio
, bio_bytes
, error
);
1465 total_bytes
+= bio_bytes
;
1466 nr_bytes
-= bio_bytes
;
1477 * Reset counters so that the request stacking driver
1478 * can find how many bytes remain in the request
1481 req
->__data_len
= 0;
1485 req
->__data_len
-= total_bytes
;
1487 /* update sector only for requests with clear definition of sector */
1488 if (!blk_rq_is_passthrough(req
))
1489 req
->__sector
+= total_bytes
>> 9;
1491 /* mixed attributes always follow the first bio */
1492 if (req
->rq_flags
& RQF_MIXED_MERGE
) {
1493 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
1494 req
->cmd_flags
|= req
->bio
->bi_opf
& REQ_FAILFAST_MASK
;
1497 if (!(req
->rq_flags
& RQF_SPECIAL_PAYLOAD
)) {
1499 * If total number of sectors is less than the first segment
1500 * size, something has gone terribly wrong.
1502 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
1503 blk_dump_rq_flags(req
, "request botched");
1504 req
->__data_len
= blk_rq_cur_bytes(req
);
1507 /* recalculate the number of segments */
1508 req
->nr_phys_segments
= blk_recalc_rq_segments(req
);
1513 EXPORT_SYMBOL_GPL(blk_update_request
);
1515 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1517 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1518 * @rq: the request to be flushed
1521 * Flush all pages in @rq.
1523 void rq_flush_dcache_pages(struct request
*rq
)
1525 struct req_iterator iter
;
1526 struct bio_vec bvec
;
1528 rq_for_each_segment(bvec
, rq
, iter
)
1529 flush_dcache_page(bvec
.bv_page
);
1531 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
1535 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1536 * @q : the queue of the device being checked
1539 * Check if underlying low-level drivers of a device are busy.
1540 * If the drivers want to export their busy state, they must set own
1541 * exporting function using blk_queue_lld_busy() first.
1543 * Basically, this function is used only by request stacking drivers
1544 * to stop dispatching requests to underlying devices when underlying
1545 * devices are busy. This behavior helps more I/O merging on the queue
1546 * of the request stacking driver and prevents I/O throughput regression
1547 * on burst I/O load.
1550 * 0 - Not busy (The request stacking driver should dispatch request)
1551 * 1 - Busy (The request stacking driver should stop dispatching request)
1553 int blk_lld_busy(struct request_queue
*q
)
1555 if (queue_is_mq(q
) && q
->mq_ops
->busy
)
1556 return q
->mq_ops
->busy(q
);
1560 EXPORT_SYMBOL_GPL(blk_lld_busy
);
1563 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1564 * @rq: the clone request to be cleaned up
1567 * Free all bios in @rq for a cloned request.
1569 void blk_rq_unprep_clone(struct request
*rq
)
1573 while ((bio
= rq
->bio
) != NULL
) {
1574 rq
->bio
= bio
->bi_next
;
1579 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
1582 * Copy attributes of the original request to the clone request.
1583 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1585 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
1587 dst
->__sector
= blk_rq_pos(src
);
1588 dst
->__data_len
= blk_rq_bytes(src
);
1589 if (src
->rq_flags
& RQF_SPECIAL_PAYLOAD
) {
1590 dst
->rq_flags
|= RQF_SPECIAL_PAYLOAD
;
1591 dst
->special_vec
= src
->special_vec
;
1593 dst
->nr_phys_segments
= src
->nr_phys_segments
;
1594 dst
->ioprio
= src
->ioprio
;
1595 dst
->extra_len
= src
->extra_len
;
1599 * blk_rq_prep_clone - Helper function to setup clone request
1600 * @rq: the request to be setup
1601 * @rq_src: original request to be cloned
1602 * @bs: bio_set that bios for clone are allocated from
1603 * @gfp_mask: memory allocation mask for bio
1604 * @bio_ctr: setup function to be called for each clone bio.
1605 * Returns %0 for success, non %0 for failure.
1606 * @data: private data to be passed to @bio_ctr
1609 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1610 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1611 * are not copied, and copying such parts is the caller's responsibility.
1612 * Also, pages which the original bios are pointing to are not copied
1613 * and the cloned bios just point same pages.
1614 * So cloned bios must be completed before original bios, which means
1615 * the caller must complete @rq before @rq_src.
1617 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
1618 struct bio_set
*bs
, gfp_t gfp_mask
,
1619 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
1622 struct bio
*bio
, *bio_src
;
1627 __rq_for_each_bio(bio_src
, rq_src
) {
1628 bio
= bio_clone_fast(bio_src
, gfp_mask
, bs
);
1632 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
1636 rq
->biotail
->bi_next
= bio
;
1639 rq
->bio
= rq
->biotail
= bio
;
1642 __blk_rq_prep_clone(rq
, rq_src
);
1649 blk_rq_unprep_clone(rq
);
1653 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
1655 int kblockd_schedule_work(struct work_struct
*work
)
1657 return queue_work(kblockd_workqueue
, work
);
1659 EXPORT_SYMBOL(kblockd_schedule_work
);
1661 int kblockd_schedule_work_on(int cpu
, struct work_struct
*work
)
1663 return queue_work_on(cpu
, kblockd_workqueue
, work
);
1665 EXPORT_SYMBOL(kblockd_schedule_work_on
);
1667 int kblockd_mod_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
1668 unsigned long delay
)
1670 return mod_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
1672 EXPORT_SYMBOL(kblockd_mod_delayed_work_on
);
1675 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1676 * @plug: The &struct blk_plug that needs to be initialized
1679 * blk_start_plug() indicates to the block layer an intent by the caller
1680 * to submit multiple I/O requests in a batch. The block layer may use
1681 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1682 * is called. However, the block layer may choose to submit requests
1683 * before a call to blk_finish_plug() if the number of queued I/Os
1684 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1685 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1686 * the task schedules (see below).
1688 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1689 * pending I/O should the task end up blocking between blk_start_plug() and
1690 * blk_finish_plug(). This is important from a performance perspective, but
1691 * also ensures that we don't deadlock. For instance, if the task is blocking
1692 * for a memory allocation, memory reclaim could end up wanting to free a
1693 * page belonging to that request that is currently residing in our private
1694 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1695 * this kind of deadlock.
1697 void blk_start_plug(struct blk_plug
*plug
)
1699 struct task_struct
*tsk
= current
;
1702 * If this is a nested plug, don't actually assign it.
1707 INIT_LIST_HEAD(&plug
->mq_list
);
1708 INIT_LIST_HEAD(&plug
->cb_list
);
1710 plug
->multiple_queues
= false;
1713 * Store ordering should not be needed here, since a potential
1714 * preempt will imply a full memory barrier
1718 EXPORT_SYMBOL(blk_start_plug
);
1720 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
1722 LIST_HEAD(callbacks
);
1724 while (!list_empty(&plug
->cb_list
)) {
1725 list_splice_init(&plug
->cb_list
, &callbacks
);
1727 while (!list_empty(&callbacks
)) {
1728 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
1731 list_del(&cb
->list
);
1732 cb
->callback(cb
, from_schedule
);
1737 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
1740 struct blk_plug
*plug
= current
->plug
;
1741 struct blk_plug_cb
*cb
;
1746 list_for_each_entry(cb
, &plug
->cb_list
, list
)
1747 if (cb
->callback
== unplug
&& cb
->data
== data
)
1750 /* Not currently on the callback list */
1751 BUG_ON(size
< sizeof(*cb
));
1752 cb
= kzalloc(size
, GFP_ATOMIC
);
1755 cb
->callback
= unplug
;
1756 list_add(&cb
->list
, &plug
->cb_list
);
1760 EXPORT_SYMBOL(blk_check_plugged
);
1762 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1764 flush_plug_callbacks(plug
, from_schedule
);
1766 if (!list_empty(&plug
->mq_list
))
1767 blk_mq_flush_plug_list(plug
, from_schedule
);
1771 * blk_finish_plug - mark the end of a batch of submitted I/O
1772 * @plug: The &struct blk_plug passed to blk_start_plug()
1775 * Indicate that a batch of I/O submissions is complete. This function
1776 * must be paired with an initial call to blk_start_plug(). The intent
1777 * is to allow the block layer to optimize I/O submission. See the
1778 * documentation for blk_start_plug() for more information.
1780 void blk_finish_plug(struct blk_plug
*plug
)
1782 if (plug
!= current
->plug
)
1784 blk_flush_plug_list(plug
, false);
1786 current
->plug
= NULL
;
1788 EXPORT_SYMBOL(blk_finish_plug
);
1790 int __init
blk_dev_init(void)
1792 BUILD_BUG_ON(REQ_OP_LAST
>= (1 << REQ_OP_BITS
));
1793 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
1794 FIELD_SIZEOF(struct request
, cmd_flags
));
1795 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
1796 FIELD_SIZEOF(struct bio
, bi_opf
));
1798 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1799 kblockd_workqueue
= alloc_workqueue("kblockd",
1800 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
1801 if (!kblockd_workqueue
)
1802 panic("Failed to create kblockd\n");
1804 blk_requestq_cachep
= kmem_cache_create("request_queue",
1805 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
1807 #ifdef CONFIG_DEBUG_FS
1808 blk_debugfs_root
= debugfs_create_dir("block", NULL
);