1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2001 Momchil Velikov
4 * Portions Copyright (C) 2001 Christoph Hellwig
5 * Copyright (C) 2005 SGI, Christoph Lameter
6 * Copyright (C) 2006 Nick Piggin
7 * Copyright (C) 2012 Konstantin Khlebnikov
8 * Copyright (C) 2016 Intel, Matthew Wilcox
9 * Copyright (C) 2016 Intel, Ross Zwisler
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/cpu.h>
16 #include <linux/errno.h>
17 #include <linux/export.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/kmemleak.h>
22 #include <linux/percpu.h>
23 #include <linux/preempt.h> /* in_interrupt() */
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 #include <linux/xarray.h>
32 * Radix tree node cache.
34 struct kmem_cache
*radix_tree_node_cachep
;
37 * The radix tree is variable-height, so an insert operation not only has
38 * to build the branch to its corresponding item, it also has to build the
39 * branch to existing items if the size has to be increased (by
42 * The worst case is a zero height tree with just a single item at index 0,
43 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
44 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
47 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
50 * The IDR does not have to be as high as the radix tree since it uses
51 * signed integers, not unsigned longs.
53 #define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
54 #define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
55 RADIX_TREE_MAP_SHIFT))
56 #define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
59 * The IDA is even shorter since it uses a bitmap at the last level.
61 #define IDA_INDEX_BITS (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
62 #define IDA_MAX_PATH (DIV_ROUND_UP(IDA_INDEX_BITS, \
63 RADIX_TREE_MAP_SHIFT))
64 #define IDA_PRELOAD_SIZE (IDA_MAX_PATH * 2 - 1)
67 * Per-cpu pool of preloaded nodes
69 struct radix_tree_preload
{
71 /* nodes->parent points to next preallocated node */
72 struct radix_tree_node
*nodes
;
74 static DEFINE_PER_CPU(struct radix_tree_preload
, radix_tree_preloads
) = { 0, };
76 static inline struct radix_tree_node
*entry_to_node(void *ptr
)
78 return (void *)((unsigned long)ptr
& ~RADIX_TREE_INTERNAL_NODE
);
81 static inline void *node_to_entry(void *ptr
)
83 return (void *)((unsigned long)ptr
| RADIX_TREE_INTERNAL_NODE
);
86 #define RADIX_TREE_RETRY XA_RETRY_ENTRY
88 static inline unsigned long
89 get_slot_offset(const struct radix_tree_node
*parent
, void __rcu
**slot
)
91 return parent
? slot
- parent
->slots
: 0;
94 static unsigned int radix_tree_descend(const struct radix_tree_node
*parent
,
95 struct radix_tree_node
**nodep
, unsigned long index
)
97 unsigned int offset
= (index
>> parent
->shift
) & RADIX_TREE_MAP_MASK
;
98 void __rcu
**entry
= rcu_dereference_raw(parent
->slots
[offset
]);
100 *nodep
= (void *)entry
;
104 static inline gfp_t
root_gfp_mask(const struct radix_tree_root
*root
)
106 return root
->xa_flags
& (__GFP_BITS_MASK
& ~GFP_ZONEMASK
);
109 static inline void tag_set(struct radix_tree_node
*node
, unsigned int tag
,
112 __set_bit(offset
, node
->tags
[tag
]);
115 static inline void tag_clear(struct radix_tree_node
*node
, unsigned int tag
,
118 __clear_bit(offset
, node
->tags
[tag
]);
121 static inline int tag_get(const struct radix_tree_node
*node
, unsigned int tag
,
124 return test_bit(offset
, node
->tags
[tag
]);
127 static inline void root_tag_set(struct radix_tree_root
*root
, unsigned tag
)
129 root
->xa_flags
|= (__force gfp_t
)(1 << (tag
+ ROOT_TAG_SHIFT
));
132 static inline void root_tag_clear(struct radix_tree_root
*root
, unsigned tag
)
134 root
->xa_flags
&= (__force gfp_t
)~(1 << (tag
+ ROOT_TAG_SHIFT
));
137 static inline void root_tag_clear_all(struct radix_tree_root
*root
)
139 root
->xa_flags
&= (__force gfp_t
)((1 << ROOT_TAG_SHIFT
) - 1);
142 static inline int root_tag_get(const struct radix_tree_root
*root
, unsigned tag
)
144 return (__force
int)root
->xa_flags
& (1 << (tag
+ ROOT_TAG_SHIFT
));
147 static inline unsigned root_tags_get(const struct radix_tree_root
*root
)
149 return (__force
unsigned)root
->xa_flags
>> ROOT_TAG_SHIFT
;
152 static inline bool is_idr(const struct radix_tree_root
*root
)
154 return !!(root
->xa_flags
& ROOT_IS_IDR
);
158 * Returns 1 if any slot in the node has this tag set.
159 * Otherwise returns 0.
161 static inline int any_tag_set(const struct radix_tree_node
*node
,
165 for (idx
= 0; idx
< RADIX_TREE_TAG_LONGS
; idx
++) {
166 if (node
->tags
[tag
][idx
])
172 static inline void all_tag_set(struct radix_tree_node
*node
, unsigned int tag
)
174 bitmap_fill(node
->tags
[tag
], RADIX_TREE_MAP_SIZE
);
178 * radix_tree_find_next_bit - find the next set bit in a memory region
180 * @addr: The address to base the search on
181 * @size: The bitmap size in bits
182 * @offset: The bitnumber to start searching at
184 * Unrollable variant of find_next_bit() for constant size arrays.
185 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
186 * Returns next bit offset, or size if nothing found.
188 static __always_inline
unsigned long
189 radix_tree_find_next_bit(struct radix_tree_node
*node
, unsigned int tag
,
190 unsigned long offset
)
192 const unsigned long *addr
= node
->tags
[tag
];
194 if (offset
< RADIX_TREE_MAP_SIZE
) {
197 addr
+= offset
/ BITS_PER_LONG
;
198 tmp
= *addr
>> (offset
% BITS_PER_LONG
);
200 return __ffs(tmp
) + offset
;
201 offset
= (offset
+ BITS_PER_LONG
) & ~(BITS_PER_LONG
- 1);
202 while (offset
< RADIX_TREE_MAP_SIZE
) {
205 return __ffs(tmp
) + offset
;
206 offset
+= BITS_PER_LONG
;
209 return RADIX_TREE_MAP_SIZE
;
212 static unsigned int iter_offset(const struct radix_tree_iter
*iter
)
214 return iter
->index
& RADIX_TREE_MAP_MASK
;
218 * The maximum index which can be stored in a radix tree
220 static inline unsigned long shift_maxindex(unsigned int shift
)
222 return (RADIX_TREE_MAP_SIZE
<< shift
) - 1;
225 static inline unsigned long node_maxindex(const struct radix_tree_node
*node
)
227 return shift_maxindex(node
->shift
);
230 static unsigned long next_index(unsigned long index
,
231 const struct radix_tree_node
*node
,
232 unsigned long offset
)
234 return (index
& ~node_maxindex(node
)) + (offset
<< node
->shift
);
238 * This assumes that the caller has performed appropriate preallocation, and
239 * that the caller has pinned this thread of control to the current CPU.
241 static struct radix_tree_node
*
242 radix_tree_node_alloc(gfp_t gfp_mask
, struct radix_tree_node
*parent
,
243 struct radix_tree_root
*root
,
244 unsigned int shift
, unsigned int offset
,
245 unsigned int count
, unsigned int nr_values
)
247 struct radix_tree_node
*ret
= NULL
;
250 * Preload code isn't irq safe and it doesn't make sense to use
251 * preloading during an interrupt anyway as all the allocations have
252 * to be atomic. So just do normal allocation when in interrupt.
254 if (!gfpflags_allow_blocking(gfp_mask
) && !in_interrupt()) {
255 struct radix_tree_preload
*rtp
;
258 * Even if the caller has preloaded, try to allocate from the
259 * cache first for the new node to get accounted to the memory
262 ret
= kmem_cache_alloc(radix_tree_node_cachep
,
263 gfp_mask
| __GFP_NOWARN
);
268 * Provided the caller has preloaded here, we will always
269 * succeed in getting a node here (and never reach
272 rtp
= this_cpu_ptr(&radix_tree_preloads
);
275 rtp
->nodes
= ret
->parent
;
279 * Update the allocation stack trace as this is more useful
282 kmemleak_update_trace(ret
);
285 ret
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
287 BUG_ON(radix_tree_is_internal_node(ret
));
290 ret
->offset
= offset
;
292 ret
->nr_values
= nr_values
;
293 ret
->parent
= parent
;
299 void radix_tree_node_rcu_free(struct rcu_head
*head
)
301 struct radix_tree_node
*node
=
302 container_of(head
, struct radix_tree_node
, rcu_head
);
305 * Must only free zeroed nodes into the slab. We can be left with
306 * non-NULL entries by radix_tree_free_nodes, so clear the entries
309 memset(node
->slots
, 0, sizeof(node
->slots
));
310 memset(node
->tags
, 0, sizeof(node
->tags
));
311 INIT_LIST_HEAD(&node
->private_list
);
313 kmem_cache_free(radix_tree_node_cachep
, node
);
317 radix_tree_node_free(struct radix_tree_node
*node
)
319 call_rcu(&node
->rcu_head
, radix_tree_node_rcu_free
);
323 * Load up this CPU's radix_tree_node buffer with sufficient objects to
324 * ensure that the addition of a single element in the tree cannot fail. On
325 * success, return zero, with preemption disabled. On error, return -ENOMEM
326 * with preemption not disabled.
328 * To make use of this facility, the radix tree must be initialised without
329 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
331 static __must_check
int __radix_tree_preload(gfp_t gfp_mask
, unsigned nr
)
333 struct radix_tree_preload
*rtp
;
334 struct radix_tree_node
*node
;
338 * Nodes preloaded by one cgroup can be be used by another cgroup, so
339 * they should never be accounted to any particular memory cgroup.
341 gfp_mask
&= ~__GFP_ACCOUNT
;
344 rtp
= this_cpu_ptr(&radix_tree_preloads
);
345 while (rtp
->nr
< nr
) {
347 node
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
351 rtp
= this_cpu_ptr(&radix_tree_preloads
);
353 node
->parent
= rtp
->nodes
;
357 kmem_cache_free(radix_tree_node_cachep
, node
);
366 * Load up this CPU's radix_tree_node buffer with sufficient objects to
367 * ensure that the addition of a single element in the tree cannot fail. On
368 * success, return zero, with preemption disabled. On error, return -ENOMEM
369 * with preemption not disabled.
371 * To make use of this facility, the radix tree must be initialised without
372 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
374 int radix_tree_preload(gfp_t gfp_mask
)
376 /* Warn on non-sensical use... */
377 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask
));
378 return __radix_tree_preload(gfp_mask
, RADIX_TREE_PRELOAD_SIZE
);
380 EXPORT_SYMBOL(radix_tree_preload
);
383 * The same as above function, except we don't guarantee preloading happens.
384 * We do it, if we decide it helps. On success, return zero with preemption
385 * disabled. On error, return -ENOMEM with preemption not disabled.
387 int radix_tree_maybe_preload(gfp_t gfp_mask
)
389 if (gfpflags_allow_blocking(gfp_mask
))
390 return __radix_tree_preload(gfp_mask
, RADIX_TREE_PRELOAD_SIZE
);
391 /* Preloading doesn't help anything with this gfp mask, skip it */
395 EXPORT_SYMBOL(radix_tree_maybe_preload
);
397 static unsigned radix_tree_load_root(const struct radix_tree_root
*root
,
398 struct radix_tree_node
**nodep
, unsigned long *maxindex
)
400 struct radix_tree_node
*node
= rcu_dereference_raw(root
->xa_head
);
404 if (likely(radix_tree_is_internal_node(node
))) {
405 node
= entry_to_node(node
);
406 *maxindex
= node_maxindex(node
);
407 return node
->shift
+ RADIX_TREE_MAP_SHIFT
;
415 * Extend a radix tree so it can store key @index.
417 static int radix_tree_extend(struct radix_tree_root
*root
, gfp_t gfp
,
418 unsigned long index
, unsigned int shift
)
421 unsigned int maxshift
;
424 /* Figure out what the shift should be. */
426 while (index
> shift_maxindex(maxshift
))
427 maxshift
+= RADIX_TREE_MAP_SHIFT
;
429 entry
= rcu_dereference_raw(root
->xa_head
);
430 if (!entry
&& (!is_idr(root
) || root_tag_get(root
, IDR_FREE
)))
434 struct radix_tree_node
*node
= radix_tree_node_alloc(gfp
, NULL
,
435 root
, shift
, 0, 1, 0);
440 all_tag_set(node
, IDR_FREE
);
441 if (!root_tag_get(root
, IDR_FREE
)) {
442 tag_clear(node
, IDR_FREE
, 0);
443 root_tag_set(root
, IDR_FREE
);
446 /* Propagate the aggregated tag info to the new child */
447 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
448 if (root_tag_get(root
, tag
))
449 tag_set(node
, tag
, 0);
453 BUG_ON(shift
> BITS_PER_LONG
);
454 if (radix_tree_is_internal_node(entry
)) {
455 entry_to_node(entry
)->parent
= node
;
456 } else if (xa_is_value(entry
)) {
457 /* Moving a value entry root->xa_head to a node */
461 * entry was already in the radix tree, so we do not need
462 * rcu_assign_pointer here
464 node
->slots
[0] = (void __rcu
*)entry
;
465 entry
= node_to_entry(node
);
466 rcu_assign_pointer(root
->xa_head
, entry
);
467 shift
+= RADIX_TREE_MAP_SHIFT
;
468 } while (shift
<= maxshift
);
470 return maxshift
+ RADIX_TREE_MAP_SHIFT
;
474 * radix_tree_shrink - shrink radix tree to minimum height
475 * @root radix tree root
477 static inline bool radix_tree_shrink(struct radix_tree_root
*root
)
482 struct radix_tree_node
*node
= rcu_dereference_raw(root
->xa_head
);
483 struct radix_tree_node
*child
;
485 if (!radix_tree_is_internal_node(node
))
487 node
= entry_to_node(node
);
490 * The candidate node has more than one child, or its child
491 * is not at the leftmost slot, we cannot shrink.
493 if (node
->count
!= 1)
495 child
= rcu_dereference_raw(node
->slots
[0]);
500 * For an IDR, we must not shrink entry 0 into the root in
501 * case somebody calls idr_replace() with a pointer that
502 * appears to be an internal entry
504 if (!node
->shift
&& is_idr(root
))
507 if (radix_tree_is_internal_node(child
))
508 entry_to_node(child
)->parent
= NULL
;
511 * We don't need rcu_assign_pointer(), since we are simply
512 * moving the node from one part of the tree to another: if it
513 * was safe to dereference the old pointer to it
514 * (node->slots[0]), it will be safe to dereference the new
515 * one (root->xa_head) as far as dependent read barriers go.
517 root
->xa_head
= (void __rcu
*)child
;
518 if (is_idr(root
) && !tag_get(node
, IDR_FREE
, 0))
519 root_tag_clear(root
, IDR_FREE
);
522 * We have a dilemma here. The node's slot[0] must not be
523 * NULLed in case there are concurrent lookups expecting to
524 * find the item. However if this was a bottom-level node,
525 * then it may be subject to the slot pointer being visible
526 * to callers dereferencing it. If item corresponding to
527 * slot[0] is subsequently deleted, these callers would expect
528 * their slot to become empty sooner or later.
530 * For example, lockless pagecache will look up a slot, deref
531 * the page pointer, and if the page has 0 refcount it means it
532 * was concurrently deleted from pagecache so try the deref
533 * again. Fortunately there is already a requirement for logic
534 * to retry the entire slot lookup -- the indirect pointer
535 * problem (replacing direct root node with an indirect pointer
536 * also results in a stale slot). So tag the slot as indirect
537 * to force callers to retry.
540 if (!radix_tree_is_internal_node(child
)) {
541 node
->slots
[0] = (void __rcu
*)RADIX_TREE_RETRY
;
544 WARN_ON_ONCE(!list_empty(&node
->private_list
));
545 radix_tree_node_free(node
);
552 static bool delete_node(struct radix_tree_root
*root
,
553 struct radix_tree_node
*node
)
555 bool deleted
= false;
558 struct radix_tree_node
*parent
;
561 if (node_to_entry(node
) ==
562 rcu_dereference_raw(root
->xa_head
))
563 deleted
|= radix_tree_shrink(root
);
567 parent
= node
->parent
;
569 parent
->slots
[node
->offset
] = NULL
;
573 * Shouldn't the tags already have all been cleared
577 root_tag_clear_all(root
);
578 root
->xa_head
= NULL
;
581 WARN_ON_ONCE(!list_empty(&node
->private_list
));
582 radix_tree_node_free(node
);
592 * __radix_tree_create - create a slot in a radix tree
593 * @root: radix tree root
595 * @nodep: returns node
596 * @slotp: returns slot
598 * Create, if necessary, and return the node and slot for an item
599 * at position @index in the radix tree @root.
601 * Until there is more than one item in the tree, no nodes are
602 * allocated and @root->xa_head is used as a direct slot instead of
603 * pointing to a node, in which case *@nodep will be NULL.
605 * Returns -ENOMEM, or 0 for success.
607 static int __radix_tree_create(struct radix_tree_root
*root
,
608 unsigned long index
, struct radix_tree_node
**nodep
,
611 struct radix_tree_node
*node
= NULL
, *child
;
612 void __rcu
**slot
= (void __rcu
**)&root
->xa_head
;
613 unsigned long maxindex
;
614 unsigned int shift
, offset
= 0;
615 unsigned long max
= index
;
616 gfp_t gfp
= root_gfp_mask(root
);
618 shift
= radix_tree_load_root(root
, &child
, &maxindex
);
620 /* Make sure the tree is high enough. */
621 if (max
> maxindex
) {
622 int error
= radix_tree_extend(root
, gfp
, max
, shift
);
626 child
= rcu_dereference_raw(root
->xa_head
);
630 shift
-= RADIX_TREE_MAP_SHIFT
;
632 /* Have to add a child node. */
633 child
= radix_tree_node_alloc(gfp
, node
, root
, shift
,
637 rcu_assign_pointer(*slot
, node_to_entry(child
));
640 } else if (!radix_tree_is_internal_node(child
))
643 /* Go a level down */
644 node
= entry_to_node(child
);
645 offset
= radix_tree_descend(node
, &child
, index
);
646 slot
= &node
->slots
[offset
];
657 * Free any nodes below this node. The tree is presumed to not need
658 * shrinking, and any user data in the tree is presumed to not need a
659 * destructor called on it. If we need to add a destructor, we can
660 * add that functionality later. Note that we may not clear tags or
661 * slots from the tree as an RCU walker may still have a pointer into
662 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
663 * but we'll still have to clear those in rcu_free.
665 static void radix_tree_free_nodes(struct radix_tree_node
*node
)
668 struct radix_tree_node
*child
= entry_to_node(node
);
671 void *entry
= rcu_dereference_raw(child
->slots
[offset
]);
672 if (xa_is_node(entry
) && child
->shift
) {
673 child
= entry_to_node(entry
);
678 while (offset
== RADIX_TREE_MAP_SIZE
) {
679 struct radix_tree_node
*old
= child
;
680 offset
= child
->offset
+ 1;
681 child
= child
->parent
;
682 WARN_ON_ONCE(!list_empty(&old
->private_list
));
683 radix_tree_node_free(old
);
684 if (old
== entry_to_node(node
))
690 static inline int insert_entries(struct radix_tree_node
*node
,
691 void __rcu
**slot
, void *item
, bool replace
)
695 rcu_assign_pointer(*slot
, item
);
698 if (xa_is_value(item
))
705 * __radix_tree_insert - insert into a radix tree
706 * @root: radix tree root
708 * @item: item to insert
710 * Insert an item into the radix tree at position @index.
712 int radix_tree_insert(struct radix_tree_root
*root
, unsigned long index
,
715 struct radix_tree_node
*node
;
719 BUG_ON(radix_tree_is_internal_node(item
));
721 error
= __radix_tree_create(root
, index
, &node
, &slot
);
725 error
= insert_entries(node
, slot
, item
, false);
730 unsigned offset
= get_slot_offset(node
, slot
);
731 BUG_ON(tag_get(node
, 0, offset
));
732 BUG_ON(tag_get(node
, 1, offset
));
733 BUG_ON(tag_get(node
, 2, offset
));
735 BUG_ON(root_tags_get(root
));
740 EXPORT_SYMBOL(radix_tree_insert
);
743 * __radix_tree_lookup - lookup an item in a radix tree
744 * @root: radix tree root
746 * @nodep: returns node
747 * @slotp: returns slot
749 * Lookup and return the item at position @index in the radix
752 * Until there is more than one item in the tree, no nodes are
753 * allocated and @root->xa_head is used as a direct slot instead of
754 * pointing to a node, in which case *@nodep will be NULL.
756 void *__radix_tree_lookup(const struct radix_tree_root
*root
,
757 unsigned long index
, struct radix_tree_node
**nodep
,
760 struct radix_tree_node
*node
, *parent
;
761 unsigned long maxindex
;
766 slot
= (void __rcu
**)&root
->xa_head
;
767 radix_tree_load_root(root
, &node
, &maxindex
);
768 if (index
> maxindex
)
771 while (radix_tree_is_internal_node(node
)) {
774 parent
= entry_to_node(node
);
775 offset
= radix_tree_descend(parent
, &node
, index
);
776 slot
= parent
->slots
+ offset
;
777 if (node
== RADIX_TREE_RETRY
)
779 if (parent
->shift
== 0)
791 * radix_tree_lookup_slot - lookup a slot in a radix tree
792 * @root: radix tree root
795 * Returns: the slot corresponding to the position @index in the
796 * radix tree @root. This is useful for update-if-exists operations.
798 * This function can be called under rcu_read_lock iff the slot is not
799 * modified by radix_tree_replace_slot, otherwise it must be called
800 * exclusive from other writers. Any dereference of the slot must be done
801 * using radix_tree_deref_slot.
803 void __rcu
**radix_tree_lookup_slot(const struct radix_tree_root
*root
,
808 if (!__radix_tree_lookup(root
, index
, NULL
, &slot
))
812 EXPORT_SYMBOL(radix_tree_lookup_slot
);
815 * radix_tree_lookup - perform lookup operation on a radix tree
816 * @root: radix tree root
819 * Lookup the item at the position @index in the radix tree @root.
821 * This function can be called under rcu_read_lock, however the caller
822 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
823 * them safely). No RCU barriers are required to access or modify the
824 * returned item, however.
826 void *radix_tree_lookup(const struct radix_tree_root
*root
, unsigned long index
)
828 return __radix_tree_lookup(root
, index
, NULL
, NULL
);
830 EXPORT_SYMBOL(radix_tree_lookup
);
832 static void replace_slot(void __rcu
**slot
, void *item
,
833 struct radix_tree_node
*node
, int count
, int values
)
835 if (node
&& (count
|| values
)) {
836 node
->count
+= count
;
837 node
->nr_values
+= values
;
840 rcu_assign_pointer(*slot
, item
);
843 static bool node_tag_get(const struct radix_tree_root
*root
,
844 const struct radix_tree_node
*node
,
845 unsigned int tag
, unsigned int offset
)
848 return tag_get(node
, tag
, offset
);
849 return root_tag_get(root
, tag
);
853 * IDR users want to be able to store NULL in the tree, so if the slot isn't
854 * free, don't adjust the count, even if it's transitioning between NULL and
855 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
856 * have empty bits, but it only stores NULL in slots when they're being
859 static int calculate_count(struct radix_tree_root
*root
,
860 struct radix_tree_node
*node
, void __rcu
**slot
,
861 void *item
, void *old
)
864 unsigned offset
= get_slot_offset(node
, slot
);
865 bool free
= node_tag_get(root
, node
, IDR_FREE
, offset
);
871 return !!item
- !!old
;
875 * __radix_tree_replace - replace item in a slot
876 * @root: radix tree root
877 * @node: pointer to tree node
878 * @slot: pointer to slot in @node
879 * @item: new item to store in the slot.
881 * For use with __radix_tree_lookup(). Caller must hold tree write locked
882 * across slot lookup and replacement.
884 void __radix_tree_replace(struct radix_tree_root
*root
,
885 struct radix_tree_node
*node
,
886 void __rcu
**slot
, void *item
)
888 void *old
= rcu_dereference_raw(*slot
);
889 int values
= !!xa_is_value(item
) - !!xa_is_value(old
);
890 int count
= calculate_count(root
, node
, slot
, item
, old
);
893 * This function supports replacing value entries and
894 * deleting entries, but that needs accounting against the
895 * node unless the slot is root->xa_head.
897 WARN_ON_ONCE(!node
&& (slot
!= (void __rcu
**)&root
->xa_head
) &&
899 replace_slot(slot
, item
, node
, count
, values
);
904 delete_node(root
, node
);
908 * radix_tree_replace_slot - replace item in a slot
909 * @root: radix tree root
910 * @slot: pointer to slot
911 * @item: new item to store in the slot.
913 * For use with radix_tree_lookup_slot() and
914 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
915 * across slot lookup and replacement.
917 * NOTE: This cannot be used to switch between non-entries (empty slots),
918 * regular entries, and value entries, as that requires accounting
919 * inside the radix tree node. When switching from one type of entry or
920 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
921 * radix_tree_iter_replace().
923 void radix_tree_replace_slot(struct radix_tree_root
*root
,
924 void __rcu
**slot
, void *item
)
926 __radix_tree_replace(root
, NULL
, slot
, item
);
928 EXPORT_SYMBOL(radix_tree_replace_slot
);
931 * radix_tree_iter_replace - replace item in a slot
932 * @root: radix tree root
933 * @slot: pointer to slot
934 * @item: new item to store in the slot.
936 * For use with radix_tree_for_each_slot().
937 * Caller must hold tree write locked.
939 void radix_tree_iter_replace(struct radix_tree_root
*root
,
940 const struct radix_tree_iter
*iter
,
941 void __rcu
**slot
, void *item
)
943 __radix_tree_replace(root
, iter
->node
, slot
, item
);
946 static void node_tag_set(struct radix_tree_root
*root
,
947 struct radix_tree_node
*node
,
948 unsigned int tag
, unsigned int offset
)
951 if (tag_get(node
, tag
, offset
))
953 tag_set(node
, tag
, offset
);
954 offset
= node
->offset
;
958 if (!root_tag_get(root
, tag
))
959 root_tag_set(root
, tag
);
963 * radix_tree_tag_set - set a tag on a radix tree node
964 * @root: radix tree root
968 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
969 * corresponding to @index in the radix tree. From
970 * the root all the way down to the leaf node.
972 * Returns the address of the tagged item. Setting a tag on a not-present
975 void *radix_tree_tag_set(struct radix_tree_root
*root
,
976 unsigned long index
, unsigned int tag
)
978 struct radix_tree_node
*node
, *parent
;
979 unsigned long maxindex
;
981 radix_tree_load_root(root
, &node
, &maxindex
);
982 BUG_ON(index
> maxindex
);
984 while (radix_tree_is_internal_node(node
)) {
987 parent
= entry_to_node(node
);
988 offset
= radix_tree_descend(parent
, &node
, index
);
991 if (!tag_get(parent
, tag
, offset
))
992 tag_set(parent
, tag
, offset
);
995 /* set the root's tag bit */
996 if (!root_tag_get(root
, tag
))
997 root_tag_set(root
, tag
);
1001 EXPORT_SYMBOL(radix_tree_tag_set
);
1003 static void node_tag_clear(struct radix_tree_root
*root
,
1004 struct radix_tree_node
*node
,
1005 unsigned int tag
, unsigned int offset
)
1008 if (!tag_get(node
, tag
, offset
))
1010 tag_clear(node
, tag
, offset
);
1011 if (any_tag_set(node
, tag
))
1014 offset
= node
->offset
;
1015 node
= node
->parent
;
1018 /* clear the root's tag bit */
1019 if (root_tag_get(root
, tag
))
1020 root_tag_clear(root
, tag
);
1024 * radix_tree_tag_clear - clear a tag on a radix tree node
1025 * @root: radix tree root
1029 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1030 * corresponding to @index in the radix tree. If this causes
1031 * the leaf node to have no tags set then clear the tag in the
1032 * next-to-leaf node, etc.
1034 * Returns the address of the tagged item on success, else NULL. ie:
1035 * has the same return value and semantics as radix_tree_lookup().
1037 void *radix_tree_tag_clear(struct radix_tree_root
*root
,
1038 unsigned long index
, unsigned int tag
)
1040 struct radix_tree_node
*node
, *parent
;
1041 unsigned long maxindex
;
1042 int uninitialized_var(offset
);
1044 radix_tree_load_root(root
, &node
, &maxindex
);
1045 if (index
> maxindex
)
1050 while (radix_tree_is_internal_node(node
)) {
1051 parent
= entry_to_node(node
);
1052 offset
= radix_tree_descend(parent
, &node
, index
);
1056 node_tag_clear(root
, parent
, tag
, offset
);
1060 EXPORT_SYMBOL(radix_tree_tag_clear
);
1063 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1064 * @root: radix tree root
1065 * @iter: iterator state
1066 * @tag: tag to clear
1068 void radix_tree_iter_tag_clear(struct radix_tree_root
*root
,
1069 const struct radix_tree_iter
*iter
, unsigned int tag
)
1071 node_tag_clear(root
, iter
->node
, tag
, iter_offset(iter
));
1075 * radix_tree_tag_get - get a tag on a radix tree node
1076 * @root: radix tree root
1078 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1082 * 0: tag not present or not set
1085 * Note that the return value of this function may not be relied on, even if
1086 * the RCU lock is held, unless tag modification and node deletion are excluded
1089 int radix_tree_tag_get(const struct radix_tree_root
*root
,
1090 unsigned long index
, unsigned int tag
)
1092 struct radix_tree_node
*node
, *parent
;
1093 unsigned long maxindex
;
1095 if (!root_tag_get(root
, tag
))
1098 radix_tree_load_root(root
, &node
, &maxindex
);
1099 if (index
> maxindex
)
1102 while (radix_tree_is_internal_node(node
)) {
1105 parent
= entry_to_node(node
);
1106 offset
= radix_tree_descend(parent
, &node
, index
);
1108 if (!tag_get(parent
, tag
, offset
))
1110 if (node
== RADIX_TREE_RETRY
)
1116 EXPORT_SYMBOL(radix_tree_tag_get
);
1118 /* Construct iter->tags bit-mask from node->tags[tag] array */
1119 static void set_iter_tags(struct radix_tree_iter
*iter
,
1120 struct radix_tree_node
*node
, unsigned offset
,
1123 unsigned tag_long
= offset
/ BITS_PER_LONG
;
1124 unsigned tag_bit
= offset
% BITS_PER_LONG
;
1131 iter
->tags
= node
->tags
[tag
][tag_long
] >> tag_bit
;
1133 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1134 if (tag_long
< RADIX_TREE_TAG_LONGS
- 1) {
1135 /* Pick tags from next element */
1137 iter
->tags
|= node
->tags
[tag
][tag_long
+ 1] <<
1138 (BITS_PER_LONG
- tag_bit
);
1139 /* Clip chunk size, here only BITS_PER_LONG tags */
1140 iter
->next_index
= __radix_tree_iter_add(iter
, BITS_PER_LONG
);
1144 void __rcu
**radix_tree_iter_resume(void __rcu
**slot
,
1145 struct radix_tree_iter
*iter
)
1148 iter
->index
= __radix_tree_iter_add(iter
, 1);
1149 iter
->next_index
= iter
->index
;
1153 EXPORT_SYMBOL(radix_tree_iter_resume
);
1156 * radix_tree_next_chunk - find next chunk of slots for iteration
1158 * @root: radix tree root
1159 * @iter: iterator state
1160 * @flags: RADIX_TREE_ITER_* flags and tag index
1161 * Returns: pointer to chunk first slot, or NULL if iteration is over
1163 void __rcu
**radix_tree_next_chunk(const struct radix_tree_root
*root
,
1164 struct radix_tree_iter
*iter
, unsigned flags
)
1166 unsigned tag
= flags
& RADIX_TREE_ITER_TAG_MASK
;
1167 struct radix_tree_node
*node
, *child
;
1168 unsigned long index
, offset
, maxindex
;
1170 if ((flags
& RADIX_TREE_ITER_TAGGED
) && !root_tag_get(root
, tag
))
1174 * Catch next_index overflow after ~0UL. iter->index never overflows
1175 * during iterating; it can be zero only at the beginning.
1176 * And we cannot overflow iter->next_index in a single step,
1177 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1179 * This condition also used by radix_tree_next_slot() to stop
1180 * contiguous iterating, and forbid switching to the next chunk.
1182 index
= iter
->next_index
;
1183 if (!index
&& iter
->index
)
1187 radix_tree_load_root(root
, &child
, &maxindex
);
1188 if (index
> maxindex
)
1193 if (!radix_tree_is_internal_node(child
)) {
1194 /* Single-slot tree */
1195 iter
->index
= index
;
1196 iter
->next_index
= maxindex
+ 1;
1199 return (void __rcu
**)&root
->xa_head
;
1203 node
= entry_to_node(child
);
1204 offset
= radix_tree_descend(node
, &child
, index
);
1206 if ((flags
& RADIX_TREE_ITER_TAGGED
) ?
1207 !tag_get(node
, tag
, offset
) : !child
) {
1209 if (flags
& RADIX_TREE_ITER_CONTIG
)
1212 if (flags
& RADIX_TREE_ITER_TAGGED
)
1213 offset
= radix_tree_find_next_bit(node
, tag
,
1216 while (++offset
< RADIX_TREE_MAP_SIZE
) {
1217 void *slot
= rcu_dereference_raw(
1218 node
->slots
[offset
]);
1222 index
&= ~node_maxindex(node
);
1223 index
+= offset
<< node
->shift
;
1224 /* Overflow after ~0UL */
1227 if (offset
== RADIX_TREE_MAP_SIZE
)
1229 child
= rcu_dereference_raw(node
->slots
[offset
]);
1234 if (child
== RADIX_TREE_RETRY
)
1236 } while (node
->shift
&& radix_tree_is_internal_node(child
));
1238 /* Update the iterator state */
1239 iter
->index
= (index
&~ node_maxindex(node
)) | offset
;
1240 iter
->next_index
= (index
| node_maxindex(node
)) + 1;
1243 if (flags
& RADIX_TREE_ITER_TAGGED
)
1244 set_iter_tags(iter
, node
, offset
, tag
);
1246 return node
->slots
+ offset
;
1248 EXPORT_SYMBOL(radix_tree_next_chunk
);
1251 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1252 * @root: radix tree root
1253 * @results: where the results of the lookup are placed
1254 * @first_index: start the lookup from this key
1255 * @max_items: place up to this many items at *results
1257 * Performs an index-ascending scan of the tree for present items. Places
1258 * them at *@results and returns the number of items which were placed at
1261 * The implementation is naive.
1263 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1264 * rcu_read_lock. In this case, rather than the returned results being
1265 * an atomic snapshot of the tree at a single point in time, the
1266 * semantics of an RCU protected gang lookup are as though multiple
1267 * radix_tree_lookups have been issued in individual locks, and results
1268 * stored in 'results'.
1271 radix_tree_gang_lookup(const struct radix_tree_root
*root
, void **results
,
1272 unsigned long first_index
, unsigned int max_items
)
1274 struct radix_tree_iter iter
;
1276 unsigned int ret
= 0;
1278 if (unlikely(!max_items
))
1281 radix_tree_for_each_slot(slot
, root
, &iter
, first_index
) {
1282 results
[ret
] = rcu_dereference_raw(*slot
);
1285 if (radix_tree_is_internal_node(results
[ret
])) {
1286 slot
= radix_tree_iter_retry(&iter
);
1289 if (++ret
== max_items
)
1295 EXPORT_SYMBOL(radix_tree_gang_lookup
);
1298 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1300 * @root: radix tree root
1301 * @results: where the results of the lookup are placed
1302 * @first_index: start the lookup from this key
1303 * @max_items: place up to this many items at *results
1304 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1306 * Performs an index-ascending scan of the tree for present items which
1307 * have the tag indexed by @tag set. Places the items at *@results and
1308 * returns the number of items which were placed at *@results.
1311 radix_tree_gang_lookup_tag(const struct radix_tree_root
*root
, void **results
,
1312 unsigned long first_index
, unsigned int max_items
,
1315 struct radix_tree_iter iter
;
1317 unsigned int ret
= 0;
1319 if (unlikely(!max_items
))
1322 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1323 results
[ret
] = rcu_dereference_raw(*slot
);
1326 if (radix_tree_is_internal_node(results
[ret
])) {
1327 slot
= radix_tree_iter_retry(&iter
);
1330 if (++ret
== max_items
)
1336 EXPORT_SYMBOL(radix_tree_gang_lookup_tag
);
1339 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1340 * radix tree based on a tag
1341 * @root: radix tree root
1342 * @results: where the results of the lookup are placed
1343 * @first_index: start the lookup from this key
1344 * @max_items: place up to this many items at *results
1345 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1347 * Performs an index-ascending scan of the tree for present items which
1348 * have the tag indexed by @tag set. Places the slots at *@results and
1349 * returns the number of slots which were placed at *@results.
1352 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root
*root
,
1353 void __rcu
***results
, unsigned long first_index
,
1354 unsigned int max_items
, unsigned int tag
)
1356 struct radix_tree_iter iter
;
1358 unsigned int ret
= 0;
1360 if (unlikely(!max_items
))
1363 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1364 results
[ret
] = slot
;
1365 if (++ret
== max_items
)
1371 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot
);
1373 static bool __radix_tree_delete(struct radix_tree_root
*root
,
1374 struct radix_tree_node
*node
, void __rcu
**slot
)
1376 void *old
= rcu_dereference_raw(*slot
);
1377 int values
= xa_is_value(old
) ? -1 : 0;
1378 unsigned offset
= get_slot_offset(node
, slot
);
1382 node_tag_set(root
, node
, IDR_FREE
, offset
);
1384 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1385 node_tag_clear(root
, node
, tag
, offset
);
1387 replace_slot(slot
, NULL
, node
, -1, values
);
1388 return node
&& delete_node(root
, node
);
1392 * radix_tree_iter_delete - delete the entry at this iterator position
1393 * @root: radix tree root
1394 * @iter: iterator state
1395 * @slot: pointer to slot
1397 * Delete the entry at the position currently pointed to by the iterator.
1398 * This may result in the current node being freed; if it is, the iterator
1399 * is advanced so that it will not reference the freed memory. This
1400 * function may be called without any locking if there are no other threads
1401 * which can access this tree.
1403 void radix_tree_iter_delete(struct radix_tree_root
*root
,
1404 struct radix_tree_iter
*iter
, void __rcu
**slot
)
1406 if (__radix_tree_delete(root
, iter
->node
, slot
))
1407 iter
->index
= iter
->next_index
;
1409 EXPORT_SYMBOL(radix_tree_iter_delete
);
1412 * radix_tree_delete_item - delete an item from a radix tree
1413 * @root: radix tree root
1415 * @item: expected item
1417 * Remove @item at @index from the radix tree rooted at @root.
1419 * Return: the deleted entry, or %NULL if it was not present
1420 * or the entry at the given @index was not @item.
1422 void *radix_tree_delete_item(struct radix_tree_root
*root
,
1423 unsigned long index
, void *item
)
1425 struct radix_tree_node
*node
= NULL
;
1426 void __rcu
**slot
= NULL
;
1429 entry
= __radix_tree_lookup(root
, index
, &node
, &slot
);
1432 if (!entry
&& (!is_idr(root
) || node_tag_get(root
, node
, IDR_FREE
,
1433 get_slot_offset(node
, slot
))))
1436 if (item
&& entry
!= item
)
1439 __radix_tree_delete(root
, node
, slot
);
1443 EXPORT_SYMBOL(radix_tree_delete_item
);
1446 * radix_tree_delete - delete an entry from a radix tree
1447 * @root: radix tree root
1450 * Remove the entry at @index from the radix tree rooted at @root.
1452 * Return: The deleted entry, or %NULL if it was not present.
1454 void *radix_tree_delete(struct radix_tree_root
*root
, unsigned long index
)
1456 return radix_tree_delete_item(root
, index
, NULL
);
1458 EXPORT_SYMBOL(radix_tree_delete
);
1461 * radix_tree_tagged - test whether any items in the tree are tagged
1462 * @root: radix tree root
1465 int radix_tree_tagged(const struct radix_tree_root
*root
, unsigned int tag
)
1467 return root_tag_get(root
, tag
);
1469 EXPORT_SYMBOL(radix_tree_tagged
);
1472 * idr_preload - preload for idr_alloc()
1473 * @gfp_mask: allocation mask to use for preloading
1475 * Preallocate memory to use for the next call to idr_alloc(). This function
1476 * returns with preemption disabled. It will be enabled by idr_preload_end().
1478 void idr_preload(gfp_t gfp_mask
)
1480 if (__radix_tree_preload(gfp_mask
, IDR_PRELOAD_SIZE
))
1483 EXPORT_SYMBOL(idr_preload
);
1485 void __rcu
**idr_get_free(struct radix_tree_root
*root
,
1486 struct radix_tree_iter
*iter
, gfp_t gfp
,
1489 struct radix_tree_node
*node
= NULL
, *child
;
1490 void __rcu
**slot
= (void __rcu
**)&root
->xa_head
;
1491 unsigned long maxindex
, start
= iter
->next_index
;
1492 unsigned int shift
, offset
= 0;
1495 shift
= radix_tree_load_root(root
, &child
, &maxindex
);
1496 if (!radix_tree_tagged(root
, IDR_FREE
))
1497 start
= max(start
, maxindex
+ 1);
1499 return ERR_PTR(-ENOSPC
);
1501 if (start
> maxindex
) {
1502 int error
= radix_tree_extend(root
, gfp
, start
, shift
);
1504 return ERR_PTR(error
);
1506 child
= rcu_dereference_raw(root
->xa_head
);
1508 if (start
== 0 && shift
== 0)
1509 shift
= RADIX_TREE_MAP_SHIFT
;
1512 shift
-= RADIX_TREE_MAP_SHIFT
;
1513 if (child
== NULL
) {
1514 /* Have to add a child node. */
1515 child
= radix_tree_node_alloc(gfp
, node
, root
, shift
,
1518 return ERR_PTR(-ENOMEM
);
1519 all_tag_set(child
, IDR_FREE
);
1520 rcu_assign_pointer(*slot
, node_to_entry(child
));
1523 } else if (!radix_tree_is_internal_node(child
))
1526 node
= entry_to_node(child
);
1527 offset
= radix_tree_descend(node
, &child
, start
);
1528 if (!tag_get(node
, IDR_FREE
, offset
)) {
1529 offset
= radix_tree_find_next_bit(node
, IDR_FREE
,
1531 start
= next_index(start
, node
, offset
);
1532 if (start
> max
|| start
== 0)
1533 return ERR_PTR(-ENOSPC
);
1534 while (offset
== RADIX_TREE_MAP_SIZE
) {
1535 offset
= node
->offset
+ 1;
1536 node
= node
->parent
;
1539 shift
= node
->shift
;
1541 child
= rcu_dereference_raw(node
->slots
[offset
]);
1543 slot
= &node
->slots
[offset
];
1546 iter
->index
= start
;
1548 iter
->next_index
= 1 + min(max
, (start
| node_maxindex(node
)));
1550 iter
->next_index
= 1;
1552 set_iter_tags(iter
, node
, offset
, IDR_FREE
);
1558 * idr_destroy - release all internal memory from an IDR
1561 * After this function is called, the IDR is empty, and may be reused or
1562 * the data structure containing it may be freed.
1564 * A typical clean-up sequence for objects stored in an idr tree will use
1565 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1566 * free the memory used to keep track of those objects.
1568 void idr_destroy(struct idr
*idr
)
1570 struct radix_tree_node
*node
= rcu_dereference_raw(idr
->idr_rt
.xa_head
);
1571 if (radix_tree_is_internal_node(node
))
1572 radix_tree_free_nodes(node
);
1573 idr
->idr_rt
.xa_head
= NULL
;
1574 root_tag_set(&idr
->idr_rt
, IDR_FREE
);
1576 EXPORT_SYMBOL(idr_destroy
);
1579 radix_tree_node_ctor(void *arg
)
1581 struct radix_tree_node
*node
= arg
;
1583 memset(node
, 0, sizeof(*node
));
1584 INIT_LIST_HEAD(&node
->private_list
);
1587 static int radix_tree_cpu_dead(unsigned int cpu
)
1589 struct radix_tree_preload
*rtp
;
1590 struct radix_tree_node
*node
;
1592 /* Free per-cpu pool of preloaded nodes */
1593 rtp
= &per_cpu(radix_tree_preloads
, cpu
);
1596 rtp
->nodes
= node
->parent
;
1597 kmem_cache_free(radix_tree_node_cachep
, node
);
1603 void __init
radix_tree_init(void)
1607 BUILD_BUG_ON(RADIX_TREE_MAX_TAGS
+ __GFP_BITS_SHIFT
> 32);
1608 BUILD_BUG_ON(ROOT_IS_IDR
& ~GFP_ZONEMASK
);
1609 BUILD_BUG_ON(XA_CHUNK_SIZE
> 255);
1610 radix_tree_node_cachep
= kmem_cache_create("radix_tree_node",
1611 sizeof(struct radix_tree_node
), 0,
1612 SLAB_PANIC
| SLAB_RECLAIM_ACCOUNT
,
1613 radix_tree_node_ctor
);
1614 ret
= cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD
, "lib/radix:dead",
1615 NULL
, radix_tree_cpu_dead
);