1 // SPDX-License-Identifier: GPL-2.0+
3 * XArray implementation
4 * Copyright (c) 2017-2018 Microsoft Corporation
5 * Copyright (c) 2018-2020 Oracle
6 * Author: Matthew Wilcox <willy@infradead.org>
9 #include <linux/bitmap.h>
10 #include <linux/export.h>
11 #include <linux/list.h>
12 #include <linux/slab.h>
13 #include <linux/xarray.h>
16 * Coding conventions in this file:
18 * @xa is used to refer to the entire xarray.
19 * @xas is the 'xarray operation state'. It may be either a pointer to
20 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
22 * @index is the index of the entry being operated on
23 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
24 * @node refers to an xa_node; usually the primary one being operated on by
26 * @offset is the index into the slots array inside an xa_node.
27 * @parent refers to the @xa_node closer to the head than @node.
28 * @entry refers to something stored in a slot in the xarray
31 static inline unsigned int xa_lock_type(const struct xarray
*xa
)
33 return (__force
unsigned int)xa
->xa_flags
& 3;
36 static inline void xas_lock_type(struct xa_state
*xas
, unsigned int lock_type
)
38 if (lock_type
== XA_LOCK_IRQ
)
40 else if (lock_type
== XA_LOCK_BH
)
46 static inline void xas_unlock_type(struct xa_state
*xas
, unsigned int lock_type
)
48 if (lock_type
== XA_LOCK_IRQ
)
50 else if (lock_type
== XA_LOCK_BH
)
56 static inline bool xa_track_free(const struct xarray
*xa
)
58 return xa
->xa_flags
& XA_FLAGS_TRACK_FREE
;
61 static inline bool xa_zero_busy(const struct xarray
*xa
)
63 return xa
->xa_flags
& XA_FLAGS_ZERO_BUSY
;
66 static inline void xa_mark_set(struct xarray
*xa
, xa_mark_t mark
)
68 if (!(xa
->xa_flags
& XA_FLAGS_MARK(mark
)))
69 xa
->xa_flags
|= XA_FLAGS_MARK(mark
);
72 static inline void xa_mark_clear(struct xarray
*xa
, xa_mark_t mark
)
74 if (xa
->xa_flags
& XA_FLAGS_MARK(mark
))
75 xa
->xa_flags
&= ~(XA_FLAGS_MARK(mark
));
78 static inline unsigned long *node_marks(struct xa_node
*node
, xa_mark_t mark
)
80 return node
->marks
[(__force
unsigned)mark
];
83 static inline bool node_get_mark(struct xa_node
*node
,
84 unsigned int offset
, xa_mark_t mark
)
86 return test_bit(offset
, node_marks(node
, mark
));
89 /* returns true if the bit was set */
90 static inline bool node_set_mark(struct xa_node
*node
, unsigned int offset
,
93 return __test_and_set_bit(offset
, node_marks(node
, mark
));
96 /* returns true if the bit was set */
97 static inline bool node_clear_mark(struct xa_node
*node
, unsigned int offset
,
100 return __test_and_clear_bit(offset
, node_marks(node
, mark
));
103 static inline bool node_any_mark(struct xa_node
*node
, xa_mark_t mark
)
105 return !bitmap_empty(node_marks(node
, mark
), XA_CHUNK_SIZE
);
108 static inline void node_mark_all(struct xa_node
*node
, xa_mark_t mark
)
110 bitmap_fill(node_marks(node
, mark
), XA_CHUNK_SIZE
);
113 #define mark_inc(mark) do { \
114 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
118 * xas_squash_marks() - Merge all marks to the first entry
119 * @xas: Array operation state.
121 * Set a mark on the first entry if any entry has it set. Clear marks on
122 * all sibling entries.
124 static void xas_squash_marks(const struct xa_state
*xas
)
126 unsigned int mark
= 0;
127 unsigned int limit
= xas
->xa_offset
+ xas
->xa_sibs
+ 1;
133 unsigned long *marks
= xas
->xa_node
->marks
[mark
];
134 if (find_next_bit(marks
, limit
, xas
->xa_offset
+ 1) == limit
)
136 __set_bit(xas
->xa_offset
, marks
);
137 bitmap_clear(marks
, xas
->xa_offset
+ 1, xas
->xa_sibs
);
138 } while (mark
++ != (__force
unsigned)XA_MARK_MAX
);
141 /* extracts the offset within this node from the index */
142 static unsigned int get_offset(unsigned long index
, struct xa_node
*node
)
144 return (index
>> node
->shift
) & XA_CHUNK_MASK
;
147 static void xas_set_offset(struct xa_state
*xas
)
149 xas
->xa_offset
= get_offset(xas
->xa_index
, xas
->xa_node
);
152 /* move the index either forwards (find) or backwards (sibling slot) */
153 static void xas_move_index(struct xa_state
*xas
, unsigned long offset
)
155 unsigned int shift
= xas
->xa_node
->shift
;
156 xas
->xa_index
&= ~XA_CHUNK_MASK
<< shift
;
157 xas
->xa_index
+= offset
<< shift
;
160 static void xas_advance(struct xa_state
*xas
)
163 xas_move_index(xas
, xas
->xa_offset
);
166 static void *set_bounds(struct xa_state
*xas
)
168 xas
->xa_node
= XAS_BOUNDS
;
173 * Starts a walk. If the @xas is already valid, we assume that it's on
174 * the right path and just return where we've got to. If we're in an
175 * error state, return NULL. If the index is outside the current scope
176 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
177 * set @xas->xa_node to NULL and return the current head of the array.
179 static void *xas_start(struct xa_state
*xas
)
184 return xas_reload(xas
);
188 entry
= xa_head(xas
->xa
);
189 if (!xa_is_node(entry
)) {
191 return set_bounds(xas
);
193 if ((xas
->xa_index
>> xa_to_node(entry
)->shift
) > XA_CHUNK_MASK
)
194 return set_bounds(xas
);
201 static void *xas_descend(struct xa_state
*xas
, struct xa_node
*node
)
203 unsigned int offset
= get_offset(xas
->xa_index
, node
);
204 void *entry
= xa_entry(xas
->xa
, node
, offset
);
207 if (xa_is_sibling(entry
)) {
208 offset
= xa_to_sibling(entry
);
209 entry
= xa_entry(xas
->xa
, node
, offset
);
212 xas
->xa_offset
= offset
;
217 * xas_load() - Load an entry from the XArray (advanced).
218 * @xas: XArray operation state.
220 * Usually walks the @xas to the appropriate state to load the entry
221 * stored at xa_index. However, it will do nothing and return %NULL if
222 * @xas is in an error state. xas_load() will never expand the tree.
224 * If the xa_state is set up to operate on a multi-index entry, xas_load()
225 * may return %NULL or an internal entry, even if there are entries
226 * present within the range specified by @xas.
228 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
229 * Return: Usually an entry in the XArray, but see description for exceptions.
231 void *xas_load(struct xa_state
*xas
)
233 void *entry
= xas_start(xas
);
235 while (xa_is_node(entry
)) {
236 struct xa_node
*node
= xa_to_node(entry
);
238 if (xas
->xa_shift
> node
->shift
)
240 entry
= xas_descend(xas
, node
);
241 if (node
->shift
== 0)
246 EXPORT_SYMBOL_GPL(xas_load
);
248 /* Move the radix tree node cache here */
249 extern struct kmem_cache
*radix_tree_node_cachep
;
250 extern void radix_tree_node_rcu_free(struct rcu_head
*head
);
252 #define XA_RCU_FREE ((struct xarray *)1)
254 static void xa_node_free(struct xa_node
*node
)
256 XA_NODE_BUG_ON(node
, !list_empty(&node
->private_list
));
257 node
->array
= XA_RCU_FREE
;
258 call_rcu(&node
->rcu_head
, radix_tree_node_rcu_free
);
262 * xas_destroy() - Free any resources allocated during the XArray operation.
263 * @xas: XArray operation state.
265 * This function is now internal-only.
267 static void xas_destroy(struct xa_state
*xas
)
269 struct xa_node
*node
= xas
->xa_alloc
;
273 XA_NODE_BUG_ON(node
, !list_empty(&node
->private_list
));
274 kmem_cache_free(radix_tree_node_cachep
, node
);
275 xas
->xa_alloc
= NULL
;
279 * xas_nomem() - Allocate memory if needed.
280 * @xas: XArray operation state.
281 * @gfp: Memory allocation flags.
283 * If we need to add new nodes to the XArray, we try to allocate memory
284 * with GFP_NOWAIT while holding the lock, which will usually succeed.
285 * If it fails, @xas is flagged as needing memory to continue. The caller
286 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
287 * the caller should retry the operation.
289 * Forward progress is guaranteed as one node is allocated here and
290 * stored in the xa_state where it will be found by xas_alloc(). More
291 * nodes will likely be found in the slab allocator, but we do not tie
294 * Return: true if memory was needed, and was successfully allocated.
296 bool xas_nomem(struct xa_state
*xas
, gfp_t gfp
)
298 if (xas
->xa_node
!= XA_ERROR(-ENOMEM
)) {
302 if (xas
->xa
->xa_flags
& XA_FLAGS_ACCOUNT
)
303 gfp
|= __GFP_ACCOUNT
;
304 xas
->xa_alloc
= kmem_cache_alloc(radix_tree_node_cachep
, gfp
);
307 XA_NODE_BUG_ON(xas
->xa_alloc
, !list_empty(&xas
->xa_alloc
->private_list
));
308 xas
->xa_node
= XAS_RESTART
;
311 EXPORT_SYMBOL_GPL(xas_nomem
);
314 * __xas_nomem() - Drop locks and allocate memory if needed.
315 * @xas: XArray operation state.
316 * @gfp: Memory allocation flags.
318 * Internal variant of xas_nomem().
320 * Return: true if memory was needed, and was successfully allocated.
322 static bool __xas_nomem(struct xa_state
*xas
, gfp_t gfp
)
323 __must_hold(xas
->xa
->xa_lock
)
325 unsigned int lock_type
= xa_lock_type(xas
->xa
);
327 if (xas
->xa_node
!= XA_ERROR(-ENOMEM
)) {
331 if (xas
->xa
->xa_flags
& XA_FLAGS_ACCOUNT
)
332 gfp
|= __GFP_ACCOUNT
;
333 if (gfpflags_allow_blocking(gfp
)) {
334 xas_unlock_type(xas
, lock_type
);
335 xas
->xa_alloc
= kmem_cache_alloc(radix_tree_node_cachep
, gfp
);
336 xas_lock_type(xas
, lock_type
);
338 xas
->xa_alloc
= kmem_cache_alloc(radix_tree_node_cachep
, gfp
);
342 XA_NODE_BUG_ON(xas
->xa_alloc
, !list_empty(&xas
->xa_alloc
->private_list
));
343 xas
->xa_node
= XAS_RESTART
;
347 static void xas_update(struct xa_state
*xas
, struct xa_node
*node
)
350 xas
->xa_update(node
);
352 XA_NODE_BUG_ON(node
, !list_empty(&node
->private_list
));
355 static void *xas_alloc(struct xa_state
*xas
, unsigned int shift
)
357 struct xa_node
*parent
= xas
->xa_node
;
358 struct xa_node
*node
= xas
->xa_alloc
;
360 if (xas_invalid(xas
))
364 xas
->xa_alloc
= NULL
;
366 gfp_t gfp
= GFP_NOWAIT
| __GFP_NOWARN
;
368 if (xas
->xa
->xa_flags
& XA_FLAGS_ACCOUNT
)
369 gfp
|= __GFP_ACCOUNT
;
371 node
= kmem_cache_alloc(radix_tree_node_cachep
, gfp
);
373 xas_set_err(xas
, -ENOMEM
);
379 node
->offset
= xas
->xa_offset
;
381 XA_NODE_BUG_ON(node
, parent
->count
> XA_CHUNK_SIZE
);
382 xas_update(xas
, parent
);
384 XA_NODE_BUG_ON(node
, shift
> BITS_PER_LONG
);
385 XA_NODE_BUG_ON(node
, !list_empty(&node
->private_list
));
389 RCU_INIT_POINTER(node
->parent
, xas
->xa_node
);
390 node
->array
= xas
->xa
;
395 #ifdef CONFIG_XARRAY_MULTI
396 /* Returns the number of indices covered by a given xa_state */
397 static unsigned long xas_size(const struct xa_state
*xas
)
399 return (xas
->xa_sibs
+ 1UL) << xas
->xa_shift
;
404 * Use this to calculate the maximum index that will need to be created
405 * in order to add the entry described by @xas. Because we cannot store a
406 * multiple-index entry at index 0, the calculation is a little more complex
407 * than you might expect.
409 static unsigned long xas_max(struct xa_state
*xas
)
411 unsigned long max
= xas
->xa_index
;
413 #ifdef CONFIG_XARRAY_MULTI
414 if (xas
->xa_shift
|| xas
->xa_sibs
) {
415 unsigned long mask
= xas_size(xas
) - 1;
425 /* The maximum index that can be contained in the array without expanding it */
426 static unsigned long max_index(void *entry
)
428 if (!xa_is_node(entry
))
430 return (XA_CHUNK_SIZE
<< xa_to_node(entry
)->shift
) - 1;
433 static void xas_shrink(struct xa_state
*xas
)
435 struct xarray
*xa
= xas
->xa
;
436 struct xa_node
*node
= xas
->xa_node
;
441 XA_NODE_BUG_ON(node
, node
->count
> XA_CHUNK_SIZE
);
442 if (node
->count
!= 1)
444 entry
= xa_entry_locked(xa
, node
, 0);
447 if (!xa_is_node(entry
) && node
->shift
)
449 if (xa_is_zero(entry
) && xa_zero_busy(xa
))
451 xas
->xa_node
= XAS_BOUNDS
;
453 RCU_INIT_POINTER(xa
->xa_head
, entry
);
454 if (xa_track_free(xa
) && !node_get_mark(node
, 0, XA_FREE_MARK
))
455 xa_mark_clear(xa
, XA_FREE_MARK
);
459 if (!xa_is_node(entry
))
460 RCU_INIT_POINTER(node
->slots
[0], XA_RETRY_ENTRY
);
461 xas_update(xas
, node
);
463 if (!xa_is_node(entry
))
465 node
= xa_to_node(entry
);
471 * xas_delete_node() - Attempt to delete an xa_node
472 * @xas: Array operation state.
474 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
475 * a non-zero reference count.
477 static void xas_delete_node(struct xa_state
*xas
)
479 struct xa_node
*node
= xas
->xa_node
;
482 struct xa_node
*parent
;
484 XA_NODE_BUG_ON(node
, node
->count
> XA_CHUNK_SIZE
);
488 parent
= xa_parent_locked(xas
->xa
, node
);
489 xas
->xa_node
= parent
;
490 xas
->xa_offset
= node
->offset
;
494 xas
->xa
->xa_head
= NULL
;
495 xas
->xa_node
= XAS_BOUNDS
;
499 parent
->slots
[xas
->xa_offset
] = NULL
;
501 XA_NODE_BUG_ON(parent
, parent
->count
> XA_CHUNK_SIZE
);
503 xas_update(xas
, node
);
511 * xas_free_nodes() - Free this node and all nodes that it references
512 * @xas: Array operation state.
515 * This node has been removed from the tree. We must now free it and all
516 * of its subnodes. There may be RCU walkers with references into the tree,
517 * so we must replace all entries with retry markers.
519 static void xas_free_nodes(struct xa_state
*xas
, struct xa_node
*top
)
521 unsigned int offset
= 0;
522 struct xa_node
*node
= top
;
525 void *entry
= xa_entry_locked(xas
->xa
, node
, offset
);
527 if (node
->shift
&& xa_is_node(entry
)) {
528 node
= xa_to_node(entry
);
533 RCU_INIT_POINTER(node
->slots
[offset
], XA_RETRY_ENTRY
);
535 while (offset
== XA_CHUNK_SIZE
) {
536 struct xa_node
*parent
;
538 parent
= xa_parent_locked(xas
->xa
, node
);
539 offset
= node
->offset
+ 1;
542 xas_update(xas
, node
);
552 * xas_expand adds nodes to the head of the tree until it has reached
553 * sufficient height to be able to contain @xas->xa_index
555 static int xas_expand(struct xa_state
*xas
, void *head
)
557 struct xarray
*xa
= xas
->xa
;
558 struct xa_node
*node
= NULL
;
559 unsigned int shift
= 0;
560 unsigned long max
= xas_max(xas
);
565 while ((max
>> shift
) >= XA_CHUNK_SIZE
)
566 shift
+= XA_CHUNK_SHIFT
;
567 return shift
+ XA_CHUNK_SHIFT
;
568 } else if (xa_is_node(head
)) {
569 node
= xa_to_node(head
);
570 shift
= node
->shift
+ XA_CHUNK_SHIFT
;
574 while (max
> max_index(head
)) {
577 XA_NODE_BUG_ON(node
, shift
> BITS_PER_LONG
);
578 node
= xas_alloc(xas
, shift
);
583 if (xa_is_value(head
))
585 RCU_INIT_POINTER(node
->slots
[0], head
);
587 /* Propagate the aggregated mark info to the new child */
589 if (xa_track_free(xa
) && mark
== XA_FREE_MARK
) {
590 node_mark_all(node
, XA_FREE_MARK
);
591 if (!xa_marked(xa
, XA_FREE_MARK
)) {
592 node_clear_mark(node
, 0, XA_FREE_MARK
);
593 xa_mark_set(xa
, XA_FREE_MARK
);
595 } else if (xa_marked(xa
, mark
)) {
596 node_set_mark(node
, 0, mark
);
598 if (mark
== XA_MARK_MAX
)
604 * Now that the new node is fully initialised, we can add
607 if (xa_is_node(head
)) {
608 xa_to_node(head
)->offset
= 0;
609 rcu_assign_pointer(xa_to_node(head
)->parent
, node
);
611 head
= xa_mk_node(node
);
612 rcu_assign_pointer(xa
->xa_head
, head
);
613 xas_update(xas
, node
);
615 shift
+= XA_CHUNK_SHIFT
;
623 * xas_create() - Create a slot to store an entry in.
624 * @xas: XArray operation state.
625 * @allow_root: %true if we can store the entry in the root directly
627 * Most users will not need to call this function directly, as it is called
628 * by xas_store(). It is useful for doing conditional store operations
629 * (see the xa_cmpxchg() implementation for an example).
631 * Return: If the slot already existed, returns the contents of this slot.
632 * If the slot was newly created, returns %NULL. If it failed to create the
633 * slot, returns %NULL and indicates the error in @xas.
635 static void *xas_create(struct xa_state
*xas
, bool allow_root
)
637 struct xarray
*xa
= xas
->xa
;
640 struct xa_node
*node
= xas
->xa_node
;
642 unsigned int order
= xas
->xa_shift
;
645 entry
= xa_head_locked(xa
);
647 if (!entry
&& xa_zero_busy(xa
))
648 entry
= XA_ZERO_ENTRY
;
649 shift
= xas_expand(xas
, entry
);
652 if (!shift
&& !allow_root
)
653 shift
= XA_CHUNK_SHIFT
;
654 entry
= xa_head_locked(xa
);
656 } else if (xas_error(xas
)) {
659 unsigned int offset
= xas
->xa_offset
;
662 entry
= xa_entry_locked(xa
, node
, offset
);
663 slot
= &node
->slots
[offset
];
666 entry
= xa_head_locked(xa
);
670 while (shift
> order
) {
671 shift
-= XA_CHUNK_SHIFT
;
673 node
= xas_alloc(xas
, shift
);
676 if (xa_track_free(xa
))
677 node_mark_all(node
, XA_FREE_MARK
);
678 rcu_assign_pointer(*slot
, xa_mk_node(node
));
679 } else if (xa_is_node(entry
)) {
680 node
= xa_to_node(entry
);
684 entry
= xas_descend(xas
, node
);
685 slot
= &node
->slots
[xas
->xa_offset
];
692 * xas_create_range() - Ensure that stores to this range will succeed
693 * @xas: XArray operation state.
695 * Creates all of the slots in the range covered by @xas. Sets @xas to
696 * create single-index entries and positions it at the beginning of the
697 * range. This is for the benefit of users which have not yet been
698 * converted to use multi-index entries.
700 void xas_create_range(struct xa_state
*xas
)
702 unsigned long index
= xas
->xa_index
;
703 unsigned char shift
= xas
->xa_shift
;
704 unsigned char sibs
= xas
->xa_sibs
;
706 xas
->xa_index
|= ((sibs
+ 1) << shift
) - 1;
707 if (xas_is_node(xas
) && xas
->xa_node
->shift
== xas
->xa_shift
)
708 xas
->xa_offset
|= sibs
;
713 xas_create(xas
, true);
716 if (xas
->xa_index
<= (index
| XA_CHUNK_MASK
))
718 xas
->xa_index
-= XA_CHUNK_SIZE
;
721 struct xa_node
*node
= xas
->xa_node
;
722 xas
->xa_node
= xa_parent_locked(xas
->xa
, node
);
723 xas
->xa_offset
= node
->offset
- 1;
724 if (node
->offset
!= 0)
730 xas
->xa_shift
= shift
;
732 xas
->xa_index
= index
;
735 xas
->xa_index
= index
;
739 EXPORT_SYMBOL_GPL(xas_create_range
);
741 static void update_node(struct xa_state
*xas
, struct xa_node
*node
,
742 int count
, int values
)
744 if (!node
|| (!count
&& !values
))
747 node
->count
+= count
;
748 node
->nr_values
+= values
;
749 XA_NODE_BUG_ON(node
, node
->count
> XA_CHUNK_SIZE
);
750 XA_NODE_BUG_ON(node
, node
->nr_values
> XA_CHUNK_SIZE
);
751 xas_update(xas
, node
);
753 xas_delete_node(xas
);
757 * xas_store() - Store this entry in the XArray.
758 * @xas: XArray operation state.
761 * If @xas is operating on a multi-index entry, the entry returned by this
762 * function is essentially meaningless (it may be an internal entry or it
763 * may be %NULL, even if there are non-NULL entries at some of the indices
764 * covered by the range). This is not a problem for any current users,
765 * and can be changed if needed.
767 * Return: The old entry at this index.
769 void *xas_store(struct xa_state
*xas
, void *entry
)
771 struct xa_node
*node
;
772 void __rcu
**slot
= &xas
->xa
->xa_head
;
773 unsigned int offset
, max
;
777 bool value
= xa_is_value(entry
);
780 bool allow_root
= !xa_is_node(entry
) && !xa_is_zero(entry
);
781 first
= xas_create(xas
, allow_root
);
783 first
= xas_load(xas
);
786 if (xas_invalid(xas
))
789 if (node
&& (xas
->xa_shift
< node
->shift
))
791 if ((first
== entry
) && !xas
->xa_sibs
)
795 offset
= xas
->xa_offset
;
796 max
= xas
->xa_offset
+ xas
->xa_sibs
;
798 slot
= &node
->slots
[offset
];
800 xas_squash_marks(xas
);
807 * Must clear the marks before setting the entry to NULL,
808 * otherwise xas_for_each_marked may find a NULL entry and
809 * stop early. rcu_assign_pointer contains a release barrier
810 * so the mark clearing will appear to happen before the
811 * entry is set to NULL.
813 rcu_assign_pointer(*slot
, entry
);
814 if (xa_is_node(next
) && (!node
|| node
->shift
))
815 xas_free_nodes(xas
, xa_to_node(next
));
818 count
+= !next
- !entry
;
819 values
+= !xa_is_value(first
) - !value
;
823 if (!xa_is_sibling(entry
))
824 entry
= xa_mk_sibling(xas
->xa_offset
);
826 if (offset
== XA_CHUNK_MASK
)
829 next
= xa_entry_locked(xas
->xa
, node
, ++offset
);
830 if (!xa_is_sibling(next
)) {
831 if (!entry
&& (offset
> max
))
838 update_node(xas
, node
, count
, values
);
841 EXPORT_SYMBOL_GPL(xas_store
);
844 * xas_get_mark() - Returns the state of this mark.
845 * @xas: XArray operation state.
846 * @mark: Mark number.
848 * Return: true if the mark is set, false if the mark is clear or @xas
849 * is in an error state.
851 bool xas_get_mark(const struct xa_state
*xas
, xa_mark_t mark
)
853 if (xas_invalid(xas
))
856 return xa_marked(xas
->xa
, mark
);
857 return node_get_mark(xas
->xa_node
, xas
->xa_offset
, mark
);
859 EXPORT_SYMBOL_GPL(xas_get_mark
);
862 * xas_set_mark() - Sets the mark on this entry and its parents.
863 * @xas: XArray operation state.
864 * @mark: Mark number.
866 * Sets the specified mark on this entry, and walks up the tree setting it
867 * on all the ancestor entries. Does nothing if @xas has not been walked to
868 * an entry, or is in an error state.
870 void xas_set_mark(const struct xa_state
*xas
, xa_mark_t mark
)
872 struct xa_node
*node
= xas
->xa_node
;
873 unsigned int offset
= xas
->xa_offset
;
875 if (xas_invalid(xas
))
879 if (node_set_mark(node
, offset
, mark
))
881 offset
= node
->offset
;
882 node
= xa_parent_locked(xas
->xa
, node
);
885 if (!xa_marked(xas
->xa
, mark
))
886 xa_mark_set(xas
->xa
, mark
);
888 EXPORT_SYMBOL_GPL(xas_set_mark
);
891 * xas_clear_mark() - Clears the mark on this entry and its parents.
892 * @xas: XArray operation state.
893 * @mark: Mark number.
895 * Clears the specified mark on this entry, and walks back to the head
896 * attempting to clear it on all the ancestor entries. Does nothing if
897 * @xas has not been walked to an entry, or is in an error state.
899 void xas_clear_mark(const struct xa_state
*xas
, xa_mark_t mark
)
901 struct xa_node
*node
= xas
->xa_node
;
902 unsigned int offset
= xas
->xa_offset
;
904 if (xas_invalid(xas
))
908 if (!node_clear_mark(node
, offset
, mark
))
910 if (node_any_mark(node
, mark
))
913 offset
= node
->offset
;
914 node
= xa_parent_locked(xas
->xa
, node
);
917 if (xa_marked(xas
->xa
, mark
))
918 xa_mark_clear(xas
->xa
, mark
);
920 EXPORT_SYMBOL_GPL(xas_clear_mark
);
923 * xas_init_marks() - Initialise all marks for the entry
924 * @xas: Array operations state.
926 * Initialise all marks for the entry specified by @xas. If we're tracking
927 * free entries with a mark, we need to set it on all entries. All other
930 * This implementation is not as efficient as it could be; we may walk
931 * up the tree multiple times.
933 void xas_init_marks(const struct xa_state
*xas
)
938 if (xa_track_free(xas
->xa
) && mark
== XA_FREE_MARK
)
939 xas_set_mark(xas
, mark
);
941 xas_clear_mark(xas
, mark
);
942 if (mark
== XA_MARK_MAX
)
947 EXPORT_SYMBOL_GPL(xas_init_marks
);
950 * xas_pause() - Pause a walk to drop a lock.
951 * @xas: XArray operation state.
953 * Some users need to pause a walk and drop the lock they're holding in
954 * order to yield to a higher priority thread or carry out an operation
955 * on an entry. Those users should call this function before they drop
956 * the lock. It resets the @xas to be suitable for the next iteration
957 * of the loop after the user has reacquired the lock. If most entries
958 * found during a walk require you to call xas_pause(), the xa_for_each()
959 * iterator may be more appropriate.
961 * Note that xas_pause() only works for forward iteration. If a user needs
962 * to pause a reverse iteration, we will need a xas_pause_rev().
964 void xas_pause(struct xa_state
*xas
)
966 struct xa_node
*node
= xas
->xa_node
;
968 if (xas_invalid(xas
))
971 xas
->xa_node
= XAS_RESTART
;
973 unsigned long offset
= xas
->xa_offset
;
974 while (++offset
< XA_CHUNK_SIZE
) {
975 if (!xa_is_sibling(xa_entry(xas
->xa
, node
, offset
)))
978 xas
->xa_index
+= (offset
- xas
->xa_offset
) << node
->shift
;
979 if (xas
->xa_index
== 0)
980 xas
->xa_node
= XAS_BOUNDS
;
985 EXPORT_SYMBOL_GPL(xas_pause
);
988 * __xas_prev() - Find the previous entry in the XArray.
989 * @xas: XArray operation state.
991 * Helper function for xas_prev() which handles all the complex cases
994 void *__xas_prev(struct xa_state
*xas
)
998 if (!xas_frozen(xas
->xa_node
))
1001 return set_bounds(xas
);
1002 if (xas_not_node(xas
->xa_node
))
1003 return xas_load(xas
);
1005 if (xas
->xa_offset
!= get_offset(xas
->xa_index
, xas
->xa_node
))
1008 while (xas
->xa_offset
== 255) {
1009 xas
->xa_offset
= xas
->xa_node
->offset
- 1;
1010 xas
->xa_node
= xa_parent(xas
->xa
, xas
->xa_node
);
1012 return set_bounds(xas
);
1016 entry
= xa_entry(xas
->xa
, xas
->xa_node
, xas
->xa_offset
);
1017 if (!xa_is_node(entry
))
1020 xas
->xa_node
= xa_to_node(entry
);
1021 xas_set_offset(xas
);
1024 EXPORT_SYMBOL_GPL(__xas_prev
);
1027 * __xas_next() - Find the next entry in the XArray.
1028 * @xas: XArray operation state.
1030 * Helper function for xas_next() which handles all the complex cases
1033 void *__xas_next(struct xa_state
*xas
)
1037 if (!xas_frozen(xas
->xa_node
))
1040 return set_bounds(xas
);
1041 if (xas_not_node(xas
->xa_node
))
1042 return xas_load(xas
);
1044 if (xas
->xa_offset
!= get_offset(xas
->xa_index
, xas
->xa_node
))
1047 while (xas
->xa_offset
== XA_CHUNK_SIZE
) {
1048 xas
->xa_offset
= xas
->xa_node
->offset
+ 1;
1049 xas
->xa_node
= xa_parent(xas
->xa
, xas
->xa_node
);
1051 return set_bounds(xas
);
1055 entry
= xa_entry(xas
->xa
, xas
->xa_node
, xas
->xa_offset
);
1056 if (!xa_is_node(entry
))
1059 xas
->xa_node
= xa_to_node(entry
);
1060 xas_set_offset(xas
);
1063 EXPORT_SYMBOL_GPL(__xas_next
);
1066 * xas_find() - Find the next present entry in the XArray.
1067 * @xas: XArray operation state.
1068 * @max: Highest index to return.
1070 * If the @xas has not yet been walked to an entry, return the entry
1071 * which has an index >= xas.xa_index. If it has been walked, the entry
1072 * currently being pointed at has been processed, and so we move to the
1075 * If no entry is found and the array is smaller than @max, the iterator
1076 * is set to the smallest index not yet in the array. This allows @xas
1077 * to be immediately passed to xas_store().
1079 * Return: The entry, if found, otherwise %NULL.
1081 void *xas_find(struct xa_state
*xas
, unsigned long max
)
1085 if (xas_error(xas
) || xas
->xa_node
== XAS_BOUNDS
)
1087 if (xas
->xa_index
> max
)
1088 return set_bounds(xas
);
1090 if (!xas
->xa_node
) {
1092 return set_bounds(xas
);
1093 } else if (xas
->xa_node
== XAS_RESTART
) {
1094 entry
= xas_load(xas
);
1095 if (entry
|| xas_not_node(xas
->xa_node
))
1097 } else if (!xas
->xa_node
->shift
&&
1098 xas
->xa_offset
!= (xas
->xa_index
& XA_CHUNK_MASK
)) {
1099 xas
->xa_offset
= ((xas
->xa_index
- 1) & XA_CHUNK_MASK
) + 1;
1104 while (xas
->xa_node
&& (xas
->xa_index
<= max
)) {
1105 if (unlikely(xas
->xa_offset
== XA_CHUNK_SIZE
)) {
1106 xas
->xa_offset
= xas
->xa_node
->offset
+ 1;
1107 xas
->xa_node
= xa_parent(xas
->xa
, xas
->xa_node
);
1111 entry
= xa_entry(xas
->xa
, xas
->xa_node
, xas
->xa_offset
);
1112 if (xa_is_node(entry
)) {
1113 xas
->xa_node
= xa_to_node(entry
);
1117 if (entry
&& !xa_is_sibling(entry
))
1124 xas
->xa_node
= XAS_BOUNDS
;
1127 EXPORT_SYMBOL_GPL(xas_find
);
1130 * xas_find_marked() - Find the next marked entry in the XArray.
1131 * @xas: XArray operation state.
1132 * @max: Highest index to return.
1133 * @mark: Mark number to search for.
1135 * If the @xas has not yet been walked to an entry, return the marked entry
1136 * which has an index >= xas.xa_index. If it has been walked, the entry
1137 * currently being pointed at has been processed, and so we return the
1138 * first marked entry with an index > xas.xa_index.
1140 * If no marked entry is found and the array is smaller than @max, @xas is
1141 * set to the bounds state and xas->xa_index is set to the smallest index
1142 * not yet in the array. This allows @xas to be immediately passed to
1145 * If no entry is found before @max is reached, @xas is set to the restart
1148 * Return: The entry, if found, otherwise %NULL.
1150 void *xas_find_marked(struct xa_state
*xas
, unsigned long max
, xa_mark_t mark
)
1152 bool advance
= true;
1153 unsigned int offset
;
1158 if (xas
->xa_index
> max
)
1161 if (!xas
->xa_node
) {
1164 } else if (xas_top(xas
->xa_node
)) {
1166 entry
= xa_head(xas
->xa
);
1167 xas
->xa_node
= NULL
;
1168 if (xas
->xa_index
> max_index(entry
))
1170 if (!xa_is_node(entry
)) {
1171 if (xa_marked(xas
->xa
, mark
))
1176 xas
->xa_node
= xa_to_node(entry
);
1177 xas
->xa_offset
= xas
->xa_index
>> xas
->xa_node
->shift
;
1180 while (xas
->xa_index
<= max
) {
1181 if (unlikely(xas
->xa_offset
== XA_CHUNK_SIZE
)) {
1182 xas
->xa_offset
= xas
->xa_node
->offset
+ 1;
1183 xas
->xa_node
= xa_parent(xas
->xa
, xas
->xa_node
);
1191 entry
= xa_entry(xas
->xa
, xas
->xa_node
, xas
->xa_offset
);
1192 if (xa_is_sibling(entry
)) {
1193 xas
->xa_offset
= xa_to_sibling(entry
);
1194 xas_move_index(xas
, xas
->xa_offset
);
1198 offset
= xas_find_chunk(xas
, advance
, mark
);
1199 if (offset
> xas
->xa_offset
) {
1201 xas_move_index(xas
, offset
);
1203 if ((xas
->xa_index
- 1) >= max
)
1205 xas
->xa_offset
= offset
;
1206 if (offset
== XA_CHUNK_SIZE
)
1210 entry
= xa_entry(xas
->xa
, xas
->xa_node
, xas
->xa_offset
);
1211 if (!entry
&& !(xa_track_free(xas
->xa
) && mark
== XA_FREE_MARK
))
1213 if (!xa_is_node(entry
))
1215 xas
->xa_node
= xa_to_node(entry
);
1216 xas_set_offset(xas
);
1220 if (xas
->xa_index
> max
)
1222 return set_bounds(xas
);
1224 xas
->xa_node
= XAS_RESTART
;
1227 EXPORT_SYMBOL_GPL(xas_find_marked
);
1230 * xas_find_conflict() - Find the next present entry in a range.
1231 * @xas: XArray operation state.
1233 * The @xas describes both a range and a position within that range.
1235 * Context: Any context. Expects xa_lock to be held.
1236 * Return: The next entry in the range covered by @xas or %NULL.
1238 void *xas_find_conflict(struct xa_state
*xas
)
1248 if (xas_top(xas
->xa_node
)) {
1249 curr
= xas_start(xas
);
1252 while (xa_is_node(curr
)) {
1253 struct xa_node
*node
= xa_to_node(curr
);
1254 curr
= xas_descend(xas
, node
);
1260 if (xas
->xa_node
->shift
> xas
->xa_shift
)
1264 if (xas
->xa_node
->shift
== xas
->xa_shift
) {
1265 if ((xas
->xa_offset
& xas
->xa_sibs
) == xas
->xa_sibs
)
1267 } else if (xas
->xa_offset
== XA_CHUNK_MASK
) {
1268 xas
->xa_offset
= xas
->xa_node
->offset
;
1269 xas
->xa_node
= xa_parent_locked(xas
->xa
, xas
->xa_node
);
1274 curr
= xa_entry_locked(xas
->xa
, xas
->xa_node
, ++xas
->xa_offset
);
1275 if (xa_is_sibling(curr
))
1277 while (xa_is_node(curr
)) {
1278 xas
->xa_node
= xa_to_node(curr
);
1280 curr
= xa_entry_locked(xas
->xa
, xas
->xa_node
, 0);
1285 xas
->xa_offset
-= xas
->xa_sibs
;
1288 EXPORT_SYMBOL_GPL(xas_find_conflict
);
1291 * xa_load() - Load an entry from an XArray.
1293 * @index: index into array.
1295 * Context: Any context. Takes and releases the RCU lock.
1296 * Return: The entry at @index in @xa.
1298 void *xa_load(struct xarray
*xa
, unsigned long index
)
1300 XA_STATE(xas
, xa
, index
);
1305 entry
= xas_load(&xas
);
1306 if (xa_is_zero(entry
))
1308 } while (xas_retry(&xas
, entry
));
1313 EXPORT_SYMBOL(xa_load
);
1315 static void *xas_result(struct xa_state
*xas
, void *curr
)
1317 if (xa_is_zero(curr
))
1320 curr
= xas
->xa_node
;
1325 * __xa_erase() - Erase this entry from the XArray while locked.
1327 * @index: Index into array.
1329 * After this function returns, loading from @index will return %NULL.
1330 * If the index is part of a multi-index entry, all indices will be erased
1331 * and none of the entries will be part of a multi-index entry.
1333 * Context: Any context. Expects xa_lock to be held on entry.
1334 * Return: The entry which used to be at this index.
1336 void *__xa_erase(struct xarray
*xa
, unsigned long index
)
1338 XA_STATE(xas
, xa
, index
);
1339 return xas_result(&xas
, xas_store(&xas
, NULL
));
1341 EXPORT_SYMBOL(__xa_erase
);
1344 * xa_erase() - Erase this entry from the XArray.
1346 * @index: Index of entry.
1348 * After this function returns, loading from @index will return %NULL.
1349 * If the index is part of a multi-index entry, all indices will be erased
1350 * and none of the entries will be part of a multi-index entry.
1352 * Context: Any context. Takes and releases the xa_lock.
1353 * Return: The entry which used to be at this index.
1355 void *xa_erase(struct xarray
*xa
, unsigned long index
)
1360 entry
= __xa_erase(xa
, index
);
1365 EXPORT_SYMBOL(xa_erase
);
1368 * __xa_store() - Store this entry in the XArray.
1370 * @index: Index into array.
1371 * @entry: New entry.
1372 * @gfp: Memory allocation flags.
1374 * You must already be holding the xa_lock when calling this function.
1375 * It will drop the lock if needed to allocate memory, and then reacquire
1378 * Context: Any context. Expects xa_lock to be held on entry. May
1379 * release and reacquire xa_lock if @gfp flags permit.
1380 * Return: The old entry at this index or xa_err() if an error happened.
1382 void *__xa_store(struct xarray
*xa
, unsigned long index
, void *entry
, gfp_t gfp
)
1384 XA_STATE(xas
, xa
, index
);
1387 if (WARN_ON_ONCE(xa_is_advanced(entry
)))
1388 return XA_ERROR(-EINVAL
);
1389 if (xa_track_free(xa
) && !entry
)
1390 entry
= XA_ZERO_ENTRY
;
1393 curr
= xas_store(&xas
, entry
);
1394 if (xa_track_free(xa
))
1395 xas_clear_mark(&xas
, XA_FREE_MARK
);
1396 } while (__xas_nomem(&xas
, gfp
));
1398 return xas_result(&xas
, curr
);
1400 EXPORT_SYMBOL(__xa_store
);
1403 * xa_store() - Store this entry in the XArray.
1405 * @index: Index into array.
1406 * @entry: New entry.
1407 * @gfp: Memory allocation flags.
1409 * After this function returns, loads from this index will return @entry.
1410 * Storing into an existing multislot entry updates the entry of every index.
1411 * The marks associated with @index are unaffected unless @entry is %NULL.
1413 * Context: Any context. Takes and releases the xa_lock.
1414 * May sleep if the @gfp flags permit.
1415 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1416 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1419 void *xa_store(struct xarray
*xa
, unsigned long index
, void *entry
, gfp_t gfp
)
1424 curr
= __xa_store(xa
, index
, entry
, gfp
);
1429 EXPORT_SYMBOL(xa_store
);
1432 * __xa_cmpxchg() - Store this entry in the XArray.
1434 * @index: Index into array.
1435 * @old: Old value to test against.
1436 * @entry: New entry.
1437 * @gfp: Memory allocation flags.
1439 * You must already be holding the xa_lock when calling this function.
1440 * It will drop the lock if needed to allocate memory, and then reacquire
1443 * Context: Any context. Expects xa_lock to be held on entry. May
1444 * release and reacquire xa_lock if @gfp flags permit.
1445 * Return: The old entry at this index or xa_err() if an error happened.
1447 void *__xa_cmpxchg(struct xarray
*xa
, unsigned long index
,
1448 void *old
, void *entry
, gfp_t gfp
)
1450 XA_STATE(xas
, xa
, index
);
1453 if (WARN_ON_ONCE(xa_is_advanced(entry
)))
1454 return XA_ERROR(-EINVAL
);
1457 curr
= xas_load(&xas
);
1459 xas_store(&xas
, entry
);
1460 if (xa_track_free(xa
) && entry
&& !curr
)
1461 xas_clear_mark(&xas
, XA_FREE_MARK
);
1463 } while (__xas_nomem(&xas
, gfp
));
1465 return xas_result(&xas
, curr
);
1467 EXPORT_SYMBOL(__xa_cmpxchg
);
1470 * __xa_insert() - Store this entry in the XArray if no entry is present.
1472 * @index: Index into array.
1473 * @entry: New entry.
1474 * @gfp: Memory allocation flags.
1476 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1477 * if no entry is present. Inserting will fail if a reserved entry is
1478 * present, even though loading from this index will return NULL.
1480 * Context: Any context. Expects xa_lock to be held on entry. May
1481 * release and reacquire xa_lock if @gfp flags permit.
1482 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
1483 * -ENOMEM if memory could not be allocated.
1485 int __xa_insert(struct xarray
*xa
, unsigned long index
, void *entry
, gfp_t gfp
)
1487 XA_STATE(xas
, xa
, index
);
1490 if (WARN_ON_ONCE(xa_is_advanced(entry
)))
1493 entry
= XA_ZERO_ENTRY
;
1496 curr
= xas_load(&xas
);
1498 xas_store(&xas
, entry
);
1499 if (xa_track_free(xa
))
1500 xas_clear_mark(&xas
, XA_FREE_MARK
);
1502 xas_set_err(&xas
, -EBUSY
);
1504 } while (__xas_nomem(&xas
, gfp
));
1506 return xas_error(&xas
);
1508 EXPORT_SYMBOL(__xa_insert
);
1510 #ifdef CONFIG_XARRAY_MULTI
1511 static void xas_set_range(struct xa_state
*xas
, unsigned long first
,
1514 unsigned int shift
= 0;
1515 unsigned long sibs
= last
- first
;
1516 unsigned int offset
= XA_CHUNK_MASK
;
1518 xas_set(xas
, first
);
1520 while ((first
& XA_CHUNK_MASK
) == 0) {
1521 if (sibs
< XA_CHUNK_MASK
)
1523 if ((sibs
== XA_CHUNK_MASK
) && (offset
< XA_CHUNK_MASK
))
1525 shift
+= XA_CHUNK_SHIFT
;
1526 if (offset
== XA_CHUNK_MASK
)
1527 offset
= sibs
& XA_CHUNK_MASK
;
1528 sibs
>>= XA_CHUNK_SHIFT
;
1529 first
>>= XA_CHUNK_SHIFT
;
1532 offset
= first
& XA_CHUNK_MASK
;
1533 if (offset
+ sibs
> XA_CHUNK_MASK
)
1534 sibs
= XA_CHUNK_MASK
- offset
;
1535 if ((((first
+ sibs
+ 1) << shift
) - 1) > last
)
1538 xas
->xa_shift
= shift
;
1539 xas
->xa_sibs
= sibs
;
1543 * xa_store_range() - Store this entry at a range of indices in the XArray.
1545 * @first: First index to affect.
1546 * @last: Last index to affect.
1547 * @entry: New entry.
1548 * @gfp: Memory allocation flags.
1550 * After this function returns, loads from any index between @first and @last,
1551 * inclusive will return @entry.
1552 * Storing into an existing multislot entry updates the entry of every index.
1553 * The marks associated with @index are unaffected unless @entry is %NULL.
1555 * Context: Process context. Takes and releases the xa_lock. May sleep
1556 * if the @gfp flags permit.
1557 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1558 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1560 void *xa_store_range(struct xarray
*xa
, unsigned long first
,
1561 unsigned long last
, void *entry
, gfp_t gfp
)
1563 XA_STATE(xas
, xa
, 0);
1565 if (WARN_ON_ONCE(xa_is_internal(entry
)))
1566 return XA_ERROR(-EINVAL
);
1568 return XA_ERROR(-EINVAL
);
1573 unsigned int order
= BITS_PER_LONG
;
1575 order
= __ffs(last
+ 1);
1576 xas_set_order(&xas
, last
, order
);
1577 xas_create(&xas
, true);
1578 if (xas_error(&xas
))
1582 xas_set_range(&xas
, first
, last
);
1583 xas_store(&xas
, entry
);
1584 if (xas_error(&xas
))
1586 first
+= xas_size(&xas
);
1587 } while (first
<= last
);
1590 } while (xas_nomem(&xas
, gfp
));
1592 return xas_result(&xas
, NULL
);
1594 EXPORT_SYMBOL(xa_store_range
);
1595 #endif /* CONFIG_XARRAY_MULTI */
1598 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1600 * @id: Pointer to ID.
1601 * @limit: Range for allocated ID.
1602 * @entry: New entry.
1603 * @gfp: Memory allocation flags.
1605 * Finds an empty entry in @xa between @limit.min and @limit.max,
1606 * stores the index into the @id pointer, then stores the entry at
1607 * that index. A concurrent lookup will not see an uninitialised @id.
1609 * Context: Any context. Expects xa_lock to be held on entry. May
1610 * release and reacquire xa_lock if @gfp flags permit.
1611 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1612 * -EBUSY if there are no free entries in @limit.
1614 int __xa_alloc(struct xarray
*xa
, u32
*id
, void *entry
,
1615 struct xa_limit limit
, gfp_t gfp
)
1617 XA_STATE(xas
, xa
, 0);
1619 if (WARN_ON_ONCE(xa_is_advanced(entry
)))
1621 if (WARN_ON_ONCE(!xa_track_free(xa
)))
1625 entry
= XA_ZERO_ENTRY
;
1628 xas
.xa_index
= limit
.min
;
1629 xas_find_marked(&xas
, limit
.max
, XA_FREE_MARK
);
1630 if (xas
.xa_node
== XAS_RESTART
)
1631 xas_set_err(&xas
, -EBUSY
);
1634 xas_store(&xas
, entry
);
1635 xas_clear_mark(&xas
, XA_FREE_MARK
);
1636 } while (__xas_nomem(&xas
, gfp
));
1638 return xas_error(&xas
);
1640 EXPORT_SYMBOL(__xa_alloc
);
1643 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1645 * @id: Pointer to ID.
1646 * @entry: New entry.
1647 * @limit: Range of allocated ID.
1648 * @next: Pointer to next ID to allocate.
1649 * @gfp: Memory allocation flags.
1651 * Finds an empty entry in @xa between @limit.min and @limit.max,
1652 * stores the index into the @id pointer, then stores the entry at
1653 * that index. A concurrent lookup will not see an uninitialised @id.
1654 * The search for an empty entry will start at @next and will wrap
1655 * around if necessary.
1657 * Context: Any context. Expects xa_lock to be held on entry. May
1658 * release and reacquire xa_lock if @gfp flags permit.
1659 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1660 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1661 * allocated or -EBUSY if there are no free entries in @limit.
1663 int __xa_alloc_cyclic(struct xarray
*xa
, u32
*id
, void *entry
,
1664 struct xa_limit limit
, u32
*next
, gfp_t gfp
)
1666 u32 min
= limit
.min
;
1669 limit
.min
= max(min
, *next
);
1670 ret
= __xa_alloc(xa
, id
, entry
, limit
, gfp
);
1671 if ((xa
->xa_flags
& XA_FLAGS_ALLOC_WRAPPED
) && ret
== 0) {
1672 xa
->xa_flags
&= ~XA_FLAGS_ALLOC_WRAPPED
;
1676 if (ret
< 0 && limit
.min
> min
) {
1678 ret
= __xa_alloc(xa
, id
, entry
, limit
, gfp
);
1686 xa
->xa_flags
|= XA_FLAGS_ALLOC_WRAPPED
;
1690 EXPORT_SYMBOL(__xa_alloc_cyclic
);
1693 * __xa_set_mark() - Set this mark on this entry while locked.
1695 * @index: Index of entry.
1696 * @mark: Mark number.
1698 * Attempting to set a mark on a %NULL entry does not succeed.
1700 * Context: Any context. Expects xa_lock to be held on entry.
1702 void __xa_set_mark(struct xarray
*xa
, unsigned long index
, xa_mark_t mark
)
1704 XA_STATE(xas
, xa
, index
);
1705 void *entry
= xas_load(&xas
);
1708 xas_set_mark(&xas
, mark
);
1710 EXPORT_SYMBOL(__xa_set_mark
);
1713 * __xa_clear_mark() - Clear this mark on this entry while locked.
1715 * @index: Index of entry.
1716 * @mark: Mark number.
1718 * Context: Any context. Expects xa_lock to be held on entry.
1720 void __xa_clear_mark(struct xarray
*xa
, unsigned long index
, xa_mark_t mark
)
1722 XA_STATE(xas
, xa
, index
);
1723 void *entry
= xas_load(&xas
);
1726 xas_clear_mark(&xas
, mark
);
1728 EXPORT_SYMBOL(__xa_clear_mark
);
1731 * xa_get_mark() - Inquire whether this mark is set on this entry.
1733 * @index: Index of entry.
1734 * @mark: Mark number.
1736 * This function uses the RCU read lock, so the result may be out of date
1737 * by the time it returns. If you need the result to be stable, use a lock.
1739 * Context: Any context. Takes and releases the RCU lock.
1740 * Return: True if the entry at @index has this mark set, false if it doesn't.
1742 bool xa_get_mark(struct xarray
*xa
, unsigned long index
, xa_mark_t mark
)
1744 XA_STATE(xas
, xa
, index
);
1748 entry
= xas_start(&xas
);
1749 while (xas_get_mark(&xas
, mark
)) {
1750 if (!xa_is_node(entry
))
1752 entry
= xas_descend(&xas
, xa_to_node(entry
));
1760 EXPORT_SYMBOL(xa_get_mark
);
1763 * xa_set_mark() - Set this mark on this entry.
1765 * @index: Index of entry.
1766 * @mark: Mark number.
1768 * Attempting to set a mark on a %NULL entry does not succeed.
1770 * Context: Process context. Takes and releases the xa_lock.
1772 void xa_set_mark(struct xarray
*xa
, unsigned long index
, xa_mark_t mark
)
1775 __xa_set_mark(xa
, index
, mark
);
1778 EXPORT_SYMBOL(xa_set_mark
);
1781 * xa_clear_mark() - Clear this mark on this entry.
1783 * @index: Index of entry.
1784 * @mark: Mark number.
1786 * Clearing a mark always succeeds.
1788 * Context: Process context. Takes and releases the xa_lock.
1790 void xa_clear_mark(struct xarray
*xa
, unsigned long index
, xa_mark_t mark
)
1793 __xa_clear_mark(xa
, index
, mark
);
1796 EXPORT_SYMBOL(xa_clear_mark
);
1799 * xa_find() - Search the XArray for an entry.
1801 * @indexp: Pointer to an index.
1802 * @max: Maximum index to search to.
1803 * @filter: Selection criterion.
1805 * Finds the entry in @xa which matches the @filter, and has the lowest
1806 * index that is at least @indexp and no more than @max.
1807 * If an entry is found, @indexp is updated to be the index of the entry.
1808 * This function is protected by the RCU read lock, so it may not find
1809 * entries which are being simultaneously added. It will not return an
1810 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1812 * Context: Any context. Takes and releases the RCU lock.
1813 * Return: The entry, if found, otherwise %NULL.
1815 void *xa_find(struct xarray
*xa
, unsigned long *indexp
,
1816 unsigned long max
, xa_mark_t filter
)
1818 XA_STATE(xas
, xa
, *indexp
);
1823 if ((__force
unsigned int)filter
< XA_MAX_MARKS
)
1824 entry
= xas_find_marked(&xas
, max
, filter
);
1826 entry
= xas_find(&xas
, max
);
1827 } while (xas_retry(&xas
, entry
));
1831 *indexp
= xas
.xa_index
;
1834 EXPORT_SYMBOL(xa_find
);
1836 static bool xas_sibling(struct xa_state
*xas
)
1838 struct xa_node
*node
= xas
->xa_node
;
1843 mask
= (XA_CHUNK_SIZE
<< node
->shift
) - 1;
1844 return (xas
->xa_index
& mask
) >
1845 ((unsigned long)xas
->xa_offset
<< node
->shift
);
1849 * xa_find_after() - Search the XArray for a present entry.
1851 * @indexp: Pointer to an index.
1852 * @max: Maximum index to search to.
1853 * @filter: Selection criterion.
1855 * Finds the entry in @xa which matches the @filter and has the lowest
1856 * index that is above @indexp and no more than @max.
1857 * If an entry is found, @indexp is updated to be the index of the entry.
1858 * This function is protected by the RCU read lock, so it may miss entries
1859 * which are being simultaneously added. It will not return an
1860 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1862 * Context: Any context. Takes and releases the RCU lock.
1863 * Return: The pointer, if found, otherwise %NULL.
1865 void *xa_find_after(struct xarray
*xa
, unsigned long *indexp
,
1866 unsigned long max
, xa_mark_t filter
)
1868 XA_STATE(xas
, xa
, *indexp
+ 1);
1871 if (xas
.xa_index
== 0)
1876 if ((__force
unsigned int)filter
< XA_MAX_MARKS
)
1877 entry
= xas_find_marked(&xas
, max
, filter
);
1879 entry
= xas_find(&xas
, max
);
1881 if (xas_invalid(&xas
))
1883 if (xas_sibling(&xas
))
1885 if (!xas_retry(&xas
, entry
))
1891 *indexp
= xas
.xa_index
;
1894 EXPORT_SYMBOL(xa_find_after
);
1896 static unsigned int xas_extract_present(struct xa_state
*xas
, void **dst
,
1897 unsigned long max
, unsigned int n
)
1903 xas_for_each(xas
, entry
, max
) {
1904 if (xas_retry(xas
, entry
))
1915 static unsigned int xas_extract_marked(struct xa_state
*xas
, void **dst
,
1916 unsigned long max
, unsigned int n
, xa_mark_t mark
)
1922 xas_for_each_marked(xas
, entry
, max
, mark
) {
1923 if (xas_retry(xas
, entry
))
1935 * xa_extract() - Copy selected entries from the XArray into a normal array.
1936 * @xa: The source XArray to copy from.
1937 * @dst: The buffer to copy entries into.
1938 * @start: The first index in the XArray eligible to be selected.
1939 * @max: The last index in the XArray eligible to be selected.
1940 * @n: The maximum number of entries to copy.
1941 * @filter: Selection criterion.
1943 * Copies up to @n entries that match @filter from the XArray. The
1944 * copied entries will have indices between @start and @max, inclusive.
1946 * The @filter may be an XArray mark value, in which case entries which are
1947 * marked with that mark will be copied. It may also be %XA_PRESENT, in
1948 * which case all entries which are not %NULL will be copied.
1950 * The entries returned may not represent a snapshot of the XArray at a
1951 * moment in time. For example, if another thread stores to index 5, then
1952 * index 10, calling xa_extract() may return the old contents of index 5
1953 * and the new contents of index 10. Indices not modified while this
1954 * function is running will not be skipped.
1956 * If you need stronger guarantees, holding the xa_lock across calls to this
1957 * function will prevent concurrent modification.
1959 * Context: Any context. Takes and releases the RCU lock.
1960 * Return: The number of entries copied.
1962 unsigned int xa_extract(struct xarray
*xa
, void **dst
, unsigned long start
,
1963 unsigned long max
, unsigned int n
, xa_mark_t filter
)
1965 XA_STATE(xas
, xa
, start
);
1970 if ((__force
unsigned int)filter
< XA_MAX_MARKS
)
1971 return xas_extract_marked(&xas
, dst
, max
, n
, filter
);
1972 return xas_extract_present(&xas
, dst
, max
, n
);
1974 EXPORT_SYMBOL(xa_extract
);
1977 * xa_destroy() - Free all internal data structures.
1980 * After calling this function, the XArray is empty and has freed all memory
1981 * allocated for its internal data structures. You are responsible for
1982 * freeing the objects referenced by the XArray.
1984 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
1986 void xa_destroy(struct xarray
*xa
)
1988 XA_STATE(xas
, xa
, 0);
1989 unsigned long flags
;
1993 xas_lock_irqsave(&xas
, flags
);
1994 entry
= xa_head_locked(xa
);
1995 RCU_INIT_POINTER(xa
->xa_head
, NULL
);
1996 xas_init_marks(&xas
);
1997 if (xa_zero_busy(xa
))
1998 xa_mark_clear(xa
, XA_FREE_MARK
);
1999 /* lockdep checks we're still holding the lock in xas_free_nodes() */
2000 if (xa_is_node(entry
))
2001 xas_free_nodes(&xas
, xa_to_node(entry
));
2002 xas_unlock_irqrestore(&xas
, flags
);
2004 EXPORT_SYMBOL(xa_destroy
);
2007 void xa_dump_node(const struct xa_node
*node
)
2013 if ((unsigned long)node
& 3) {
2014 pr_cont("node %px\n", node
);
2018 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2019 "array %px list %px %px marks",
2020 node
, node
->parent
? "offset" : "max", node
->offset
,
2021 node
->parent
, node
->shift
, node
->count
, node
->nr_values
,
2022 node
->array
, node
->private_list
.prev
, node
->private_list
.next
);
2023 for (i
= 0; i
< XA_MAX_MARKS
; i
++)
2024 for (j
= 0; j
< XA_MARK_LONGS
; j
++)
2025 pr_cont(" %lx", node
->marks
[i
][j
]);
2029 void xa_dump_index(unsigned long index
, unsigned int shift
)
2032 pr_info("%lu: ", index
);
2033 else if (shift
>= BITS_PER_LONG
)
2034 pr_info("0-%lu: ", ~0UL);
2036 pr_info("%lu-%lu: ", index
, index
| ((1UL << shift
) - 1));
2039 void xa_dump_entry(const void *entry
, unsigned long index
, unsigned long shift
)
2044 xa_dump_index(index
, shift
);
2046 if (xa_is_node(entry
)) {
2048 pr_cont("%px\n", entry
);
2051 struct xa_node
*node
= xa_to_node(entry
);
2053 for (i
= 0; i
< XA_CHUNK_SIZE
; i
++)
2054 xa_dump_entry(node
->slots
[i
],
2055 index
+ (i
<< node
->shift
), node
->shift
);
2057 } else if (xa_is_value(entry
))
2058 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry
),
2059 xa_to_value(entry
), entry
);
2060 else if (!xa_is_internal(entry
))
2061 pr_cont("%px\n", entry
);
2062 else if (xa_is_retry(entry
))
2063 pr_cont("retry (%ld)\n", xa_to_internal(entry
));
2064 else if (xa_is_sibling(entry
))
2065 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry
));
2066 else if (xa_is_zero(entry
))
2067 pr_cont("zero (%ld)\n", xa_to_internal(entry
));
2069 pr_cont("UNKNOWN ENTRY (%px)\n", entry
);
2072 void xa_dump(const struct xarray
*xa
)
2074 void *entry
= xa
->xa_head
;
2075 unsigned int shift
= 0;
2077 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa
, entry
,
2078 xa
->xa_flags
, xa_marked(xa
, XA_MARK_0
),
2079 xa_marked(xa
, XA_MARK_1
), xa_marked(xa
, XA_MARK_2
));
2080 if (xa_is_node(entry
))
2081 shift
= xa_to_node(entry
)->shift
+ XA_CHUNK_SHIFT
;
2082 xa_dump_entry(entry
, 0, shift
);