3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
22 * Pavel Emelianov <xemul@openvz.org>
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
90 #include <asm/uaccess.h>
93 /* One semaphore structure for each semaphore in the system. */
95 int semval
; /* current value */
96 int sempid
; /* pid of last operation */
97 spinlock_t lock
; /* spinlock for fine-grained semtimedop */
98 struct list_head pending_alter
; /* pending single-sop operations */
99 /* that alter the semaphore */
100 struct list_head pending_const
; /* pending single-sop operations */
101 /* that do not alter the semaphore*/
102 time_t sem_otime
; /* candidate for sem_otime */
103 } ____cacheline_aligned_in_smp
;
105 /* One queue for each sleeping process in the system. */
107 struct list_head list
; /* queue of pending operations */
108 struct task_struct
*sleeper
; /* this process */
109 struct sem_undo
*undo
; /* undo structure */
110 int pid
; /* process id of requesting process */
111 int status
; /* completion status of operation */
112 struct sembuf
*sops
; /* array of pending operations */
113 int nsops
; /* number of operations */
114 int alter
; /* does *sops alter the array? */
117 /* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
121 struct list_head list_proc
; /* per-process list: *
122 * all undos from one process
124 struct rcu_head rcu
; /* rcu struct for sem_undo */
125 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
126 struct list_head list_id
; /* per semaphore array list:
127 * all undos for one array */
128 int semid
; /* semaphore set identifier */
129 short *semadj
; /* array of adjustments */
130 /* one per semaphore */
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
136 struct sem_undo_list
{
139 struct list_head list_proc
;
143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
147 static int newary(struct ipc_namespace
*, struct ipc_params
*);
148 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
153 #define SEMMSL_FAST 256 /* 512 bytes on stack */
154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
159 * sem_array.complex_count,
160 * sem_array.pending{_alter,_cont},
161 * sem_array.sem_undo: global sem_lock() for read/write
162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
168 #define sc_semmsl sem_ctls[0]
169 #define sc_semmns sem_ctls[1]
170 #define sc_semopm sem_ctls[2]
171 #define sc_semmni sem_ctls[3]
173 void sem_init_ns(struct ipc_namespace
*ns
)
175 ns
->sc_semmsl
= SEMMSL
;
176 ns
->sc_semmns
= SEMMNS
;
177 ns
->sc_semopm
= SEMOPM
;
178 ns
->sc_semmni
= SEMMNI
;
180 ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
184 void sem_exit_ns(struct ipc_namespace
*ns
)
186 free_ipcs(ns
, &sem_ids(ns
), freeary
);
187 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
191 void __init
sem_init (void)
193 sem_init_ns(&init_ipc_ns
);
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
196 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
206 static void unmerge_queues(struct sem_array
*sma
)
208 struct sem_queue
*q
, *tq
;
210 /* complex operations still around? */
211 if (sma
->complex_count
)
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
218 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
220 curr
= &sma
->sem_base
[q
->sops
[0].sem_num
];
222 list_add_tail(&q
->list
, &curr
->pending_alter
);
224 INIT_LIST_HEAD(&sma
->pending_alter
);
228 * merge_queues - Merge single semop queues into global queue
229 * @sma: semaphore array
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
236 static void merge_queues(struct sem_array
*sma
)
239 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
240 struct sem
*sem
= sma
->sem_base
+ i
;
242 list_splice_init(&sem
->pending_alter
, &sma
->pending_alter
);
247 * If the request contains only one semaphore operation, and there are
248 * no complex transactions pending, lock only the semaphore involved.
249 * Otherwise, lock the entire semaphore array, since we either have
250 * multiple semaphores in our own semops, or we need to look at
251 * semaphores from other pending complex operations.
253 * Carefully guard against sma->complex_count changing between zero
254 * and non-zero while we are spinning for the lock. The value of
255 * sma->complex_count cannot change while we are holding the lock,
256 * so sem_unlock should be fine.
258 * The global lock path checks that all the local locks have been released,
259 * checking each local lock once. This means that the local lock paths
260 * cannot start their critical sections while the global lock is held.
262 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
267 if (nsops
== 1 && !sma
->complex_count
) {
268 struct sem
*sem
= sma
->sem_base
+ sops
->sem_num
;
270 /* Lock just the semaphore we are interested in. */
271 spin_lock(&sem
->lock
);
274 * If sma->complex_count was set while we were spinning,
275 * we may need to look at things we did not lock here.
277 if (unlikely(sma
->complex_count
)) {
278 spin_unlock(&sem
->lock
);
283 * Another process is holding the global lock on the
284 * sem_array; we cannot enter our critical section,
285 * but have to wait for the global lock to be released.
287 if (unlikely(spin_is_locked(&sma
->sem_perm
.lock
))) {
288 spin_unlock(&sem
->lock
);
289 spin_unlock_wait(&sma
->sem_perm
.lock
);
293 locknum
= sops
->sem_num
;
297 * Lock the semaphore array, and wait for all of the
298 * individual semaphore locks to go away. The code
299 * above ensures no new single-lock holders will enter
300 * their critical section while the array lock is held.
303 ipc_lock_object(&sma
->sem_perm
);
304 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
305 struct sem
*sem
= sma
->sem_base
+ i
;
306 spin_unlock_wait(&sem
->lock
);
313 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
317 ipc_unlock_object(&sma
->sem_perm
);
319 struct sem
*sem
= sma
->sem_base
+ locknum
;
320 spin_unlock(&sem
->lock
);
325 * sem_lock_(check_) routines are called in the paths where the rwsem
328 * The caller holds the RCU read lock.
330 static inline struct sem_array
*sem_obtain_lock(struct ipc_namespace
*ns
,
331 int id
, struct sembuf
*sops
, int nsops
, int *locknum
)
333 struct kern_ipc_perm
*ipcp
;
334 struct sem_array
*sma
;
336 ipcp
= ipc_obtain_object(&sem_ids(ns
), id
);
338 return ERR_CAST(ipcp
);
340 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
341 *locknum
= sem_lock(sma
, sops
, nsops
);
343 /* ipc_rmid() may have already freed the ID while sem_lock
344 * was spinning: verify that the structure is still valid
347 return container_of(ipcp
, struct sem_array
, sem_perm
);
349 sem_unlock(sma
, *locknum
);
350 return ERR_PTR(-EINVAL
);
353 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
355 struct kern_ipc_perm
*ipcp
= ipc_obtain_object(&sem_ids(ns
), id
);
358 return ERR_CAST(ipcp
);
360 return container_of(ipcp
, struct sem_array
, sem_perm
);
363 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
366 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
369 return ERR_CAST(ipcp
);
371 return container_of(ipcp
, struct sem_array
, sem_perm
);
374 static inline void sem_lock_and_putref(struct sem_array
*sma
)
376 sem_lock(sma
, NULL
, -1);
380 static inline void sem_putref(struct sem_array
*sma
)
385 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
387 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
391 * Lockless wakeup algorithm:
392 * Without the check/retry algorithm a lockless wakeup is possible:
393 * - queue.status is initialized to -EINTR before blocking.
394 * - wakeup is performed by
395 * * unlinking the queue entry from the pending list
396 * * setting queue.status to IN_WAKEUP
397 * This is the notification for the blocked thread that a
398 * result value is imminent.
399 * * call wake_up_process
400 * * set queue.status to the final value.
401 * - the previously blocked thread checks queue.status:
402 * * if it's IN_WAKEUP, then it must wait until the value changes
403 * * if it's not -EINTR, then the operation was completed by
404 * update_queue. semtimedop can return queue.status without
405 * performing any operation on the sem array.
406 * * otherwise it must acquire the spinlock and check what's up.
408 * The two-stage algorithm is necessary to protect against the following
410 * - if queue.status is set after wake_up_process, then the woken up idle
411 * thread could race forward and try (and fail) to acquire sma->lock
412 * before update_queue had a chance to set queue.status
413 * - if queue.status is written before wake_up_process and if the
414 * blocked process is woken up by a signal between writing
415 * queue.status and the wake_up_process, then the woken up
416 * process could return from semtimedop and die by calling
417 * sys_exit before wake_up_process is called. Then wake_up_process
418 * will oops, because the task structure is already invalid.
419 * (yes, this happened on s390 with sysv msg).
425 * newary - Create a new semaphore set
427 * @params: ptr to the structure that contains key, semflg and nsems
429 * Called with sem_ids.rwsem held (as a writer)
432 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
436 struct sem_array
*sma
;
438 key_t key
= params
->key
;
439 int nsems
= params
->u
.nsems
;
440 int semflg
= params
->flg
;
445 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
448 size
= sizeof (*sma
) + nsems
* sizeof (struct sem
);
449 sma
= ipc_rcu_alloc(size
);
453 memset (sma
, 0, size
);
455 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
456 sma
->sem_perm
.key
= key
;
458 sma
->sem_perm
.security
= NULL
;
459 retval
= security_sem_alloc(sma
);
465 id
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
467 security_sem_free(sma
);
471 ns
->used_sems
+= nsems
;
473 sma
->sem_base
= (struct sem
*) &sma
[1];
475 for (i
= 0; i
< nsems
; i
++) {
476 INIT_LIST_HEAD(&sma
->sem_base
[i
].pending_alter
);
477 INIT_LIST_HEAD(&sma
->sem_base
[i
].pending_const
);
478 spin_lock_init(&sma
->sem_base
[i
].lock
);
481 sma
->complex_count
= 0;
482 INIT_LIST_HEAD(&sma
->pending_alter
);
483 INIT_LIST_HEAD(&sma
->pending_const
);
484 INIT_LIST_HEAD(&sma
->list_id
);
485 sma
->sem_nsems
= nsems
;
486 sma
->sem_ctime
= get_seconds();
490 return sma
->sem_perm
.id
;
495 * Called with sem_ids.rwsem and ipcp locked.
497 static inline int sem_security(struct kern_ipc_perm
*ipcp
, int semflg
)
499 struct sem_array
*sma
;
501 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
502 return security_sem_associate(sma
, semflg
);
506 * Called with sem_ids.rwsem and ipcp locked.
508 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
509 struct ipc_params
*params
)
511 struct sem_array
*sma
;
513 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
514 if (params
->u
.nsems
> sma
->sem_nsems
)
520 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
522 struct ipc_namespace
*ns
;
523 struct ipc_ops sem_ops
;
524 struct ipc_params sem_params
;
526 ns
= current
->nsproxy
->ipc_ns
;
528 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
531 sem_ops
.getnew
= newary
;
532 sem_ops
.associate
= sem_security
;
533 sem_ops
.more_checks
= sem_more_checks
;
535 sem_params
.key
= key
;
536 sem_params
.flg
= semflg
;
537 sem_params
.u
.nsems
= nsems
;
539 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
542 /** perform_atomic_semop - Perform (if possible) a semaphore operation
543 * @sma: semaphore array
544 * @sops: array with operations that should be checked
545 * @nsems: number of sops
547 * @pid: pid that did the change
549 * Returns 0 if the operation was possible.
550 * Returns 1 if the operation is impossible, the caller must sleep.
551 * Negative values are error codes.
554 static int perform_atomic_semop(struct sem_array
*sma
, struct sembuf
*sops
,
555 int nsops
, struct sem_undo
*un
, int pid
)
561 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
562 curr
= sma
->sem_base
+ sop
->sem_num
;
563 sem_op
= sop
->sem_op
;
564 result
= curr
->semval
;
566 if (!sem_op
&& result
)
574 if (sop
->sem_flg
& SEM_UNDO
) {
575 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
577 * Exceeding the undo range is an error.
579 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
582 curr
->semval
= result
;
586 while (sop
>= sops
) {
587 sma
->sem_base
[sop
->sem_num
].sempid
= pid
;
588 if (sop
->sem_flg
& SEM_UNDO
)
589 un
->semadj
[sop
->sem_num
] -= sop
->sem_op
;
600 if (sop
->sem_flg
& IPC_NOWAIT
)
607 while (sop
>= sops
) {
608 sma
->sem_base
[sop
->sem_num
].semval
-= sop
->sem_op
;
615 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
616 * @q: queue entry that must be signaled
617 * @error: Error value for the signal
619 * Prepare the wake-up of the queue entry q.
621 static void wake_up_sem_queue_prepare(struct list_head
*pt
,
622 struct sem_queue
*q
, int error
)
624 if (list_empty(pt
)) {
626 * Hold preempt off so that we don't get preempted and have the
627 * wakee busy-wait until we're scheduled back on.
631 q
->status
= IN_WAKEUP
;
634 list_add_tail(&q
->list
, pt
);
638 * wake_up_sem_queue_do(pt) - do the actual wake-up
639 * @pt: list of tasks to be woken up
641 * Do the actual wake-up.
642 * The function is called without any locks held, thus the semaphore array
643 * could be destroyed already and the tasks can disappear as soon as the
644 * status is set to the actual return code.
646 static void wake_up_sem_queue_do(struct list_head
*pt
)
648 struct sem_queue
*q
, *t
;
651 did_something
= !list_empty(pt
);
652 list_for_each_entry_safe(q
, t
, pt
, list
) {
653 wake_up_process(q
->sleeper
);
654 /* q can disappear immediately after writing q->status. */
662 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
666 sma
->complex_count
--;
669 /** check_restart(sma, q)
670 * @sma: semaphore array
671 * @q: the operation that just completed
673 * update_queue is O(N^2) when it restarts scanning the whole queue of
674 * waiting operations. Therefore this function checks if the restart is
675 * really necessary. It is called after a previously waiting operation
676 * modified the array.
677 * Note that wait-for-zero operations are handled without restart.
679 static int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
681 /* pending complex alter operations are too difficult to analyse */
682 if (!list_empty(&sma
->pending_alter
))
685 /* we were a sleeping complex operation. Too difficult */
689 /* It is impossible that someone waits for the new value:
690 * - complex operations always restart.
691 * - wait-for-zero are handled seperately.
692 * - q is a previously sleeping simple operation that
693 * altered the array. It must be a decrement, because
694 * simple increments never sleep.
695 * - If there are older (higher priority) decrements
696 * in the queue, then they have observed the original
697 * semval value and couldn't proceed. The operation
698 * decremented to value - thus they won't proceed either.
704 * wake_const_ops(sma, semnum, pt) - Wake up non-alter tasks
705 * @sma: semaphore array.
706 * @semnum: semaphore that was modified.
707 * @pt: list head for the tasks that must be woken up.
709 * wake_const_ops must be called after a semaphore in a semaphore array
710 * was set to 0. If complex const operations are pending, wake_const_ops must
711 * be called with semnum = -1, as well as with the number of each modified
713 * The tasks that must be woken up are added to @pt. The return code
714 * is stored in q->pid.
715 * The function returns 1 if at least one operation was completed successfully.
717 static int wake_const_ops(struct sem_array
*sma
, int semnum
,
718 struct list_head
*pt
)
721 struct list_head
*walk
;
722 struct list_head
*pending_list
;
723 int semop_completed
= 0;
726 pending_list
= &sma
->pending_const
;
728 pending_list
= &sma
->sem_base
[semnum
].pending_const
;
730 walk
= pending_list
->next
;
731 while (walk
!= pending_list
) {
734 q
= container_of(walk
, struct sem_queue
, list
);
737 error
= perform_atomic_semop(sma
, q
->sops
, q
->nsops
,
741 /* operation completed, remove from queue & wakeup */
743 unlink_queue(sma
, q
);
745 wake_up_sem_queue_prepare(pt
, q
, error
);
750 return semop_completed
;
754 * do_smart_wakeup_zero(sma, sops, nsops, pt) - wakeup all wait for zero tasks
755 * @sma: semaphore array
756 * @sops: operations that were performed
757 * @nsops: number of operations
758 * @pt: list head of the tasks that must be woken up.
760 * do_smart_wakeup_zero() checks all required queue for wait-for-zero
761 * operations, based on the actual changes that were performed on the
763 * The function returns 1 if at least one operation was completed successfully.
765 static int do_smart_wakeup_zero(struct sem_array
*sma
, struct sembuf
*sops
,
766 int nsops
, struct list_head
*pt
)
769 int semop_completed
= 0;
772 /* first: the per-semaphore queues, if known */
774 for (i
= 0; i
< nsops
; i
++) {
775 int num
= sops
[i
].sem_num
;
777 if (sma
->sem_base
[num
].semval
== 0) {
779 semop_completed
|= wake_const_ops(sma
, num
, pt
);
784 * No sops means modified semaphores not known.
785 * Assume all were changed.
787 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
788 if (sma
->sem_base
[i
].semval
== 0) {
790 semop_completed
|= wake_const_ops(sma
, i
, pt
);
795 * If one of the modified semaphores got 0,
796 * then check the global queue, too.
799 semop_completed
|= wake_const_ops(sma
, -1, pt
);
801 return semop_completed
;
806 * update_queue(sma, semnum): Look for tasks that can be completed.
807 * @sma: semaphore array.
808 * @semnum: semaphore that was modified.
809 * @pt: list head for the tasks that must be woken up.
811 * update_queue must be called after a semaphore in a semaphore array
812 * was modified. If multiple semaphores were modified, update_queue must
813 * be called with semnum = -1, as well as with the number of each modified
815 * The tasks that must be woken up are added to @pt. The return code
816 * is stored in q->pid.
817 * The function internally checks if const operations can now succeed.
819 * The function return 1 if at least one semop was completed successfully.
821 static int update_queue(struct sem_array
*sma
, int semnum
, struct list_head
*pt
)
824 struct list_head
*walk
;
825 struct list_head
*pending_list
;
826 int semop_completed
= 0;
829 pending_list
= &sma
->pending_alter
;
831 pending_list
= &sma
->sem_base
[semnum
].pending_alter
;
834 walk
= pending_list
->next
;
835 while (walk
!= pending_list
) {
838 q
= container_of(walk
, struct sem_queue
, list
);
841 /* If we are scanning the single sop, per-semaphore list of
842 * one semaphore and that semaphore is 0, then it is not
843 * necessary to scan further: simple increments
844 * that affect only one entry succeed immediately and cannot
845 * be in the per semaphore pending queue, and decrements
846 * cannot be successful if the value is already 0.
848 if (semnum
!= -1 && sma
->sem_base
[semnum
].semval
== 0)
851 error
= perform_atomic_semop(sma
, q
->sops
, q
->nsops
,
854 /* Does q->sleeper still need to sleep? */
858 unlink_queue(sma
, q
);
864 do_smart_wakeup_zero(sma
, q
->sops
, q
->nsops
, pt
);
865 restart
= check_restart(sma
, q
);
868 wake_up_sem_queue_prepare(pt
, q
, error
);
872 return semop_completed
;
876 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
877 * @sma: semaphore array
878 * @sops: operations that were performed
879 * @nsops: number of operations
880 * @otime: force setting otime
881 * @pt: list head of the tasks that must be woken up.
883 * do_smart_update() does the required calls to update_queue and wakeup_zero,
884 * based on the actual changes that were performed on the semaphore array.
885 * Note that the function does not do the actual wake-up: the caller is
886 * responsible for calling wake_up_sem_queue_do(@pt).
887 * It is safe to perform this call after dropping all locks.
889 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
890 int otime
, struct list_head
*pt
)
894 otime
|= do_smart_wakeup_zero(sma
, sops
, nsops
, pt
);
896 if (!list_empty(&sma
->pending_alter
)) {
897 /* semaphore array uses the global queue - just process it. */
898 otime
|= update_queue(sma
, -1, pt
);
902 * No sops, thus the modified semaphores are not
905 for (i
= 0; i
< sma
->sem_nsems
; i
++)
906 otime
|= update_queue(sma
, i
, pt
);
909 * Check the semaphores that were increased:
910 * - No complex ops, thus all sleeping ops are
912 * - if we decreased the value, then any sleeping
913 * semaphore ops wont be able to run: If the
914 * previous value was too small, then the new
915 * value will be too small, too.
917 for (i
= 0; i
< nsops
; i
++) {
918 if (sops
[i
].sem_op
> 0) {
919 otime
|= update_queue(sma
,
920 sops
[i
].sem_num
, pt
);
927 sma
->sem_base
[0].sem_otime
= get_seconds();
929 sma
->sem_base
[sops
[0].sem_num
].sem_otime
=
936 /* The following counts are associated to each semaphore:
937 * semncnt number of tasks waiting on semval being nonzero
938 * semzcnt number of tasks waiting on semval being zero
939 * This model assumes that a task waits on exactly one semaphore.
940 * Since semaphore operations are to be performed atomically, tasks actually
941 * wait on a whole sequence of semaphores simultaneously.
942 * The counts we return here are a rough approximation, but still
943 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
945 static int count_semncnt (struct sem_array
* sma
, ushort semnum
)
948 struct sem_queue
* q
;
951 list_for_each_entry(q
, &sma
->sem_base
[semnum
].pending_alter
, list
) {
952 struct sembuf
* sops
= q
->sops
;
953 BUG_ON(sops
->sem_num
!= semnum
);
954 if ((sops
->sem_op
< 0) && !(sops
->sem_flg
& IPC_NOWAIT
))
958 list_for_each_entry(q
, &sma
->pending_alter
, list
) {
959 struct sembuf
* sops
= q
->sops
;
960 int nsops
= q
->nsops
;
962 for (i
= 0; i
< nsops
; i
++)
963 if (sops
[i
].sem_num
== semnum
964 && (sops
[i
].sem_op
< 0)
965 && !(sops
[i
].sem_flg
& IPC_NOWAIT
))
971 static int count_semzcnt (struct sem_array
* sma
, ushort semnum
)
974 struct sem_queue
* q
;
977 list_for_each_entry(q
, &sma
->sem_base
[semnum
].pending_const
, list
) {
978 struct sembuf
* sops
= q
->sops
;
979 BUG_ON(sops
->sem_num
!= semnum
);
980 if ((sops
->sem_op
== 0) && !(sops
->sem_flg
& IPC_NOWAIT
))
984 list_for_each_entry(q
, &sma
->pending_const
, list
) {
985 struct sembuf
* sops
= q
->sops
;
986 int nsops
= q
->nsops
;
988 for (i
= 0; i
< nsops
; i
++)
989 if (sops
[i
].sem_num
== semnum
990 && (sops
[i
].sem_op
== 0)
991 && !(sops
[i
].sem_flg
& IPC_NOWAIT
))
997 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
998 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
999 * remains locked on exit.
1001 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
1003 struct sem_undo
*un
, *tu
;
1004 struct sem_queue
*q
, *tq
;
1005 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1006 struct list_head tasks
;
1009 /* Free the existing undo structures for this semaphore set. */
1010 ipc_assert_locked_object(&sma
->sem_perm
);
1011 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
1012 list_del(&un
->list_id
);
1013 spin_lock(&un
->ulp
->lock
);
1015 list_del_rcu(&un
->list_proc
);
1016 spin_unlock(&un
->ulp
->lock
);
1020 /* Wake up all pending processes and let them fail with EIDRM. */
1021 INIT_LIST_HEAD(&tasks
);
1022 list_for_each_entry_safe(q
, tq
, &sma
->pending_const
, list
) {
1023 unlink_queue(sma
, q
);
1024 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1027 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
1028 unlink_queue(sma
, q
);
1029 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1031 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1032 struct sem
*sem
= sma
->sem_base
+ i
;
1033 list_for_each_entry_safe(q
, tq
, &sem
->pending_const
, list
) {
1034 unlink_queue(sma
, q
);
1035 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1037 list_for_each_entry_safe(q
, tq
, &sem
->pending_alter
, list
) {
1038 unlink_queue(sma
, q
);
1039 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1043 /* Remove the semaphore set from the IDR */
1045 sem_unlock(sma
, -1);
1048 wake_up_sem_queue_do(&tasks
);
1049 ns
->used_sems
-= sma
->sem_nsems
;
1050 security_sem_free(sma
);
1051 ipc_rcu_putref(sma
);
1054 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
1058 return copy_to_user(buf
, in
, sizeof(*in
));
1061 struct semid_ds out
;
1063 memset(&out
, 0, sizeof(out
));
1065 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
1067 out
.sem_otime
= in
->sem_otime
;
1068 out
.sem_ctime
= in
->sem_ctime
;
1069 out
.sem_nsems
= in
->sem_nsems
;
1071 return copy_to_user(buf
, &out
, sizeof(out
));
1078 static time_t get_semotime(struct sem_array
*sma
)
1083 res
= sma
->sem_base
[0].sem_otime
;
1084 for (i
= 1; i
< sma
->sem_nsems
; i
++) {
1085 time_t to
= sma
->sem_base
[i
].sem_otime
;
1093 static int semctl_nolock(struct ipc_namespace
*ns
, int semid
,
1094 int cmd
, int version
, void __user
*p
)
1097 struct sem_array
*sma
;
1103 struct seminfo seminfo
;
1106 err
= security_sem_semctl(NULL
, cmd
);
1110 memset(&seminfo
,0,sizeof(seminfo
));
1111 seminfo
.semmni
= ns
->sc_semmni
;
1112 seminfo
.semmns
= ns
->sc_semmns
;
1113 seminfo
.semmsl
= ns
->sc_semmsl
;
1114 seminfo
.semopm
= ns
->sc_semopm
;
1115 seminfo
.semvmx
= SEMVMX
;
1116 seminfo
.semmnu
= SEMMNU
;
1117 seminfo
.semmap
= SEMMAP
;
1118 seminfo
.semume
= SEMUME
;
1119 down_read(&sem_ids(ns
).rwsem
);
1120 if (cmd
== SEM_INFO
) {
1121 seminfo
.semusz
= sem_ids(ns
).in_use
;
1122 seminfo
.semaem
= ns
->used_sems
;
1124 seminfo
.semusz
= SEMUSZ
;
1125 seminfo
.semaem
= SEMAEM
;
1127 max_id
= ipc_get_maxid(&sem_ids(ns
));
1128 up_read(&sem_ids(ns
).rwsem
);
1129 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
1131 return (max_id
< 0) ? 0: max_id
;
1136 struct semid64_ds tbuf
;
1139 memset(&tbuf
, 0, sizeof(tbuf
));
1142 if (cmd
== SEM_STAT
) {
1143 sma
= sem_obtain_object(ns
, semid
);
1148 id
= sma
->sem_perm
.id
;
1150 sma
= sem_obtain_object_check(ns
, semid
);
1158 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1161 err
= security_sem_semctl(sma
, cmd
);
1165 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
1166 tbuf
.sem_otime
= get_semotime(sma
);
1167 tbuf
.sem_ctime
= sma
->sem_ctime
;
1168 tbuf
.sem_nsems
= sma
->sem_nsems
;
1170 if (copy_semid_to_user(p
, &tbuf
, version
))
1182 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1185 struct sem_undo
*un
;
1186 struct sem_array
*sma
;
1189 struct list_head tasks
;
1191 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1192 /* big-endian 64bit */
1195 /* 32bit or little-endian 64bit */
1199 if (val
> SEMVMX
|| val
< 0)
1202 INIT_LIST_HEAD(&tasks
);
1205 sma
= sem_obtain_object_check(ns
, semid
);
1208 return PTR_ERR(sma
);
1211 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1217 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1222 err
= security_sem_semctl(sma
, SETVAL
);
1228 sem_lock(sma
, NULL
, -1);
1230 curr
= &sma
->sem_base
[semnum
];
1232 ipc_assert_locked_object(&sma
->sem_perm
);
1233 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1234 un
->semadj
[semnum
] = 0;
1237 curr
->sempid
= task_tgid_vnr(current
);
1238 sma
->sem_ctime
= get_seconds();
1239 /* maybe some queued-up processes were waiting for this */
1240 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
1241 sem_unlock(sma
, -1);
1243 wake_up_sem_queue_do(&tasks
);
1247 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1248 int cmd
, void __user
*p
)
1250 struct sem_array
*sma
;
1253 ushort fast_sem_io
[SEMMSL_FAST
];
1254 ushort
* sem_io
= fast_sem_io
;
1255 struct list_head tasks
;
1257 INIT_LIST_HEAD(&tasks
);
1260 sma
= sem_obtain_object_check(ns
, semid
);
1263 return PTR_ERR(sma
);
1266 nsems
= sma
->sem_nsems
;
1269 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1270 goto out_rcu_wakeup
;
1272 err
= security_sem_semctl(sma
, cmd
);
1274 goto out_rcu_wakeup
;
1280 ushort __user
*array
= p
;
1283 sem_lock(sma
, NULL
, -1);
1284 if(nsems
> SEMMSL_FAST
) {
1285 if (!ipc_rcu_getref(sma
)) {
1286 sem_unlock(sma
, -1);
1291 sem_unlock(sma
, -1);
1293 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
1294 if(sem_io
== NULL
) {
1300 sem_lock_and_putref(sma
);
1301 if (sma
->sem_perm
.deleted
) {
1302 sem_unlock(sma
, -1);
1308 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1309 sem_io
[i
] = sma
->sem_base
[i
].semval
;
1310 sem_unlock(sma
, -1);
1313 if(copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1320 struct sem_undo
*un
;
1322 if (!ipc_rcu_getref(sma
)) {
1328 if(nsems
> SEMMSL_FAST
) {
1329 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
1330 if(sem_io
== NULL
) {
1336 if (copy_from_user (sem_io
, p
, nsems
*sizeof(ushort
))) {
1342 for (i
= 0; i
< nsems
; i
++) {
1343 if (sem_io
[i
] > SEMVMX
) {
1350 sem_lock_and_putref(sma
);
1351 if (sma
->sem_perm
.deleted
) {
1352 sem_unlock(sma
, -1);
1358 for (i
= 0; i
< nsems
; i
++)
1359 sma
->sem_base
[i
].semval
= sem_io
[i
];
1361 ipc_assert_locked_object(&sma
->sem_perm
);
1362 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1363 for (i
= 0; i
< nsems
; i
++)
1366 sma
->sem_ctime
= get_seconds();
1367 /* maybe some queued-up processes were waiting for this */
1368 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
1372 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1375 if (semnum
< 0 || semnum
>= nsems
)
1376 goto out_rcu_wakeup
;
1378 sem_lock(sma
, NULL
, -1);
1379 curr
= &sma
->sem_base
[semnum
];
1389 err
= count_semncnt(sma
,semnum
);
1392 err
= count_semzcnt(sma
,semnum
);
1397 sem_unlock(sma
, -1);
1400 wake_up_sem_queue_do(&tasks
);
1402 if(sem_io
!= fast_sem_io
)
1403 ipc_free(sem_io
, sizeof(ushort
)*nsems
);
1407 static inline unsigned long
1408 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1412 if (copy_from_user(out
, buf
, sizeof(*out
)))
1417 struct semid_ds tbuf_old
;
1419 if(copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1422 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1423 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1424 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1434 * This function handles some semctl commands which require the rwsem
1435 * to be held in write mode.
1436 * NOTE: no locks must be held, the rwsem is taken inside this function.
1438 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1439 int cmd
, int version
, void __user
*p
)
1441 struct sem_array
*sma
;
1443 struct semid64_ds semid64
;
1444 struct kern_ipc_perm
*ipcp
;
1446 if(cmd
== IPC_SET
) {
1447 if (copy_semid_from_user(&semid64
, p
, version
))
1451 down_write(&sem_ids(ns
).rwsem
);
1454 ipcp
= ipcctl_pre_down_nolock(ns
, &sem_ids(ns
), semid
, cmd
,
1455 &semid64
.sem_perm
, 0);
1457 err
= PTR_ERR(ipcp
);
1461 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1463 err
= security_sem_semctl(sma
, cmd
);
1469 sem_lock(sma
, NULL
, -1);
1470 /* freeary unlocks the ipc object and rcu */
1474 sem_lock(sma
, NULL
, -1);
1475 err
= ipc_update_perm(&semid64
.sem_perm
, ipcp
);
1478 sma
->sem_ctime
= get_seconds();
1486 sem_unlock(sma
, -1);
1490 up_write(&sem_ids(ns
).rwsem
);
1494 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1497 struct ipc_namespace
*ns
;
1498 void __user
*p
= (void __user
*)arg
;
1503 version
= ipc_parse_version(&cmd
);
1504 ns
= current
->nsproxy
->ipc_ns
;
1511 return semctl_nolock(ns
, semid
, cmd
, version
, p
);
1518 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1520 return semctl_setval(ns
, semid
, semnum
, arg
);
1523 return semctl_down(ns
, semid
, cmd
, version
, p
);
1529 /* If the task doesn't already have a undo_list, then allocate one
1530 * here. We guarantee there is only one thread using this undo list,
1531 * and current is THE ONE
1533 * If this allocation and assignment succeeds, but later
1534 * portions of this code fail, there is no need to free the sem_undo_list.
1535 * Just let it stay associated with the task, and it'll be freed later
1538 * This can block, so callers must hold no locks.
1540 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1542 struct sem_undo_list
*undo_list
;
1544 undo_list
= current
->sysvsem
.undo_list
;
1546 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1547 if (undo_list
== NULL
)
1549 spin_lock_init(&undo_list
->lock
);
1550 atomic_set(&undo_list
->refcnt
, 1);
1551 INIT_LIST_HEAD(&undo_list
->list_proc
);
1553 current
->sysvsem
.undo_list
= undo_list
;
1555 *undo_listp
= undo_list
;
1559 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1561 struct sem_undo
*un
;
1563 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
) {
1564 if (un
->semid
== semid
)
1570 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1572 struct sem_undo
*un
;
1574 assert_spin_locked(&ulp
->lock
);
1576 un
= __lookup_undo(ulp
, semid
);
1578 list_del_rcu(&un
->list_proc
);
1579 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1585 * find_alloc_undo - Lookup (and if not present create) undo array
1587 * @semid: semaphore array id
1589 * The function looks up (and if not present creates) the undo structure.
1590 * The size of the undo structure depends on the size of the semaphore
1591 * array, thus the alloc path is not that straightforward.
1592 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1593 * performs a rcu_read_lock().
1595 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1597 struct sem_array
*sma
;
1598 struct sem_undo_list
*ulp
;
1599 struct sem_undo
*un
, *new;
1602 error
= get_undo_list(&ulp
);
1604 return ERR_PTR(error
);
1607 spin_lock(&ulp
->lock
);
1608 un
= lookup_undo(ulp
, semid
);
1609 spin_unlock(&ulp
->lock
);
1610 if (likely(un
!=NULL
))
1613 /* no undo structure around - allocate one. */
1614 /* step 1: figure out the size of the semaphore array */
1615 sma
= sem_obtain_object_check(ns
, semid
);
1618 return ERR_CAST(sma
);
1621 nsems
= sma
->sem_nsems
;
1622 if (!ipc_rcu_getref(sma
)) {
1624 un
= ERR_PTR(-EIDRM
);
1629 /* step 2: allocate new undo structure */
1630 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1633 return ERR_PTR(-ENOMEM
);
1636 /* step 3: Acquire the lock on semaphore array */
1638 sem_lock_and_putref(sma
);
1639 if (sma
->sem_perm
.deleted
) {
1640 sem_unlock(sma
, -1);
1643 un
= ERR_PTR(-EIDRM
);
1646 spin_lock(&ulp
->lock
);
1649 * step 4: check for races: did someone else allocate the undo struct?
1651 un
= lookup_undo(ulp
, semid
);
1656 /* step 5: initialize & link new undo structure */
1657 new->semadj
= (short *) &new[1];
1660 assert_spin_locked(&ulp
->lock
);
1661 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1662 ipc_assert_locked_object(&sma
->sem_perm
);
1663 list_add(&new->list_id
, &sma
->list_id
);
1667 spin_unlock(&ulp
->lock
);
1668 sem_unlock(sma
, -1);
1675 * get_queue_result - Retrieve the result code from sem_queue
1676 * @q: Pointer to queue structure
1678 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1679 * q->status, then we must loop until the value is replaced with the final
1680 * value: This may happen if a task is woken up by an unrelated event (e.g.
1681 * signal) and in parallel the task is woken up by another task because it got
1682 * the requested semaphores.
1684 * The function can be called with or without holding the semaphore spinlock.
1686 static int get_queue_result(struct sem_queue
*q
)
1691 while (unlikely(error
== IN_WAKEUP
)) {
1699 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
1700 unsigned, nsops
, const struct timespec __user
*, timeout
)
1702 int error
= -EINVAL
;
1703 struct sem_array
*sma
;
1704 struct sembuf fast_sops
[SEMOPM_FAST
];
1705 struct sembuf
* sops
= fast_sops
, *sop
;
1706 struct sem_undo
*un
;
1707 int undos
= 0, alter
= 0, max
, locknum
;
1708 struct sem_queue queue
;
1709 unsigned long jiffies_left
= 0;
1710 struct ipc_namespace
*ns
;
1711 struct list_head tasks
;
1713 ns
= current
->nsproxy
->ipc_ns
;
1715 if (nsops
< 1 || semid
< 0)
1717 if (nsops
> ns
->sc_semopm
)
1719 if(nsops
> SEMOPM_FAST
) {
1720 sops
= kmalloc(sizeof(*sops
)*nsops
,GFP_KERNEL
);
1724 if (copy_from_user (sops
, tsops
, nsops
* sizeof(*tsops
))) {
1729 struct timespec _timeout
;
1730 if (copy_from_user(&_timeout
, timeout
, sizeof(*timeout
))) {
1734 if (_timeout
.tv_sec
< 0 || _timeout
.tv_nsec
< 0 ||
1735 _timeout
.tv_nsec
>= 1000000000L) {
1739 jiffies_left
= timespec_to_jiffies(&_timeout
);
1742 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1743 if (sop
->sem_num
>= max
)
1745 if (sop
->sem_flg
& SEM_UNDO
)
1747 if (sop
->sem_op
!= 0)
1751 INIT_LIST_HEAD(&tasks
);
1754 /* On success, find_alloc_undo takes the rcu_read_lock */
1755 un
= find_alloc_undo(ns
, semid
);
1757 error
= PTR_ERR(un
);
1765 sma
= sem_obtain_object_check(ns
, semid
);
1768 error
= PTR_ERR(sma
);
1773 if (max
>= sma
->sem_nsems
)
1774 goto out_rcu_wakeup
;
1777 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
))
1778 goto out_rcu_wakeup
;
1780 error
= security_sem_semop(sma
, sops
, nsops
, alter
);
1782 goto out_rcu_wakeup
;
1785 * semid identifiers are not unique - find_alloc_undo may have
1786 * allocated an undo structure, it was invalidated by an RMID
1787 * and now a new array with received the same id. Check and fail.
1788 * This case can be detected checking un->semid. The existence of
1789 * "un" itself is guaranteed by rcu.
1792 locknum
= sem_lock(sma
, sops
, nsops
);
1793 if (un
&& un
->semid
== -1)
1794 goto out_unlock_free
;
1796 error
= perform_atomic_semop(sma
, sops
, nsops
, un
,
1797 task_tgid_vnr(current
));
1799 if (alter
&& error
== 0)
1800 do_smart_update(sma
, sops
, nsops
, 1, &tasks
);
1802 goto out_unlock_free
;
1805 /* We need to sleep on this operation, so we put the current
1806 * task into the pending queue and go to sleep.
1810 queue
.nsops
= nsops
;
1812 queue
.pid
= task_tgid_vnr(current
);
1813 queue
.alter
= alter
;
1817 curr
= &sma
->sem_base
[sops
->sem_num
];
1820 if (sma
->complex_count
) {
1821 list_add_tail(&queue
.list
,
1822 &sma
->pending_alter
);
1825 list_add_tail(&queue
.list
,
1826 &curr
->pending_alter
);
1829 list_add_tail(&queue
.list
, &curr
->pending_const
);
1832 if (!sma
->complex_count
)
1836 list_add_tail(&queue
.list
, &sma
->pending_alter
);
1838 list_add_tail(&queue
.list
, &sma
->pending_const
);
1840 sma
->complex_count
++;
1843 queue
.status
= -EINTR
;
1844 queue
.sleeper
= current
;
1847 current
->state
= TASK_INTERRUPTIBLE
;
1848 sem_unlock(sma
, locknum
);
1852 jiffies_left
= schedule_timeout(jiffies_left
);
1856 error
= get_queue_result(&queue
);
1858 if (error
!= -EINTR
) {
1859 /* fast path: update_queue already obtained all requested
1861 * Perform a smp_mb(): User space could assume that semop()
1862 * is a memory barrier: Without the mb(), the cpu could
1863 * speculatively read in user space stale data that was
1864 * overwritten by the previous owner of the semaphore.
1872 sma
= sem_obtain_lock(ns
, semid
, sops
, nsops
, &locknum
);
1875 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1877 error
= get_queue_result(&queue
);
1880 * Array removed? If yes, leave without sem_unlock().
1889 * If queue.status != -EINTR we are woken up by another process.
1890 * Leave without unlink_queue(), but with sem_unlock().
1893 if (error
!= -EINTR
) {
1894 goto out_unlock_free
;
1898 * If an interrupt occurred we have to clean up the queue
1900 if (timeout
&& jiffies_left
== 0)
1904 * If the wakeup was spurious, just retry
1906 if (error
== -EINTR
&& !signal_pending(current
))
1909 unlink_queue(sma
, &queue
);
1912 sem_unlock(sma
, locknum
);
1915 wake_up_sem_queue_do(&tasks
);
1917 if(sops
!= fast_sops
)
1922 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
1925 return sys_semtimedop(semid
, tsops
, nsops
, NULL
);
1928 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1929 * parent and child tasks.
1932 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
1934 struct sem_undo_list
*undo_list
;
1937 if (clone_flags
& CLONE_SYSVSEM
) {
1938 error
= get_undo_list(&undo_list
);
1941 atomic_inc(&undo_list
->refcnt
);
1942 tsk
->sysvsem
.undo_list
= undo_list
;
1944 tsk
->sysvsem
.undo_list
= NULL
;
1950 * add semadj values to semaphores, free undo structures.
1951 * undo structures are not freed when semaphore arrays are destroyed
1952 * so some of them may be out of date.
1953 * IMPLEMENTATION NOTE: There is some confusion over whether the
1954 * set of adjustments that needs to be done should be done in an atomic
1955 * manner or not. That is, if we are attempting to decrement the semval
1956 * should we queue up and wait until we can do so legally?
1957 * The original implementation attempted to do this (queue and wait).
1958 * The current implementation does not do so. The POSIX standard
1959 * and SVID should be consulted to determine what behavior is mandated.
1961 void exit_sem(struct task_struct
*tsk
)
1963 struct sem_undo_list
*ulp
;
1965 ulp
= tsk
->sysvsem
.undo_list
;
1968 tsk
->sysvsem
.undo_list
= NULL
;
1970 if (!atomic_dec_and_test(&ulp
->refcnt
))
1974 struct sem_array
*sma
;
1975 struct sem_undo
*un
;
1976 struct list_head tasks
;
1980 un
= list_entry_rcu(ulp
->list_proc
.next
,
1981 struct sem_undo
, list_proc
);
1982 if (&un
->list_proc
== &ulp
->list_proc
)
1992 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, un
->semid
);
1993 /* exit_sem raced with IPC_RMID, nothing to do */
1999 sem_lock(sma
, NULL
, -1);
2000 un
= __lookup_undo(ulp
, semid
);
2002 /* exit_sem raced with IPC_RMID+semget() that created
2003 * exactly the same semid. Nothing to do.
2005 sem_unlock(sma
, -1);
2010 /* remove un from the linked lists */
2011 ipc_assert_locked_object(&sma
->sem_perm
);
2012 list_del(&un
->list_id
);
2014 spin_lock(&ulp
->lock
);
2015 list_del_rcu(&un
->list_proc
);
2016 spin_unlock(&ulp
->lock
);
2018 /* perform adjustments registered in un */
2019 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
2020 struct sem
* semaphore
= &sma
->sem_base
[i
];
2021 if (un
->semadj
[i
]) {
2022 semaphore
->semval
+= un
->semadj
[i
];
2024 * Range checks of the new semaphore value,
2025 * not defined by sus:
2026 * - Some unices ignore the undo entirely
2027 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2028 * - some cap the value (e.g. FreeBSD caps
2029 * at 0, but doesn't enforce SEMVMX)
2031 * Linux caps the semaphore value, both at 0
2034 * Manfred <manfred@colorfullife.com>
2036 if (semaphore
->semval
< 0)
2037 semaphore
->semval
= 0;
2038 if (semaphore
->semval
> SEMVMX
)
2039 semaphore
->semval
= SEMVMX
;
2040 semaphore
->sempid
= task_tgid_vnr(current
);
2043 /* maybe some queued-up processes were waiting for this */
2044 INIT_LIST_HEAD(&tasks
);
2045 do_smart_update(sma
, NULL
, 0, 1, &tasks
);
2046 sem_unlock(sma
, -1);
2048 wake_up_sem_queue_do(&tasks
);
2055 #ifdef CONFIG_PROC_FS
2056 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
2058 struct user_namespace
*user_ns
= seq_user_ns(s
);
2059 struct sem_array
*sma
= it
;
2062 sem_otime
= get_semotime(sma
);
2064 return seq_printf(s
,
2065 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2070 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
2071 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
2072 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
2073 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),