1 // SPDX-License-Identifier: GPL-2.0-only
3 * Based on arch/arm/mm/fault.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/signal.h>
15 #include <linux/hardirq.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/page-flags.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/debug.h>
22 #include <linux/highmem.h>
23 #include <linux/perf_event.h>
24 #include <linux/preempt.h>
25 #include <linux/hugetlb.h>
29 #include <asm/cmpxchg.h>
30 #include <asm/cpufeature.h>
31 #include <asm/exception.h>
32 #include <asm/daifflags.h>
33 #include <asm/debug-monitors.h>
35 #include <asm/kasan.h>
36 #include <asm/sysreg.h>
37 #include <asm/system_misc.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <asm/traps.h>
43 int (*fn
)(unsigned long addr
, unsigned int esr
,
44 struct pt_regs
*regs
);
50 static const struct fault_info fault_info
[];
51 static struct fault_info debug_fault_info
[];
53 static inline const struct fault_info
*esr_to_fault_info(unsigned int esr
)
55 return fault_info
+ (esr
& ESR_ELx_FSC
);
58 static inline const struct fault_info
*esr_to_debug_fault_info(unsigned int esr
)
60 return debug_fault_info
+ DBG_ESR_EVT(esr
);
63 static void data_abort_decode(unsigned int esr
)
65 pr_alert("Data abort info:\n");
67 if (esr
& ESR_ELx_ISV
) {
68 pr_alert(" Access size = %u byte(s)\n",
69 1U << ((esr
& ESR_ELx_SAS
) >> ESR_ELx_SAS_SHIFT
));
70 pr_alert(" SSE = %lu, SRT = %lu\n",
71 (esr
& ESR_ELx_SSE
) >> ESR_ELx_SSE_SHIFT
,
72 (esr
& ESR_ELx_SRT_MASK
) >> ESR_ELx_SRT_SHIFT
);
73 pr_alert(" SF = %lu, AR = %lu\n",
74 (esr
& ESR_ELx_SF
) >> ESR_ELx_SF_SHIFT
,
75 (esr
& ESR_ELx_AR
) >> ESR_ELx_AR_SHIFT
);
77 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr
& ESR_ELx_ISS_MASK
);
80 pr_alert(" CM = %lu, WnR = %lu\n",
81 (esr
& ESR_ELx_CM
) >> ESR_ELx_CM_SHIFT
,
82 (esr
& ESR_ELx_WNR
) >> ESR_ELx_WNR_SHIFT
);
85 static void mem_abort_decode(unsigned int esr
)
87 pr_alert("Mem abort info:\n");
89 pr_alert(" ESR = 0x%08x\n", esr
);
90 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
91 ESR_ELx_EC(esr
), esr_get_class_string(esr
),
92 (esr
& ESR_ELx_IL
) ? 32 : 16);
93 pr_alert(" SET = %lu, FnV = %lu\n",
94 (esr
& ESR_ELx_SET_MASK
) >> ESR_ELx_SET_SHIFT
,
95 (esr
& ESR_ELx_FnV
) >> ESR_ELx_FnV_SHIFT
);
96 pr_alert(" EA = %lu, S1PTW = %lu\n",
97 (esr
& ESR_ELx_EA
) >> ESR_ELx_EA_SHIFT
,
98 (esr
& ESR_ELx_S1PTW
) >> ESR_ELx_S1PTW_SHIFT
);
100 if (esr_is_data_abort(esr
))
101 data_abort_decode(esr
);
104 static inline bool is_ttbr0_addr(unsigned long addr
)
106 /* entry assembly clears tags for TTBR0 addrs */
107 return addr
< TASK_SIZE
;
110 static inline bool is_ttbr1_addr(unsigned long addr
)
112 /* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
113 return arch_kasan_reset_tag(addr
) >= PAGE_OFFSET
;
116 static inline unsigned long mm_to_pgd_phys(struct mm_struct
*mm
)
118 /* Either init_pg_dir or swapper_pg_dir */
120 return __pa_symbol(mm
->pgd
);
122 return (unsigned long)virt_to_phys(mm
->pgd
);
126 * Dump out the page tables associated with 'addr' in the currently active mm.
128 static void show_pte(unsigned long addr
)
130 struct mm_struct
*mm
;
134 if (is_ttbr0_addr(addr
)) {
136 mm
= current
->active_mm
;
137 if (mm
== &init_mm
) {
138 pr_alert("[%016lx] user address but active_mm is swapper\n",
142 } else if (is_ttbr1_addr(addr
)) {
146 pr_alert("[%016lx] address between user and kernel address ranges\n",
151 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
152 mm
== &init_mm
? "swapper" : "user", PAGE_SIZE
/ SZ_1K
,
153 vabits_actual
, mm_to_pgd_phys(mm
));
154 pgdp
= pgd_offset(mm
, addr
);
155 pgd
= READ_ONCE(*pgdp
);
156 pr_alert("[%016lx] pgd=%016llx", addr
, pgd_val(pgd
));
163 if (pgd_none(pgd
) || pgd_bad(pgd
))
166 pudp
= pud_offset(pgdp
, addr
);
167 pud
= READ_ONCE(*pudp
);
168 pr_cont(", pud=%016llx", pud_val(pud
));
169 if (pud_none(pud
) || pud_bad(pud
))
172 pmdp
= pmd_offset(pudp
, addr
);
173 pmd
= READ_ONCE(*pmdp
);
174 pr_cont(", pmd=%016llx", pmd_val(pmd
));
175 if (pmd_none(pmd
) || pmd_bad(pmd
))
178 ptep
= pte_offset_map(pmdp
, addr
);
179 pte
= READ_ONCE(*ptep
);
180 pr_cont(", pte=%016llx", pte_val(pte
));
188 * This function sets the access flags (dirty, accessed), as well as write
189 * permission, and only to a more permissive setting.
191 * It needs to cope with hardware update of the accessed/dirty state by other
192 * agents in the system and can safely skip the __sync_icache_dcache() call as,
193 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
195 * Returns whether or not the PTE actually changed.
197 int ptep_set_access_flags(struct vm_area_struct
*vma
,
198 unsigned long address
, pte_t
*ptep
,
199 pte_t entry
, int dirty
)
201 pteval_t old_pteval
, pteval
;
202 pte_t pte
= READ_ONCE(*ptep
);
204 if (pte_same(pte
, entry
))
207 /* only preserve the access flags and write permission */
208 pte_val(entry
) &= PTE_RDONLY
| PTE_AF
| PTE_WRITE
| PTE_DIRTY
;
211 * Setting the flags must be done atomically to avoid racing with the
212 * hardware update of the access/dirty state. The PTE_RDONLY bit must
213 * be set to the most permissive (lowest value) of *ptep and entry
214 * (calculated as: a & b == ~(~a | ~b)).
216 pte_val(entry
) ^= PTE_RDONLY
;
217 pteval
= pte_val(pte
);
220 pteval
^= PTE_RDONLY
;
221 pteval
|= pte_val(entry
);
222 pteval
^= PTE_RDONLY
;
223 pteval
= cmpxchg_relaxed(&pte_val(*ptep
), old_pteval
, pteval
);
224 } while (pteval
!= old_pteval
);
226 flush_tlb_fix_spurious_fault(vma
, address
);
230 static bool is_el1_instruction_abort(unsigned int esr
)
232 return ESR_ELx_EC(esr
) == ESR_ELx_EC_IABT_CUR
;
235 static inline bool is_el1_permission_fault(unsigned long addr
, unsigned int esr
,
236 struct pt_regs
*regs
)
238 unsigned int ec
= ESR_ELx_EC(esr
);
239 unsigned int fsc_type
= esr
& ESR_ELx_FSC_TYPE
;
241 if (ec
!= ESR_ELx_EC_DABT_CUR
&& ec
!= ESR_ELx_EC_IABT_CUR
)
244 if (fsc_type
== ESR_ELx_FSC_PERM
)
247 if (is_ttbr0_addr(addr
) && system_uses_ttbr0_pan())
248 return fsc_type
== ESR_ELx_FSC_FAULT
&&
249 (regs
->pstate
& PSR_PAN_BIT
);
254 static bool __kprobes
is_spurious_el1_translation_fault(unsigned long addr
,
256 struct pt_regs
*regs
)
261 if (ESR_ELx_EC(esr
) != ESR_ELx_EC_DABT_CUR
||
262 (esr
& ESR_ELx_FSC_TYPE
) != ESR_ELx_FSC_FAULT
)
265 local_irq_save(flags
);
266 asm volatile("at s1e1r, %0" :: "r" (addr
));
268 par
= read_sysreg(par_el1
);
269 local_irq_restore(flags
);
272 * If we now have a valid translation, treat the translation fault as
275 if (!(par
& SYS_PAR_EL1_F
))
279 * If we got a different type of fault from the AT instruction,
280 * treat the translation fault as spurious.
282 dfsc
= FIELD_GET(SYS_PAR_EL1_FST
, par
);
283 return (dfsc
& ESR_ELx_FSC_TYPE
) != ESR_ELx_FSC_FAULT
;
286 static void die_kernel_fault(const char *msg
, unsigned long addr
,
287 unsigned int esr
, struct pt_regs
*regs
)
291 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg
,
294 mem_abort_decode(esr
);
297 die("Oops", regs
, esr
);
302 static void __do_kernel_fault(unsigned long addr
, unsigned int esr
,
303 struct pt_regs
*regs
)
308 * Are we prepared to handle this kernel fault?
309 * We are almost certainly not prepared to handle instruction faults.
311 if (!is_el1_instruction_abort(esr
) && fixup_exception(regs
))
314 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr
, esr
, regs
),
315 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr
))
318 if (is_el1_permission_fault(addr
, esr
, regs
)) {
319 if (esr
& ESR_ELx_WNR
)
320 msg
= "write to read-only memory";
322 msg
= "read from unreadable memory";
323 } else if (addr
< PAGE_SIZE
) {
324 msg
= "NULL pointer dereference";
326 msg
= "paging request";
329 die_kernel_fault(msg
, addr
, esr
, regs
);
332 static void set_thread_esr(unsigned long address
, unsigned int esr
)
334 current
->thread
.fault_address
= address
;
337 * If the faulting address is in the kernel, we must sanitize the ESR.
338 * From userspace's point of view, kernel-only mappings don't exist
339 * at all, so we report them as level 0 translation faults.
340 * (This is not quite the way that "no mapping there at all" behaves:
341 * an alignment fault not caused by the memory type would take
342 * precedence over translation fault for a real access to empty
343 * space. Unfortunately we can't easily distinguish "alignment fault
344 * not caused by memory type" from "alignment fault caused by memory
345 * type", so we ignore this wrinkle and just return the translation
348 if (!is_ttbr0_addr(current
->thread
.fault_address
)) {
349 switch (ESR_ELx_EC(esr
)) {
350 case ESR_ELx_EC_DABT_LOW
:
352 * These bits provide only information about the
353 * faulting instruction, which userspace knows already.
354 * We explicitly clear bits which are architecturally
355 * RES0 in case they are given meanings in future.
356 * We always report the ESR as if the fault was taken
357 * to EL1 and so ISV and the bits in ISS[23:14] are
358 * clear. (In fact it always will be a fault to EL1.)
360 esr
&= ESR_ELx_EC_MASK
| ESR_ELx_IL
|
361 ESR_ELx_CM
| ESR_ELx_WNR
;
362 esr
|= ESR_ELx_FSC_FAULT
;
364 case ESR_ELx_EC_IABT_LOW
:
366 * Claim a level 0 translation fault.
367 * All other bits are architecturally RES0 for faults
368 * reported with that DFSC value, so we clear them.
370 esr
&= ESR_ELx_EC_MASK
| ESR_ELx_IL
;
371 esr
|= ESR_ELx_FSC_FAULT
;
375 * This should never happen (entry.S only brings us
376 * into this code for insn and data aborts from a lower
377 * exception level). Fail safe by not providing an ESR
378 * context record at all.
380 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr
);
386 current
->thread
.fault_code
= esr
;
389 static void do_bad_area(unsigned long addr
, unsigned int esr
, struct pt_regs
*regs
)
392 * If we are in kernel mode at this point, we have no context to
393 * handle this fault with.
395 if (user_mode(regs
)) {
396 const struct fault_info
*inf
= esr_to_fault_info(esr
);
398 set_thread_esr(addr
, esr
);
399 arm64_force_sig_fault(inf
->sig
, inf
->code
, (void __user
*)addr
,
402 __do_kernel_fault(addr
, esr
, regs
);
406 #define VM_FAULT_BADMAP 0x010000
407 #define VM_FAULT_BADACCESS 0x020000
409 static vm_fault_t
__do_page_fault(struct mm_struct
*mm
, unsigned long addr
,
410 unsigned int mm_flags
, unsigned long vm_flags
)
412 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
415 return VM_FAULT_BADMAP
;
418 * Ok, we have a good vm_area for this memory access, so we can handle
421 if (unlikely(vma
->vm_start
> addr
)) {
422 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
423 return VM_FAULT_BADMAP
;
424 if (expand_stack(vma
, addr
))
425 return VM_FAULT_BADMAP
;
429 * Check that the permissions on the VMA allow for the fault which
432 if (!(vma
->vm_flags
& vm_flags
))
433 return VM_FAULT_BADACCESS
;
434 return handle_mm_fault(vma
, addr
& PAGE_MASK
, mm_flags
);
437 static bool is_el0_instruction_abort(unsigned int esr
)
439 return ESR_ELx_EC(esr
) == ESR_ELx_EC_IABT_LOW
;
443 * Note: not valid for EL1 DC IVAC, but we never use that such that it
444 * should fault. EL0 cannot issue DC IVAC (undef).
446 static bool is_write_abort(unsigned int esr
)
448 return (esr
& ESR_ELx_WNR
) && !(esr
& ESR_ELx_CM
);
451 static int __kprobes
do_page_fault(unsigned long addr
, unsigned int esr
,
452 struct pt_regs
*regs
)
454 const struct fault_info
*inf
;
455 struct mm_struct
*mm
= current
->mm
;
456 vm_fault_t fault
, major
= 0;
457 unsigned long vm_flags
= VM_READ
| VM_WRITE
;
458 unsigned int mm_flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
460 if (kprobe_page_fault(regs
, esr
))
464 * If we're in an interrupt or have no user context, we must not take
467 if (faulthandler_disabled() || !mm
)
471 mm_flags
|= FAULT_FLAG_USER
;
473 if (is_el0_instruction_abort(esr
)) {
475 mm_flags
|= FAULT_FLAG_INSTRUCTION
;
476 } else if (is_write_abort(esr
)) {
478 mm_flags
|= FAULT_FLAG_WRITE
;
481 if (is_ttbr0_addr(addr
) && is_el1_permission_fault(addr
, esr
, regs
)) {
482 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
483 if (regs
->orig_addr_limit
== KERNEL_DS
)
484 die_kernel_fault("access to user memory with fs=KERNEL_DS",
487 if (is_el1_instruction_abort(esr
))
488 die_kernel_fault("execution of user memory",
491 if (!search_exception_tables(regs
->pc
))
492 die_kernel_fault("access to user memory outside uaccess routines",
496 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, addr
);
499 * As per x86, we may deadlock here. However, since the kernel only
500 * validly references user space from well defined areas of the code,
501 * we can bug out early if this is from code which shouldn't.
503 if (!down_read_trylock(&mm
->mmap_sem
)) {
504 if (!user_mode(regs
) && !search_exception_tables(regs
->pc
))
507 down_read(&mm
->mmap_sem
);
510 * The above down_read_trylock() might have succeeded in which
511 * case, we'll have missed the might_sleep() from down_read().
514 #ifdef CONFIG_DEBUG_VM
515 if (!user_mode(regs
) && !search_exception_tables(regs
->pc
)) {
516 up_read(&mm
->mmap_sem
);
522 fault
= __do_page_fault(mm
, addr
, mm_flags
, vm_flags
);
523 major
|= fault
& VM_FAULT_MAJOR
;
525 if (fault
& VM_FAULT_RETRY
) {
527 * If we need to retry but a fatal signal is pending,
528 * handle the signal first. We do not need to release
529 * the mmap_sem because it would already be released
530 * in __lock_page_or_retry in mm/filemap.c.
532 if (fatal_signal_pending(current
)) {
533 if (!user_mode(regs
))
539 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
542 if (mm_flags
& FAULT_FLAG_ALLOW_RETRY
) {
543 mm_flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
544 mm_flags
|= FAULT_FLAG_TRIED
;
548 up_read(&mm
->mmap_sem
);
551 * Handle the "normal" (no error) case first.
553 if (likely(!(fault
& (VM_FAULT_ERROR
| VM_FAULT_BADMAP
|
554 VM_FAULT_BADACCESS
)))) {
556 * Major/minor page fault accounting is only done
557 * once. If we go through a retry, it is extremely
558 * likely that the page will be found in page cache at
563 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
,
567 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
,
575 * If we are in kernel mode at this point, we have no context to
576 * handle this fault with.
578 if (!user_mode(regs
))
581 if (fault
& VM_FAULT_OOM
) {
583 * We ran out of memory, call the OOM killer, and return to
584 * userspace (which will retry the fault, or kill us if we got
587 pagefault_out_of_memory();
591 inf
= esr_to_fault_info(esr
);
592 set_thread_esr(addr
, esr
);
593 if (fault
& VM_FAULT_SIGBUS
) {
595 * We had some memory, but were unable to successfully fix up
598 arm64_force_sig_fault(SIGBUS
, BUS_ADRERR
, (void __user
*)addr
,
600 } else if (fault
& (VM_FAULT_HWPOISON_LARGE
| VM_FAULT_HWPOISON
)) {
604 if (fault
& VM_FAULT_HWPOISON_LARGE
)
605 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
607 arm64_force_sig_mceerr(BUS_MCEERR_AR
, (void __user
*)addr
, lsb
,
611 * Something tried to access memory that isn't in our memory
614 arm64_force_sig_fault(SIGSEGV
,
615 fault
== VM_FAULT_BADACCESS
? SEGV_ACCERR
: SEGV_MAPERR
,
623 __do_kernel_fault(addr
, esr
, regs
);
627 static int __kprobes
do_translation_fault(unsigned long addr
,
629 struct pt_regs
*regs
)
631 if (is_ttbr0_addr(addr
))
632 return do_page_fault(addr
, esr
, regs
);
634 do_bad_area(addr
, esr
, regs
);
638 static int do_alignment_fault(unsigned long addr
, unsigned int esr
,
639 struct pt_regs
*regs
)
641 do_bad_area(addr
, esr
, regs
);
645 static int do_bad(unsigned long addr
, unsigned int esr
, struct pt_regs
*regs
)
647 return 1; /* "fault" */
650 static int do_sea(unsigned long addr
, unsigned int esr
, struct pt_regs
*regs
)
652 const struct fault_info
*inf
;
655 inf
= esr_to_fault_info(esr
);
658 * Return value ignored as we rely on signal merging.
659 * Future patches will make this more robust.
661 apei_claim_sea(regs
);
663 if (esr
& ESR_ELx_FnV
)
666 siaddr
= (void __user
*)addr
;
667 arm64_notify_die(inf
->name
, regs
, inf
->sig
, inf
->code
, siaddr
, esr
);
672 static const struct fault_info fault_info
[] = {
673 { do_bad
, SIGKILL
, SI_KERNEL
, "ttbr address size fault" },
674 { do_bad
, SIGKILL
, SI_KERNEL
, "level 1 address size fault" },
675 { do_bad
, SIGKILL
, SI_KERNEL
, "level 2 address size fault" },
676 { do_bad
, SIGKILL
, SI_KERNEL
, "level 3 address size fault" },
677 { do_translation_fault
, SIGSEGV
, SEGV_MAPERR
, "level 0 translation fault" },
678 { do_translation_fault
, SIGSEGV
, SEGV_MAPERR
, "level 1 translation fault" },
679 { do_translation_fault
, SIGSEGV
, SEGV_MAPERR
, "level 2 translation fault" },
680 { do_translation_fault
, SIGSEGV
, SEGV_MAPERR
, "level 3 translation fault" },
681 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 8" },
682 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 1 access flag fault" },
683 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 2 access flag fault" },
684 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 3 access flag fault" },
685 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 12" },
686 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 1 permission fault" },
687 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 2 permission fault" },
688 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 3 permission fault" },
689 { do_sea
, SIGBUS
, BUS_OBJERR
, "synchronous external abort" },
690 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 17" },
691 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 18" },
692 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 19" },
693 { do_sea
, SIGKILL
, SI_KERNEL
, "level 0 (translation table walk)" },
694 { do_sea
, SIGKILL
, SI_KERNEL
, "level 1 (translation table walk)" },
695 { do_sea
, SIGKILL
, SI_KERNEL
, "level 2 (translation table walk)" },
696 { do_sea
, SIGKILL
, SI_KERNEL
, "level 3 (translation table walk)" },
697 { do_sea
, SIGBUS
, BUS_OBJERR
, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
698 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 25" },
699 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 26" },
700 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 27" },
701 { do_sea
, SIGKILL
, SI_KERNEL
, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
702 { do_sea
, SIGKILL
, SI_KERNEL
, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
703 { do_sea
, SIGKILL
, SI_KERNEL
, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
704 { do_sea
, SIGKILL
, SI_KERNEL
, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
705 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 32" },
706 { do_alignment_fault
, SIGBUS
, BUS_ADRALN
, "alignment fault" },
707 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 34" },
708 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 35" },
709 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 36" },
710 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 37" },
711 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 38" },
712 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 39" },
713 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 40" },
714 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 41" },
715 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 42" },
716 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 43" },
717 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 44" },
718 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 45" },
719 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 46" },
720 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 47" },
721 { do_bad
, SIGKILL
, SI_KERNEL
, "TLB conflict abort" },
722 { do_bad
, SIGKILL
, SI_KERNEL
, "Unsupported atomic hardware update fault" },
723 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 50" },
724 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 51" },
725 { do_bad
, SIGKILL
, SI_KERNEL
, "implementation fault (lockdown abort)" },
726 { do_bad
, SIGBUS
, BUS_OBJERR
, "implementation fault (unsupported exclusive)" },
727 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 54" },
728 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 55" },
729 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 56" },
730 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 57" },
731 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 58" },
732 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 59" },
733 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 60" },
734 { do_bad
, SIGKILL
, SI_KERNEL
, "section domain fault" },
735 { do_bad
, SIGKILL
, SI_KERNEL
, "page domain fault" },
736 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 63" },
739 asmlinkage
void __exception
do_mem_abort(unsigned long addr
, unsigned int esr
,
740 struct pt_regs
*regs
)
742 const struct fault_info
*inf
= esr_to_fault_info(esr
);
744 if (!inf
->fn(addr
, esr
, regs
))
747 if (!user_mode(regs
)) {
748 pr_alert("Unhandled fault at 0x%016lx\n", addr
);
749 mem_abort_decode(esr
);
753 arm64_notify_die(inf
->name
, regs
,
754 inf
->sig
, inf
->code
, (void __user
*)addr
, esr
);
757 asmlinkage
void __exception
do_el0_irq_bp_hardening(void)
759 /* PC has already been checked in entry.S */
760 arm64_apply_bp_hardening();
763 asmlinkage
void __exception
do_el0_ia_bp_hardening(unsigned long addr
,
765 struct pt_regs
*regs
)
768 * We've taken an instruction abort from userspace and not yet
769 * re-enabled IRQs. If the address is a kernel address, apply
770 * BP hardening prior to enabling IRQs and pre-emption.
772 if (!is_ttbr0_addr(addr
))
773 arm64_apply_bp_hardening();
775 local_daif_restore(DAIF_PROCCTX
);
776 do_mem_abort(addr
, esr
, regs
);
780 asmlinkage
void __exception
do_sp_pc_abort(unsigned long addr
,
782 struct pt_regs
*regs
)
784 if (user_mode(regs
)) {
785 if (!is_ttbr0_addr(instruction_pointer(regs
)))
786 arm64_apply_bp_hardening();
787 local_daif_restore(DAIF_PROCCTX
);
790 arm64_notify_die("SP/PC alignment exception", regs
,
791 SIGBUS
, BUS_ADRALN
, (void __user
*)addr
, esr
);
794 int __init
early_brk64(unsigned long addr
, unsigned int esr
,
795 struct pt_regs
*regs
);
798 * __refdata because early_brk64 is __init, but the reference to it is
799 * clobbered at arch_initcall time.
800 * See traps.c and debug-monitors.c:debug_traps_init().
802 static struct fault_info __refdata debug_fault_info
[] = {
803 { do_bad
, SIGTRAP
, TRAP_HWBKPT
, "hardware breakpoint" },
804 { do_bad
, SIGTRAP
, TRAP_HWBKPT
, "hardware single-step" },
805 { do_bad
, SIGTRAP
, TRAP_HWBKPT
, "hardware watchpoint" },
806 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 3" },
807 { do_bad
, SIGTRAP
, TRAP_BRKPT
, "aarch32 BKPT" },
808 { do_bad
, SIGKILL
, SI_KERNEL
, "aarch32 vector catch" },
809 { early_brk64
, SIGTRAP
, TRAP_BRKPT
, "aarch64 BRK" },
810 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 7" },
813 void __init
hook_debug_fault_code(int nr
,
814 int (*fn
)(unsigned long, unsigned int, struct pt_regs
*),
815 int sig
, int code
, const char *name
)
817 BUG_ON(nr
< 0 || nr
>= ARRAY_SIZE(debug_fault_info
));
819 debug_fault_info
[nr
].fn
= fn
;
820 debug_fault_info
[nr
].sig
= sig
;
821 debug_fault_info
[nr
].code
= code
;
822 debug_fault_info
[nr
].name
= name
;
826 * In debug exception context, we explicitly disable preemption despite
827 * having interrupts disabled.
828 * This serves two purposes: it makes it much less likely that we would
829 * accidentally schedule in exception context and it will force a warning
830 * if we somehow manage to schedule by accident.
832 static void debug_exception_enter(struct pt_regs
*regs
)
835 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
836 * already disabled to preserve the last enabled/disabled addresses.
838 if (interrupts_enabled(regs
))
839 trace_hardirqs_off();
841 if (user_mode(regs
)) {
842 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
845 * We might have interrupted pretty much anything. In
846 * fact, if we're a debug exception, we can even interrupt
847 * NMI processing. We don't want this code makes in_nmi()
848 * to return true, but we need to notify RCU.
855 /* This code is a bit fragile. Test it. */
856 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
858 NOKPROBE_SYMBOL(debug_exception_enter
);
860 static void debug_exception_exit(struct pt_regs
*regs
)
862 preempt_enable_no_resched();
864 if (!user_mode(regs
))
867 if (interrupts_enabled(regs
))
870 NOKPROBE_SYMBOL(debug_exception_exit
);
872 #ifdef CONFIG_ARM64_ERRATUM_1463225
873 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa
);
875 static int __exception
876 cortex_a76_erratum_1463225_debug_handler(struct pt_regs
*regs
)
881 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa
))
885 * We've taken a dummy step exception from the kernel to ensure
886 * that interrupts are re-enabled on the syscall path. Return back
887 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
888 * masked so that we can safely restore the mdscr and get on with
889 * handling the syscall.
891 regs
->pstate
|= PSR_D_BIT
;
895 static int __exception
896 cortex_a76_erratum_1463225_debug_handler(struct pt_regs
*regs
)
900 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
902 asmlinkage
void __exception
do_debug_exception(unsigned long addr_if_watchpoint
,
904 struct pt_regs
*regs
)
906 const struct fault_info
*inf
= esr_to_debug_fault_info(esr
);
907 unsigned long pc
= instruction_pointer(regs
);
909 if (cortex_a76_erratum_1463225_debug_handler(regs
))
912 debug_exception_enter(regs
);
914 if (user_mode(regs
) && !is_ttbr0_addr(pc
))
915 arm64_apply_bp_hardening();
917 if (inf
->fn(addr_if_watchpoint
, esr
, regs
)) {
918 arm64_notify_die(inf
->name
, regs
,
919 inf
->sig
, inf
->code
, (void __user
*)pc
, esr
);
922 debug_exception_exit(regs
);
924 NOKPROBE_SYMBOL(do_debug_exception
);