1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/perf_event.h>
3 #include <linux/export.h>
4 #include <linux/types.h>
5 #include <linux/init.h>
6 #include <linux/slab.h>
7 #include <linux/delay.h>
8 #include <linux/jiffies.h>
9 #include <asm/apicdef.h>
12 #include "../perf_event.h"
14 static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp
);
15 static unsigned long perf_nmi_window
;
17 static __initconst
const u64 amd_hw_cache_event_ids
18 [PERF_COUNT_HW_CACHE_MAX
]
19 [PERF_COUNT_HW_CACHE_OP_MAX
]
20 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
24 [ C(RESULT_ACCESS
) ] = 0x0040, /* Data Cache Accesses */
25 [ C(RESULT_MISS
) ] = 0x0141, /* Data Cache Misses */
28 [ C(RESULT_ACCESS
) ] = 0,
29 [ C(RESULT_MISS
) ] = 0,
31 [ C(OP_PREFETCH
) ] = {
32 [ C(RESULT_ACCESS
) ] = 0x0267, /* Data Prefetcher :attempts */
33 [ C(RESULT_MISS
) ] = 0x0167, /* Data Prefetcher :cancelled */
38 [ C(RESULT_ACCESS
) ] = 0x0080, /* Instruction cache fetches */
39 [ C(RESULT_MISS
) ] = 0x0081, /* Instruction cache misses */
42 [ C(RESULT_ACCESS
) ] = -1,
43 [ C(RESULT_MISS
) ] = -1,
45 [ C(OP_PREFETCH
) ] = {
46 [ C(RESULT_ACCESS
) ] = 0x014B, /* Prefetch Instructions :Load */
47 [ C(RESULT_MISS
) ] = 0,
52 [ C(RESULT_ACCESS
) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
53 [ C(RESULT_MISS
) ] = 0x037E, /* L2 Cache Misses : IC+DC */
56 [ C(RESULT_ACCESS
) ] = 0x017F, /* L2 Fill/Writeback */
57 [ C(RESULT_MISS
) ] = 0,
59 [ C(OP_PREFETCH
) ] = {
60 [ C(RESULT_ACCESS
) ] = 0,
61 [ C(RESULT_MISS
) ] = 0,
66 [ C(RESULT_ACCESS
) ] = 0x0040, /* Data Cache Accesses */
67 [ C(RESULT_MISS
) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
70 [ C(RESULT_ACCESS
) ] = 0,
71 [ C(RESULT_MISS
) ] = 0,
73 [ C(OP_PREFETCH
) ] = {
74 [ C(RESULT_ACCESS
) ] = 0,
75 [ C(RESULT_MISS
) ] = 0,
80 [ C(RESULT_ACCESS
) ] = 0x0080, /* Instruction fecthes */
81 [ C(RESULT_MISS
) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
84 [ C(RESULT_ACCESS
) ] = -1,
85 [ C(RESULT_MISS
) ] = -1,
87 [ C(OP_PREFETCH
) ] = {
88 [ C(RESULT_ACCESS
) ] = -1,
89 [ C(RESULT_MISS
) ] = -1,
94 [ C(RESULT_ACCESS
) ] = 0x00c2, /* Retired Branch Instr. */
95 [ C(RESULT_MISS
) ] = 0x00c3, /* Retired Mispredicted BI */
98 [ C(RESULT_ACCESS
) ] = -1,
99 [ C(RESULT_MISS
) ] = -1,
101 [ C(OP_PREFETCH
) ] = {
102 [ C(RESULT_ACCESS
) ] = -1,
103 [ C(RESULT_MISS
) ] = -1,
108 [ C(RESULT_ACCESS
) ] = 0xb8e9, /* CPU Request to Memory, l+r */
109 [ C(RESULT_MISS
) ] = 0x98e9, /* CPU Request to Memory, r */
112 [ C(RESULT_ACCESS
) ] = -1,
113 [ C(RESULT_MISS
) ] = -1,
115 [ C(OP_PREFETCH
) ] = {
116 [ C(RESULT_ACCESS
) ] = -1,
117 [ C(RESULT_MISS
) ] = -1,
122 static __initconst
const u64 amd_hw_cache_event_ids_f17h
123 [PERF_COUNT_HW_CACHE_MAX
]
124 [PERF_COUNT_HW_CACHE_OP_MAX
]
125 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
128 [C(RESULT_ACCESS
)] = 0x0040, /* Data Cache Accesses */
129 [C(RESULT_MISS
)] = 0xc860, /* L2$ access from DC Miss */
132 [C(RESULT_ACCESS
)] = 0,
133 [C(RESULT_MISS
)] = 0,
136 [C(RESULT_ACCESS
)] = 0xff5a, /* h/w prefetch DC Fills */
137 [C(RESULT_MISS
)] = 0,
142 [C(RESULT_ACCESS
)] = 0x0080, /* Instruction cache fetches */
143 [C(RESULT_MISS
)] = 0x0081, /* Instruction cache misses */
146 [C(RESULT_ACCESS
)] = -1,
147 [C(RESULT_MISS
)] = -1,
150 [C(RESULT_ACCESS
)] = 0,
151 [C(RESULT_MISS
)] = 0,
156 [C(RESULT_ACCESS
)] = 0,
157 [C(RESULT_MISS
)] = 0,
160 [C(RESULT_ACCESS
)] = 0,
161 [C(RESULT_MISS
)] = 0,
164 [C(RESULT_ACCESS
)] = 0,
165 [C(RESULT_MISS
)] = 0,
170 [C(RESULT_ACCESS
)] = 0xff45, /* All L2 DTLB accesses */
171 [C(RESULT_MISS
)] = 0xf045, /* L2 DTLB misses (PT walks) */
174 [C(RESULT_ACCESS
)] = 0,
175 [C(RESULT_MISS
)] = 0,
178 [C(RESULT_ACCESS
)] = 0,
179 [C(RESULT_MISS
)] = 0,
184 [C(RESULT_ACCESS
)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
185 [C(RESULT_MISS
)] = 0xff85, /* L1 ITLB misses, L2 misses */
188 [C(RESULT_ACCESS
)] = -1,
189 [C(RESULT_MISS
)] = -1,
192 [C(RESULT_ACCESS
)] = -1,
193 [C(RESULT_MISS
)] = -1,
198 [C(RESULT_ACCESS
)] = 0x00c2, /* Retired Branch Instr. */
199 [C(RESULT_MISS
)] = 0x00c3, /* Retired Mispredicted BI */
202 [C(RESULT_ACCESS
)] = -1,
203 [C(RESULT_MISS
)] = -1,
206 [C(RESULT_ACCESS
)] = -1,
207 [C(RESULT_MISS
)] = -1,
212 [C(RESULT_ACCESS
)] = 0,
213 [C(RESULT_MISS
)] = 0,
216 [C(RESULT_ACCESS
)] = -1,
217 [C(RESULT_MISS
)] = -1,
220 [C(RESULT_ACCESS
)] = -1,
221 [C(RESULT_MISS
)] = -1,
227 * AMD Performance Monitor K7 and later, up to and including Family 16h:
229 static const u64 amd_perfmon_event_map
[PERF_COUNT_HW_MAX
] =
231 [PERF_COUNT_HW_CPU_CYCLES
] = 0x0076,
232 [PERF_COUNT_HW_INSTRUCTIONS
] = 0x00c0,
233 [PERF_COUNT_HW_CACHE_REFERENCES
] = 0x077d,
234 [PERF_COUNT_HW_CACHE_MISSES
] = 0x077e,
235 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = 0x00c2,
236 [PERF_COUNT_HW_BRANCH_MISSES
] = 0x00c3,
237 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] = 0x00d0, /* "Decoder empty" event */
238 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] = 0x00d1, /* "Dispatch stalls" event */
242 * AMD Performance Monitor Family 17h and later:
244 static const u64 amd_f17h_perfmon_event_map
[PERF_COUNT_HW_MAX
] =
246 [PERF_COUNT_HW_CPU_CYCLES
] = 0x0076,
247 [PERF_COUNT_HW_INSTRUCTIONS
] = 0x00c0,
248 [PERF_COUNT_HW_CACHE_REFERENCES
] = 0xff60,
249 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = 0x00c2,
250 [PERF_COUNT_HW_BRANCH_MISSES
] = 0x00c3,
251 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] = 0x0287,
252 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] = 0x0187,
255 static u64
amd_pmu_event_map(int hw_event
)
257 if (boot_cpu_data
.x86
>= 0x17)
258 return amd_f17h_perfmon_event_map
[hw_event
];
260 return amd_perfmon_event_map
[hw_event
];
264 * Previously calculated offsets
266 static unsigned int event_offsets
[X86_PMC_IDX_MAX
] __read_mostly
;
267 static unsigned int count_offsets
[X86_PMC_IDX_MAX
] __read_mostly
;
271 * 4 counters starting at 0xc0010000 each offset by 1
273 * CPUs with core performance counter extensions:
274 * 6 counters starting at 0xc0010200 each offset by 2
276 static inline int amd_pmu_addr_offset(int index
, bool eventsel
)
284 offset
= event_offsets
[index
];
286 offset
= count_offsets
[index
];
291 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE
))
297 event_offsets
[index
] = offset
;
299 count_offsets
[index
] = offset
;
304 static int amd_core_hw_config(struct perf_event
*event
)
306 if (event
->attr
.exclude_host
&& event
->attr
.exclude_guest
)
308 * When HO == GO == 1 the hardware treats that as GO == HO == 0
309 * and will count in both modes. We don't want to count in that
310 * case so we emulate no-counting by setting US = OS = 0.
312 event
->hw
.config
&= ~(ARCH_PERFMON_EVENTSEL_USR
|
313 ARCH_PERFMON_EVENTSEL_OS
);
314 else if (event
->attr
.exclude_host
)
315 event
->hw
.config
|= AMD64_EVENTSEL_GUESTONLY
;
316 else if (event
->attr
.exclude_guest
)
317 event
->hw
.config
|= AMD64_EVENTSEL_HOSTONLY
;
323 * AMD64 events are detected based on their event codes.
325 static inline unsigned int amd_get_event_code(struct hw_perf_event
*hwc
)
327 return ((hwc
->config
>> 24) & 0x0f00) | (hwc
->config
& 0x00ff);
330 static inline int amd_is_nb_event(struct hw_perf_event
*hwc
)
332 return (hwc
->config
& 0xe0) == 0xe0;
335 static inline int amd_has_nb(struct cpu_hw_events
*cpuc
)
337 struct amd_nb
*nb
= cpuc
->amd_nb
;
339 return nb
&& nb
->nb_id
!= -1;
342 static int amd_pmu_hw_config(struct perf_event
*event
)
346 /* pass precise event sampling to ibs: */
347 if (event
->attr
.precise_ip
&& get_ibs_caps())
350 if (has_branch_stack(event
))
353 ret
= x86_pmu_hw_config(event
);
357 if (event
->attr
.type
== PERF_TYPE_RAW
)
358 event
->hw
.config
|= event
->attr
.config
& AMD64_RAW_EVENT_MASK
;
360 return amd_core_hw_config(event
);
363 static void __amd_put_nb_event_constraints(struct cpu_hw_events
*cpuc
,
364 struct perf_event
*event
)
366 struct amd_nb
*nb
= cpuc
->amd_nb
;
370 * need to scan whole list because event may not have
371 * been assigned during scheduling
373 * no race condition possible because event can only
374 * be removed on one CPU at a time AND PMU is disabled
377 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
378 if (cmpxchg(nb
->owners
+ i
, event
, NULL
) == event
)
384 * AMD64 NorthBridge events need special treatment because
385 * counter access needs to be synchronized across all cores
386 * of a package. Refer to BKDG section 3.12
388 * NB events are events measuring L3 cache, Hypertransport
389 * traffic. They are identified by an event code >= 0xe00.
390 * They measure events on the NorthBride which is shared
391 * by all cores on a package. NB events are counted on a
392 * shared set of counters. When a NB event is programmed
393 * in a counter, the data actually comes from a shared
394 * counter. Thus, access to those counters needs to be
397 * We implement the synchronization such that no two cores
398 * can be measuring NB events using the same counters. Thus,
399 * we maintain a per-NB allocation table. The available slot
400 * is propagated using the event_constraint structure.
402 * We provide only one choice for each NB event based on
403 * the fact that only NB events have restrictions. Consequently,
404 * if a counter is available, there is a guarantee the NB event
405 * will be assigned to it. If no slot is available, an empty
406 * constraint is returned and scheduling will eventually fail
409 * Note that all cores attached the same NB compete for the same
410 * counters to host NB events, this is why we use atomic ops. Some
411 * multi-chip CPUs may have more than one NB.
413 * Given that resources are allocated (cmpxchg), they must be
414 * eventually freed for others to use. This is accomplished by
415 * calling __amd_put_nb_event_constraints()
417 * Non NB events are not impacted by this restriction.
419 static struct event_constraint
*
420 __amd_get_nb_event_constraints(struct cpu_hw_events
*cpuc
, struct perf_event
*event
,
421 struct event_constraint
*c
)
423 struct hw_perf_event
*hwc
= &event
->hw
;
424 struct amd_nb
*nb
= cpuc
->amd_nb
;
425 struct perf_event
*old
;
435 * detect if already present, if so reuse
437 * cannot merge with actual allocation
438 * because of possible holes
440 * event can already be present yet not assigned (in hwc->idx)
441 * because of successive calls to x86_schedule_events() from
442 * hw_perf_group_sched_in() without hw_perf_enable()
444 for_each_set_bit(idx
, c
->idxmsk
, x86_pmu
.num_counters
) {
445 if (new == -1 || hwc
->idx
== idx
)
446 /* assign free slot, prefer hwc->idx */
447 old
= cmpxchg(nb
->owners
+ idx
, NULL
, event
);
448 else if (nb
->owners
[idx
] == event
)
449 /* event already present */
454 if (old
&& old
!= event
)
457 /* reassign to this slot */
459 cmpxchg(nb
->owners
+ new, event
, NULL
);
462 /* already present, reuse */
468 return &emptyconstraint
;
470 return &nb
->event_constraints
[new];
473 static struct amd_nb
*amd_alloc_nb(int cpu
)
478 nb
= kzalloc_node(sizeof(struct amd_nb
), GFP_KERNEL
, cpu_to_node(cpu
));
485 * initialize all possible NB constraints
487 for (i
= 0; i
< x86_pmu
.num_counters
; i
++) {
488 __set_bit(i
, nb
->event_constraints
[i
].idxmsk
);
489 nb
->event_constraints
[i
].weight
= 1;
494 static int amd_pmu_cpu_prepare(int cpu
)
496 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
498 WARN_ON_ONCE(cpuc
->amd_nb
);
500 if (!x86_pmu
.amd_nb_constraints
)
503 cpuc
->amd_nb
= amd_alloc_nb(cpu
);
510 static void amd_pmu_cpu_starting(int cpu
)
512 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
513 void **onln
= &cpuc
->kfree_on_online
[X86_PERF_KFREE_SHARED
];
517 cpuc
->perf_ctr_virt_mask
= AMD64_EVENTSEL_HOSTONLY
;
519 if (!x86_pmu
.amd_nb_constraints
)
522 nb_id
= amd_get_nb_id(cpu
);
523 WARN_ON_ONCE(nb_id
== BAD_APICID
);
525 for_each_online_cpu(i
) {
526 nb
= per_cpu(cpu_hw_events
, i
).amd_nb
;
527 if (WARN_ON_ONCE(!nb
))
530 if (nb
->nb_id
== nb_id
) {
531 *onln
= cpuc
->amd_nb
;
537 cpuc
->amd_nb
->nb_id
= nb_id
;
538 cpuc
->amd_nb
->refcnt
++;
541 static void amd_pmu_cpu_dead(int cpu
)
543 struct cpu_hw_events
*cpuhw
;
545 if (!x86_pmu
.amd_nb_constraints
)
548 cpuhw
= &per_cpu(cpu_hw_events
, cpu
);
551 struct amd_nb
*nb
= cpuhw
->amd_nb
;
553 if (nb
->nb_id
== -1 || --nb
->refcnt
== 0)
556 cpuhw
->amd_nb
= NULL
;
561 * When a PMC counter overflows, an NMI is used to process the event and
562 * reset the counter. NMI latency can result in the counter being updated
563 * before the NMI can run, which can result in what appear to be spurious
564 * NMIs. This function is intended to wait for the NMI to run and reset
565 * the counter to avoid possible unhandled NMI messages.
567 #define OVERFLOW_WAIT_COUNT 50
569 static void amd_pmu_wait_on_overflow(int idx
)
575 * Wait for the counter to be reset if it has overflowed. This loop
576 * should exit very, very quickly, but just in case, don't wait
579 for (i
= 0; i
< OVERFLOW_WAIT_COUNT
; i
++) {
580 rdmsrl(x86_pmu_event_addr(idx
), counter
);
581 if (counter
& (1ULL << (x86_pmu
.cntval_bits
- 1)))
584 /* Might be in IRQ context, so can't sleep */
589 static void amd_pmu_disable_all(void)
591 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
594 x86_pmu_disable_all();
597 * This shouldn't be called from NMI context, but add a safeguard here
598 * to return, since if we're in NMI context we can't wait for an NMI
599 * to reset an overflowed counter value.
605 * Check each counter for overflow and wait for it to be reset by the
606 * NMI if it has overflowed. This relies on the fact that all active
607 * counters are always enabled when this function is caled and
608 * ARCH_PERFMON_EVENTSEL_INT is always set.
610 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
611 if (!test_bit(idx
, cpuc
->active_mask
))
614 amd_pmu_wait_on_overflow(idx
);
618 static void amd_pmu_disable_event(struct perf_event
*event
)
620 x86_pmu_disable_event(event
);
623 * This can be called from NMI context (via x86_pmu_stop). The counter
624 * may have overflowed, but either way, we'll never see it get reset
625 * by the NMI if we're already in the NMI. And the NMI latency support
626 * below will take care of any pending NMI that might have been
627 * generated by the overflow.
632 amd_pmu_wait_on_overflow(event
->hw
.idx
);
636 * Because of NMI latency, if multiple PMC counters are active or other sources
637 * of NMIs are received, the perf NMI handler can handle one or more overflowed
638 * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
639 * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
640 * back-to-back NMI support won't be active. This PMC handler needs to take into
641 * account that this can occur, otherwise this could result in unknown NMI
642 * messages being issued. Examples of this is PMC overflow while in the NMI
643 * handler when multiple PMCs are active or PMC overflow while handling some
644 * other source of an NMI.
646 * Attempt to mitigate this by creating an NMI window in which un-handled NMIs
647 * received during this window will be claimed. This prevents extending the
648 * window past when it is possible that latent NMIs should be received. The
649 * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
650 * handled a counter. When an un-handled NMI is received, it will be claimed
651 * only if arriving within that window.
653 static int amd_pmu_handle_irq(struct pt_regs
*regs
)
655 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
659 * Obtain the active count before calling x86_pmu_handle_irq() since
660 * it is possible that x86_pmu_handle_irq() may make a counter
661 * inactive (through x86_pmu_stop).
663 active
= __bitmap_weight(cpuc
->active_mask
, X86_PMC_IDX_MAX
);
665 /* Process any counter overflows */
666 handled
= x86_pmu_handle_irq(regs
);
669 * If a counter was handled, record a timestamp such that un-handled
670 * NMIs will be claimed if arriving within that window.
673 this_cpu_write(perf_nmi_tstamp
,
674 jiffies
+ perf_nmi_window
);
679 if (time_after(jiffies
, this_cpu_read(perf_nmi_tstamp
)))
685 static struct event_constraint
*
686 amd_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
687 struct perf_event
*event
)
690 * if not NB event or no NB, then no constraints
692 if (!(amd_has_nb(cpuc
) && amd_is_nb_event(&event
->hw
)))
693 return &unconstrained
;
695 return __amd_get_nb_event_constraints(cpuc
, event
, NULL
);
698 static void amd_put_event_constraints(struct cpu_hw_events
*cpuc
,
699 struct perf_event
*event
)
701 if (amd_has_nb(cpuc
) && amd_is_nb_event(&event
->hw
))
702 __amd_put_nb_event_constraints(cpuc
, event
);
705 PMU_FORMAT_ATTR(event
, "config:0-7,32-35");
706 PMU_FORMAT_ATTR(umask
, "config:8-15" );
707 PMU_FORMAT_ATTR(edge
, "config:18" );
708 PMU_FORMAT_ATTR(inv
, "config:23" );
709 PMU_FORMAT_ATTR(cmask
, "config:24-31" );
711 static struct attribute
*amd_format_attr
[] = {
712 &format_attr_event
.attr
,
713 &format_attr_umask
.attr
,
714 &format_attr_edge
.attr
,
715 &format_attr_inv
.attr
,
716 &format_attr_cmask
.attr
,
722 #define AMD_EVENT_TYPE_MASK 0x000000F0ULL
724 #define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL
725 #define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL
726 #define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL
727 #define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL
728 #define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL
729 #define AMD_EVENT_EX_LS 0x000000C0ULL
730 #define AMD_EVENT_DE 0x000000D0ULL
731 #define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL
734 * AMD family 15h event code/PMC mappings:
736 * type = event_code & 0x0F0:
738 * 0x000 FP PERF_CTL[5:3]
739 * 0x010 FP PERF_CTL[5:3]
740 * 0x020 LS PERF_CTL[5:0]
741 * 0x030 LS PERF_CTL[5:0]
742 * 0x040 DC PERF_CTL[5:0]
743 * 0x050 DC PERF_CTL[5:0]
744 * 0x060 CU PERF_CTL[2:0]
745 * 0x070 CU PERF_CTL[2:0]
746 * 0x080 IC/DE PERF_CTL[2:0]
747 * 0x090 IC/DE PERF_CTL[2:0]
750 * 0x0C0 EX/LS PERF_CTL[5:0]
751 * 0x0D0 DE PERF_CTL[2:0]
752 * 0x0E0 NB NB_PERF_CTL[3:0]
753 * 0x0F0 NB NB_PERF_CTL[3:0]
757 * 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*)
758 * 0x003 FP PERF_CTL[3]
759 * 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*)
760 * 0x00B FP PERF_CTL[3]
761 * 0x00D FP PERF_CTL[3]
762 * 0x023 DE PERF_CTL[2:0]
763 * 0x02D LS PERF_CTL[3]
764 * 0x02E LS PERF_CTL[3,0]
765 * 0x031 LS PERF_CTL[2:0] (**)
766 * 0x043 CU PERF_CTL[2:0]
767 * 0x045 CU PERF_CTL[2:0]
768 * 0x046 CU PERF_CTL[2:0]
769 * 0x054 CU PERF_CTL[2:0]
770 * 0x055 CU PERF_CTL[2:0]
771 * 0x08F IC PERF_CTL[0]
772 * 0x187 DE PERF_CTL[0]
773 * 0x188 DE PERF_CTL[0]
774 * 0x0DB EX PERF_CTL[5:0]
775 * 0x0DC LS PERF_CTL[5:0]
776 * 0x0DD LS PERF_CTL[5:0]
777 * 0x0DE LS PERF_CTL[5:0]
778 * 0x0DF LS PERF_CTL[5:0]
779 * 0x1C0 EX PERF_CTL[5:3]
780 * 0x1D6 EX PERF_CTL[5:0]
781 * 0x1D8 EX PERF_CTL[5:0]
783 * (*) depending on the umask all FPU counters may be used
784 * (**) only one unitmask enabled at a time
787 static struct event_constraint amd_f15_PMC0
= EVENT_CONSTRAINT(0, 0x01, 0);
788 static struct event_constraint amd_f15_PMC20
= EVENT_CONSTRAINT(0, 0x07, 0);
789 static struct event_constraint amd_f15_PMC3
= EVENT_CONSTRAINT(0, 0x08, 0);
790 static struct event_constraint amd_f15_PMC30
= EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
791 static struct event_constraint amd_f15_PMC50
= EVENT_CONSTRAINT(0, 0x3F, 0);
792 static struct event_constraint amd_f15_PMC53
= EVENT_CONSTRAINT(0, 0x38, 0);
794 static struct event_constraint
*
795 amd_get_event_constraints_f15h(struct cpu_hw_events
*cpuc
, int idx
,
796 struct perf_event
*event
)
798 struct hw_perf_event
*hwc
= &event
->hw
;
799 unsigned int event_code
= amd_get_event_code(hwc
);
801 switch (event_code
& AMD_EVENT_TYPE_MASK
) {
803 switch (event_code
) {
805 if (!(hwc
->config
& 0x0000F000ULL
))
807 if (!(hwc
->config
& 0x00000F00ULL
))
809 return &amd_f15_PMC3
;
811 if (hweight_long(hwc
->config
& ARCH_PERFMON_EVENTSEL_UMASK
) <= 1)
813 return &amd_f15_PMC3
;
817 return &amd_f15_PMC3
;
819 return &amd_f15_PMC53
;
822 case AMD_EVENT_EX_LS
:
823 switch (event_code
) {
830 return &amd_f15_PMC20
;
832 return &amd_f15_PMC3
;
834 return &amd_f15_PMC30
;
836 if (hweight_long(hwc
->config
& ARCH_PERFMON_EVENTSEL_UMASK
) <= 1)
837 return &amd_f15_PMC20
;
838 return &emptyconstraint
;
840 return &amd_f15_PMC53
;
842 return &amd_f15_PMC50
;
845 case AMD_EVENT_IC_DE
:
847 switch (event_code
) {
851 return &amd_f15_PMC0
;
852 case 0x0DB ... 0x0DF:
855 return &amd_f15_PMC50
;
857 return &amd_f15_PMC20
;
860 /* moved to uncore.c */
861 return &emptyconstraint
;
863 return &emptyconstraint
;
867 static ssize_t
amd_event_sysfs_show(char *page
, u64 config
)
869 u64 event
= (config
& ARCH_PERFMON_EVENTSEL_EVENT
) |
870 (config
& AMD64_EVENTSEL_EVENT
) >> 24;
872 return x86_event_sysfs_show(page
, config
, event
);
875 static __initconst
const struct x86_pmu amd_pmu
= {
877 .handle_irq
= amd_pmu_handle_irq
,
878 .disable_all
= amd_pmu_disable_all
,
879 .enable_all
= x86_pmu_enable_all
,
880 .enable
= x86_pmu_enable_event
,
881 .disable
= amd_pmu_disable_event
,
882 .hw_config
= amd_pmu_hw_config
,
883 .schedule_events
= x86_schedule_events
,
884 .eventsel
= MSR_K7_EVNTSEL0
,
885 .perfctr
= MSR_K7_PERFCTR0
,
886 .addr_offset
= amd_pmu_addr_offset
,
887 .event_map
= amd_pmu_event_map
,
888 .max_events
= ARRAY_SIZE(amd_perfmon_event_map
),
889 .num_counters
= AMD64_NUM_COUNTERS
,
891 .cntval_mask
= (1ULL << 48) - 1,
893 /* use highest bit to detect overflow */
894 .max_period
= (1ULL << 47) - 1,
895 .get_event_constraints
= amd_get_event_constraints
,
896 .put_event_constraints
= amd_put_event_constraints
,
898 .format_attrs
= amd_format_attr
,
899 .events_sysfs_show
= amd_event_sysfs_show
,
901 .cpu_prepare
= amd_pmu_cpu_prepare
,
902 .cpu_starting
= amd_pmu_cpu_starting
,
903 .cpu_dead
= amd_pmu_cpu_dead
,
905 .amd_nb_constraints
= 1,
908 static int __init
amd_core_pmu_init(void)
910 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE
))
913 /* Avoid calulating the value each time in the NMI handler */
914 perf_nmi_window
= msecs_to_jiffies(100);
916 switch (boot_cpu_data
.x86
) {
919 x86_pmu
.get_event_constraints
= amd_get_event_constraints_f15h
;
924 * In family 17h, there are no event constraints in the PMC hardware.
925 * We fallback to using default amd_get_event_constraints.
930 /* Using default amd_get_event_constraints. */
933 pr_err("core perfctr but no constraints; unknown hardware!\n");
938 * If core performance counter extensions exists, we must use
939 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
940 * amd_pmu_addr_offset().
942 x86_pmu
.eventsel
= MSR_F15H_PERF_CTL
;
943 x86_pmu
.perfctr
= MSR_F15H_PERF_CTR
;
944 x86_pmu
.num_counters
= AMD64_NUM_COUNTERS_CORE
;
946 * AMD Core perfctr has separate MSRs for the NB events, see
947 * the amd/uncore.c driver.
949 x86_pmu
.amd_nb_constraints
= 0;
951 pr_cont("core perfctr, ");
955 __init
int amd_pmu_init(void)
959 /* Performance-monitoring supported from K7 and later: */
960 if (boot_cpu_data
.x86
< 6)
965 ret
= amd_core_pmu_init();
969 if (num_possible_cpus() == 1) {
971 * No point in allocating data structures to serialize
972 * against other CPUs, when there is only the one CPU.
974 x86_pmu
.amd_nb_constraints
= 0;
977 if (boot_cpu_data
.x86
>= 0x17)
978 memcpy(hw_cache_event_ids
, amd_hw_cache_event_ids_f17h
, sizeof(hw_cache_event_ids
));
980 memcpy(hw_cache_event_ids
, amd_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
985 void amd_pmu_enable_virt(void)
987 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
989 cpuc
->perf_ctr_virt_mask
= 0;
991 /* Reload all events */
992 amd_pmu_disable_all();
993 x86_pmu_enable_all(0);
995 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt
);
997 void amd_pmu_disable_virt(void)
999 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1002 * We only mask out the Host-only bit so that host-only counting works
1003 * when SVM is disabled. If someone sets up a guest-only counter when
1004 * SVM is disabled the Guest-only bits still gets set and the counter
1005 * will not count anything.
1007 cpuc
->perf_ctr_virt_mask
= AMD64_EVENTSEL_HOSTONLY
;
1009 /* Reload all events */
1010 amd_pmu_disable_all();
1011 x86_pmu_enable_all(0);
1013 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt
);