1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
31 #include <asm/syscalls.h>
32 #include <linux/uaccess.h>
33 #include <asm/mwait.h>
34 #include <asm/fpu/internal.h>
35 #include <asm/debugreg.h>
37 #include <asm/tlbflush.h>
40 #include <asm/switch_to.h>
42 #include <asm/prctl.h>
43 #include <asm/spec-ctrl.h>
44 #include <asm/proto.h>
49 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
50 * no more per-task TSS's. The TSS size is kept cacheline-aligned
51 * so they are allowed to end up in the .data..cacheline_aligned
52 * section. Since TSS's are completely CPU-local, we want them
53 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
55 __visible
DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct
, cpu_tss_rw
) = {
58 * .sp0 is only used when entering ring 0 from a lower
59 * privilege level. Since the init task never runs anything
60 * but ring 0 code, there is no need for a valid value here.
63 .sp0
= (1UL << (BITS_PER_LONG
-1)) + 1,
66 * .sp1 is cpu_current_top_of_stack. The init task never
67 * runs user code, but cpu_current_top_of_stack should still
68 * be well defined before the first context switch.
70 .sp1
= TOP_OF_INIT_STACK
,
75 .io_bitmap_base
= INVALID_IO_BITMAP_OFFSET
,
80 * Note that the .io_bitmap member must be extra-big. This is because
81 * the CPU will access an additional byte beyond the end of the IO
82 * permission bitmap. The extra byte must be all 1 bits, and must
83 * be within the limit.
85 .io_bitmap
= { [0 ... IO_BITMAP_LONGS
] = ~0 },
88 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw
);
90 DEFINE_PER_CPU(bool, __tss_limit_invalid
);
91 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid
);
94 * this gets called so that we can store lazy state into memory and copy the
95 * current task into the new thread.
97 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
99 memcpy(dst
, src
, arch_task_struct_size
);
101 dst
->thread
.vm86
= NULL
;
104 return fpu__copy(dst
, src
);
108 * Free current thread data structures etc..
110 void exit_thread(struct task_struct
*tsk
)
112 struct thread_struct
*t
= &tsk
->thread
;
113 unsigned long *bp
= t
->io_bitmap_ptr
;
114 struct fpu
*fpu
= &t
->fpu
;
117 struct tss_struct
*tss
= &per_cpu(cpu_tss_rw
, get_cpu());
119 t
->io_bitmap_ptr
= NULL
;
120 clear_thread_flag(TIF_IO_BITMAP
);
122 * Careful, clear this in the TSS too:
124 memset(tss
->io_bitmap
, 0xff, t
->io_bitmap_max
);
125 t
->io_bitmap_max
= 0;
135 void flush_thread(void)
137 struct task_struct
*tsk
= current
;
139 flush_ptrace_hw_breakpoint(tsk
);
140 memset(tsk
->thread
.tls_array
, 0, sizeof(tsk
->thread
.tls_array
));
142 fpu__clear(&tsk
->thread
.fpu
);
145 void disable_TSC(void)
148 if (!test_and_set_thread_flag(TIF_NOTSC
))
150 * Must flip the CPU state synchronously with
151 * TIF_NOTSC in the current running context.
153 cr4_set_bits(X86_CR4_TSD
);
157 static void enable_TSC(void)
160 if (test_and_clear_thread_flag(TIF_NOTSC
))
162 * Must flip the CPU state synchronously with
163 * TIF_NOTSC in the current running context.
165 cr4_clear_bits(X86_CR4_TSD
);
169 int get_tsc_mode(unsigned long adr
)
173 if (test_thread_flag(TIF_NOTSC
))
174 val
= PR_TSC_SIGSEGV
;
178 return put_user(val
, (unsigned int __user
*)adr
);
181 int set_tsc_mode(unsigned int val
)
183 if (val
== PR_TSC_SIGSEGV
)
185 else if (val
== PR_TSC_ENABLE
)
193 DEFINE_PER_CPU(u64
, msr_misc_features_shadow
);
195 static void set_cpuid_faulting(bool on
)
199 msrval
= this_cpu_read(msr_misc_features_shadow
);
200 msrval
&= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT
;
201 msrval
|= (on
<< MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT
);
202 this_cpu_write(msr_misc_features_shadow
, msrval
);
203 wrmsrl(MSR_MISC_FEATURES_ENABLES
, msrval
);
206 static void disable_cpuid(void)
209 if (!test_and_set_thread_flag(TIF_NOCPUID
)) {
211 * Must flip the CPU state synchronously with
212 * TIF_NOCPUID in the current running context.
214 set_cpuid_faulting(true);
219 static void enable_cpuid(void)
222 if (test_and_clear_thread_flag(TIF_NOCPUID
)) {
224 * Must flip the CPU state synchronously with
225 * TIF_NOCPUID in the current running context.
227 set_cpuid_faulting(false);
232 static int get_cpuid_mode(void)
234 return !test_thread_flag(TIF_NOCPUID
);
237 static int set_cpuid_mode(struct task_struct
*task
, unsigned long cpuid_enabled
)
239 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT
))
251 * Called immediately after a successful exec.
253 void arch_setup_new_exec(void)
255 /* If cpuid was previously disabled for this task, re-enable it. */
256 if (test_thread_flag(TIF_NOCPUID
))
260 * Don't inherit TIF_SSBD across exec boundary when
261 * PR_SPEC_DISABLE_NOEXEC is used.
263 if (test_thread_flag(TIF_SSBD
) &&
264 task_spec_ssb_noexec(current
)) {
265 clear_thread_flag(TIF_SSBD
);
266 task_clear_spec_ssb_disable(current
);
267 task_clear_spec_ssb_noexec(current
);
268 speculation_ctrl_update(task_thread_info(current
)->flags
);
272 static inline void switch_to_bitmap(struct thread_struct
*prev
,
273 struct thread_struct
*next
,
274 unsigned long tifp
, unsigned long tifn
)
276 struct tss_struct
*tss
= this_cpu_ptr(&cpu_tss_rw
);
278 if (tifn
& _TIF_IO_BITMAP
) {
280 * Copy the relevant range of the IO bitmap.
281 * Normally this is 128 bytes or less:
283 memcpy(tss
->io_bitmap
, next
->io_bitmap_ptr
,
284 max(prev
->io_bitmap_max
, next
->io_bitmap_max
));
286 * Make sure that the TSS limit is correct for the CPU
287 * to notice the IO bitmap.
290 } else if (tifp
& _TIF_IO_BITMAP
) {
292 * Clear any possible leftover bits:
294 memset(tss
->io_bitmap
, 0xff, prev
->io_bitmap_max
);
301 struct ssb_state
*shared_state
;
303 unsigned int disable_state
;
304 unsigned long local_state
;
309 static DEFINE_PER_CPU(struct ssb_state
, ssb_state
);
311 void speculative_store_bypass_ht_init(void)
313 struct ssb_state
*st
= this_cpu_ptr(&ssb_state
);
314 unsigned int this_cpu
= smp_processor_id();
320 * Shared state setup happens once on the first bringup
321 * of the CPU. It's not destroyed on CPU hotunplug.
323 if (st
->shared_state
)
326 raw_spin_lock_init(&st
->lock
);
329 * Go over HT siblings and check whether one of them has set up the
330 * shared state pointer already.
332 for_each_cpu(cpu
, topology_sibling_cpumask(this_cpu
)) {
336 if (!per_cpu(ssb_state
, cpu
).shared_state
)
339 /* Link it to the state of the sibling: */
340 st
->shared_state
= per_cpu(ssb_state
, cpu
).shared_state
;
345 * First HT sibling to come up on the core. Link shared state of
346 * the first HT sibling to itself. The siblings on the same core
347 * which come up later will see the shared state pointer and link
348 * themself to the state of this CPU.
350 st
->shared_state
= st
;
354 * Logic is: First HT sibling enables SSBD for both siblings in the core
355 * and last sibling to disable it, disables it for the whole core. This how
356 * MSR_SPEC_CTRL works in "hardware":
358 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
360 static __always_inline
void amd_set_core_ssb_state(unsigned long tifn
)
362 struct ssb_state
*st
= this_cpu_ptr(&ssb_state
);
363 u64 msr
= x86_amd_ls_cfg_base
;
365 if (!static_cpu_has(X86_FEATURE_ZEN
)) {
366 msr
|= ssbd_tif_to_amd_ls_cfg(tifn
);
367 wrmsrl(MSR_AMD64_LS_CFG
, msr
);
371 if (tifn
& _TIF_SSBD
) {
373 * Since this can race with prctl(), block reentry on the
376 if (__test_and_set_bit(LSTATE_SSB
, &st
->local_state
))
379 msr
|= x86_amd_ls_cfg_ssbd_mask
;
381 raw_spin_lock(&st
->shared_state
->lock
);
382 /* First sibling enables SSBD: */
383 if (!st
->shared_state
->disable_state
)
384 wrmsrl(MSR_AMD64_LS_CFG
, msr
);
385 st
->shared_state
->disable_state
++;
386 raw_spin_unlock(&st
->shared_state
->lock
);
388 if (!__test_and_clear_bit(LSTATE_SSB
, &st
->local_state
))
391 raw_spin_lock(&st
->shared_state
->lock
);
392 st
->shared_state
->disable_state
--;
393 if (!st
->shared_state
->disable_state
)
394 wrmsrl(MSR_AMD64_LS_CFG
, msr
);
395 raw_spin_unlock(&st
->shared_state
->lock
);
399 static __always_inline
void amd_set_core_ssb_state(unsigned long tifn
)
401 u64 msr
= x86_amd_ls_cfg_base
| ssbd_tif_to_amd_ls_cfg(tifn
);
403 wrmsrl(MSR_AMD64_LS_CFG
, msr
);
407 static __always_inline
void amd_set_ssb_virt_state(unsigned long tifn
)
410 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
411 * so ssbd_tif_to_spec_ctrl() just works.
413 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL
, ssbd_tif_to_spec_ctrl(tifn
));
417 * Update the MSRs managing speculation control, during context switch.
419 * tifp: Previous task's thread flags
420 * tifn: Next task's thread flags
422 static __always_inline
void __speculation_ctrl_update(unsigned long tifp
,
425 unsigned long tif_diff
= tifp
^ tifn
;
426 u64 msr
= x86_spec_ctrl_base
;
429 lockdep_assert_irqs_disabled();
432 * If TIF_SSBD is different, select the proper mitigation
433 * method. Note that if SSBD mitigation is disabled or permanentely
434 * enabled this branch can't be taken because nothing can set
437 if (tif_diff
& _TIF_SSBD
) {
438 if (static_cpu_has(X86_FEATURE_VIRT_SSBD
)) {
439 amd_set_ssb_virt_state(tifn
);
440 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD
)) {
441 amd_set_core_ssb_state(tifn
);
442 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD
) ||
443 static_cpu_has(X86_FEATURE_AMD_SSBD
)) {
444 msr
|= ssbd_tif_to_spec_ctrl(tifn
);
450 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
451 * otherwise avoid the MSR write.
453 if (IS_ENABLED(CONFIG_SMP
) &&
454 static_branch_unlikely(&switch_to_cond_stibp
)) {
455 updmsr
|= !!(tif_diff
& _TIF_SPEC_IB
);
456 msr
|= stibp_tif_to_spec_ctrl(tifn
);
460 wrmsrl(MSR_IA32_SPEC_CTRL
, msr
);
463 static unsigned long speculation_ctrl_update_tif(struct task_struct
*tsk
)
465 if (test_and_clear_tsk_thread_flag(tsk
, TIF_SPEC_FORCE_UPDATE
)) {
466 if (task_spec_ssb_disable(tsk
))
467 set_tsk_thread_flag(tsk
, TIF_SSBD
);
469 clear_tsk_thread_flag(tsk
, TIF_SSBD
);
471 if (task_spec_ib_disable(tsk
))
472 set_tsk_thread_flag(tsk
, TIF_SPEC_IB
);
474 clear_tsk_thread_flag(tsk
, TIF_SPEC_IB
);
476 /* Return the updated threadinfo flags*/
477 return task_thread_info(tsk
)->flags
;
480 void speculation_ctrl_update(unsigned long tif
)
484 /* Forced update. Make sure all relevant TIF flags are different */
485 local_irq_save(flags
);
486 __speculation_ctrl_update(~tif
, tif
);
487 local_irq_restore(flags
);
490 /* Called from seccomp/prctl update */
491 void speculation_ctrl_update_current(void)
494 speculation_ctrl_update(speculation_ctrl_update_tif(current
));
498 void __switch_to_xtra(struct task_struct
*prev_p
, struct task_struct
*next_p
)
500 struct thread_struct
*prev
, *next
;
501 unsigned long tifp
, tifn
;
503 prev
= &prev_p
->thread
;
504 next
= &next_p
->thread
;
506 tifn
= READ_ONCE(task_thread_info(next_p
)->flags
);
507 tifp
= READ_ONCE(task_thread_info(prev_p
)->flags
);
508 switch_to_bitmap(prev
, next
, tifp
, tifn
);
510 propagate_user_return_notify(prev_p
, next_p
);
512 if ((tifp
& _TIF_BLOCKSTEP
|| tifn
& _TIF_BLOCKSTEP
) &&
513 arch_has_block_step()) {
514 unsigned long debugctl
, msk
;
516 rdmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
517 debugctl
&= ~DEBUGCTLMSR_BTF
;
518 msk
= tifn
& _TIF_BLOCKSTEP
;
519 debugctl
|= (msk
>> TIF_BLOCKSTEP
) << DEBUGCTLMSR_BTF_SHIFT
;
520 wrmsrl(MSR_IA32_DEBUGCTLMSR
, debugctl
);
523 if ((tifp
^ tifn
) & _TIF_NOTSC
)
524 cr4_toggle_bits_irqsoff(X86_CR4_TSD
);
526 if ((tifp
^ tifn
) & _TIF_NOCPUID
)
527 set_cpuid_faulting(!!(tifn
& _TIF_NOCPUID
));
529 if (likely(!((tifp
| tifn
) & _TIF_SPEC_FORCE_UPDATE
))) {
530 __speculation_ctrl_update(tifp
, tifn
);
532 speculation_ctrl_update_tif(prev_p
);
533 tifn
= speculation_ctrl_update_tif(next_p
);
535 /* Enforce MSR update to ensure consistent state */
536 __speculation_ctrl_update(~tifn
, tifn
);
541 * Idle related variables and functions
543 unsigned long boot_option_idle_override
= IDLE_NO_OVERRIDE
;
544 EXPORT_SYMBOL(boot_option_idle_override
);
546 static void (*x86_idle
)(void);
549 static inline void play_dead(void)
555 void arch_cpu_idle_enter(void)
557 tsc_verify_tsc_adjust(false);
561 void arch_cpu_idle_dead(void)
567 * Called from the generic idle code.
569 void arch_cpu_idle(void)
575 * We use this if we don't have any better idle routine..
577 void __cpuidle
default_idle(void)
579 trace_cpu_idle_rcuidle(1, smp_processor_id());
581 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT
, smp_processor_id());
583 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
584 EXPORT_SYMBOL(default_idle
);
588 bool xen_set_default_idle(void)
590 bool ret
= !!x86_idle
;
592 x86_idle
= default_idle
;
598 void stop_this_cpu(void *dummy
)
604 set_cpu_online(smp_processor_id(), false);
605 disable_local_APIC();
606 mcheck_cpu_clear(this_cpu_ptr(&cpu_info
));
609 * Use wbinvd on processors that support SME. This provides support
610 * for performing a successful kexec when going from SME inactive
611 * to SME active (or vice-versa). The cache must be cleared so that
612 * if there are entries with the same physical address, both with and
613 * without the encryption bit, they don't race each other when flushed
614 * and potentially end up with the wrong entry being committed to
617 if (boot_cpu_has(X86_FEATURE_SME
))
621 * Use native_halt() so that memory contents don't change
622 * (stack usage and variables) after possibly issuing the
623 * native_wbinvd() above.
630 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
631 * states (local apic timer and TSC stop).
633 static void amd_e400_idle(void)
636 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
637 * gets set after static_cpu_has() places have been converted via
640 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E
)) {
645 tick_broadcast_enter();
650 * The switch back from broadcast mode needs to be called with
651 * interrupts disabled.
654 tick_broadcast_exit();
659 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
660 * We can't rely on cpuidle installing MWAIT, because it will not load
661 * on systems that support only C1 -- so the boot default must be MWAIT.
663 * Some AMD machines are the opposite, they depend on using HALT.
665 * So for default C1, which is used during boot until cpuidle loads,
666 * use MWAIT-C1 on Intel HW that has it, else use HALT.
668 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86
*c
)
670 if (c
->x86_vendor
!= X86_VENDOR_INTEL
)
673 if (!cpu_has(c
, X86_FEATURE_MWAIT
) || boot_cpu_has_bug(X86_BUG_MONITOR
))
680 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
681 * with interrupts enabled and no flags, which is backwards compatible with the
682 * original MWAIT implementation.
684 static __cpuidle
void mwait_idle(void)
686 if (!current_set_polling_and_test()) {
687 trace_cpu_idle_rcuidle(1, smp_processor_id());
688 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR
)) {
690 clflush((void *)¤t_thread_info()->flags
);
694 __monitor((void *)¤t_thread_info()->flags
, 0, 0);
699 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT
, smp_processor_id());
703 __current_clr_polling();
706 void select_idle_routine(const struct cpuinfo_x86
*c
)
709 if (boot_option_idle_override
== IDLE_POLL
&& smp_num_siblings
> 1)
710 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
712 if (x86_idle
|| boot_option_idle_override
== IDLE_POLL
)
715 if (boot_cpu_has_bug(X86_BUG_AMD_E400
)) {
716 pr_info("using AMD E400 aware idle routine\n");
717 x86_idle
= amd_e400_idle
;
718 } else if (prefer_mwait_c1_over_halt(c
)) {
719 pr_info("using mwait in idle threads\n");
720 x86_idle
= mwait_idle
;
722 x86_idle
= default_idle
;
725 void amd_e400_c1e_apic_setup(void)
727 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E
)) {
728 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
730 tick_broadcast_force();
735 void __init
arch_post_acpi_subsys_init(void)
739 if (!boot_cpu_has_bug(X86_BUG_AMD_E400
))
743 * AMD E400 detection needs to happen after ACPI has been enabled. If
744 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
745 * MSR_K8_INT_PENDING_MSG.
747 rdmsr(MSR_K8_INT_PENDING_MSG
, lo
, hi
);
748 if (!(lo
& K8_INTP_C1E_ACTIVE_MASK
))
751 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E
);
753 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC
))
754 mark_tsc_unstable("TSC halt in AMD C1E");
755 pr_info("System has AMD C1E enabled\n");
758 static int __init
idle_setup(char *str
)
763 if (!strcmp(str
, "poll")) {
764 pr_info("using polling idle threads\n");
765 boot_option_idle_override
= IDLE_POLL
;
766 cpu_idle_poll_ctrl(true);
767 } else if (!strcmp(str
, "halt")) {
769 * When the boot option of idle=halt is added, halt is
770 * forced to be used for CPU idle. In such case CPU C2/C3
771 * won't be used again.
772 * To continue to load the CPU idle driver, don't touch
773 * the boot_option_idle_override.
775 x86_idle
= default_idle
;
776 boot_option_idle_override
= IDLE_HALT
;
777 } else if (!strcmp(str
, "nomwait")) {
779 * If the boot option of "idle=nomwait" is added,
780 * it means that mwait will be disabled for CPU C2/C3
781 * states. In such case it won't touch the variable
782 * of boot_option_idle_override.
784 boot_option_idle_override
= IDLE_NOMWAIT
;
790 early_param("idle", idle_setup
);
792 unsigned long arch_align_stack(unsigned long sp
)
794 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
795 sp
-= get_random_int() % 8192;
799 unsigned long arch_randomize_brk(struct mm_struct
*mm
)
801 return randomize_page(mm
->brk
, 0x02000000);
805 * Called from fs/proc with a reference on @p to find the function
806 * which called into schedule(). This needs to be done carefully
807 * because the task might wake up and we might look at a stack
810 unsigned long get_wchan(struct task_struct
*p
)
812 unsigned long start
, bottom
, top
, sp
, fp
, ip
, ret
= 0;
815 if (p
== current
|| p
->state
== TASK_RUNNING
)
818 if (!try_get_task_stack(p
))
821 start
= (unsigned long)task_stack_page(p
);
826 * Layout of the stack page:
828 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
830 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
832 * ----------- bottom = start
834 * The tasks stack pointer points at the location where the
835 * framepointer is stored. The data on the stack is:
836 * ... IP FP ... IP FP
838 * We need to read FP and IP, so we need to adjust the upper
839 * bound by another unsigned long.
841 top
= start
+ THREAD_SIZE
- TOP_OF_KERNEL_STACK_PADDING
;
842 top
-= 2 * sizeof(unsigned long);
845 sp
= READ_ONCE(p
->thread
.sp
);
846 if (sp
< bottom
|| sp
> top
)
849 fp
= READ_ONCE_NOCHECK(((struct inactive_task_frame
*)sp
)->bp
);
851 if (fp
< bottom
|| fp
> top
)
853 ip
= READ_ONCE_NOCHECK(*(unsigned long *)(fp
+ sizeof(unsigned long)));
854 if (!in_sched_functions(ip
)) {
858 fp
= READ_ONCE_NOCHECK(*(unsigned long *)fp
);
859 } while (count
++ < 16 && p
->state
!= TASK_RUNNING
);
866 long do_arch_prctl_common(struct task_struct
*task
, int option
,
867 unsigned long cpuid_enabled
)
871 return get_cpuid_mode();
873 return set_cpuid_mode(task
, cpuid_enabled
);