gsmi: Add GSMI commands to log S0ix info
[linux/fpc-iii.git] / fs / ext4 / mballoc.c
blobe29fce2fbf25f286136b9ae874c1237dea7ffd33
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
8 /*
9 * mballoc.c contains the multiblocks allocation routines
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
21 #ifdef CONFIG_EXT4_DEBUG
22 ushort ext4_mballoc_debug __read_mostly;
24 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
25 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
26 #endif
29 * MUSTDO:
30 * - test ext4_ext_search_left() and ext4_ext_search_right()
31 * - search for metadata in few groups
33 * TODO v4:
34 * - normalization should take into account whether file is still open
35 * - discard preallocations if no free space left (policy?)
36 * - don't normalize tails
37 * - quota
38 * - reservation for superuser
40 * TODO v3:
41 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
42 * - track min/max extents in each group for better group selection
43 * - mb_mark_used() may allocate chunk right after splitting buddy
44 * - tree of groups sorted by number of free blocks
45 * - error handling
49 * The allocation request involve request for multiple number of blocks
50 * near to the goal(block) value specified.
52 * During initialization phase of the allocator we decide to use the
53 * group preallocation or inode preallocation depending on the size of
54 * the file. The size of the file could be the resulting file size we
55 * would have after allocation, or the current file size, which ever
56 * is larger. If the size is less than sbi->s_mb_stream_request we
57 * select to use the group preallocation. The default value of
58 * s_mb_stream_request is 16 blocks. This can also be tuned via
59 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
60 * terms of number of blocks.
62 * The main motivation for having small file use group preallocation is to
63 * ensure that we have small files closer together on the disk.
65 * First stage the allocator looks at the inode prealloc list,
66 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
67 * spaces for this particular inode. The inode prealloc space is
68 * represented as:
70 * pa_lstart -> the logical start block for this prealloc space
71 * pa_pstart -> the physical start block for this prealloc space
72 * pa_len -> length for this prealloc space (in clusters)
73 * pa_free -> free space available in this prealloc space (in clusters)
75 * The inode preallocation space is used looking at the _logical_ start
76 * block. If only the logical file block falls within the range of prealloc
77 * space we will consume the particular prealloc space. This makes sure that
78 * we have contiguous physical blocks representing the file blocks
80 * The important thing to be noted in case of inode prealloc space is that
81 * we don't modify the values associated to inode prealloc space except
82 * pa_free.
84 * If we are not able to find blocks in the inode prealloc space and if we
85 * have the group allocation flag set then we look at the locality group
86 * prealloc space. These are per CPU prealloc list represented as
88 * ext4_sb_info.s_locality_groups[smp_processor_id()]
90 * The reason for having a per cpu locality group is to reduce the contention
91 * between CPUs. It is possible to get scheduled at this point.
93 * The locality group prealloc space is used looking at whether we have
94 * enough free space (pa_free) within the prealloc space.
96 * If we can't allocate blocks via inode prealloc or/and locality group
97 * prealloc then we look at the buddy cache. The buddy cache is represented
98 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
99 * mapped to the buddy and bitmap information regarding different
100 * groups. The buddy information is attached to buddy cache inode so that
101 * we can access them through the page cache. The information regarding
102 * each group is loaded via ext4_mb_load_buddy. The information involve
103 * block bitmap and buddy information. The information are stored in the
104 * inode as:
106 * { page }
107 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
110 * one block each for bitmap and buddy information. So for each group we
111 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
112 * blocksize) blocks. So it can have information regarding groups_per_page
113 * which is blocks_per_page/2
115 * The buddy cache inode is not stored on disk. The inode is thrown
116 * away when the filesystem is unmounted.
118 * We look for count number of blocks in the buddy cache. If we were able
119 * to locate that many free blocks we return with additional information
120 * regarding rest of the contiguous physical block available
122 * Before allocating blocks via buddy cache we normalize the request
123 * blocks. This ensure we ask for more blocks that we needed. The extra
124 * blocks that we get after allocation is added to the respective prealloc
125 * list. In case of inode preallocation we follow a list of heuristics
126 * based on file size. This can be found in ext4_mb_normalize_request. If
127 * we are doing a group prealloc we try to normalize the request to
128 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
129 * dependent on the cluster size; for non-bigalloc file systems, it is
130 * 512 blocks. This can be tuned via
131 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
132 * terms of number of blocks. If we have mounted the file system with -O
133 * stripe=<value> option the group prealloc request is normalized to the
134 * the smallest multiple of the stripe value (sbi->s_stripe) which is
135 * greater than the default mb_group_prealloc.
137 * The regular allocator (using the buddy cache) supports a few tunables.
139 * /sys/fs/ext4/<partition>/mb_min_to_scan
140 * /sys/fs/ext4/<partition>/mb_max_to_scan
141 * /sys/fs/ext4/<partition>/mb_order2_req
143 * The regular allocator uses buddy scan only if the request len is power of
144 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
145 * value of s_mb_order2_reqs can be tuned via
146 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
147 * stripe size (sbi->s_stripe), we try to search for contiguous block in
148 * stripe size. This should result in better allocation on RAID setups. If
149 * not, we search in the specific group using bitmap for best extents. The
150 * tunable min_to_scan and max_to_scan control the behaviour here.
151 * min_to_scan indicate how long the mballoc __must__ look for a best
152 * extent and max_to_scan indicates how long the mballoc __can__ look for a
153 * best extent in the found extents. Searching for the blocks starts with
154 * the group specified as the goal value in allocation context via
155 * ac_g_ex. Each group is first checked based on the criteria whether it
156 * can be used for allocation. ext4_mb_good_group explains how the groups are
157 * checked.
159 * Both the prealloc space are getting populated as above. So for the first
160 * request we will hit the buddy cache which will result in this prealloc
161 * space getting filled. The prealloc space is then later used for the
162 * subsequent request.
166 * mballoc operates on the following data:
167 * - on-disk bitmap
168 * - in-core buddy (actually includes buddy and bitmap)
169 * - preallocation descriptors (PAs)
171 * there are two types of preallocations:
172 * - inode
173 * assiged to specific inode and can be used for this inode only.
174 * it describes part of inode's space preallocated to specific
175 * physical blocks. any block from that preallocated can be used
176 * independent. the descriptor just tracks number of blocks left
177 * unused. so, before taking some block from descriptor, one must
178 * make sure corresponded logical block isn't allocated yet. this
179 * also means that freeing any block within descriptor's range
180 * must discard all preallocated blocks.
181 * - locality group
182 * assigned to specific locality group which does not translate to
183 * permanent set of inodes: inode can join and leave group. space
184 * from this type of preallocation can be used for any inode. thus
185 * it's consumed from the beginning to the end.
187 * relation between them can be expressed as:
188 * in-core buddy = on-disk bitmap + preallocation descriptors
190 * this mean blocks mballoc considers used are:
191 * - allocated blocks (persistent)
192 * - preallocated blocks (non-persistent)
194 * consistency in mballoc world means that at any time a block is either
195 * free or used in ALL structures. notice: "any time" should not be read
196 * literally -- time is discrete and delimited by locks.
198 * to keep it simple, we don't use block numbers, instead we count number of
199 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
201 * all operations can be expressed as:
202 * - init buddy: buddy = on-disk + PAs
203 * - new PA: buddy += N; PA = N
204 * - use inode PA: on-disk += N; PA -= N
205 * - discard inode PA buddy -= on-disk - PA; PA = 0
206 * - use locality group PA on-disk += N; PA -= N
207 * - discard locality group PA buddy -= PA; PA = 0
208 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
209 * is used in real operation because we can't know actual used
210 * bits from PA, only from on-disk bitmap
212 * if we follow this strict logic, then all operations above should be atomic.
213 * given some of them can block, we'd have to use something like semaphores
214 * killing performance on high-end SMP hardware. let's try to relax it using
215 * the following knowledge:
216 * 1) if buddy is referenced, it's already initialized
217 * 2) while block is used in buddy and the buddy is referenced,
218 * nobody can re-allocate that block
219 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
220 * bit set and PA claims same block, it's OK. IOW, one can set bit in
221 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
222 * block
224 * so, now we're building a concurrency table:
225 * - init buddy vs.
226 * - new PA
227 * blocks for PA are allocated in the buddy, buddy must be referenced
228 * until PA is linked to allocation group to avoid concurrent buddy init
229 * - use inode PA
230 * we need to make sure that either on-disk bitmap or PA has uptodate data
231 * given (3) we care that PA-=N operation doesn't interfere with init
232 * - discard inode PA
233 * the simplest way would be to have buddy initialized by the discard
234 * - use locality group PA
235 * again PA-=N must be serialized with init
236 * - discard locality group PA
237 * the simplest way would be to have buddy initialized by the discard
238 * - new PA vs.
239 * - use inode PA
240 * i_data_sem serializes them
241 * - discard inode PA
242 * discard process must wait until PA isn't used by another process
243 * - use locality group PA
244 * some mutex should serialize them
245 * - discard locality group PA
246 * discard process must wait until PA isn't used by another process
247 * - use inode PA
248 * - use inode PA
249 * i_data_sem or another mutex should serializes them
250 * - discard inode PA
251 * discard process must wait until PA isn't used by another process
252 * - use locality group PA
253 * nothing wrong here -- they're different PAs covering different blocks
254 * - discard locality group PA
255 * discard process must wait until PA isn't used by another process
257 * now we're ready to make few consequences:
258 * - PA is referenced and while it is no discard is possible
259 * - PA is referenced until block isn't marked in on-disk bitmap
260 * - PA changes only after on-disk bitmap
261 * - discard must not compete with init. either init is done before
262 * any discard or they're serialized somehow
263 * - buddy init as sum of on-disk bitmap and PAs is done atomically
265 * a special case when we've used PA to emptiness. no need to modify buddy
266 * in this case, but we should care about concurrent init
271 * Logic in few words:
273 * - allocation:
274 * load group
275 * find blocks
276 * mark bits in on-disk bitmap
277 * release group
279 * - use preallocation:
280 * find proper PA (per-inode or group)
281 * load group
282 * mark bits in on-disk bitmap
283 * release group
284 * release PA
286 * - free:
287 * load group
288 * mark bits in on-disk bitmap
289 * release group
291 * - discard preallocations in group:
292 * mark PAs deleted
293 * move them onto local list
294 * load on-disk bitmap
295 * load group
296 * remove PA from object (inode or locality group)
297 * mark free blocks in-core
299 * - discard inode's preallocations:
303 * Locking rules
305 * Locks:
306 * - bitlock on a group (group)
307 * - object (inode/locality) (object)
308 * - per-pa lock (pa)
310 * Paths:
311 * - new pa
312 * object
313 * group
315 * - find and use pa:
316 * pa
318 * - release consumed pa:
319 * pa
320 * group
321 * object
323 * - generate in-core bitmap:
324 * group
325 * pa
327 * - discard all for given object (inode, locality group):
328 * object
329 * pa
330 * group
332 * - discard all for given group:
333 * group
334 * pa
335 * group
336 * object
339 static struct kmem_cache *ext4_pspace_cachep;
340 static struct kmem_cache *ext4_ac_cachep;
341 static struct kmem_cache *ext4_free_data_cachep;
343 /* We create slab caches for groupinfo data structures based on the
344 * superblock block size. There will be one per mounted filesystem for
345 * each unique s_blocksize_bits */
346 #define NR_GRPINFO_CACHES 8
347 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
349 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
350 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
351 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
352 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
355 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
356 ext4_group_t group);
357 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
358 ext4_group_t group);
360 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
362 #if BITS_PER_LONG == 64
363 *bit += ((unsigned long) addr & 7UL) << 3;
364 addr = (void *) ((unsigned long) addr & ~7UL);
365 #elif BITS_PER_LONG == 32
366 *bit += ((unsigned long) addr & 3UL) << 3;
367 addr = (void *) ((unsigned long) addr & ~3UL);
368 #else
369 #error "how many bits you are?!"
370 #endif
371 return addr;
374 static inline int mb_test_bit(int bit, void *addr)
377 * ext4_test_bit on architecture like powerpc
378 * needs unsigned long aligned address
380 addr = mb_correct_addr_and_bit(&bit, addr);
381 return ext4_test_bit(bit, addr);
384 static inline void mb_set_bit(int bit, void *addr)
386 addr = mb_correct_addr_and_bit(&bit, addr);
387 ext4_set_bit(bit, addr);
390 static inline void mb_clear_bit(int bit, void *addr)
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 ext4_clear_bit(bit, addr);
396 static inline int mb_test_and_clear_bit(int bit, void *addr)
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 return ext4_test_and_clear_bit(bit, addr);
402 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
404 int fix = 0, ret, tmpmax;
405 addr = mb_correct_addr_and_bit(&fix, addr);
406 tmpmax = max + fix;
407 start += fix;
409 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
410 if (ret > max)
411 return max;
412 return ret;
415 static inline int mb_find_next_bit(void *addr, int max, int start)
417 int fix = 0, ret, tmpmax;
418 addr = mb_correct_addr_and_bit(&fix, addr);
419 tmpmax = max + fix;
420 start += fix;
422 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
423 if (ret > max)
424 return max;
425 return ret;
428 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
430 char *bb;
432 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
433 BUG_ON(max == NULL);
435 if (order > e4b->bd_blkbits + 1) {
436 *max = 0;
437 return NULL;
440 /* at order 0 we see each particular block */
441 if (order == 0) {
442 *max = 1 << (e4b->bd_blkbits + 3);
443 return e4b->bd_bitmap;
446 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
447 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
449 return bb;
452 #ifdef DOUBLE_CHECK
453 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
454 int first, int count)
456 int i;
457 struct super_block *sb = e4b->bd_sb;
459 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
460 return;
461 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
462 for (i = 0; i < count; i++) {
463 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
464 ext4_fsblk_t blocknr;
466 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
467 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
468 ext4_grp_locked_error(sb, e4b->bd_group,
469 inode ? inode->i_ino : 0,
470 blocknr,
471 "freeing block already freed "
472 "(bit %u)",
473 first + i);
474 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
475 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
477 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
481 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
483 int i;
485 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
486 return;
487 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
488 for (i = 0; i < count; i++) {
489 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
490 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
494 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
496 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
497 unsigned char *b1, *b2;
498 int i;
499 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
500 b2 = (unsigned char *) bitmap;
501 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
502 if (b1[i] != b2[i]) {
503 ext4_msg(e4b->bd_sb, KERN_ERR,
504 "corruption in group %u "
505 "at byte %u(%u): %x in copy != %x "
506 "on disk/prealloc",
507 e4b->bd_group, i, i * 8, b1[i], b2[i]);
508 BUG();
514 #else
515 static inline void mb_free_blocks_double(struct inode *inode,
516 struct ext4_buddy *e4b, int first, int count)
518 return;
520 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
521 int first, int count)
523 return;
525 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
527 return;
529 #endif
531 #ifdef AGGRESSIVE_CHECK
533 #define MB_CHECK_ASSERT(assert) \
534 do { \
535 if (!(assert)) { \
536 printk(KERN_EMERG \
537 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
538 function, file, line, # assert); \
539 BUG(); \
541 } while (0)
543 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
544 const char *function, int line)
546 struct super_block *sb = e4b->bd_sb;
547 int order = e4b->bd_blkbits + 1;
548 int max;
549 int max2;
550 int i;
551 int j;
552 int k;
553 int count;
554 struct ext4_group_info *grp;
555 int fragments = 0;
556 int fstart;
557 struct list_head *cur;
558 void *buddy;
559 void *buddy2;
562 static int mb_check_counter;
563 if (mb_check_counter++ % 100 != 0)
564 return 0;
567 while (order > 1) {
568 buddy = mb_find_buddy(e4b, order, &max);
569 MB_CHECK_ASSERT(buddy);
570 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
571 MB_CHECK_ASSERT(buddy2);
572 MB_CHECK_ASSERT(buddy != buddy2);
573 MB_CHECK_ASSERT(max * 2 == max2);
575 count = 0;
576 for (i = 0; i < max; i++) {
578 if (mb_test_bit(i, buddy)) {
579 /* only single bit in buddy2 may be 1 */
580 if (!mb_test_bit(i << 1, buddy2)) {
581 MB_CHECK_ASSERT(
582 mb_test_bit((i<<1)+1, buddy2));
583 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
584 MB_CHECK_ASSERT(
585 mb_test_bit(i << 1, buddy2));
587 continue;
590 /* both bits in buddy2 must be 1 */
591 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
592 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
594 for (j = 0; j < (1 << order); j++) {
595 k = (i * (1 << order)) + j;
596 MB_CHECK_ASSERT(
597 !mb_test_bit(k, e4b->bd_bitmap));
599 count++;
601 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
602 order--;
605 fstart = -1;
606 buddy = mb_find_buddy(e4b, 0, &max);
607 for (i = 0; i < max; i++) {
608 if (!mb_test_bit(i, buddy)) {
609 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
610 if (fstart == -1) {
611 fragments++;
612 fstart = i;
614 continue;
616 fstart = -1;
617 /* check used bits only */
618 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
619 buddy2 = mb_find_buddy(e4b, j, &max2);
620 k = i >> j;
621 MB_CHECK_ASSERT(k < max2);
622 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
625 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
626 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
628 grp = ext4_get_group_info(sb, e4b->bd_group);
629 list_for_each(cur, &grp->bb_prealloc_list) {
630 ext4_group_t groupnr;
631 struct ext4_prealloc_space *pa;
632 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
633 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
634 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
635 for (i = 0; i < pa->pa_len; i++)
636 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
638 return 0;
640 #undef MB_CHECK_ASSERT
641 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
642 __FILE__, __func__, __LINE__)
643 #else
644 #define mb_check_buddy(e4b)
645 #endif
648 * Divide blocks started from @first with length @len into
649 * smaller chunks with power of 2 blocks.
650 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
651 * then increase bb_counters[] for corresponded chunk size.
653 static void ext4_mb_mark_free_simple(struct super_block *sb,
654 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
655 struct ext4_group_info *grp)
657 struct ext4_sb_info *sbi = EXT4_SB(sb);
658 ext4_grpblk_t min;
659 ext4_grpblk_t max;
660 ext4_grpblk_t chunk;
661 unsigned int border;
663 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
665 border = 2 << sb->s_blocksize_bits;
667 while (len > 0) {
668 /* find how many blocks can be covered since this position */
669 max = ffs(first | border) - 1;
671 /* find how many blocks of power 2 we need to mark */
672 min = fls(len) - 1;
674 if (max < min)
675 min = max;
676 chunk = 1 << min;
678 /* mark multiblock chunks only */
679 grp->bb_counters[min]++;
680 if (min > 0)
681 mb_clear_bit(first >> min,
682 buddy + sbi->s_mb_offsets[min]);
684 len -= chunk;
685 first += chunk;
690 * Cache the order of the largest free extent we have available in this block
691 * group.
693 static void
694 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
696 int i;
697 int bits;
699 grp->bb_largest_free_order = -1; /* uninit */
701 bits = sb->s_blocksize_bits + 1;
702 for (i = bits; i >= 0; i--) {
703 if (grp->bb_counters[i] > 0) {
704 grp->bb_largest_free_order = i;
705 break;
710 static noinline_for_stack
711 void ext4_mb_generate_buddy(struct super_block *sb,
712 void *buddy, void *bitmap, ext4_group_t group)
714 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
715 struct ext4_sb_info *sbi = EXT4_SB(sb);
716 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
717 ext4_grpblk_t i = 0;
718 ext4_grpblk_t first;
719 ext4_grpblk_t len;
720 unsigned free = 0;
721 unsigned fragments = 0;
722 unsigned long long period = get_cycles();
724 /* initialize buddy from bitmap which is aggregation
725 * of on-disk bitmap and preallocations */
726 i = mb_find_next_zero_bit(bitmap, max, 0);
727 grp->bb_first_free = i;
728 while (i < max) {
729 fragments++;
730 first = i;
731 i = mb_find_next_bit(bitmap, max, i);
732 len = i - first;
733 free += len;
734 if (len > 1)
735 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
736 else
737 grp->bb_counters[0]++;
738 if (i < max)
739 i = mb_find_next_zero_bit(bitmap, max, i);
741 grp->bb_fragments = fragments;
743 if (free != grp->bb_free) {
744 ext4_grp_locked_error(sb, group, 0, 0,
745 "block bitmap and bg descriptor "
746 "inconsistent: %u vs %u free clusters",
747 free, grp->bb_free);
749 * If we intend to continue, we consider group descriptor
750 * corrupt and update bb_free using bitmap value
752 grp->bb_free = free;
753 ext4_mark_group_bitmap_corrupted(sb, group,
754 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
756 mb_set_largest_free_order(sb, grp);
758 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
760 period = get_cycles() - period;
761 spin_lock(&sbi->s_bal_lock);
762 sbi->s_mb_buddies_generated++;
763 sbi->s_mb_generation_time += period;
764 spin_unlock(&sbi->s_bal_lock);
767 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
769 int count;
770 int order = 1;
771 void *buddy;
773 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
774 ext4_set_bits(buddy, 0, count);
776 e4b->bd_info->bb_fragments = 0;
777 memset(e4b->bd_info->bb_counters, 0,
778 sizeof(*e4b->bd_info->bb_counters) *
779 (e4b->bd_sb->s_blocksize_bits + 2));
781 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
782 e4b->bd_bitmap, e4b->bd_group);
785 /* The buddy information is attached the buddy cache inode
786 * for convenience. The information regarding each group
787 * is loaded via ext4_mb_load_buddy. The information involve
788 * block bitmap and buddy information. The information are
789 * stored in the inode as
791 * { page }
792 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
795 * one block each for bitmap and buddy information.
796 * So for each group we take up 2 blocks. A page can
797 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
798 * So it can have information regarding groups_per_page which
799 * is blocks_per_page/2
801 * Locking note: This routine takes the block group lock of all groups
802 * for this page; do not hold this lock when calling this routine!
805 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
807 ext4_group_t ngroups;
808 int blocksize;
809 int blocks_per_page;
810 int groups_per_page;
811 int err = 0;
812 int i;
813 ext4_group_t first_group, group;
814 int first_block;
815 struct super_block *sb;
816 struct buffer_head *bhs;
817 struct buffer_head **bh = NULL;
818 struct inode *inode;
819 char *data;
820 char *bitmap;
821 struct ext4_group_info *grinfo;
823 mb_debug(1, "init page %lu\n", page->index);
825 inode = page->mapping->host;
826 sb = inode->i_sb;
827 ngroups = ext4_get_groups_count(sb);
828 blocksize = i_blocksize(inode);
829 blocks_per_page = PAGE_SIZE / blocksize;
831 groups_per_page = blocks_per_page >> 1;
832 if (groups_per_page == 0)
833 groups_per_page = 1;
835 /* allocate buffer_heads to read bitmaps */
836 if (groups_per_page > 1) {
837 i = sizeof(struct buffer_head *) * groups_per_page;
838 bh = kzalloc(i, gfp);
839 if (bh == NULL) {
840 err = -ENOMEM;
841 goto out;
843 } else
844 bh = &bhs;
846 first_group = page->index * blocks_per_page / 2;
848 /* read all groups the page covers into the cache */
849 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
850 if (group >= ngroups)
851 break;
853 grinfo = ext4_get_group_info(sb, group);
855 * If page is uptodate then we came here after online resize
856 * which added some new uninitialized group info structs, so
857 * we must skip all initialized uptodate buddies on the page,
858 * which may be currently in use by an allocating task.
860 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
861 bh[i] = NULL;
862 continue;
864 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
865 if (IS_ERR(bh[i])) {
866 err = PTR_ERR(bh[i]);
867 bh[i] = NULL;
868 goto out;
870 mb_debug(1, "read bitmap for group %u\n", group);
873 /* wait for I/O completion */
874 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
875 int err2;
877 if (!bh[i])
878 continue;
879 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
880 if (!err)
881 err = err2;
884 first_block = page->index * blocks_per_page;
885 for (i = 0; i < blocks_per_page; i++) {
886 group = (first_block + i) >> 1;
887 if (group >= ngroups)
888 break;
890 if (!bh[group - first_group])
891 /* skip initialized uptodate buddy */
892 continue;
894 if (!buffer_verified(bh[group - first_group]))
895 /* Skip faulty bitmaps */
896 continue;
897 err = 0;
900 * data carry information regarding this
901 * particular group in the format specified
902 * above
905 data = page_address(page) + (i * blocksize);
906 bitmap = bh[group - first_group]->b_data;
909 * We place the buddy block and bitmap block
910 * close together
912 if ((first_block + i) & 1) {
913 /* this is block of buddy */
914 BUG_ON(incore == NULL);
915 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
916 group, page->index, i * blocksize);
917 trace_ext4_mb_buddy_bitmap_load(sb, group);
918 grinfo = ext4_get_group_info(sb, group);
919 grinfo->bb_fragments = 0;
920 memset(grinfo->bb_counters, 0,
921 sizeof(*grinfo->bb_counters) *
922 (sb->s_blocksize_bits+2));
924 * incore got set to the group block bitmap below
926 ext4_lock_group(sb, group);
927 /* init the buddy */
928 memset(data, 0xff, blocksize);
929 ext4_mb_generate_buddy(sb, data, incore, group);
930 ext4_unlock_group(sb, group);
931 incore = NULL;
932 } else {
933 /* this is block of bitmap */
934 BUG_ON(incore != NULL);
935 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
936 group, page->index, i * blocksize);
937 trace_ext4_mb_bitmap_load(sb, group);
939 /* see comments in ext4_mb_put_pa() */
940 ext4_lock_group(sb, group);
941 memcpy(data, bitmap, blocksize);
943 /* mark all preallocated blks used in in-core bitmap */
944 ext4_mb_generate_from_pa(sb, data, group);
945 ext4_mb_generate_from_freelist(sb, data, group);
946 ext4_unlock_group(sb, group);
948 /* set incore so that the buddy information can be
949 * generated using this
951 incore = data;
954 SetPageUptodate(page);
956 out:
957 if (bh) {
958 for (i = 0; i < groups_per_page; i++)
959 brelse(bh[i]);
960 if (bh != &bhs)
961 kfree(bh);
963 return err;
967 * Lock the buddy and bitmap pages. This make sure other parallel init_group
968 * on the same buddy page doesn't happen whild holding the buddy page lock.
969 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
970 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
972 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
973 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
975 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
976 int block, pnum, poff;
977 int blocks_per_page;
978 struct page *page;
980 e4b->bd_buddy_page = NULL;
981 e4b->bd_bitmap_page = NULL;
983 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
985 * the buddy cache inode stores the block bitmap
986 * and buddy information in consecutive blocks.
987 * So for each group we need two blocks.
989 block = group * 2;
990 pnum = block / blocks_per_page;
991 poff = block % blocks_per_page;
992 page = find_or_create_page(inode->i_mapping, pnum, gfp);
993 if (!page)
994 return -ENOMEM;
995 BUG_ON(page->mapping != inode->i_mapping);
996 e4b->bd_bitmap_page = page;
997 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
999 if (blocks_per_page >= 2) {
1000 /* buddy and bitmap are on the same page */
1001 return 0;
1004 block++;
1005 pnum = block / blocks_per_page;
1006 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1007 if (!page)
1008 return -ENOMEM;
1009 BUG_ON(page->mapping != inode->i_mapping);
1010 e4b->bd_buddy_page = page;
1011 return 0;
1014 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1016 if (e4b->bd_bitmap_page) {
1017 unlock_page(e4b->bd_bitmap_page);
1018 put_page(e4b->bd_bitmap_page);
1020 if (e4b->bd_buddy_page) {
1021 unlock_page(e4b->bd_buddy_page);
1022 put_page(e4b->bd_buddy_page);
1027 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1028 * block group lock of all groups for this page; do not hold the BG lock when
1029 * calling this routine!
1031 static noinline_for_stack
1032 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1035 struct ext4_group_info *this_grp;
1036 struct ext4_buddy e4b;
1037 struct page *page;
1038 int ret = 0;
1040 might_sleep();
1041 mb_debug(1, "init group %u\n", group);
1042 this_grp = ext4_get_group_info(sb, group);
1044 * This ensures that we don't reinit the buddy cache
1045 * page which map to the group from which we are already
1046 * allocating. If we are looking at the buddy cache we would
1047 * have taken a reference using ext4_mb_load_buddy and that
1048 * would have pinned buddy page to page cache.
1049 * The call to ext4_mb_get_buddy_page_lock will mark the
1050 * page accessed.
1052 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1053 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1055 * somebody initialized the group
1056 * return without doing anything
1058 goto err;
1061 page = e4b.bd_bitmap_page;
1062 ret = ext4_mb_init_cache(page, NULL, gfp);
1063 if (ret)
1064 goto err;
1065 if (!PageUptodate(page)) {
1066 ret = -EIO;
1067 goto err;
1070 if (e4b.bd_buddy_page == NULL) {
1072 * If both the bitmap and buddy are in
1073 * the same page we don't need to force
1074 * init the buddy
1076 ret = 0;
1077 goto err;
1079 /* init buddy cache */
1080 page = e4b.bd_buddy_page;
1081 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1082 if (ret)
1083 goto err;
1084 if (!PageUptodate(page)) {
1085 ret = -EIO;
1086 goto err;
1088 err:
1089 ext4_mb_put_buddy_page_lock(&e4b);
1090 return ret;
1094 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1095 * block group lock of all groups for this page; do not hold the BG lock when
1096 * calling this routine!
1098 static noinline_for_stack int
1099 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1100 struct ext4_buddy *e4b, gfp_t gfp)
1102 int blocks_per_page;
1103 int block;
1104 int pnum;
1105 int poff;
1106 struct page *page;
1107 int ret;
1108 struct ext4_group_info *grp;
1109 struct ext4_sb_info *sbi = EXT4_SB(sb);
1110 struct inode *inode = sbi->s_buddy_cache;
1112 might_sleep();
1113 mb_debug(1, "load group %u\n", group);
1115 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1116 grp = ext4_get_group_info(sb, group);
1118 e4b->bd_blkbits = sb->s_blocksize_bits;
1119 e4b->bd_info = grp;
1120 e4b->bd_sb = sb;
1121 e4b->bd_group = group;
1122 e4b->bd_buddy_page = NULL;
1123 e4b->bd_bitmap_page = NULL;
1125 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1127 * we need full data about the group
1128 * to make a good selection
1130 ret = ext4_mb_init_group(sb, group, gfp);
1131 if (ret)
1132 return ret;
1136 * the buddy cache inode stores the block bitmap
1137 * and buddy information in consecutive blocks.
1138 * So for each group we need two blocks.
1140 block = group * 2;
1141 pnum = block / blocks_per_page;
1142 poff = block % blocks_per_page;
1144 /* we could use find_or_create_page(), but it locks page
1145 * what we'd like to avoid in fast path ... */
1146 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1147 if (page == NULL || !PageUptodate(page)) {
1148 if (page)
1150 * drop the page reference and try
1151 * to get the page with lock. If we
1152 * are not uptodate that implies
1153 * somebody just created the page but
1154 * is yet to initialize the same. So
1155 * wait for it to initialize.
1157 put_page(page);
1158 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1159 if (page) {
1160 BUG_ON(page->mapping != inode->i_mapping);
1161 if (!PageUptodate(page)) {
1162 ret = ext4_mb_init_cache(page, NULL, gfp);
1163 if (ret) {
1164 unlock_page(page);
1165 goto err;
1167 mb_cmp_bitmaps(e4b, page_address(page) +
1168 (poff * sb->s_blocksize));
1170 unlock_page(page);
1173 if (page == NULL) {
1174 ret = -ENOMEM;
1175 goto err;
1177 if (!PageUptodate(page)) {
1178 ret = -EIO;
1179 goto err;
1182 /* Pages marked accessed already */
1183 e4b->bd_bitmap_page = page;
1184 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1186 block++;
1187 pnum = block / blocks_per_page;
1188 poff = block % blocks_per_page;
1190 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1191 if (page == NULL || !PageUptodate(page)) {
1192 if (page)
1193 put_page(page);
1194 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1195 if (page) {
1196 BUG_ON(page->mapping != inode->i_mapping);
1197 if (!PageUptodate(page)) {
1198 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1199 gfp);
1200 if (ret) {
1201 unlock_page(page);
1202 goto err;
1205 unlock_page(page);
1208 if (page == NULL) {
1209 ret = -ENOMEM;
1210 goto err;
1212 if (!PageUptodate(page)) {
1213 ret = -EIO;
1214 goto err;
1217 /* Pages marked accessed already */
1218 e4b->bd_buddy_page = page;
1219 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1221 BUG_ON(e4b->bd_bitmap_page == NULL);
1222 BUG_ON(e4b->bd_buddy_page == NULL);
1224 return 0;
1226 err:
1227 if (page)
1228 put_page(page);
1229 if (e4b->bd_bitmap_page)
1230 put_page(e4b->bd_bitmap_page);
1231 if (e4b->bd_buddy_page)
1232 put_page(e4b->bd_buddy_page);
1233 e4b->bd_buddy = NULL;
1234 e4b->bd_bitmap = NULL;
1235 return ret;
1238 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1239 struct ext4_buddy *e4b)
1241 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1244 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1246 if (e4b->bd_bitmap_page)
1247 put_page(e4b->bd_bitmap_page);
1248 if (e4b->bd_buddy_page)
1249 put_page(e4b->bd_buddy_page);
1253 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1255 int order = 1;
1256 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1257 void *bb;
1259 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1260 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1262 bb = e4b->bd_buddy;
1263 while (order <= e4b->bd_blkbits + 1) {
1264 block = block >> 1;
1265 if (!mb_test_bit(block, bb)) {
1266 /* this block is part of buddy of order 'order' */
1267 return order;
1269 bb += bb_incr;
1270 bb_incr >>= 1;
1271 order++;
1273 return 0;
1276 static void mb_clear_bits(void *bm, int cur, int len)
1278 __u32 *addr;
1280 len = cur + len;
1281 while (cur < len) {
1282 if ((cur & 31) == 0 && (len - cur) >= 32) {
1283 /* fast path: clear whole word at once */
1284 addr = bm + (cur >> 3);
1285 *addr = 0;
1286 cur += 32;
1287 continue;
1289 mb_clear_bit(cur, bm);
1290 cur++;
1294 /* clear bits in given range
1295 * will return first found zero bit if any, -1 otherwise
1297 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1299 __u32 *addr;
1300 int zero_bit = -1;
1302 len = cur + len;
1303 while (cur < len) {
1304 if ((cur & 31) == 0 && (len - cur) >= 32) {
1305 /* fast path: clear whole word at once */
1306 addr = bm + (cur >> 3);
1307 if (*addr != (__u32)(-1) && zero_bit == -1)
1308 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1309 *addr = 0;
1310 cur += 32;
1311 continue;
1313 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1314 zero_bit = cur;
1315 cur++;
1318 return zero_bit;
1321 void ext4_set_bits(void *bm, int cur, int len)
1323 __u32 *addr;
1325 len = cur + len;
1326 while (cur < len) {
1327 if ((cur & 31) == 0 && (len - cur) >= 32) {
1328 /* fast path: set whole word at once */
1329 addr = bm + (cur >> 3);
1330 *addr = 0xffffffff;
1331 cur += 32;
1332 continue;
1334 mb_set_bit(cur, bm);
1335 cur++;
1340 * _________________________________________________________________ */
1342 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1344 if (mb_test_bit(*bit + side, bitmap)) {
1345 mb_clear_bit(*bit, bitmap);
1346 (*bit) -= side;
1347 return 1;
1349 else {
1350 (*bit) += side;
1351 mb_set_bit(*bit, bitmap);
1352 return -1;
1356 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1358 int max;
1359 int order = 1;
1360 void *buddy = mb_find_buddy(e4b, order, &max);
1362 while (buddy) {
1363 void *buddy2;
1365 /* Bits in range [first; last] are known to be set since
1366 * corresponding blocks were allocated. Bits in range
1367 * (first; last) will stay set because they form buddies on
1368 * upper layer. We just deal with borders if they don't
1369 * align with upper layer and then go up.
1370 * Releasing entire group is all about clearing
1371 * single bit of highest order buddy.
1374 /* Example:
1375 * ---------------------------------
1376 * | 1 | 1 | 1 | 1 |
1377 * ---------------------------------
1378 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1379 * ---------------------------------
1380 * 0 1 2 3 4 5 6 7
1381 * \_____________________/
1383 * Neither [1] nor [6] is aligned to above layer.
1384 * Left neighbour [0] is free, so mark it busy,
1385 * decrease bb_counters and extend range to
1386 * [0; 6]
1387 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1388 * mark [6] free, increase bb_counters and shrink range to
1389 * [0; 5].
1390 * Then shift range to [0; 2], go up and do the same.
1394 if (first & 1)
1395 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1396 if (!(last & 1))
1397 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1398 if (first > last)
1399 break;
1400 order++;
1402 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1403 mb_clear_bits(buddy, first, last - first + 1);
1404 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1405 break;
1407 first >>= 1;
1408 last >>= 1;
1409 buddy = buddy2;
1413 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1414 int first, int count)
1416 int left_is_free = 0;
1417 int right_is_free = 0;
1418 int block;
1419 int last = first + count - 1;
1420 struct super_block *sb = e4b->bd_sb;
1422 if (WARN_ON(count == 0))
1423 return;
1424 BUG_ON(last >= (sb->s_blocksize << 3));
1425 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1426 /* Don't bother if the block group is corrupt. */
1427 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1428 return;
1430 mb_check_buddy(e4b);
1431 mb_free_blocks_double(inode, e4b, first, count);
1433 e4b->bd_info->bb_free += count;
1434 if (first < e4b->bd_info->bb_first_free)
1435 e4b->bd_info->bb_first_free = first;
1437 /* access memory sequentially: check left neighbour,
1438 * clear range and then check right neighbour
1440 if (first != 0)
1441 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1442 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1443 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1444 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1446 if (unlikely(block != -1)) {
1447 struct ext4_sb_info *sbi = EXT4_SB(sb);
1448 ext4_fsblk_t blocknr;
1450 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1451 blocknr += EXT4_C2B(sbi, block);
1452 ext4_grp_locked_error(sb, e4b->bd_group,
1453 inode ? inode->i_ino : 0,
1454 blocknr,
1455 "freeing already freed block "
1456 "(bit %u); block bitmap corrupt.",
1457 block);
1458 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1459 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1460 mb_regenerate_buddy(e4b);
1461 goto done;
1464 /* let's maintain fragments counter */
1465 if (left_is_free && right_is_free)
1466 e4b->bd_info->bb_fragments--;
1467 else if (!left_is_free && !right_is_free)
1468 e4b->bd_info->bb_fragments++;
1470 /* buddy[0] == bd_bitmap is a special case, so handle
1471 * it right away and let mb_buddy_mark_free stay free of
1472 * zero order checks.
1473 * Check if neighbours are to be coaleasced,
1474 * adjust bitmap bb_counters and borders appropriately.
1476 if (first & 1) {
1477 first += !left_is_free;
1478 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1480 if (!(last & 1)) {
1481 last -= !right_is_free;
1482 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1485 if (first <= last)
1486 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1488 done:
1489 mb_set_largest_free_order(sb, e4b->bd_info);
1490 mb_check_buddy(e4b);
1493 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1494 int needed, struct ext4_free_extent *ex)
1496 int next = block;
1497 int max, order;
1498 void *buddy;
1500 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1501 BUG_ON(ex == NULL);
1503 buddy = mb_find_buddy(e4b, 0, &max);
1504 BUG_ON(buddy == NULL);
1505 BUG_ON(block >= max);
1506 if (mb_test_bit(block, buddy)) {
1507 ex->fe_len = 0;
1508 ex->fe_start = 0;
1509 ex->fe_group = 0;
1510 return 0;
1513 /* find actual order */
1514 order = mb_find_order_for_block(e4b, block);
1515 block = block >> order;
1517 ex->fe_len = 1 << order;
1518 ex->fe_start = block << order;
1519 ex->fe_group = e4b->bd_group;
1521 /* calc difference from given start */
1522 next = next - ex->fe_start;
1523 ex->fe_len -= next;
1524 ex->fe_start += next;
1526 while (needed > ex->fe_len &&
1527 mb_find_buddy(e4b, order, &max)) {
1529 if (block + 1 >= max)
1530 break;
1532 next = (block + 1) * (1 << order);
1533 if (mb_test_bit(next, e4b->bd_bitmap))
1534 break;
1536 order = mb_find_order_for_block(e4b, next);
1538 block = next >> order;
1539 ex->fe_len += 1 << order;
1542 if (ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))) {
1543 /* Should never happen! (but apparently sometimes does?!?) */
1544 WARN_ON(1);
1545 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1546 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1547 block, order, needed, ex->fe_group, ex->fe_start,
1548 ex->fe_len, ex->fe_logical);
1549 ex->fe_len = 0;
1550 ex->fe_start = 0;
1551 ex->fe_group = 0;
1553 return ex->fe_len;
1556 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1558 int ord;
1559 int mlen = 0;
1560 int max = 0;
1561 int cur;
1562 int start = ex->fe_start;
1563 int len = ex->fe_len;
1564 unsigned ret = 0;
1565 int len0 = len;
1566 void *buddy;
1568 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1569 BUG_ON(e4b->bd_group != ex->fe_group);
1570 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1571 mb_check_buddy(e4b);
1572 mb_mark_used_double(e4b, start, len);
1574 e4b->bd_info->bb_free -= len;
1575 if (e4b->bd_info->bb_first_free == start)
1576 e4b->bd_info->bb_first_free += len;
1578 /* let's maintain fragments counter */
1579 if (start != 0)
1580 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1581 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1582 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1583 if (mlen && max)
1584 e4b->bd_info->bb_fragments++;
1585 else if (!mlen && !max)
1586 e4b->bd_info->bb_fragments--;
1588 /* let's maintain buddy itself */
1589 while (len) {
1590 ord = mb_find_order_for_block(e4b, start);
1592 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1593 /* the whole chunk may be allocated at once! */
1594 mlen = 1 << ord;
1595 buddy = mb_find_buddy(e4b, ord, &max);
1596 BUG_ON((start >> ord) >= max);
1597 mb_set_bit(start >> ord, buddy);
1598 e4b->bd_info->bb_counters[ord]--;
1599 start += mlen;
1600 len -= mlen;
1601 BUG_ON(len < 0);
1602 continue;
1605 /* store for history */
1606 if (ret == 0)
1607 ret = len | (ord << 16);
1609 /* we have to split large buddy */
1610 BUG_ON(ord <= 0);
1611 buddy = mb_find_buddy(e4b, ord, &max);
1612 mb_set_bit(start >> ord, buddy);
1613 e4b->bd_info->bb_counters[ord]--;
1615 ord--;
1616 cur = (start >> ord) & ~1U;
1617 buddy = mb_find_buddy(e4b, ord, &max);
1618 mb_clear_bit(cur, buddy);
1619 mb_clear_bit(cur + 1, buddy);
1620 e4b->bd_info->bb_counters[ord]++;
1621 e4b->bd_info->bb_counters[ord]++;
1623 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1625 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1626 mb_check_buddy(e4b);
1628 return ret;
1632 * Must be called under group lock!
1634 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1635 struct ext4_buddy *e4b)
1637 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1638 int ret;
1640 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1641 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1643 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1644 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1645 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1647 /* preallocation can change ac_b_ex, thus we store actually
1648 * allocated blocks for history */
1649 ac->ac_f_ex = ac->ac_b_ex;
1651 ac->ac_status = AC_STATUS_FOUND;
1652 ac->ac_tail = ret & 0xffff;
1653 ac->ac_buddy = ret >> 16;
1656 * take the page reference. We want the page to be pinned
1657 * so that we don't get a ext4_mb_init_cache_call for this
1658 * group until we update the bitmap. That would mean we
1659 * double allocate blocks. The reference is dropped
1660 * in ext4_mb_release_context
1662 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1663 get_page(ac->ac_bitmap_page);
1664 ac->ac_buddy_page = e4b->bd_buddy_page;
1665 get_page(ac->ac_buddy_page);
1666 /* store last allocated for subsequent stream allocation */
1667 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1668 spin_lock(&sbi->s_md_lock);
1669 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1670 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1671 spin_unlock(&sbi->s_md_lock);
1676 * regular allocator, for general purposes allocation
1679 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1680 struct ext4_buddy *e4b,
1681 int finish_group)
1683 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1684 struct ext4_free_extent *bex = &ac->ac_b_ex;
1685 struct ext4_free_extent *gex = &ac->ac_g_ex;
1686 struct ext4_free_extent ex;
1687 int max;
1689 if (ac->ac_status == AC_STATUS_FOUND)
1690 return;
1692 * We don't want to scan for a whole year
1694 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1695 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1696 ac->ac_status = AC_STATUS_BREAK;
1697 return;
1701 * Haven't found good chunk so far, let's continue
1703 if (bex->fe_len < gex->fe_len)
1704 return;
1706 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1707 && bex->fe_group == e4b->bd_group) {
1708 /* recheck chunk's availability - we don't know
1709 * when it was found (within this lock-unlock
1710 * period or not) */
1711 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1712 if (max >= gex->fe_len) {
1713 ext4_mb_use_best_found(ac, e4b);
1714 return;
1720 * The routine checks whether found extent is good enough. If it is,
1721 * then the extent gets marked used and flag is set to the context
1722 * to stop scanning. Otherwise, the extent is compared with the
1723 * previous found extent and if new one is better, then it's stored
1724 * in the context. Later, the best found extent will be used, if
1725 * mballoc can't find good enough extent.
1727 * FIXME: real allocation policy is to be designed yet!
1729 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1730 struct ext4_free_extent *ex,
1731 struct ext4_buddy *e4b)
1733 struct ext4_free_extent *bex = &ac->ac_b_ex;
1734 struct ext4_free_extent *gex = &ac->ac_g_ex;
1736 BUG_ON(ex->fe_len <= 0);
1737 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1738 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1739 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1741 ac->ac_found++;
1744 * The special case - take what you catch first
1746 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1747 *bex = *ex;
1748 ext4_mb_use_best_found(ac, e4b);
1749 return;
1753 * Let's check whether the chuck is good enough
1755 if (ex->fe_len == gex->fe_len) {
1756 *bex = *ex;
1757 ext4_mb_use_best_found(ac, e4b);
1758 return;
1762 * If this is first found extent, just store it in the context
1764 if (bex->fe_len == 0) {
1765 *bex = *ex;
1766 return;
1770 * If new found extent is better, store it in the context
1772 if (bex->fe_len < gex->fe_len) {
1773 /* if the request isn't satisfied, any found extent
1774 * larger than previous best one is better */
1775 if (ex->fe_len > bex->fe_len)
1776 *bex = *ex;
1777 } else if (ex->fe_len > gex->fe_len) {
1778 /* if the request is satisfied, then we try to find
1779 * an extent that still satisfy the request, but is
1780 * smaller than previous one */
1781 if (ex->fe_len < bex->fe_len)
1782 *bex = *ex;
1785 ext4_mb_check_limits(ac, e4b, 0);
1788 static noinline_for_stack
1789 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1790 struct ext4_buddy *e4b)
1792 struct ext4_free_extent ex = ac->ac_b_ex;
1793 ext4_group_t group = ex.fe_group;
1794 int max;
1795 int err;
1797 BUG_ON(ex.fe_len <= 0);
1798 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1799 if (err)
1800 return err;
1802 ext4_lock_group(ac->ac_sb, group);
1803 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1805 if (max > 0) {
1806 ac->ac_b_ex = ex;
1807 ext4_mb_use_best_found(ac, e4b);
1810 ext4_unlock_group(ac->ac_sb, group);
1811 ext4_mb_unload_buddy(e4b);
1813 return 0;
1816 static noinline_for_stack
1817 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1818 struct ext4_buddy *e4b)
1820 ext4_group_t group = ac->ac_g_ex.fe_group;
1821 int max;
1822 int err;
1823 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1824 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1825 struct ext4_free_extent ex;
1827 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1828 return 0;
1829 if (grp->bb_free == 0)
1830 return 0;
1832 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1833 if (err)
1834 return err;
1836 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1837 ext4_mb_unload_buddy(e4b);
1838 return 0;
1841 ext4_lock_group(ac->ac_sb, group);
1842 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1843 ac->ac_g_ex.fe_len, &ex);
1844 ex.fe_logical = 0xDEADFA11; /* debug value */
1846 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1847 ext4_fsblk_t start;
1849 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1850 ex.fe_start;
1851 /* use do_div to get remainder (would be 64-bit modulo) */
1852 if (do_div(start, sbi->s_stripe) == 0) {
1853 ac->ac_found++;
1854 ac->ac_b_ex = ex;
1855 ext4_mb_use_best_found(ac, e4b);
1857 } else if (max >= ac->ac_g_ex.fe_len) {
1858 BUG_ON(ex.fe_len <= 0);
1859 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1860 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1861 ac->ac_found++;
1862 ac->ac_b_ex = ex;
1863 ext4_mb_use_best_found(ac, e4b);
1864 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1865 /* Sometimes, caller may want to merge even small
1866 * number of blocks to an existing extent */
1867 BUG_ON(ex.fe_len <= 0);
1868 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1869 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1870 ac->ac_found++;
1871 ac->ac_b_ex = ex;
1872 ext4_mb_use_best_found(ac, e4b);
1874 ext4_unlock_group(ac->ac_sb, group);
1875 ext4_mb_unload_buddy(e4b);
1877 return 0;
1881 * The routine scans buddy structures (not bitmap!) from given order
1882 * to max order and tries to find big enough chunk to satisfy the req
1884 static noinline_for_stack
1885 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1886 struct ext4_buddy *e4b)
1888 struct super_block *sb = ac->ac_sb;
1889 struct ext4_group_info *grp = e4b->bd_info;
1890 void *buddy;
1891 int i;
1892 int k;
1893 int max;
1895 BUG_ON(ac->ac_2order <= 0);
1896 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1897 if (grp->bb_counters[i] == 0)
1898 continue;
1900 buddy = mb_find_buddy(e4b, i, &max);
1901 BUG_ON(buddy == NULL);
1903 k = mb_find_next_zero_bit(buddy, max, 0);
1904 BUG_ON(k >= max);
1906 ac->ac_found++;
1908 ac->ac_b_ex.fe_len = 1 << i;
1909 ac->ac_b_ex.fe_start = k << i;
1910 ac->ac_b_ex.fe_group = e4b->bd_group;
1912 ext4_mb_use_best_found(ac, e4b);
1914 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1916 if (EXT4_SB(sb)->s_mb_stats)
1917 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1919 break;
1924 * The routine scans the group and measures all found extents.
1925 * In order to optimize scanning, caller must pass number of
1926 * free blocks in the group, so the routine can know upper limit.
1928 static noinline_for_stack
1929 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1930 struct ext4_buddy *e4b)
1932 struct super_block *sb = ac->ac_sb;
1933 void *bitmap = e4b->bd_bitmap;
1934 struct ext4_free_extent ex;
1935 int i;
1936 int free;
1938 free = e4b->bd_info->bb_free;
1939 BUG_ON(free <= 0);
1941 i = e4b->bd_info->bb_first_free;
1943 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1944 i = mb_find_next_zero_bit(bitmap,
1945 EXT4_CLUSTERS_PER_GROUP(sb), i);
1946 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1948 * IF we have corrupt bitmap, we won't find any
1949 * free blocks even though group info says we
1950 * we have free blocks
1952 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1953 "%d free clusters as per "
1954 "group info. But bitmap says 0",
1955 free);
1956 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1957 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1958 break;
1961 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1962 BUG_ON(ex.fe_len <= 0);
1963 if (free < ex.fe_len) {
1964 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1965 "%d free clusters as per "
1966 "group info. But got %d blocks",
1967 free, ex.fe_len);
1968 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1969 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1971 * The number of free blocks differs. This mostly
1972 * indicate that the bitmap is corrupt. So exit
1973 * without claiming the space.
1975 break;
1977 ex.fe_logical = 0xDEADC0DE; /* debug value */
1978 ext4_mb_measure_extent(ac, &ex, e4b);
1980 i += ex.fe_len;
1981 free -= ex.fe_len;
1984 ext4_mb_check_limits(ac, e4b, 1);
1988 * This is a special case for storages like raid5
1989 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1991 static noinline_for_stack
1992 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1993 struct ext4_buddy *e4b)
1995 struct super_block *sb = ac->ac_sb;
1996 struct ext4_sb_info *sbi = EXT4_SB(sb);
1997 void *bitmap = e4b->bd_bitmap;
1998 struct ext4_free_extent ex;
1999 ext4_fsblk_t first_group_block;
2000 ext4_fsblk_t a;
2001 ext4_grpblk_t i;
2002 int max;
2004 BUG_ON(sbi->s_stripe == 0);
2006 /* find first stripe-aligned block in group */
2007 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2009 a = first_group_block + sbi->s_stripe - 1;
2010 do_div(a, sbi->s_stripe);
2011 i = (a * sbi->s_stripe) - first_group_block;
2013 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2014 if (!mb_test_bit(i, bitmap)) {
2015 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2016 if (max >= sbi->s_stripe) {
2017 ac->ac_found++;
2018 ex.fe_logical = 0xDEADF00D; /* debug value */
2019 ac->ac_b_ex = ex;
2020 ext4_mb_use_best_found(ac, e4b);
2021 break;
2024 i += sbi->s_stripe;
2029 * This is now called BEFORE we load the buddy bitmap.
2030 * Returns either 1 or 0 indicating that the group is either suitable
2031 * for the allocation or not. In addition it can also return negative
2032 * error code when something goes wrong.
2034 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2035 ext4_group_t group, int cr)
2037 unsigned free, fragments;
2038 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2039 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2041 BUG_ON(cr < 0 || cr >= 4);
2043 free = grp->bb_free;
2044 if (free == 0)
2045 return 0;
2046 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2047 return 0;
2049 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2050 return 0;
2052 /* We only do this if the grp has never been initialized */
2053 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2054 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2055 if (ret)
2056 return ret;
2059 fragments = grp->bb_fragments;
2060 if (fragments == 0)
2061 return 0;
2063 switch (cr) {
2064 case 0:
2065 BUG_ON(ac->ac_2order == 0);
2067 /* Avoid using the first bg of a flexgroup for data files */
2068 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2069 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2070 ((group % flex_size) == 0))
2071 return 0;
2073 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2074 (free / fragments) >= ac->ac_g_ex.fe_len)
2075 return 1;
2077 if (grp->bb_largest_free_order < ac->ac_2order)
2078 return 0;
2080 return 1;
2081 case 1:
2082 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2083 return 1;
2084 break;
2085 case 2:
2086 if (free >= ac->ac_g_ex.fe_len)
2087 return 1;
2088 break;
2089 case 3:
2090 return 1;
2091 default:
2092 BUG();
2095 return 0;
2098 static noinline_for_stack int
2099 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2101 ext4_group_t ngroups, group, i;
2102 int cr;
2103 int err = 0, first_err = 0;
2104 struct ext4_sb_info *sbi;
2105 struct super_block *sb;
2106 struct ext4_buddy e4b;
2108 sb = ac->ac_sb;
2109 sbi = EXT4_SB(sb);
2110 ngroups = ext4_get_groups_count(sb);
2111 /* non-extent files are limited to low blocks/groups */
2112 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2113 ngroups = sbi->s_blockfile_groups;
2115 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2117 /* first, try the goal */
2118 err = ext4_mb_find_by_goal(ac, &e4b);
2119 if (err || ac->ac_status == AC_STATUS_FOUND)
2120 goto out;
2122 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2123 goto out;
2126 * ac->ac2_order is set only if the fe_len is a power of 2
2127 * if ac2_order is set we also set criteria to 0 so that we
2128 * try exact allocation using buddy.
2130 i = fls(ac->ac_g_ex.fe_len);
2131 ac->ac_2order = 0;
2133 * We search using buddy data only if the order of the request
2134 * is greater than equal to the sbi_s_mb_order2_reqs
2135 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2136 * We also support searching for power-of-two requests only for
2137 * requests upto maximum buddy size we have constructed.
2139 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2141 * This should tell if fe_len is exactly power of 2
2143 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2144 ac->ac_2order = array_index_nospec(i - 1,
2145 sb->s_blocksize_bits + 2);
2148 /* if stream allocation is enabled, use global goal */
2149 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2150 /* TBD: may be hot point */
2151 spin_lock(&sbi->s_md_lock);
2152 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2153 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2154 spin_unlock(&sbi->s_md_lock);
2157 /* Let's just scan groups to find more-less suitable blocks */
2158 cr = ac->ac_2order ? 0 : 1;
2160 * cr == 0 try to get exact allocation,
2161 * cr == 3 try to get anything
2163 repeat:
2164 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2165 ac->ac_criteria = cr;
2167 * searching for the right group start
2168 * from the goal value specified
2170 group = ac->ac_g_ex.fe_group;
2172 for (i = 0; i < ngroups; group++, i++) {
2173 int ret = 0;
2174 cond_resched();
2176 * Artificially restricted ngroups for non-extent
2177 * files makes group > ngroups possible on first loop.
2179 if (group >= ngroups)
2180 group = 0;
2182 /* This now checks without needing the buddy page */
2183 ret = ext4_mb_good_group(ac, group, cr);
2184 if (ret <= 0) {
2185 if (!first_err)
2186 first_err = ret;
2187 continue;
2190 err = ext4_mb_load_buddy(sb, group, &e4b);
2191 if (err)
2192 goto out;
2194 ext4_lock_group(sb, group);
2197 * We need to check again after locking the
2198 * block group
2200 ret = ext4_mb_good_group(ac, group, cr);
2201 if (ret <= 0) {
2202 ext4_unlock_group(sb, group);
2203 ext4_mb_unload_buddy(&e4b);
2204 if (!first_err)
2205 first_err = ret;
2206 continue;
2209 ac->ac_groups_scanned++;
2210 if (cr == 0)
2211 ext4_mb_simple_scan_group(ac, &e4b);
2212 else if (cr == 1 && sbi->s_stripe &&
2213 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2214 ext4_mb_scan_aligned(ac, &e4b);
2215 else
2216 ext4_mb_complex_scan_group(ac, &e4b);
2218 ext4_unlock_group(sb, group);
2219 ext4_mb_unload_buddy(&e4b);
2221 if (ac->ac_status != AC_STATUS_CONTINUE)
2222 break;
2226 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2227 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2229 * We've been searching too long. Let's try to allocate
2230 * the best chunk we've found so far
2233 ext4_mb_try_best_found(ac, &e4b);
2234 if (ac->ac_status != AC_STATUS_FOUND) {
2236 * Someone more lucky has already allocated it.
2237 * The only thing we can do is just take first
2238 * found block(s)
2239 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2241 ac->ac_b_ex.fe_group = 0;
2242 ac->ac_b_ex.fe_start = 0;
2243 ac->ac_b_ex.fe_len = 0;
2244 ac->ac_status = AC_STATUS_CONTINUE;
2245 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2246 cr = 3;
2247 atomic_inc(&sbi->s_mb_lost_chunks);
2248 goto repeat;
2251 out:
2252 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2253 err = first_err;
2254 return err;
2257 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2259 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2260 ext4_group_t group;
2262 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2263 return NULL;
2264 group = *pos + 1;
2265 return (void *) ((unsigned long) group);
2268 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2270 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2271 ext4_group_t group;
2273 ++*pos;
2274 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2275 return NULL;
2276 group = *pos + 1;
2277 return (void *) ((unsigned long) group);
2280 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2282 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2283 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2284 int i;
2285 int err, buddy_loaded = 0;
2286 struct ext4_buddy e4b;
2287 struct ext4_group_info *grinfo;
2288 unsigned char blocksize_bits = min_t(unsigned char,
2289 sb->s_blocksize_bits,
2290 EXT4_MAX_BLOCK_LOG_SIZE);
2291 struct sg {
2292 struct ext4_group_info info;
2293 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2294 } sg;
2296 group--;
2297 if (group == 0)
2298 seq_puts(seq, "#group: free frags first ["
2299 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2300 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2302 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2303 sizeof(struct ext4_group_info);
2305 grinfo = ext4_get_group_info(sb, group);
2306 /* Load the group info in memory only if not already loaded. */
2307 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2308 err = ext4_mb_load_buddy(sb, group, &e4b);
2309 if (err) {
2310 seq_printf(seq, "#%-5u: I/O error\n", group);
2311 return 0;
2313 buddy_loaded = 1;
2316 memcpy(&sg, ext4_get_group_info(sb, group), i);
2318 if (buddy_loaded)
2319 ext4_mb_unload_buddy(&e4b);
2321 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2322 sg.info.bb_fragments, sg.info.bb_first_free);
2323 for (i = 0; i <= 13; i++)
2324 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2325 sg.info.bb_counters[i] : 0);
2326 seq_printf(seq, " ]\n");
2328 return 0;
2331 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2335 const struct seq_operations ext4_mb_seq_groups_ops = {
2336 .start = ext4_mb_seq_groups_start,
2337 .next = ext4_mb_seq_groups_next,
2338 .stop = ext4_mb_seq_groups_stop,
2339 .show = ext4_mb_seq_groups_show,
2342 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2344 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2345 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2347 BUG_ON(!cachep);
2348 return cachep;
2352 * Allocate the top-level s_group_info array for the specified number
2353 * of groups
2355 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2357 struct ext4_sb_info *sbi = EXT4_SB(sb);
2358 unsigned size;
2359 struct ext4_group_info ***new_groupinfo;
2361 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2362 EXT4_DESC_PER_BLOCK_BITS(sb);
2363 if (size <= sbi->s_group_info_size)
2364 return 0;
2366 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2367 new_groupinfo = kvzalloc(size, GFP_KERNEL);
2368 if (!new_groupinfo) {
2369 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2370 return -ENOMEM;
2372 if (sbi->s_group_info) {
2373 memcpy(new_groupinfo, sbi->s_group_info,
2374 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2375 kvfree(sbi->s_group_info);
2377 sbi->s_group_info = new_groupinfo;
2378 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2379 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2380 sbi->s_group_info_size);
2381 return 0;
2384 /* Create and initialize ext4_group_info data for the given group. */
2385 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2386 struct ext4_group_desc *desc)
2388 int i;
2389 int metalen = 0;
2390 struct ext4_sb_info *sbi = EXT4_SB(sb);
2391 struct ext4_group_info **meta_group_info;
2392 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2395 * First check if this group is the first of a reserved block.
2396 * If it's true, we have to allocate a new table of pointers
2397 * to ext4_group_info structures
2399 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2400 metalen = sizeof(*meta_group_info) <<
2401 EXT4_DESC_PER_BLOCK_BITS(sb);
2402 meta_group_info = kmalloc(metalen, GFP_NOFS);
2403 if (meta_group_info == NULL) {
2404 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2405 "for a buddy group");
2406 goto exit_meta_group_info;
2408 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2409 meta_group_info;
2412 meta_group_info =
2413 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2414 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2416 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2417 if (meta_group_info[i] == NULL) {
2418 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2419 goto exit_group_info;
2421 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2422 &(meta_group_info[i]->bb_state));
2425 * initialize bb_free to be able to skip
2426 * empty groups without initialization
2428 if (ext4_has_group_desc_csum(sb) &&
2429 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2430 meta_group_info[i]->bb_free =
2431 ext4_free_clusters_after_init(sb, group, desc);
2432 } else {
2433 meta_group_info[i]->bb_free =
2434 ext4_free_group_clusters(sb, desc);
2437 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2438 init_rwsem(&meta_group_info[i]->alloc_sem);
2439 meta_group_info[i]->bb_free_root = RB_ROOT;
2440 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2442 #ifdef DOUBLE_CHECK
2444 struct buffer_head *bh;
2445 meta_group_info[i]->bb_bitmap =
2446 kmalloc(sb->s_blocksize, GFP_NOFS);
2447 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2448 bh = ext4_read_block_bitmap(sb, group);
2449 BUG_ON(IS_ERR_OR_NULL(bh));
2450 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2451 sb->s_blocksize);
2452 put_bh(bh);
2454 #endif
2456 return 0;
2458 exit_group_info:
2459 /* If a meta_group_info table has been allocated, release it now */
2460 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2461 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2462 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2464 exit_meta_group_info:
2465 return -ENOMEM;
2466 } /* ext4_mb_add_groupinfo */
2468 static int ext4_mb_init_backend(struct super_block *sb)
2470 ext4_group_t ngroups = ext4_get_groups_count(sb);
2471 ext4_group_t i;
2472 struct ext4_sb_info *sbi = EXT4_SB(sb);
2473 int err;
2474 struct ext4_group_desc *desc;
2475 struct kmem_cache *cachep;
2477 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2478 if (err)
2479 return err;
2481 sbi->s_buddy_cache = new_inode(sb);
2482 if (sbi->s_buddy_cache == NULL) {
2483 ext4_msg(sb, KERN_ERR, "can't get new inode");
2484 goto err_freesgi;
2486 /* To avoid potentially colliding with an valid on-disk inode number,
2487 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2488 * not in the inode hash, so it should never be found by iget(), but
2489 * this will avoid confusion if it ever shows up during debugging. */
2490 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2491 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2492 for (i = 0; i < ngroups; i++) {
2493 desc = ext4_get_group_desc(sb, i, NULL);
2494 if (desc == NULL) {
2495 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2496 goto err_freebuddy;
2498 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2499 goto err_freebuddy;
2502 return 0;
2504 err_freebuddy:
2505 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2506 while (i-- > 0)
2507 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2508 i = sbi->s_group_info_size;
2509 while (i-- > 0)
2510 kfree(sbi->s_group_info[i]);
2511 iput(sbi->s_buddy_cache);
2512 err_freesgi:
2513 kvfree(sbi->s_group_info);
2514 return -ENOMEM;
2517 static void ext4_groupinfo_destroy_slabs(void)
2519 int i;
2521 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2522 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2523 ext4_groupinfo_caches[i] = NULL;
2527 static int ext4_groupinfo_create_slab(size_t size)
2529 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2530 int slab_size;
2531 int blocksize_bits = order_base_2(size);
2532 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2533 struct kmem_cache *cachep;
2535 if (cache_index >= NR_GRPINFO_CACHES)
2536 return -EINVAL;
2538 if (unlikely(cache_index < 0))
2539 cache_index = 0;
2541 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2542 if (ext4_groupinfo_caches[cache_index]) {
2543 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2544 return 0; /* Already created */
2547 slab_size = offsetof(struct ext4_group_info,
2548 bb_counters[blocksize_bits + 2]);
2550 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2551 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2552 NULL);
2554 ext4_groupinfo_caches[cache_index] = cachep;
2556 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2557 if (!cachep) {
2558 printk(KERN_EMERG
2559 "EXT4-fs: no memory for groupinfo slab cache\n");
2560 return -ENOMEM;
2563 return 0;
2566 int ext4_mb_init(struct super_block *sb)
2568 struct ext4_sb_info *sbi = EXT4_SB(sb);
2569 unsigned i, j;
2570 unsigned offset, offset_incr;
2571 unsigned max;
2572 int ret;
2574 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2576 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2577 if (sbi->s_mb_offsets == NULL) {
2578 ret = -ENOMEM;
2579 goto out;
2582 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2583 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2584 if (sbi->s_mb_maxs == NULL) {
2585 ret = -ENOMEM;
2586 goto out;
2589 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2590 if (ret < 0)
2591 goto out;
2593 /* order 0 is regular bitmap */
2594 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2595 sbi->s_mb_offsets[0] = 0;
2597 i = 1;
2598 offset = 0;
2599 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2600 max = sb->s_blocksize << 2;
2601 do {
2602 sbi->s_mb_offsets[i] = offset;
2603 sbi->s_mb_maxs[i] = max;
2604 offset += offset_incr;
2605 offset_incr = offset_incr >> 1;
2606 max = max >> 1;
2607 i++;
2608 } while (i <= sb->s_blocksize_bits + 1);
2610 spin_lock_init(&sbi->s_md_lock);
2611 spin_lock_init(&sbi->s_bal_lock);
2612 sbi->s_mb_free_pending = 0;
2613 INIT_LIST_HEAD(&sbi->s_freed_data_list);
2615 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2616 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2617 sbi->s_mb_stats = MB_DEFAULT_STATS;
2618 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2619 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2621 * The default group preallocation is 512, which for 4k block
2622 * sizes translates to 2 megabytes. However for bigalloc file
2623 * systems, this is probably too big (i.e, if the cluster size
2624 * is 1 megabyte, then group preallocation size becomes half a
2625 * gigabyte!). As a default, we will keep a two megabyte
2626 * group pralloc size for cluster sizes up to 64k, and after
2627 * that, we will force a minimum group preallocation size of
2628 * 32 clusters. This translates to 8 megs when the cluster
2629 * size is 256k, and 32 megs when the cluster size is 1 meg,
2630 * which seems reasonable as a default.
2632 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2633 sbi->s_cluster_bits, 32);
2635 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2636 * to the lowest multiple of s_stripe which is bigger than
2637 * the s_mb_group_prealloc as determined above. We want
2638 * the preallocation size to be an exact multiple of the
2639 * RAID stripe size so that preallocations don't fragment
2640 * the stripes.
2642 if (sbi->s_stripe > 1) {
2643 sbi->s_mb_group_prealloc = roundup(
2644 sbi->s_mb_group_prealloc, sbi->s_stripe);
2647 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2648 if (sbi->s_locality_groups == NULL) {
2649 ret = -ENOMEM;
2650 goto out;
2652 for_each_possible_cpu(i) {
2653 struct ext4_locality_group *lg;
2654 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2655 mutex_init(&lg->lg_mutex);
2656 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2657 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2658 spin_lock_init(&lg->lg_prealloc_lock);
2661 /* init file for buddy data */
2662 ret = ext4_mb_init_backend(sb);
2663 if (ret != 0)
2664 goto out_free_locality_groups;
2666 return 0;
2668 out_free_locality_groups:
2669 free_percpu(sbi->s_locality_groups);
2670 sbi->s_locality_groups = NULL;
2671 out:
2672 kfree(sbi->s_mb_offsets);
2673 sbi->s_mb_offsets = NULL;
2674 kfree(sbi->s_mb_maxs);
2675 sbi->s_mb_maxs = NULL;
2676 return ret;
2679 /* need to called with the ext4 group lock held */
2680 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2682 struct ext4_prealloc_space *pa;
2683 struct list_head *cur, *tmp;
2684 int count = 0;
2686 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2687 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2688 list_del(&pa->pa_group_list);
2689 count++;
2690 kmem_cache_free(ext4_pspace_cachep, pa);
2692 if (count)
2693 mb_debug(1, "mballoc: %u PAs left\n", count);
2697 int ext4_mb_release(struct super_block *sb)
2699 ext4_group_t ngroups = ext4_get_groups_count(sb);
2700 ext4_group_t i;
2701 int num_meta_group_infos;
2702 struct ext4_group_info *grinfo;
2703 struct ext4_sb_info *sbi = EXT4_SB(sb);
2704 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2706 if (sbi->s_group_info) {
2707 for (i = 0; i < ngroups; i++) {
2708 grinfo = ext4_get_group_info(sb, i);
2709 #ifdef DOUBLE_CHECK
2710 kfree(grinfo->bb_bitmap);
2711 #endif
2712 ext4_lock_group(sb, i);
2713 ext4_mb_cleanup_pa(grinfo);
2714 ext4_unlock_group(sb, i);
2715 kmem_cache_free(cachep, grinfo);
2717 num_meta_group_infos = (ngroups +
2718 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2719 EXT4_DESC_PER_BLOCK_BITS(sb);
2720 for (i = 0; i < num_meta_group_infos; i++)
2721 kfree(sbi->s_group_info[i]);
2722 kvfree(sbi->s_group_info);
2724 kfree(sbi->s_mb_offsets);
2725 kfree(sbi->s_mb_maxs);
2726 iput(sbi->s_buddy_cache);
2727 if (sbi->s_mb_stats) {
2728 ext4_msg(sb, KERN_INFO,
2729 "mballoc: %u blocks %u reqs (%u success)",
2730 atomic_read(&sbi->s_bal_allocated),
2731 atomic_read(&sbi->s_bal_reqs),
2732 atomic_read(&sbi->s_bal_success));
2733 ext4_msg(sb, KERN_INFO,
2734 "mballoc: %u extents scanned, %u goal hits, "
2735 "%u 2^N hits, %u breaks, %u lost",
2736 atomic_read(&sbi->s_bal_ex_scanned),
2737 atomic_read(&sbi->s_bal_goals),
2738 atomic_read(&sbi->s_bal_2orders),
2739 atomic_read(&sbi->s_bal_breaks),
2740 atomic_read(&sbi->s_mb_lost_chunks));
2741 ext4_msg(sb, KERN_INFO,
2742 "mballoc: %lu generated and it took %Lu",
2743 sbi->s_mb_buddies_generated,
2744 sbi->s_mb_generation_time);
2745 ext4_msg(sb, KERN_INFO,
2746 "mballoc: %u preallocated, %u discarded",
2747 atomic_read(&sbi->s_mb_preallocated),
2748 atomic_read(&sbi->s_mb_discarded));
2751 free_percpu(sbi->s_locality_groups);
2753 return 0;
2756 static inline int ext4_issue_discard(struct super_block *sb,
2757 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2758 struct bio **biop)
2760 ext4_fsblk_t discard_block;
2762 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2763 ext4_group_first_block_no(sb, block_group));
2764 count = EXT4_C2B(EXT4_SB(sb), count);
2765 trace_ext4_discard_blocks(sb,
2766 (unsigned long long) discard_block, count);
2767 if (biop) {
2768 return __blkdev_issue_discard(sb->s_bdev,
2769 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
2770 (sector_t)count << (sb->s_blocksize_bits - 9),
2771 GFP_NOFS, 0, biop);
2772 } else
2773 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2776 static void ext4_free_data_in_buddy(struct super_block *sb,
2777 struct ext4_free_data *entry)
2779 struct ext4_buddy e4b;
2780 struct ext4_group_info *db;
2781 int err, count = 0, count2 = 0;
2783 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2784 entry->efd_count, entry->efd_group, entry);
2786 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2787 /* we expect to find existing buddy because it's pinned */
2788 BUG_ON(err != 0);
2790 spin_lock(&EXT4_SB(sb)->s_md_lock);
2791 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2792 spin_unlock(&EXT4_SB(sb)->s_md_lock);
2794 db = e4b.bd_info;
2795 /* there are blocks to put in buddy to make them really free */
2796 count += entry->efd_count;
2797 count2++;
2798 ext4_lock_group(sb, entry->efd_group);
2799 /* Take it out of per group rb tree */
2800 rb_erase(&entry->efd_node, &(db->bb_free_root));
2801 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2804 * Clear the trimmed flag for the group so that the next
2805 * ext4_trim_fs can trim it.
2806 * If the volume is mounted with -o discard, online discard
2807 * is supported and the free blocks will be trimmed online.
2809 if (!test_opt(sb, DISCARD))
2810 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2812 if (!db->bb_free_root.rb_node) {
2813 /* No more items in the per group rb tree
2814 * balance refcounts from ext4_mb_free_metadata()
2816 put_page(e4b.bd_buddy_page);
2817 put_page(e4b.bd_bitmap_page);
2819 ext4_unlock_group(sb, entry->efd_group);
2820 kmem_cache_free(ext4_free_data_cachep, entry);
2821 ext4_mb_unload_buddy(&e4b);
2823 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2827 * This function is called by the jbd2 layer once the commit has finished,
2828 * so we know we can free the blocks that were released with that commit.
2830 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2832 struct ext4_sb_info *sbi = EXT4_SB(sb);
2833 struct ext4_free_data *entry, *tmp;
2834 struct bio *discard_bio = NULL;
2835 struct list_head freed_data_list;
2836 struct list_head *cut_pos = NULL;
2837 int err;
2839 INIT_LIST_HEAD(&freed_data_list);
2841 spin_lock(&sbi->s_md_lock);
2842 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2843 if (entry->efd_tid != commit_tid)
2844 break;
2845 cut_pos = &entry->efd_list;
2847 if (cut_pos)
2848 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2849 cut_pos);
2850 spin_unlock(&sbi->s_md_lock);
2852 if (test_opt(sb, DISCARD)) {
2853 list_for_each_entry(entry, &freed_data_list, efd_list) {
2854 err = ext4_issue_discard(sb, entry->efd_group,
2855 entry->efd_start_cluster,
2856 entry->efd_count,
2857 &discard_bio);
2858 if (err && err != -EOPNOTSUPP) {
2859 ext4_msg(sb, KERN_WARNING, "discard request in"
2860 " group:%d block:%d count:%d failed"
2861 " with %d", entry->efd_group,
2862 entry->efd_start_cluster,
2863 entry->efd_count, err);
2864 } else if (err == -EOPNOTSUPP)
2865 break;
2868 if (discard_bio) {
2869 submit_bio_wait(discard_bio);
2870 bio_put(discard_bio);
2874 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2875 ext4_free_data_in_buddy(sb, entry);
2878 int __init ext4_init_mballoc(void)
2880 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2881 SLAB_RECLAIM_ACCOUNT);
2882 if (ext4_pspace_cachep == NULL)
2883 return -ENOMEM;
2885 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2886 SLAB_RECLAIM_ACCOUNT);
2887 if (ext4_ac_cachep == NULL) {
2888 kmem_cache_destroy(ext4_pspace_cachep);
2889 return -ENOMEM;
2892 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2893 SLAB_RECLAIM_ACCOUNT);
2894 if (ext4_free_data_cachep == NULL) {
2895 kmem_cache_destroy(ext4_pspace_cachep);
2896 kmem_cache_destroy(ext4_ac_cachep);
2897 return -ENOMEM;
2899 return 0;
2902 void ext4_exit_mballoc(void)
2905 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2906 * before destroying the slab cache.
2908 rcu_barrier();
2909 kmem_cache_destroy(ext4_pspace_cachep);
2910 kmem_cache_destroy(ext4_ac_cachep);
2911 kmem_cache_destroy(ext4_free_data_cachep);
2912 ext4_groupinfo_destroy_slabs();
2917 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2918 * Returns 0 if success or error code
2920 static noinline_for_stack int
2921 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2922 handle_t *handle, unsigned int reserv_clstrs)
2924 struct buffer_head *bitmap_bh = NULL;
2925 struct ext4_group_desc *gdp;
2926 struct buffer_head *gdp_bh;
2927 struct ext4_sb_info *sbi;
2928 struct super_block *sb;
2929 ext4_fsblk_t block;
2930 int err, len;
2932 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2933 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2935 sb = ac->ac_sb;
2936 sbi = EXT4_SB(sb);
2938 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2939 if (IS_ERR(bitmap_bh)) {
2940 err = PTR_ERR(bitmap_bh);
2941 bitmap_bh = NULL;
2942 goto out_err;
2945 BUFFER_TRACE(bitmap_bh, "getting write access");
2946 err = ext4_journal_get_write_access(handle, bitmap_bh);
2947 if (err)
2948 goto out_err;
2950 err = -EIO;
2951 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2952 if (!gdp)
2953 goto out_err;
2955 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2956 ext4_free_group_clusters(sb, gdp));
2958 BUFFER_TRACE(gdp_bh, "get_write_access");
2959 err = ext4_journal_get_write_access(handle, gdp_bh);
2960 if (err)
2961 goto out_err;
2963 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2965 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2966 if (!ext4_data_block_valid(sbi, block, len)) {
2967 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2968 "fs metadata", block, block+len);
2969 /* File system mounted not to panic on error
2970 * Fix the bitmap and return EFSCORRUPTED
2971 * We leak some of the blocks here.
2973 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2974 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2975 ac->ac_b_ex.fe_len);
2976 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2977 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2978 if (!err)
2979 err = -EFSCORRUPTED;
2980 goto out_err;
2983 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2984 #ifdef AGGRESSIVE_CHECK
2986 int i;
2987 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2988 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2989 bitmap_bh->b_data));
2992 #endif
2993 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2994 ac->ac_b_ex.fe_len);
2995 if (ext4_has_group_desc_csum(sb) &&
2996 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2997 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2998 ext4_free_group_clusters_set(sb, gdp,
2999 ext4_free_clusters_after_init(sb,
3000 ac->ac_b_ex.fe_group, gdp));
3002 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3003 ext4_free_group_clusters_set(sb, gdp, len);
3004 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3005 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3007 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3008 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3010 * Now reduce the dirty block count also. Should not go negative
3012 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3013 /* release all the reserved blocks if non delalloc */
3014 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3015 reserv_clstrs);
3017 if (sbi->s_log_groups_per_flex) {
3018 ext4_group_t flex_group = ext4_flex_group(sbi,
3019 ac->ac_b_ex.fe_group);
3020 atomic64_sub(ac->ac_b_ex.fe_len,
3021 &sbi->s_flex_groups[flex_group].free_clusters);
3024 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3025 if (err)
3026 goto out_err;
3027 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3029 out_err:
3030 brelse(bitmap_bh);
3031 return err;
3035 * here we normalize request for locality group
3036 * Group request are normalized to s_mb_group_prealloc, which goes to
3037 * s_strip if we set the same via mount option.
3038 * s_mb_group_prealloc can be configured via
3039 * /sys/fs/ext4/<partition>/mb_group_prealloc
3041 * XXX: should we try to preallocate more than the group has now?
3043 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3045 struct super_block *sb = ac->ac_sb;
3046 struct ext4_locality_group *lg = ac->ac_lg;
3048 BUG_ON(lg == NULL);
3049 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3050 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3051 current->pid, ac->ac_g_ex.fe_len);
3055 * Normalization means making request better in terms of
3056 * size and alignment
3058 static noinline_for_stack void
3059 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3060 struct ext4_allocation_request *ar)
3062 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3063 int bsbits, max;
3064 ext4_lblk_t end;
3065 loff_t size, start_off;
3066 loff_t orig_size __maybe_unused;
3067 ext4_lblk_t start;
3068 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3069 struct ext4_prealloc_space *pa;
3071 /* do normalize only data requests, metadata requests
3072 do not need preallocation */
3073 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3074 return;
3076 /* sometime caller may want exact blocks */
3077 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3078 return;
3080 /* caller may indicate that preallocation isn't
3081 * required (it's a tail, for example) */
3082 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3083 return;
3085 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3086 ext4_mb_normalize_group_request(ac);
3087 return ;
3090 bsbits = ac->ac_sb->s_blocksize_bits;
3092 /* first, let's learn actual file size
3093 * given current request is allocated */
3094 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3095 size = size << bsbits;
3096 if (size < i_size_read(ac->ac_inode))
3097 size = i_size_read(ac->ac_inode);
3098 orig_size = size;
3100 /* max size of free chunks */
3101 max = 2 << bsbits;
3103 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3104 (req <= (size) || max <= (chunk_size))
3106 /* first, try to predict filesize */
3107 /* XXX: should this table be tunable? */
3108 start_off = 0;
3109 if (size <= 16 * 1024) {
3110 size = 16 * 1024;
3111 } else if (size <= 32 * 1024) {
3112 size = 32 * 1024;
3113 } else if (size <= 64 * 1024) {
3114 size = 64 * 1024;
3115 } else if (size <= 128 * 1024) {
3116 size = 128 * 1024;
3117 } else if (size <= 256 * 1024) {
3118 size = 256 * 1024;
3119 } else if (size <= 512 * 1024) {
3120 size = 512 * 1024;
3121 } else if (size <= 1024 * 1024) {
3122 size = 1024 * 1024;
3123 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3124 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3125 (21 - bsbits)) << 21;
3126 size = 2 * 1024 * 1024;
3127 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3128 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3129 (22 - bsbits)) << 22;
3130 size = 4 * 1024 * 1024;
3131 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3132 (8<<20)>>bsbits, max, 8 * 1024)) {
3133 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3134 (23 - bsbits)) << 23;
3135 size = 8 * 1024 * 1024;
3136 } else {
3137 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3138 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3139 ac->ac_o_ex.fe_len) << bsbits;
3141 size = size >> bsbits;
3142 start = start_off >> bsbits;
3144 /* don't cover already allocated blocks in selected range */
3145 if (ar->pleft && start <= ar->lleft) {
3146 size -= ar->lleft + 1 - start;
3147 start = ar->lleft + 1;
3149 if (ar->pright && start + size - 1 >= ar->lright)
3150 size -= start + size - ar->lright;
3153 * Trim allocation request for filesystems with artificially small
3154 * groups.
3156 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3157 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3159 end = start + size;
3161 /* check we don't cross already preallocated blocks */
3162 rcu_read_lock();
3163 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3164 ext4_lblk_t pa_end;
3166 if (pa->pa_deleted)
3167 continue;
3168 spin_lock(&pa->pa_lock);
3169 if (pa->pa_deleted) {
3170 spin_unlock(&pa->pa_lock);
3171 continue;
3174 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3175 pa->pa_len);
3177 /* PA must not overlap original request */
3178 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3179 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3181 /* skip PAs this normalized request doesn't overlap with */
3182 if (pa->pa_lstart >= end || pa_end <= start) {
3183 spin_unlock(&pa->pa_lock);
3184 continue;
3186 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3188 /* adjust start or end to be adjacent to this pa */
3189 if (pa_end <= ac->ac_o_ex.fe_logical) {
3190 BUG_ON(pa_end < start);
3191 start = pa_end;
3192 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3193 BUG_ON(pa->pa_lstart > end);
3194 end = pa->pa_lstart;
3196 spin_unlock(&pa->pa_lock);
3198 rcu_read_unlock();
3199 size = end - start;
3201 /* XXX: extra loop to check we really don't overlap preallocations */
3202 rcu_read_lock();
3203 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3204 ext4_lblk_t pa_end;
3206 spin_lock(&pa->pa_lock);
3207 if (pa->pa_deleted == 0) {
3208 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3209 pa->pa_len);
3210 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3212 spin_unlock(&pa->pa_lock);
3214 rcu_read_unlock();
3216 if (start + size <= ac->ac_o_ex.fe_logical &&
3217 start > ac->ac_o_ex.fe_logical) {
3218 ext4_msg(ac->ac_sb, KERN_ERR,
3219 "start %lu, size %lu, fe_logical %lu",
3220 (unsigned long) start, (unsigned long) size,
3221 (unsigned long) ac->ac_o_ex.fe_logical);
3222 BUG();
3224 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3226 /* now prepare goal request */
3228 /* XXX: is it better to align blocks WRT to logical
3229 * placement or satisfy big request as is */
3230 ac->ac_g_ex.fe_logical = start;
3231 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3233 /* define goal start in order to merge */
3234 if (ar->pright && (ar->lright == (start + size))) {
3235 /* merge to the right */
3236 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3237 &ac->ac_f_ex.fe_group,
3238 &ac->ac_f_ex.fe_start);
3239 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3241 if (ar->pleft && (ar->lleft + 1 == start)) {
3242 /* merge to the left */
3243 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3244 &ac->ac_f_ex.fe_group,
3245 &ac->ac_f_ex.fe_start);
3246 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3249 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3250 (unsigned) orig_size, (unsigned) start);
3253 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3255 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3257 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3258 atomic_inc(&sbi->s_bal_reqs);
3259 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3260 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3261 atomic_inc(&sbi->s_bal_success);
3262 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3263 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3264 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3265 atomic_inc(&sbi->s_bal_goals);
3266 if (ac->ac_found > sbi->s_mb_max_to_scan)
3267 atomic_inc(&sbi->s_bal_breaks);
3270 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3271 trace_ext4_mballoc_alloc(ac);
3272 else
3273 trace_ext4_mballoc_prealloc(ac);
3277 * Called on failure; free up any blocks from the inode PA for this
3278 * context. We don't need this for MB_GROUP_PA because we only change
3279 * pa_free in ext4_mb_release_context(), but on failure, we've already
3280 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3282 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3284 struct ext4_prealloc_space *pa = ac->ac_pa;
3285 struct ext4_buddy e4b;
3286 int err;
3288 if (pa == NULL) {
3289 if (ac->ac_f_ex.fe_len == 0)
3290 return;
3291 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3292 if (err) {
3294 * This should never happen since we pin the
3295 * pages in the ext4_allocation_context so
3296 * ext4_mb_load_buddy() should never fail.
3298 WARN(1, "mb_load_buddy failed (%d)", err);
3299 return;
3301 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3302 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3303 ac->ac_f_ex.fe_len);
3304 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3305 ext4_mb_unload_buddy(&e4b);
3306 return;
3308 if (pa->pa_type == MB_INODE_PA)
3309 pa->pa_free += ac->ac_b_ex.fe_len;
3313 * use blocks preallocated to inode
3315 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3316 struct ext4_prealloc_space *pa)
3318 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3319 ext4_fsblk_t start;
3320 ext4_fsblk_t end;
3321 int len;
3323 /* found preallocated blocks, use them */
3324 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3325 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3326 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3327 len = EXT4_NUM_B2C(sbi, end - start);
3328 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3329 &ac->ac_b_ex.fe_start);
3330 ac->ac_b_ex.fe_len = len;
3331 ac->ac_status = AC_STATUS_FOUND;
3332 ac->ac_pa = pa;
3334 BUG_ON(start < pa->pa_pstart);
3335 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3336 BUG_ON(pa->pa_free < len);
3337 pa->pa_free -= len;
3339 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3343 * use blocks preallocated to locality group
3345 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3346 struct ext4_prealloc_space *pa)
3348 unsigned int len = ac->ac_o_ex.fe_len;
3350 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3351 &ac->ac_b_ex.fe_group,
3352 &ac->ac_b_ex.fe_start);
3353 ac->ac_b_ex.fe_len = len;
3354 ac->ac_status = AC_STATUS_FOUND;
3355 ac->ac_pa = pa;
3357 /* we don't correct pa_pstart or pa_plen here to avoid
3358 * possible race when the group is being loaded concurrently
3359 * instead we correct pa later, after blocks are marked
3360 * in on-disk bitmap -- see ext4_mb_release_context()
3361 * Other CPUs are prevented from allocating from this pa by lg_mutex
3363 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3367 * Return the prealloc space that have minimal distance
3368 * from the goal block. @cpa is the prealloc
3369 * space that is having currently known minimal distance
3370 * from the goal block.
3372 static struct ext4_prealloc_space *
3373 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3374 struct ext4_prealloc_space *pa,
3375 struct ext4_prealloc_space *cpa)
3377 ext4_fsblk_t cur_distance, new_distance;
3379 if (cpa == NULL) {
3380 atomic_inc(&pa->pa_count);
3381 return pa;
3383 cur_distance = abs(goal_block - cpa->pa_pstart);
3384 new_distance = abs(goal_block - pa->pa_pstart);
3386 if (cur_distance <= new_distance)
3387 return cpa;
3389 /* drop the previous reference */
3390 atomic_dec(&cpa->pa_count);
3391 atomic_inc(&pa->pa_count);
3392 return pa;
3396 * search goal blocks in preallocated space
3398 static noinline_for_stack int
3399 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3401 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3402 int order, i;
3403 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3404 struct ext4_locality_group *lg;
3405 struct ext4_prealloc_space *pa, *cpa = NULL;
3406 ext4_fsblk_t goal_block;
3408 /* only data can be preallocated */
3409 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3410 return 0;
3412 /* first, try per-file preallocation */
3413 rcu_read_lock();
3414 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3416 /* all fields in this condition don't change,
3417 * so we can skip locking for them */
3418 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3419 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3420 EXT4_C2B(sbi, pa->pa_len)))
3421 continue;
3423 /* non-extent files can't have physical blocks past 2^32 */
3424 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3425 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3426 EXT4_MAX_BLOCK_FILE_PHYS))
3427 continue;
3429 /* found preallocated blocks, use them */
3430 spin_lock(&pa->pa_lock);
3431 if (pa->pa_deleted == 0 && pa->pa_free) {
3432 atomic_inc(&pa->pa_count);
3433 ext4_mb_use_inode_pa(ac, pa);
3434 spin_unlock(&pa->pa_lock);
3435 ac->ac_criteria = 10;
3436 rcu_read_unlock();
3437 return 1;
3439 spin_unlock(&pa->pa_lock);
3441 rcu_read_unlock();
3443 /* can we use group allocation? */
3444 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3445 return 0;
3447 /* inode may have no locality group for some reason */
3448 lg = ac->ac_lg;
3449 if (lg == NULL)
3450 return 0;
3451 order = fls(ac->ac_o_ex.fe_len) - 1;
3452 if (order > PREALLOC_TB_SIZE - 1)
3453 /* The max size of hash table is PREALLOC_TB_SIZE */
3454 order = PREALLOC_TB_SIZE - 1;
3456 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3458 * search for the prealloc space that is having
3459 * minimal distance from the goal block.
3461 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3462 rcu_read_lock();
3463 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3464 pa_inode_list) {
3465 spin_lock(&pa->pa_lock);
3466 if (pa->pa_deleted == 0 &&
3467 pa->pa_free >= ac->ac_o_ex.fe_len) {
3469 cpa = ext4_mb_check_group_pa(goal_block,
3470 pa, cpa);
3472 spin_unlock(&pa->pa_lock);
3474 rcu_read_unlock();
3476 if (cpa) {
3477 ext4_mb_use_group_pa(ac, cpa);
3478 ac->ac_criteria = 20;
3479 return 1;
3481 return 0;
3485 * the function goes through all block freed in the group
3486 * but not yet committed and marks them used in in-core bitmap.
3487 * buddy must be generated from this bitmap
3488 * Need to be called with the ext4 group lock held
3490 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3491 ext4_group_t group)
3493 struct rb_node *n;
3494 struct ext4_group_info *grp;
3495 struct ext4_free_data *entry;
3497 grp = ext4_get_group_info(sb, group);
3498 n = rb_first(&(grp->bb_free_root));
3500 while (n) {
3501 entry = rb_entry(n, struct ext4_free_data, efd_node);
3502 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3503 n = rb_next(n);
3505 return;
3509 * the function goes through all preallocation in this group and marks them
3510 * used in in-core bitmap. buddy must be generated from this bitmap
3511 * Need to be called with ext4 group lock held
3513 static noinline_for_stack
3514 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3515 ext4_group_t group)
3517 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3518 struct ext4_prealloc_space *pa;
3519 struct list_head *cur;
3520 ext4_group_t groupnr;
3521 ext4_grpblk_t start;
3522 int preallocated = 0;
3523 int len;
3525 /* all form of preallocation discards first load group,
3526 * so the only competing code is preallocation use.
3527 * we don't need any locking here
3528 * notice we do NOT ignore preallocations with pa_deleted
3529 * otherwise we could leave used blocks available for
3530 * allocation in buddy when concurrent ext4_mb_put_pa()
3531 * is dropping preallocation
3533 list_for_each(cur, &grp->bb_prealloc_list) {
3534 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3535 spin_lock(&pa->pa_lock);
3536 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3537 &groupnr, &start);
3538 len = pa->pa_len;
3539 spin_unlock(&pa->pa_lock);
3540 if (unlikely(len == 0))
3541 continue;
3542 BUG_ON(groupnr != group);
3543 ext4_set_bits(bitmap, start, len);
3544 preallocated += len;
3546 mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3549 static void ext4_mb_pa_callback(struct rcu_head *head)
3551 struct ext4_prealloc_space *pa;
3552 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3554 BUG_ON(atomic_read(&pa->pa_count));
3555 BUG_ON(pa->pa_deleted == 0);
3556 kmem_cache_free(ext4_pspace_cachep, pa);
3560 * drops a reference to preallocated space descriptor
3561 * if this was the last reference and the space is consumed
3563 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3564 struct super_block *sb, struct ext4_prealloc_space *pa)
3566 ext4_group_t grp;
3567 ext4_fsblk_t grp_blk;
3569 /* in this short window concurrent discard can set pa_deleted */
3570 spin_lock(&pa->pa_lock);
3571 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3572 spin_unlock(&pa->pa_lock);
3573 return;
3576 if (pa->pa_deleted == 1) {
3577 spin_unlock(&pa->pa_lock);
3578 return;
3581 pa->pa_deleted = 1;
3582 spin_unlock(&pa->pa_lock);
3584 grp_blk = pa->pa_pstart;
3586 * If doing group-based preallocation, pa_pstart may be in the
3587 * next group when pa is used up
3589 if (pa->pa_type == MB_GROUP_PA)
3590 grp_blk--;
3592 grp = ext4_get_group_number(sb, grp_blk);
3595 * possible race:
3597 * P1 (buddy init) P2 (regular allocation)
3598 * find block B in PA
3599 * copy on-disk bitmap to buddy
3600 * mark B in on-disk bitmap
3601 * drop PA from group
3602 * mark all PAs in buddy
3604 * thus, P1 initializes buddy with B available. to prevent this
3605 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3606 * against that pair
3608 ext4_lock_group(sb, grp);
3609 list_del(&pa->pa_group_list);
3610 ext4_unlock_group(sb, grp);
3612 spin_lock(pa->pa_obj_lock);
3613 list_del_rcu(&pa->pa_inode_list);
3614 spin_unlock(pa->pa_obj_lock);
3616 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3620 * creates new preallocated space for given inode
3622 static noinline_for_stack int
3623 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3625 struct super_block *sb = ac->ac_sb;
3626 struct ext4_sb_info *sbi = EXT4_SB(sb);
3627 struct ext4_prealloc_space *pa;
3628 struct ext4_group_info *grp;
3629 struct ext4_inode_info *ei;
3631 /* preallocate only when found space is larger then requested */
3632 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3633 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3634 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3636 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3637 if (pa == NULL)
3638 return -ENOMEM;
3640 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3641 int winl;
3642 int wins;
3643 int win;
3644 int offs;
3646 /* we can't allocate as much as normalizer wants.
3647 * so, found space must get proper lstart
3648 * to cover original request */
3649 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3650 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3652 /* we're limited by original request in that
3653 * logical block must be covered any way
3654 * winl is window we can move our chunk within */
3655 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3657 /* also, we should cover whole original request */
3658 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3660 /* the smallest one defines real window */
3661 win = min(winl, wins);
3663 offs = ac->ac_o_ex.fe_logical %
3664 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3665 if (offs && offs < win)
3666 win = offs;
3668 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3669 EXT4_NUM_B2C(sbi, win);
3670 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3671 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3674 /* preallocation can change ac_b_ex, thus we store actually
3675 * allocated blocks for history */
3676 ac->ac_f_ex = ac->ac_b_ex;
3678 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3679 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3680 pa->pa_len = ac->ac_b_ex.fe_len;
3681 pa->pa_free = pa->pa_len;
3682 atomic_set(&pa->pa_count, 1);
3683 spin_lock_init(&pa->pa_lock);
3684 INIT_LIST_HEAD(&pa->pa_inode_list);
3685 INIT_LIST_HEAD(&pa->pa_group_list);
3686 pa->pa_deleted = 0;
3687 pa->pa_type = MB_INODE_PA;
3689 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3690 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3691 trace_ext4_mb_new_inode_pa(ac, pa);
3693 ext4_mb_use_inode_pa(ac, pa);
3694 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3696 ei = EXT4_I(ac->ac_inode);
3697 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3699 pa->pa_obj_lock = &ei->i_prealloc_lock;
3700 pa->pa_inode = ac->ac_inode;
3702 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3703 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3704 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3706 spin_lock(pa->pa_obj_lock);
3707 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3708 spin_unlock(pa->pa_obj_lock);
3710 return 0;
3714 * creates new preallocated space for locality group inodes belongs to
3716 static noinline_for_stack int
3717 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3719 struct super_block *sb = ac->ac_sb;
3720 struct ext4_locality_group *lg;
3721 struct ext4_prealloc_space *pa;
3722 struct ext4_group_info *grp;
3724 /* preallocate only when found space is larger then requested */
3725 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3726 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3727 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3729 BUG_ON(ext4_pspace_cachep == NULL);
3730 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3731 if (pa == NULL)
3732 return -ENOMEM;
3734 /* preallocation can change ac_b_ex, thus we store actually
3735 * allocated blocks for history */
3736 ac->ac_f_ex = ac->ac_b_ex;
3738 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3739 pa->pa_lstart = pa->pa_pstart;
3740 pa->pa_len = ac->ac_b_ex.fe_len;
3741 pa->pa_free = pa->pa_len;
3742 atomic_set(&pa->pa_count, 1);
3743 spin_lock_init(&pa->pa_lock);
3744 INIT_LIST_HEAD(&pa->pa_inode_list);
3745 INIT_LIST_HEAD(&pa->pa_group_list);
3746 pa->pa_deleted = 0;
3747 pa->pa_type = MB_GROUP_PA;
3749 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3750 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3751 trace_ext4_mb_new_group_pa(ac, pa);
3753 ext4_mb_use_group_pa(ac, pa);
3754 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3756 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3757 lg = ac->ac_lg;
3758 BUG_ON(lg == NULL);
3760 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3761 pa->pa_inode = NULL;
3763 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3764 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3765 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3768 * We will later add the new pa to the right bucket
3769 * after updating the pa_free in ext4_mb_release_context
3771 return 0;
3774 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3776 int err;
3778 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3779 err = ext4_mb_new_group_pa(ac);
3780 else
3781 err = ext4_mb_new_inode_pa(ac);
3782 return err;
3786 * finds all unused blocks in on-disk bitmap, frees them in
3787 * in-core bitmap and buddy.
3788 * @pa must be unlinked from inode and group lists, so that
3789 * nobody else can find/use it.
3790 * the caller MUST hold group/inode locks.
3791 * TODO: optimize the case when there are no in-core structures yet
3793 static noinline_for_stack int
3794 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3795 struct ext4_prealloc_space *pa)
3797 struct super_block *sb = e4b->bd_sb;
3798 struct ext4_sb_info *sbi = EXT4_SB(sb);
3799 unsigned int end;
3800 unsigned int next;
3801 ext4_group_t group;
3802 ext4_grpblk_t bit;
3803 unsigned long long grp_blk_start;
3804 int free = 0;
3806 BUG_ON(pa->pa_deleted == 0);
3807 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3808 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3809 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3810 end = bit + pa->pa_len;
3812 while (bit < end) {
3813 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3814 if (bit >= end)
3815 break;
3816 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3817 mb_debug(1, " free preallocated %u/%u in group %u\n",
3818 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3819 (unsigned) next - bit, (unsigned) group);
3820 free += next - bit;
3822 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3823 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3824 EXT4_C2B(sbi, bit)),
3825 next - bit);
3826 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3827 bit = next + 1;
3829 if (free != pa->pa_free) {
3830 ext4_msg(e4b->bd_sb, KERN_CRIT,
3831 "pa %p: logic %lu, phys. %lu, len %lu",
3832 pa, (unsigned long) pa->pa_lstart,
3833 (unsigned long) pa->pa_pstart,
3834 (unsigned long) pa->pa_len);
3835 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3836 free, pa->pa_free);
3838 * pa is already deleted so we use the value obtained
3839 * from the bitmap and continue.
3842 atomic_add(free, &sbi->s_mb_discarded);
3844 return 0;
3847 static noinline_for_stack int
3848 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3849 struct ext4_prealloc_space *pa)
3851 struct super_block *sb = e4b->bd_sb;
3852 ext4_group_t group;
3853 ext4_grpblk_t bit;
3855 trace_ext4_mb_release_group_pa(sb, pa);
3856 BUG_ON(pa->pa_deleted == 0);
3857 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3858 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3859 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3860 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3861 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3863 return 0;
3867 * releases all preallocations in given group
3869 * first, we need to decide discard policy:
3870 * - when do we discard
3871 * 1) ENOSPC
3872 * - how many do we discard
3873 * 1) how many requested
3875 static noinline_for_stack int
3876 ext4_mb_discard_group_preallocations(struct super_block *sb,
3877 ext4_group_t group, int needed)
3879 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3880 struct buffer_head *bitmap_bh = NULL;
3881 struct ext4_prealloc_space *pa, *tmp;
3882 struct list_head list;
3883 struct ext4_buddy e4b;
3884 int err;
3885 int busy = 0;
3886 int free = 0;
3888 mb_debug(1, "discard preallocation for group %u\n", group);
3890 if (list_empty(&grp->bb_prealloc_list))
3891 return 0;
3893 bitmap_bh = ext4_read_block_bitmap(sb, group);
3894 if (IS_ERR(bitmap_bh)) {
3895 err = PTR_ERR(bitmap_bh);
3896 ext4_error(sb, "Error %d reading block bitmap for %u",
3897 err, group);
3898 return 0;
3901 err = ext4_mb_load_buddy(sb, group, &e4b);
3902 if (err) {
3903 ext4_warning(sb, "Error %d loading buddy information for %u",
3904 err, group);
3905 put_bh(bitmap_bh);
3906 return 0;
3909 if (needed == 0)
3910 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3912 INIT_LIST_HEAD(&list);
3913 repeat:
3914 ext4_lock_group(sb, group);
3915 list_for_each_entry_safe(pa, tmp,
3916 &grp->bb_prealloc_list, pa_group_list) {
3917 spin_lock(&pa->pa_lock);
3918 if (atomic_read(&pa->pa_count)) {
3919 spin_unlock(&pa->pa_lock);
3920 busy = 1;
3921 continue;
3923 if (pa->pa_deleted) {
3924 spin_unlock(&pa->pa_lock);
3925 continue;
3928 /* seems this one can be freed ... */
3929 pa->pa_deleted = 1;
3931 /* we can trust pa_free ... */
3932 free += pa->pa_free;
3934 spin_unlock(&pa->pa_lock);
3936 list_del(&pa->pa_group_list);
3937 list_add(&pa->u.pa_tmp_list, &list);
3940 /* if we still need more blocks and some PAs were used, try again */
3941 if (free < needed && busy) {
3942 busy = 0;
3943 ext4_unlock_group(sb, group);
3944 cond_resched();
3945 goto repeat;
3948 /* found anything to free? */
3949 if (list_empty(&list)) {
3950 BUG_ON(free != 0);
3951 goto out;
3954 /* now free all selected PAs */
3955 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3957 /* remove from object (inode or locality group) */
3958 spin_lock(pa->pa_obj_lock);
3959 list_del_rcu(&pa->pa_inode_list);
3960 spin_unlock(pa->pa_obj_lock);
3962 if (pa->pa_type == MB_GROUP_PA)
3963 ext4_mb_release_group_pa(&e4b, pa);
3964 else
3965 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3967 list_del(&pa->u.pa_tmp_list);
3968 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3971 out:
3972 ext4_unlock_group(sb, group);
3973 ext4_mb_unload_buddy(&e4b);
3974 put_bh(bitmap_bh);
3975 return free;
3979 * releases all non-used preallocated blocks for given inode
3981 * It's important to discard preallocations under i_data_sem
3982 * We don't want another block to be served from the prealloc
3983 * space when we are discarding the inode prealloc space.
3985 * FIXME!! Make sure it is valid at all the call sites
3987 void ext4_discard_preallocations(struct inode *inode)
3989 struct ext4_inode_info *ei = EXT4_I(inode);
3990 struct super_block *sb = inode->i_sb;
3991 struct buffer_head *bitmap_bh = NULL;
3992 struct ext4_prealloc_space *pa, *tmp;
3993 ext4_group_t group = 0;
3994 struct list_head list;
3995 struct ext4_buddy e4b;
3996 int err;
3998 if (!S_ISREG(inode->i_mode)) {
3999 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4000 return;
4003 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4004 trace_ext4_discard_preallocations(inode);
4006 INIT_LIST_HEAD(&list);
4008 repeat:
4009 /* first, collect all pa's in the inode */
4010 spin_lock(&ei->i_prealloc_lock);
4011 while (!list_empty(&ei->i_prealloc_list)) {
4012 pa = list_entry(ei->i_prealloc_list.next,
4013 struct ext4_prealloc_space, pa_inode_list);
4014 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4015 spin_lock(&pa->pa_lock);
4016 if (atomic_read(&pa->pa_count)) {
4017 /* this shouldn't happen often - nobody should
4018 * use preallocation while we're discarding it */
4019 spin_unlock(&pa->pa_lock);
4020 spin_unlock(&ei->i_prealloc_lock);
4021 ext4_msg(sb, KERN_ERR,
4022 "uh-oh! used pa while discarding");
4023 WARN_ON(1);
4024 schedule_timeout_uninterruptible(HZ);
4025 goto repeat;
4028 if (pa->pa_deleted == 0) {
4029 pa->pa_deleted = 1;
4030 spin_unlock(&pa->pa_lock);
4031 list_del_rcu(&pa->pa_inode_list);
4032 list_add(&pa->u.pa_tmp_list, &list);
4033 continue;
4036 /* someone is deleting pa right now */
4037 spin_unlock(&pa->pa_lock);
4038 spin_unlock(&ei->i_prealloc_lock);
4040 /* we have to wait here because pa_deleted
4041 * doesn't mean pa is already unlinked from
4042 * the list. as we might be called from
4043 * ->clear_inode() the inode will get freed
4044 * and concurrent thread which is unlinking
4045 * pa from inode's list may access already
4046 * freed memory, bad-bad-bad */
4048 /* XXX: if this happens too often, we can
4049 * add a flag to force wait only in case
4050 * of ->clear_inode(), but not in case of
4051 * regular truncate */
4052 schedule_timeout_uninterruptible(HZ);
4053 goto repeat;
4055 spin_unlock(&ei->i_prealloc_lock);
4057 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4058 BUG_ON(pa->pa_type != MB_INODE_PA);
4059 group = ext4_get_group_number(sb, pa->pa_pstart);
4061 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4062 GFP_NOFS|__GFP_NOFAIL);
4063 if (err) {
4064 ext4_error(sb, "Error %d loading buddy information for %u",
4065 err, group);
4066 continue;
4069 bitmap_bh = ext4_read_block_bitmap(sb, group);
4070 if (IS_ERR(bitmap_bh)) {
4071 err = PTR_ERR(bitmap_bh);
4072 ext4_error(sb, "Error %d reading block bitmap for %u",
4073 err, group);
4074 ext4_mb_unload_buddy(&e4b);
4075 continue;
4078 ext4_lock_group(sb, group);
4079 list_del(&pa->pa_group_list);
4080 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4081 ext4_unlock_group(sb, group);
4083 ext4_mb_unload_buddy(&e4b);
4084 put_bh(bitmap_bh);
4086 list_del(&pa->u.pa_tmp_list);
4087 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4091 #ifdef CONFIG_EXT4_DEBUG
4092 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4094 struct super_block *sb = ac->ac_sb;
4095 ext4_group_t ngroups, i;
4097 if (!ext4_mballoc_debug ||
4098 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4099 return;
4101 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4102 " Allocation context details:");
4103 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4104 ac->ac_status, ac->ac_flags);
4105 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4106 "goal %lu/%lu/%lu@%lu, "
4107 "best %lu/%lu/%lu@%lu cr %d",
4108 (unsigned long)ac->ac_o_ex.fe_group,
4109 (unsigned long)ac->ac_o_ex.fe_start,
4110 (unsigned long)ac->ac_o_ex.fe_len,
4111 (unsigned long)ac->ac_o_ex.fe_logical,
4112 (unsigned long)ac->ac_g_ex.fe_group,
4113 (unsigned long)ac->ac_g_ex.fe_start,
4114 (unsigned long)ac->ac_g_ex.fe_len,
4115 (unsigned long)ac->ac_g_ex.fe_logical,
4116 (unsigned long)ac->ac_b_ex.fe_group,
4117 (unsigned long)ac->ac_b_ex.fe_start,
4118 (unsigned long)ac->ac_b_ex.fe_len,
4119 (unsigned long)ac->ac_b_ex.fe_logical,
4120 (int)ac->ac_criteria);
4121 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4122 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4123 ngroups = ext4_get_groups_count(sb);
4124 for (i = 0; i < ngroups; i++) {
4125 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4126 struct ext4_prealloc_space *pa;
4127 ext4_grpblk_t start;
4128 struct list_head *cur;
4129 ext4_lock_group(sb, i);
4130 list_for_each(cur, &grp->bb_prealloc_list) {
4131 pa = list_entry(cur, struct ext4_prealloc_space,
4132 pa_group_list);
4133 spin_lock(&pa->pa_lock);
4134 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4135 NULL, &start);
4136 spin_unlock(&pa->pa_lock);
4137 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4138 start, pa->pa_len);
4140 ext4_unlock_group(sb, i);
4142 if (grp->bb_free == 0)
4143 continue;
4144 printk(KERN_ERR "%u: %d/%d \n",
4145 i, grp->bb_free, grp->bb_fragments);
4147 printk(KERN_ERR "\n");
4149 #else
4150 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4152 return;
4154 #endif
4157 * We use locality group preallocation for small size file. The size of the
4158 * file is determined by the current size or the resulting size after
4159 * allocation which ever is larger
4161 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4163 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4165 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4166 int bsbits = ac->ac_sb->s_blocksize_bits;
4167 loff_t size, isize;
4169 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4170 return;
4172 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4173 return;
4175 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4176 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4177 >> bsbits;
4179 if ((size == isize) &&
4180 !ext4_fs_is_busy(sbi) &&
4181 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4182 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4183 return;
4186 if (sbi->s_mb_group_prealloc <= 0) {
4187 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4188 return;
4191 /* don't use group allocation for large files */
4192 size = max(size, isize);
4193 if (size > sbi->s_mb_stream_request) {
4194 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4195 return;
4198 BUG_ON(ac->ac_lg != NULL);
4200 * locality group prealloc space are per cpu. The reason for having
4201 * per cpu locality group is to reduce the contention between block
4202 * request from multiple CPUs.
4204 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4206 /* we're going to use group allocation */
4207 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4209 /* serialize all allocations in the group */
4210 mutex_lock(&ac->ac_lg->lg_mutex);
4213 static noinline_for_stack int
4214 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4215 struct ext4_allocation_request *ar)
4217 struct super_block *sb = ar->inode->i_sb;
4218 struct ext4_sb_info *sbi = EXT4_SB(sb);
4219 struct ext4_super_block *es = sbi->s_es;
4220 ext4_group_t group;
4221 unsigned int len;
4222 ext4_fsblk_t goal;
4223 ext4_grpblk_t block;
4225 /* we can't allocate > group size */
4226 len = ar->len;
4228 /* just a dirty hack to filter too big requests */
4229 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4230 len = EXT4_CLUSTERS_PER_GROUP(sb);
4232 /* start searching from the goal */
4233 goal = ar->goal;
4234 if (goal < le32_to_cpu(es->s_first_data_block) ||
4235 goal >= ext4_blocks_count(es))
4236 goal = le32_to_cpu(es->s_first_data_block);
4237 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4239 /* set up allocation goals */
4240 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4241 ac->ac_status = AC_STATUS_CONTINUE;
4242 ac->ac_sb = sb;
4243 ac->ac_inode = ar->inode;
4244 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4245 ac->ac_o_ex.fe_group = group;
4246 ac->ac_o_ex.fe_start = block;
4247 ac->ac_o_ex.fe_len = len;
4248 ac->ac_g_ex = ac->ac_o_ex;
4249 ac->ac_flags = ar->flags;
4251 /* we have to define context: we'll we work with a file or
4252 * locality group. this is a policy, actually */
4253 ext4_mb_group_or_file(ac);
4255 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4256 "left: %u/%u, right %u/%u to %swritable\n",
4257 (unsigned) ar->len, (unsigned) ar->logical,
4258 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4259 (unsigned) ar->lleft, (unsigned) ar->pleft,
4260 (unsigned) ar->lright, (unsigned) ar->pright,
4261 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4262 return 0;
4266 static noinline_for_stack void
4267 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4268 struct ext4_locality_group *lg,
4269 int order, int total_entries)
4271 ext4_group_t group = 0;
4272 struct ext4_buddy e4b;
4273 struct list_head discard_list;
4274 struct ext4_prealloc_space *pa, *tmp;
4276 mb_debug(1, "discard locality group preallocation\n");
4278 INIT_LIST_HEAD(&discard_list);
4280 spin_lock(&lg->lg_prealloc_lock);
4281 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4282 pa_inode_list) {
4283 spin_lock(&pa->pa_lock);
4284 if (atomic_read(&pa->pa_count)) {
4286 * This is the pa that we just used
4287 * for block allocation. So don't
4288 * free that
4290 spin_unlock(&pa->pa_lock);
4291 continue;
4293 if (pa->pa_deleted) {
4294 spin_unlock(&pa->pa_lock);
4295 continue;
4297 /* only lg prealloc space */
4298 BUG_ON(pa->pa_type != MB_GROUP_PA);
4300 /* seems this one can be freed ... */
4301 pa->pa_deleted = 1;
4302 spin_unlock(&pa->pa_lock);
4304 list_del_rcu(&pa->pa_inode_list);
4305 list_add(&pa->u.pa_tmp_list, &discard_list);
4307 total_entries--;
4308 if (total_entries <= 5) {
4310 * we want to keep only 5 entries
4311 * allowing it to grow to 8. This
4312 * mak sure we don't call discard
4313 * soon for this list.
4315 break;
4318 spin_unlock(&lg->lg_prealloc_lock);
4320 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4321 int err;
4323 group = ext4_get_group_number(sb, pa->pa_pstart);
4324 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4325 GFP_NOFS|__GFP_NOFAIL);
4326 if (err) {
4327 ext4_error(sb, "Error %d loading buddy information for %u",
4328 err, group);
4329 continue;
4331 ext4_lock_group(sb, group);
4332 list_del(&pa->pa_group_list);
4333 ext4_mb_release_group_pa(&e4b, pa);
4334 ext4_unlock_group(sb, group);
4336 ext4_mb_unload_buddy(&e4b);
4337 list_del(&pa->u.pa_tmp_list);
4338 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4343 * We have incremented pa_count. So it cannot be freed at this
4344 * point. Also we hold lg_mutex. So no parallel allocation is
4345 * possible from this lg. That means pa_free cannot be updated.
4347 * A parallel ext4_mb_discard_group_preallocations is possible.
4348 * which can cause the lg_prealloc_list to be updated.
4351 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4353 int order, added = 0, lg_prealloc_count = 1;
4354 struct super_block *sb = ac->ac_sb;
4355 struct ext4_locality_group *lg = ac->ac_lg;
4356 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4358 order = fls(pa->pa_free) - 1;
4359 if (order > PREALLOC_TB_SIZE - 1)
4360 /* The max size of hash table is PREALLOC_TB_SIZE */
4361 order = PREALLOC_TB_SIZE - 1;
4362 /* Add the prealloc space to lg */
4363 spin_lock(&lg->lg_prealloc_lock);
4364 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4365 pa_inode_list) {
4366 spin_lock(&tmp_pa->pa_lock);
4367 if (tmp_pa->pa_deleted) {
4368 spin_unlock(&tmp_pa->pa_lock);
4369 continue;
4371 if (!added && pa->pa_free < tmp_pa->pa_free) {
4372 /* Add to the tail of the previous entry */
4373 list_add_tail_rcu(&pa->pa_inode_list,
4374 &tmp_pa->pa_inode_list);
4375 added = 1;
4377 * we want to count the total
4378 * number of entries in the list
4381 spin_unlock(&tmp_pa->pa_lock);
4382 lg_prealloc_count++;
4384 if (!added)
4385 list_add_tail_rcu(&pa->pa_inode_list,
4386 &lg->lg_prealloc_list[order]);
4387 spin_unlock(&lg->lg_prealloc_lock);
4389 /* Now trim the list to be not more than 8 elements */
4390 if (lg_prealloc_count > 8) {
4391 ext4_mb_discard_lg_preallocations(sb, lg,
4392 order, lg_prealloc_count);
4393 return;
4395 return ;
4399 * release all resource we used in allocation
4401 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4403 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4404 struct ext4_prealloc_space *pa = ac->ac_pa;
4405 if (pa) {
4406 if (pa->pa_type == MB_GROUP_PA) {
4407 /* see comment in ext4_mb_use_group_pa() */
4408 spin_lock(&pa->pa_lock);
4409 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4410 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4411 pa->pa_free -= ac->ac_b_ex.fe_len;
4412 pa->pa_len -= ac->ac_b_ex.fe_len;
4413 spin_unlock(&pa->pa_lock);
4416 if (pa) {
4418 * We want to add the pa to the right bucket.
4419 * Remove it from the list and while adding
4420 * make sure the list to which we are adding
4421 * doesn't grow big.
4423 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4424 spin_lock(pa->pa_obj_lock);
4425 list_del_rcu(&pa->pa_inode_list);
4426 spin_unlock(pa->pa_obj_lock);
4427 ext4_mb_add_n_trim(ac);
4429 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4431 if (ac->ac_bitmap_page)
4432 put_page(ac->ac_bitmap_page);
4433 if (ac->ac_buddy_page)
4434 put_page(ac->ac_buddy_page);
4435 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4436 mutex_unlock(&ac->ac_lg->lg_mutex);
4437 ext4_mb_collect_stats(ac);
4438 return 0;
4441 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4443 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4444 int ret;
4445 int freed = 0;
4447 trace_ext4_mb_discard_preallocations(sb, needed);
4448 for (i = 0; i < ngroups && needed > 0; i++) {
4449 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4450 freed += ret;
4451 needed -= ret;
4454 return freed;
4458 * Main entry point into mballoc to allocate blocks
4459 * it tries to use preallocation first, then falls back
4460 * to usual allocation
4462 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4463 struct ext4_allocation_request *ar, int *errp)
4465 int freed;
4466 struct ext4_allocation_context *ac = NULL;
4467 struct ext4_sb_info *sbi;
4468 struct super_block *sb;
4469 ext4_fsblk_t block = 0;
4470 unsigned int inquota = 0;
4471 unsigned int reserv_clstrs = 0;
4473 might_sleep();
4474 sb = ar->inode->i_sb;
4475 sbi = EXT4_SB(sb);
4477 trace_ext4_request_blocks(ar);
4479 /* Allow to use superuser reservation for quota file */
4480 if (ext4_is_quota_file(ar->inode))
4481 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4483 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4484 /* Without delayed allocation we need to verify
4485 * there is enough free blocks to do block allocation
4486 * and verify allocation doesn't exceed the quota limits.
4488 while (ar->len &&
4489 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4491 /* let others to free the space */
4492 cond_resched();
4493 ar->len = ar->len >> 1;
4495 if (!ar->len) {
4496 *errp = -ENOSPC;
4497 return 0;
4499 reserv_clstrs = ar->len;
4500 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4501 dquot_alloc_block_nofail(ar->inode,
4502 EXT4_C2B(sbi, ar->len));
4503 } else {
4504 while (ar->len &&
4505 dquot_alloc_block(ar->inode,
4506 EXT4_C2B(sbi, ar->len))) {
4508 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4509 ar->len--;
4512 inquota = ar->len;
4513 if (ar->len == 0) {
4514 *errp = -EDQUOT;
4515 goto out;
4519 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4520 if (!ac) {
4521 ar->len = 0;
4522 *errp = -ENOMEM;
4523 goto out;
4526 *errp = ext4_mb_initialize_context(ac, ar);
4527 if (*errp) {
4528 ar->len = 0;
4529 goto out;
4532 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4533 if (!ext4_mb_use_preallocated(ac)) {
4534 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4535 ext4_mb_normalize_request(ac, ar);
4536 repeat:
4537 /* allocate space in core */
4538 *errp = ext4_mb_regular_allocator(ac);
4539 if (*errp)
4540 goto discard_and_exit;
4542 /* as we've just preallocated more space than
4543 * user requested originally, we store allocated
4544 * space in a special descriptor */
4545 if (ac->ac_status == AC_STATUS_FOUND &&
4546 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4547 *errp = ext4_mb_new_preallocation(ac);
4548 if (*errp) {
4549 discard_and_exit:
4550 ext4_discard_allocated_blocks(ac);
4551 goto errout;
4554 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4555 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4556 if (*errp) {
4557 ext4_discard_allocated_blocks(ac);
4558 goto errout;
4559 } else {
4560 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4561 ar->len = ac->ac_b_ex.fe_len;
4563 } else {
4564 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4565 if (freed)
4566 goto repeat;
4567 *errp = -ENOSPC;
4570 errout:
4571 if (*errp) {
4572 ac->ac_b_ex.fe_len = 0;
4573 ar->len = 0;
4574 ext4_mb_show_ac(ac);
4576 ext4_mb_release_context(ac);
4577 out:
4578 if (ac)
4579 kmem_cache_free(ext4_ac_cachep, ac);
4580 if (inquota && ar->len < inquota)
4581 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4582 if (!ar->len) {
4583 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4584 /* release all the reserved blocks if non delalloc */
4585 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4586 reserv_clstrs);
4589 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4591 return block;
4595 * We can merge two free data extents only if the physical blocks
4596 * are contiguous, AND the extents were freed by the same transaction,
4597 * AND the blocks are associated with the same group.
4599 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4600 struct ext4_free_data *entry,
4601 struct ext4_free_data *new_entry,
4602 struct rb_root *entry_rb_root)
4604 if ((entry->efd_tid != new_entry->efd_tid) ||
4605 (entry->efd_group != new_entry->efd_group))
4606 return;
4607 if (entry->efd_start_cluster + entry->efd_count ==
4608 new_entry->efd_start_cluster) {
4609 new_entry->efd_start_cluster = entry->efd_start_cluster;
4610 new_entry->efd_count += entry->efd_count;
4611 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4612 entry->efd_start_cluster) {
4613 new_entry->efd_count += entry->efd_count;
4614 } else
4615 return;
4616 spin_lock(&sbi->s_md_lock);
4617 list_del(&entry->efd_list);
4618 spin_unlock(&sbi->s_md_lock);
4619 rb_erase(&entry->efd_node, entry_rb_root);
4620 kmem_cache_free(ext4_free_data_cachep, entry);
4623 static noinline_for_stack int
4624 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4625 struct ext4_free_data *new_entry)
4627 ext4_group_t group = e4b->bd_group;
4628 ext4_grpblk_t cluster;
4629 ext4_grpblk_t clusters = new_entry->efd_count;
4630 struct ext4_free_data *entry;
4631 struct ext4_group_info *db = e4b->bd_info;
4632 struct super_block *sb = e4b->bd_sb;
4633 struct ext4_sb_info *sbi = EXT4_SB(sb);
4634 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4635 struct rb_node *parent = NULL, *new_node;
4637 BUG_ON(!ext4_handle_valid(handle));
4638 BUG_ON(e4b->bd_bitmap_page == NULL);
4639 BUG_ON(e4b->bd_buddy_page == NULL);
4641 new_node = &new_entry->efd_node;
4642 cluster = new_entry->efd_start_cluster;
4644 if (!*n) {
4645 /* first free block exent. We need to
4646 protect buddy cache from being freed,
4647 * otherwise we'll refresh it from
4648 * on-disk bitmap and lose not-yet-available
4649 * blocks */
4650 get_page(e4b->bd_buddy_page);
4651 get_page(e4b->bd_bitmap_page);
4653 while (*n) {
4654 parent = *n;
4655 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4656 if (cluster < entry->efd_start_cluster)
4657 n = &(*n)->rb_left;
4658 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4659 n = &(*n)->rb_right;
4660 else {
4661 ext4_grp_locked_error(sb, group, 0,
4662 ext4_group_first_block_no(sb, group) +
4663 EXT4_C2B(sbi, cluster),
4664 "Block already on to-be-freed list");
4665 return 0;
4669 rb_link_node(new_node, parent, n);
4670 rb_insert_color(new_node, &db->bb_free_root);
4672 /* Now try to see the extent can be merged to left and right */
4673 node = rb_prev(new_node);
4674 if (node) {
4675 entry = rb_entry(node, struct ext4_free_data, efd_node);
4676 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4677 &(db->bb_free_root));
4680 node = rb_next(new_node);
4681 if (node) {
4682 entry = rb_entry(node, struct ext4_free_data, efd_node);
4683 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4684 &(db->bb_free_root));
4687 spin_lock(&sbi->s_md_lock);
4688 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4689 sbi->s_mb_free_pending += clusters;
4690 spin_unlock(&sbi->s_md_lock);
4691 return 0;
4695 * ext4_free_blocks() -- Free given blocks and update quota
4696 * @handle: handle for this transaction
4697 * @inode: inode
4698 * @block: start physical block to free
4699 * @count: number of blocks to count
4700 * @flags: flags used by ext4_free_blocks
4702 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4703 struct buffer_head *bh, ext4_fsblk_t block,
4704 unsigned long count, int flags)
4706 struct buffer_head *bitmap_bh = NULL;
4707 struct super_block *sb = inode->i_sb;
4708 struct ext4_group_desc *gdp;
4709 unsigned int overflow;
4710 ext4_grpblk_t bit;
4711 struct buffer_head *gd_bh;
4712 ext4_group_t block_group;
4713 struct ext4_sb_info *sbi;
4714 struct ext4_buddy e4b;
4715 unsigned int count_clusters;
4716 int err = 0;
4717 int ret;
4719 might_sleep();
4720 if (bh) {
4721 if (block)
4722 BUG_ON(block != bh->b_blocknr);
4723 else
4724 block = bh->b_blocknr;
4727 sbi = EXT4_SB(sb);
4728 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4729 !ext4_data_block_valid(sbi, block, count)) {
4730 ext4_error(sb, "Freeing blocks not in datazone - "
4731 "block = %llu, count = %lu", block, count);
4732 goto error_return;
4735 ext4_debug("freeing block %llu\n", block);
4736 trace_ext4_free_blocks(inode, block, count, flags);
4738 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4739 BUG_ON(count > 1);
4741 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4742 inode, bh, block);
4746 * If the extent to be freed does not begin on a cluster
4747 * boundary, we need to deal with partial clusters at the
4748 * beginning and end of the extent. Normally we will free
4749 * blocks at the beginning or the end unless we are explicitly
4750 * requested to avoid doing so.
4752 overflow = EXT4_PBLK_COFF(sbi, block);
4753 if (overflow) {
4754 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4755 overflow = sbi->s_cluster_ratio - overflow;
4756 block += overflow;
4757 if (count > overflow)
4758 count -= overflow;
4759 else
4760 return;
4761 } else {
4762 block -= overflow;
4763 count += overflow;
4766 overflow = EXT4_LBLK_COFF(sbi, count);
4767 if (overflow) {
4768 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4769 if (count > overflow)
4770 count -= overflow;
4771 else
4772 return;
4773 } else
4774 count += sbi->s_cluster_ratio - overflow;
4777 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4778 int i;
4779 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4781 for (i = 0; i < count; i++) {
4782 cond_resched();
4783 if (is_metadata)
4784 bh = sb_find_get_block(inode->i_sb, block + i);
4785 ext4_forget(handle, is_metadata, inode, bh, block + i);
4789 do_more:
4790 overflow = 0;
4791 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4793 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4794 ext4_get_group_info(sb, block_group))))
4795 return;
4798 * Check to see if we are freeing blocks across a group
4799 * boundary.
4801 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4802 overflow = EXT4_C2B(sbi, bit) + count -
4803 EXT4_BLOCKS_PER_GROUP(sb);
4804 count -= overflow;
4806 count_clusters = EXT4_NUM_B2C(sbi, count);
4807 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4808 if (IS_ERR(bitmap_bh)) {
4809 err = PTR_ERR(bitmap_bh);
4810 bitmap_bh = NULL;
4811 goto error_return;
4813 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4814 if (!gdp) {
4815 err = -EIO;
4816 goto error_return;
4819 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4820 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4821 in_range(block, ext4_inode_table(sb, gdp),
4822 sbi->s_itb_per_group) ||
4823 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4824 sbi->s_itb_per_group)) {
4826 ext4_error(sb, "Freeing blocks in system zone - "
4827 "Block = %llu, count = %lu", block, count);
4828 /* err = 0. ext4_std_error should be a no op */
4829 goto error_return;
4832 BUFFER_TRACE(bitmap_bh, "getting write access");
4833 err = ext4_journal_get_write_access(handle, bitmap_bh);
4834 if (err)
4835 goto error_return;
4838 * We are about to modify some metadata. Call the journal APIs
4839 * to unshare ->b_data if a currently-committing transaction is
4840 * using it
4842 BUFFER_TRACE(gd_bh, "get_write_access");
4843 err = ext4_journal_get_write_access(handle, gd_bh);
4844 if (err)
4845 goto error_return;
4846 #ifdef AGGRESSIVE_CHECK
4848 int i;
4849 for (i = 0; i < count_clusters; i++)
4850 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4852 #endif
4853 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4855 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4856 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4857 GFP_NOFS|__GFP_NOFAIL);
4858 if (err)
4859 goto error_return;
4862 * We need to make sure we don't reuse the freed block until after the
4863 * transaction is committed. We make an exception if the inode is to be
4864 * written in writeback mode since writeback mode has weak data
4865 * consistency guarantees.
4867 if (ext4_handle_valid(handle) &&
4868 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4869 !ext4_should_writeback_data(inode))) {
4870 struct ext4_free_data *new_entry;
4872 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4873 * to fail.
4875 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4876 GFP_NOFS|__GFP_NOFAIL);
4877 new_entry->efd_start_cluster = bit;
4878 new_entry->efd_group = block_group;
4879 new_entry->efd_count = count_clusters;
4880 new_entry->efd_tid = handle->h_transaction->t_tid;
4882 ext4_lock_group(sb, block_group);
4883 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4884 ext4_mb_free_metadata(handle, &e4b, new_entry);
4885 } else {
4886 /* need to update group_info->bb_free and bitmap
4887 * with group lock held. generate_buddy look at
4888 * them with group lock_held
4890 if (test_opt(sb, DISCARD)) {
4891 err = ext4_issue_discard(sb, block_group, bit, count,
4892 NULL);
4893 if (err && err != -EOPNOTSUPP)
4894 ext4_msg(sb, KERN_WARNING, "discard request in"
4895 " group:%d block:%d count:%lu failed"
4896 " with %d", block_group, bit, count,
4897 err);
4898 } else
4899 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4901 ext4_lock_group(sb, block_group);
4902 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4903 mb_free_blocks(inode, &e4b, bit, count_clusters);
4906 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4907 ext4_free_group_clusters_set(sb, gdp, ret);
4908 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4909 ext4_group_desc_csum_set(sb, block_group, gdp);
4910 ext4_unlock_group(sb, block_group);
4912 if (sbi->s_log_groups_per_flex) {
4913 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4914 atomic64_add(count_clusters,
4915 &sbi->s_flex_groups[flex_group].free_clusters);
4918 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4919 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4920 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4922 ext4_mb_unload_buddy(&e4b);
4924 /* We dirtied the bitmap block */
4925 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4926 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4928 /* And the group descriptor block */
4929 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4930 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4931 if (!err)
4932 err = ret;
4934 if (overflow && !err) {
4935 block += count;
4936 count = overflow;
4937 put_bh(bitmap_bh);
4938 goto do_more;
4940 error_return:
4941 brelse(bitmap_bh);
4942 ext4_std_error(sb, err);
4943 return;
4947 * ext4_group_add_blocks() -- Add given blocks to an existing group
4948 * @handle: handle to this transaction
4949 * @sb: super block
4950 * @block: start physical block to add to the block group
4951 * @count: number of blocks to free
4953 * This marks the blocks as free in the bitmap and buddy.
4955 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4956 ext4_fsblk_t block, unsigned long count)
4958 struct buffer_head *bitmap_bh = NULL;
4959 struct buffer_head *gd_bh;
4960 ext4_group_t block_group;
4961 ext4_grpblk_t bit;
4962 unsigned int i;
4963 struct ext4_group_desc *desc;
4964 struct ext4_sb_info *sbi = EXT4_SB(sb);
4965 struct ext4_buddy e4b;
4966 int err = 0, ret, free_clusters_count;
4967 ext4_grpblk_t clusters_freed;
4968 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
4969 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
4970 unsigned long cluster_count = last_cluster - first_cluster + 1;
4972 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4974 if (count == 0)
4975 return 0;
4977 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4979 * Check to see if we are freeing blocks across a group
4980 * boundary.
4982 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
4983 ext4_warning(sb, "too many blocks added to group %u",
4984 block_group);
4985 err = -EINVAL;
4986 goto error_return;
4989 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4990 if (IS_ERR(bitmap_bh)) {
4991 err = PTR_ERR(bitmap_bh);
4992 bitmap_bh = NULL;
4993 goto error_return;
4996 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4997 if (!desc) {
4998 err = -EIO;
4999 goto error_return;
5002 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5003 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5004 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5005 in_range(block + count - 1, ext4_inode_table(sb, desc),
5006 sbi->s_itb_per_group)) {
5007 ext4_error(sb, "Adding blocks in system zones - "
5008 "Block = %llu, count = %lu",
5009 block, count);
5010 err = -EINVAL;
5011 goto error_return;
5014 BUFFER_TRACE(bitmap_bh, "getting write access");
5015 err = ext4_journal_get_write_access(handle, bitmap_bh);
5016 if (err)
5017 goto error_return;
5020 * We are about to modify some metadata. Call the journal APIs
5021 * to unshare ->b_data if a currently-committing transaction is
5022 * using it
5024 BUFFER_TRACE(gd_bh, "get_write_access");
5025 err = ext4_journal_get_write_access(handle, gd_bh);
5026 if (err)
5027 goto error_return;
5029 for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5030 BUFFER_TRACE(bitmap_bh, "clear bit");
5031 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5032 ext4_error(sb, "bit already cleared for block %llu",
5033 (ext4_fsblk_t)(block + i));
5034 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5035 } else {
5036 clusters_freed++;
5040 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5041 if (err)
5042 goto error_return;
5045 * need to update group_info->bb_free and bitmap
5046 * with group lock held. generate_buddy look at
5047 * them with group lock_held
5049 ext4_lock_group(sb, block_group);
5050 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5051 mb_free_blocks(NULL, &e4b, bit, cluster_count);
5052 free_clusters_count = clusters_freed +
5053 ext4_free_group_clusters(sb, desc);
5054 ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5055 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5056 ext4_group_desc_csum_set(sb, block_group, desc);
5057 ext4_unlock_group(sb, block_group);
5058 percpu_counter_add(&sbi->s_freeclusters_counter,
5059 clusters_freed);
5061 if (sbi->s_log_groups_per_flex) {
5062 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5063 atomic64_add(clusters_freed,
5064 &sbi->s_flex_groups[flex_group].free_clusters);
5067 ext4_mb_unload_buddy(&e4b);
5069 /* We dirtied the bitmap block */
5070 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5071 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5073 /* And the group descriptor block */
5074 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5075 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5076 if (!err)
5077 err = ret;
5079 error_return:
5080 brelse(bitmap_bh);
5081 ext4_std_error(sb, err);
5082 return err;
5086 * ext4_trim_extent -- function to TRIM one single free extent in the group
5087 * @sb: super block for the file system
5088 * @start: starting block of the free extent in the alloc. group
5089 * @count: number of blocks to TRIM
5090 * @group: alloc. group we are working with
5091 * @e4b: ext4 buddy for the group
5093 * Trim "count" blocks starting at "start" in the "group". To assure that no
5094 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5095 * be called with under the group lock.
5097 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5098 ext4_group_t group, struct ext4_buddy *e4b)
5099 __releases(bitlock)
5100 __acquires(bitlock)
5102 struct ext4_free_extent ex;
5103 int ret = 0;
5105 trace_ext4_trim_extent(sb, group, start, count);
5107 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5109 ex.fe_start = start;
5110 ex.fe_group = group;
5111 ex.fe_len = count;
5114 * Mark blocks used, so no one can reuse them while
5115 * being trimmed.
5117 mb_mark_used(e4b, &ex);
5118 ext4_unlock_group(sb, group);
5119 ret = ext4_issue_discard(sb, group, start, count, NULL);
5120 ext4_lock_group(sb, group);
5121 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5122 return ret;
5126 * ext4_trim_all_free -- function to trim all free space in alloc. group
5127 * @sb: super block for file system
5128 * @group: group to be trimmed
5129 * @start: first group block to examine
5130 * @max: last group block to examine
5131 * @minblocks: minimum extent block count
5133 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5134 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5135 * the extent.
5138 * ext4_trim_all_free walks through group's block bitmap searching for free
5139 * extents. When the free extent is found, mark it as used in group buddy
5140 * bitmap. Then issue a TRIM command on this extent and free the extent in
5141 * the group buddy bitmap. This is done until whole group is scanned.
5143 static ext4_grpblk_t
5144 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5145 ext4_grpblk_t start, ext4_grpblk_t max,
5146 ext4_grpblk_t minblocks)
5148 void *bitmap;
5149 ext4_grpblk_t next, count = 0, free_count = 0;
5150 struct ext4_buddy e4b;
5151 int ret = 0;
5153 trace_ext4_trim_all_free(sb, group, start, max);
5155 ret = ext4_mb_load_buddy(sb, group, &e4b);
5156 if (ret) {
5157 ext4_warning(sb, "Error %d loading buddy information for %u",
5158 ret, group);
5159 return ret;
5161 bitmap = e4b.bd_bitmap;
5163 ext4_lock_group(sb, group);
5164 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5165 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5166 goto out;
5168 start = (e4b.bd_info->bb_first_free > start) ?
5169 e4b.bd_info->bb_first_free : start;
5171 while (start <= max) {
5172 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5173 if (start > max)
5174 break;
5175 next = mb_find_next_bit(bitmap, max + 1, start);
5177 if ((next - start) >= minblocks) {
5178 ret = ext4_trim_extent(sb, start,
5179 next - start, group, &e4b);
5180 if (ret && ret != -EOPNOTSUPP)
5181 break;
5182 ret = 0;
5183 count += next - start;
5185 free_count += next - start;
5186 start = next + 1;
5188 if (fatal_signal_pending(current)) {
5189 count = -ERESTARTSYS;
5190 break;
5193 if (need_resched()) {
5194 ext4_unlock_group(sb, group);
5195 cond_resched();
5196 ext4_lock_group(sb, group);
5199 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5200 break;
5203 if (!ret) {
5204 ret = count;
5205 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5207 out:
5208 ext4_unlock_group(sb, group);
5209 ext4_mb_unload_buddy(&e4b);
5211 ext4_debug("trimmed %d blocks in the group %d\n",
5212 count, group);
5214 return ret;
5218 * ext4_trim_fs() -- trim ioctl handle function
5219 * @sb: superblock for filesystem
5220 * @range: fstrim_range structure
5222 * start: First Byte to trim
5223 * len: number of Bytes to trim from start
5224 * minlen: minimum extent length in Bytes
5225 * ext4_trim_fs goes through all allocation groups containing Bytes from
5226 * start to start+len. For each such a group ext4_trim_all_free function
5227 * is invoked to trim all free space.
5229 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5231 struct ext4_group_info *grp;
5232 ext4_group_t group, first_group, last_group;
5233 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5234 uint64_t start, end, minlen, trimmed = 0;
5235 ext4_fsblk_t first_data_blk =
5236 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5237 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5238 int ret = 0;
5240 start = range->start >> sb->s_blocksize_bits;
5241 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5242 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5243 range->minlen >> sb->s_blocksize_bits);
5245 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5246 start >= max_blks ||
5247 range->len < sb->s_blocksize)
5248 return -EINVAL;
5249 if (end >= max_blks)
5250 end = max_blks - 1;
5251 if (end <= first_data_blk)
5252 goto out;
5253 if (start < first_data_blk)
5254 start = first_data_blk;
5256 /* Determine first and last group to examine based on start and end */
5257 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5258 &first_group, &first_cluster);
5259 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5260 &last_group, &last_cluster);
5262 /* end now represents the last cluster to discard in this group */
5263 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5265 for (group = first_group; group <= last_group; group++) {
5266 grp = ext4_get_group_info(sb, group);
5267 /* We only do this if the grp has never been initialized */
5268 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5269 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5270 if (ret)
5271 break;
5275 * For all the groups except the last one, last cluster will
5276 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5277 * change it for the last group, note that last_cluster is
5278 * already computed earlier by ext4_get_group_no_and_offset()
5280 if (group == last_group)
5281 end = last_cluster;
5283 if (grp->bb_free >= minlen) {
5284 cnt = ext4_trim_all_free(sb, group, first_cluster,
5285 end, minlen);
5286 if (cnt < 0) {
5287 ret = cnt;
5288 break;
5290 trimmed += cnt;
5294 * For every group except the first one, we are sure
5295 * that the first cluster to discard will be cluster #0.
5297 first_cluster = 0;
5300 if (!ret)
5301 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5303 out:
5304 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5305 return ret;
5308 /* Iterate all the free extents in the group. */
5310 ext4_mballoc_query_range(
5311 struct super_block *sb,
5312 ext4_group_t group,
5313 ext4_grpblk_t start,
5314 ext4_grpblk_t end,
5315 ext4_mballoc_query_range_fn formatter,
5316 void *priv)
5318 void *bitmap;
5319 ext4_grpblk_t next;
5320 struct ext4_buddy e4b;
5321 int error;
5323 error = ext4_mb_load_buddy(sb, group, &e4b);
5324 if (error)
5325 return error;
5326 bitmap = e4b.bd_bitmap;
5328 ext4_lock_group(sb, group);
5330 start = (e4b.bd_info->bb_first_free > start) ?
5331 e4b.bd_info->bb_first_free : start;
5332 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5333 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5335 while (start <= end) {
5336 start = mb_find_next_zero_bit(bitmap, end + 1, start);
5337 if (start > end)
5338 break;
5339 next = mb_find_next_bit(bitmap, end + 1, start);
5341 ext4_unlock_group(sb, group);
5342 error = formatter(sb, group, start, next - start, priv);
5343 if (error)
5344 goto out_unload;
5345 ext4_lock_group(sb, group);
5347 start = next + 1;
5350 ext4_unlock_group(sb, group);
5351 out_unload:
5352 ext4_mb_unload_buddy(&e4b);
5354 return error;