2 * linux/arch/alpha/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
6 * This file contains the clocksource time handling.
7 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
8 * "A Kernel Model for Precision Timekeeping" by Dave Mills
9 * 1997-01-09 Adrian Sun
10 * use interval timer if CONFIG_RTC=y
11 * 1997-10-29 John Bowman (bowman@math.ualberta.ca)
12 * fixed tick loss calculation in timer_interrupt
13 * (round system clock to nearest tick instead of truncating)
14 * fixed algorithm in time_init for getting time from CMOS clock
15 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
16 * fixed algorithm in do_gettimeofday() for calculating the precise time
17 * from processor cycle counter (now taking lost_ticks into account)
18 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
19 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
21 #include <linux/errno.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/param.h>
26 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/ioport.h>
30 #include <linux/irq.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/bcd.h>
34 #include <linux/profile.h>
35 #include <linux/irq_work.h>
37 #include <asm/uaccess.h>
39 #include <asm/hwrpb.h>
41 #include <linux/mc146818rtc.h>
42 #include <linux/time.h>
43 #include <linux/timex.h>
44 #include <linux/clocksource.h>
45 #include <linux/clockchips.h>
50 DEFINE_SPINLOCK(rtc_lock
);
51 EXPORT_SYMBOL(rtc_lock
);
53 unsigned long est_cycle_freq
;
55 #ifdef CONFIG_IRQ_WORK
57 DEFINE_PER_CPU(u8
, irq_work_pending
);
59 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
60 #define test_irq_work_pending() __this_cpu_read(irq_work_pending)
61 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
63 void arch_irq_work_raise(void)
65 set_irq_work_pending_flag();
68 #else /* CONFIG_IRQ_WORK */
70 #define test_irq_work_pending() 0
71 #define clear_irq_work_pending()
73 #endif /* CONFIG_IRQ_WORK */
76 static inline __u32
rpcc(void)
78 return __builtin_alpha_rpcc();
84 * The RTC as a clock_event_device primitive.
87 static DEFINE_PER_CPU(struct clock_event_device
, cpu_ce
);
90 rtc_timer_interrupt(int irq
, void *dev
)
92 int cpu
= smp_processor_id();
93 struct clock_event_device
*ce
= &per_cpu(cpu_ce
, cpu
);
95 /* Don't run the hook for UNUSED or SHUTDOWN. */
96 if (likely(ce
->mode
== CLOCK_EVT_MODE_PERIODIC
))
97 ce
->event_handler(ce
);
99 if (test_irq_work_pending()) {
100 clear_irq_work_pending();
108 rtc_ce_set_mode(enum clock_event_mode mode
, struct clock_event_device
*ce
)
110 /* The mode member of CE is updated in generic code.
111 Since we only support periodic events, nothing to do. */
115 rtc_ce_set_next_event(unsigned long evt
, struct clock_event_device
*ce
)
117 /* This hook is for oneshot mode, which we don't support. */
122 init_rtc_clockevent(void)
124 int cpu
= smp_processor_id();
125 struct clock_event_device
*ce
= &per_cpu(cpu_ce
, cpu
);
127 *ce
= (struct clock_event_device
){
129 .features
= CLOCK_EVT_FEAT_PERIODIC
,
131 .cpumask
= cpumask_of(cpu
),
132 .set_mode
= rtc_ce_set_mode
,
133 .set_next_event
= rtc_ce_set_next_event
,
136 clockevents_config_and_register(ce
, CONFIG_HZ
, 0, 0);
141 * The QEMU clock as a clocksource primitive.
145 qemu_cs_read(struct clocksource
*cs
)
147 return qemu_get_vmtime();
150 static struct clocksource qemu_cs
= {
153 .read
= qemu_cs_read
,
154 .mask
= CLOCKSOURCE_MASK(64),
155 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
156 .max_idle_ns
= LONG_MAX
161 * The QEMU alarm as a clock_event_device primitive.
165 qemu_ce_set_mode(enum clock_event_mode mode
, struct clock_event_device
*ce
)
167 /* The mode member of CE is updated for us in generic code.
168 Just make sure that the event is disabled. */
169 qemu_set_alarm_abs(0);
173 qemu_ce_set_next_event(unsigned long evt
, struct clock_event_device
*ce
)
175 qemu_set_alarm_rel(evt
);
180 qemu_timer_interrupt(int irq
, void *dev
)
182 int cpu
= smp_processor_id();
183 struct clock_event_device
*ce
= &per_cpu(cpu_ce
, cpu
);
185 ce
->event_handler(ce
);
190 init_qemu_clockevent(void)
192 int cpu
= smp_processor_id();
193 struct clock_event_device
*ce
= &per_cpu(cpu_ce
, cpu
);
195 *ce
= (struct clock_event_device
){
197 .features
= CLOCK_EVT_FEAT_ONESHOT
,
199 .cpumask
= cpumask_of(cpu
),
200 .set_mode
= qemu_ce_set_mode
,
201 .set_next_event
= qemu_ce_set_next_event
,
204 clockevents_config_and_register(ce
, NSEC_PER_SEC
, 1000, LONG_MAX
);
209 common_init_rtc(void)
211 unsigned char x
, sel
= 0;
213 /* Reset periodic interrupt frequency. */
214 #if CONFIG_HZ == 1024 || CONFIG_HZ == 1200
215 x
= CMOS_READ(RTC_FREQ_SELECT
) & 0x3f;
216 /* Test includes known working values on various platforms
217 where 0x26 is wrong; we refuse to change those. */
218 if (x
!= 0x26 && x
!= 0x25 && x
!= 0x19 && x
!= 0x06) {
219 sel
= RTC_REF_CLCK_32KHZ
+ 6;
221 #elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32
222 sel
= RTC_REF_CLCK_32KHZ
+ __builtin_ffs(32768 / CONFIG_HZ
);
224 # error "Unknown HZ from arch/alpha/Kconfig"
227 printk(KERN_INFO
"Setting RTC_FREQ to %d Hz (%x)\n",
229 CMOS_WRITE(sel
, RTC_FREQ_SELECT
);
232 /* Turn on periodic interrupts. */
233 x
= CMOS_READ(RTC_CONTROL
);
234 if (!(x
& RTC_PIE
)) {
235 printk("Turning on RTC interrupts.\n");
237 x
&= ~(RTC_AIE
| RTC_UIE
);
238 CMOS_WRITE(x
, RTC_CONTROL
);
240 (void) CMOS_READ(RTC_INTR_FLAGS
);
242 outb(0x36, 0x43); /* pit counter 0: system timer */
246 outb(0xb6, 0x43); /* pit counter 2: speaker */
254 #ifndef CONFIG_ALPHA_WTINT
256 * The RPCC as a clocksource primitive.
258 * While we have free-running timecounters running on all CPUs, and we make
259 * a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter
260 * with the wall clock, that initialization isn't kept up-to-date across
261 * different time counters in SMP mode. Therefore we can only use this
262 * method when there's only one CPU enabled.
264 * When using the WTINT PALcall, the RPCC may shift to a lower frequency,
265 * or stop altogether, while waiting for the interrupt. Therefore we cannot
266 * use this method when WTINT is in use.
269 static cycle_t
read_rpcc(struct clocksource
*cs
)
274 static struct clocksource clocksource_rpcc
= {
278 .mask
= CLOCKSOURCE_MASK(32),
279 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
281 #endif /* ALPHA_WTINT */
284 /* Validate a computed cycle counter result against the known bounds for
285 the given processor core. There's too much brokenness in the way of
286 timing hardware for any one method to work everywhere. :-(
288 Return 0 if the result cannot be trusted, otherwise return the argument. */
290 static unsigned long __init
291 validate_cc_value(unsigned long cc
)
293 static struct bounds
{
294 unsigned int min
, max
;
295 } cpu_hz
[] __initdata
= {
296 [EV3_CPU
] = { 50000000, 200000000 }, /* guess */
297 [EV4_CPU
] = { 100000000, 300000000 },
298 [LCA4_CPU
] = { 100000000, 300000000 }, /* guess */
299 [EV45_CPU
] = { 200000000, 300000000 },
300 [EV5_CPU
] = { 250000000, 433000000 },
301 [EV56_CPU
] = { 333000000, 667000000 },
302 [PCA56_CPU
] = { 400000000, 600000000 }, /* guess */
303 [PCA57_CPU
] = { 500000000, 600000000 }, /* guess */
304 [EV6_CPU
] = { 466000000, 600000000 },
305 [EV67_CPU
] = { 600000000, 750000000 },
306 [EV68AL_CPU
] = { 750000000, 940000000 },
307 [EV68CB_CPU
] = { 1000000000, 1333333333 },
308 /* None of the following are shipping as of 2001-11-01. */
309 [EV68CX_CPU
] = { 1000000000, 1700000000 }, /* guess */
310 [EV69_CPU
] = { 1000000000, 1700000000 }, /* guess */
311 [EV7_CPU
] = { 800000000, 1400000000 }, /* guess */
312 [EV79_CPU
] = { 1000000000, 2000000000 }, /* guess */
315 /* Allow for some drift in the crystal. 10MHz is more than enough. */
316 const unsigned int deviation
= 10000000;
318 struct percpu_struct
*cpu
;
321 cpu
= (struct percpu_struct
*)((char*)hwrpb
+ hwrpb
->processor_offset
);
322 index
= cpu
->type
& 0xffffffff;
324 /* If index out of bounds, no way to validate. */
325 if (index
>= ARRAY_SIZE(cpu_hz
))
328 /* If index contains no data, no way to validate. */
329 if (cpu_hz
[index
].max
== 0)
332 if (cc
< cpu_hz
[index
].min
- deviation
333 || cc
> cpu_hz
[index
].max
+ deviation
)
341 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
345 #define CALIBRATE_LATCH 0xffff
346 #define TIMEOUT_COUNT 0x100000
348 static unsigned long __init
349 calibrate_cc_with_pit(void)
353 /* Set the Gate high, disable speaker */
354 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
357 * Now let's take care of CTC channel 2
359 * Set the Gate high, program CTC channel 2 for mode 0,
360 * (interrupt on terminal count mode), binary count,
361 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
363 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
364 outb(CALIBRATE_LATCH
& 0xff, 0x42); /* LSB of count */
365 outb(CALIBRATE_LATCH
>> 8, 0x42); /* MSB of count */
370 } while ((inb(0x61) & 0x20) == 0 && count
< TIMEOUT_COUNT
);
373 /* Error: ECTCNEVERSET or ECPUTOOFAST. */
374 if (count
<= 1 || count
== TIMEOUT_COUNT
)
377 return ((long)cc
* PIT_TICK_RATE
) / (CALIBRATE_LATCH
+ 1);
380 /* The Linux interpretation of the CMOS clock register contents:
381 When the Update-In-Progress (UIP) flag goes from 1 to 0, the
382 RTC registers show the second which has precisely just started.
383 Let's hope other operating systems interpret the RTC the same way. */
385 static unsigned long __init
386 rpcc_after_update_in_progress(void)
388 do { } while (!(CMOS_READ(RTC_FREQ_SELECT
) & RTC_UIP
));
389 do { } while (CMOS_READ(RTC_FREQ_SELECT
) & RTC_UIP
);
397 unsigned int cc1
, cc2
;
398 unsigned long cycle_freq
, tolerance
;
401 if (alpha_using_qemu
) {
402 clocksource_register_hz(&qemu_cs
, NSEC_PER_SEC
);
403 init_qemu_clockevent();
405 timer_irqaction
.handler
= qemu_timer_interrupt
;
410 /* Calibrate CPU clock -- attempt #1. */
412 est_cycle_freq
= validate_cc_value(calibrate_cc_with_pit());
416 /* Calibrate CPU clock -- attempt #2. */
417 if (!est_cycle_freq
) {
418 cc1
= rpcc_after_update_in_progress();
419 cc2
= rpcc_after_update_in_progress();
420 est_cycle_freq
= validate_cc_value(cc2
- cc1
);
424 cycle_freq
= hwrpb
->cycle_freq
;
425 if (est_cycle_freq
) {
426 /* If the given value is within 250 PPM of what we calculated,
427 accept it. Otherwise, use what we found. */
428 tolerance
= cycle_freq
/ 4000;
429 diff
= cycle_freq
- est_cycle_freq
;
432 if ((unsigned long)diff
> tolerance
) {
433 cycle_freq
= est_cycle_freq
;
434 printk("HWRPB cycle frequency bogus. "
435 "Estimated %lu Hz\n", cycle_freq
);
439 } else if (! validate_cc_value (cycle_freq
)) {
440 printk("HWRPB cycle frequency bogus, "
441 "and unable to estimate a proper value!\n");
444 /* See above for restrictions on using clocksource_rpcc. */
445 #ifndef CONFIG_ALPHA_WTINT
446 if (hwrpb
->nr_processors
== 1)
447 clocksource_register_hz(&clocksource_rpcc
, cycle_freq
);
450 /* Startup the timer source. */
452 init_rtc_clockevent();
455 /* Initialize the clock_event_device for secondary cpus. */
458 init_clockevent(void)
460 if (alpha_using_qemu
)
461 init_qemu_clockevent();
463 init_rtc_clockevent();