ARM: rockchip: fix broken build
[linux/fpc-iii.git] / arch / arm / kernel / smp.c
blob3d6b7821cff8c952e73c72cad5a1f8d90cdf1758
1 /*
2 * linux/arch/arm/kernel/smp.c
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
30 #include <linux/atomic.h>
31 #include <asm/smp.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpu.h>
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/idmap.h>
37 #include <asm/topology.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/processor.h>
42 #include <asm/sections.h>
43 #include <asm/tlbflush.h>
44 #include <asm/ptrace.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mpu.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/ipi.h>
54 * as from 2.5, kernels no longer have an init_tasks structure
55 * so we need some other way of telling a new secondary core
56 * where to place its SVC stack
58 struct secondary_data secondary_data;
61 * control for which core is the next to come out of the secondary
62 * boot "holding pen"
64 volatile int pen_release = -1;
66 enum ipi_msg_type {
67 IPI_WAKEUP,
68 IPI_TIMER,
69 IPI_RESCHEDULE,
70 IPI_CALL_FUNC,
71 IPI_CALL_FUNC_SINGLE,
72 IPI_CPU_STOP,
73 IPI_IRQ_WORK,
74 IPI_COMPLETION,
77 static DECLARE_COMPLETION(cpu_running);
79 static struct smp_operations smp_ops;
81 void __init smp_set_ops(struct smp_operations *ops)
83 if (ops)
84 smp_ops = *ops;
87 static unsigned long get_arch_pgd(pgd_t *pgd)
89 #ifdef CONFIG_ARM_LPAE
90 return __phys_to_pfn(virt_to_phys(pgd));
91 #else
92 return virt_to_phys(pgd);
93 #endif
96 int __cpu_up(unsigned int cpu, struct task_struct *idle)
98 int ret;
100 if (!smp_ops.smp_boot_secondary)
101 return -ENOSYS;
104 * We need to tell the secondary core where to find
105 * its stack and the page tables.
107 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
108 #ifdef CONFIG_ARM_MPU
109 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
110 #endif
112 #ifdef CONFIG_MMU
113 secondary_data.pgdir = virt_to_phys(idmap_pgd);
114 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
115 #endif
116 sync_cache_w(&secondary_data);
119 * Now bring the CPU into our world.
121 ret = smp_ops.smp_boot_secondary(cpu, idle);
122 if (ret == 0) {
124 * CPU was successfully started, wait for it
125 * to come online or time out.
127 wait_for_completion_timeout(&cpu_running,
128 msecs_to_jiffies(1000));
130 if (!cpu_online(cpu)) {
131 pr_crit("CPU%u: failed to come online\n", cpu);
132 ret = -EIO;
134 } else {
135 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
139 memset(&secondary_data, 0, sizeof(secondary_data));
140 return ret;
143 /* platform specific SMP operations */
144 void __init smp_init_cpus(void)
146 if (smp_ops.smp_init_cpus)
147 smp_ops.smp_init_cpus();
150 int platform_can_secondary_boot(void)
152 return !!smp_ops.smp_boot_secondary;
155 int platform_can_cpu_hotplug(void)
157 #ifdef CONFIG_HOTPLUG_CPU
158 if (smp_ops.cpu_kill)
159 return 1;
160 #endif
162 return 0;
165 #ifdef CONFIG_HOTPLUG_CPU
166 static int platform_cpu_kill(unsigned int cpu)
168 if (smp_ops.cpu_kill)
169 return smp_ops.cpu_kill(cpu);
170 return 1;
173 static int platform_cpu_disable(unsigned int cpu)
175 if (smp_ops.cpu_disable)
176 return smp_ops.cpu_disable(cpu);
179 * By default, allow disabling all CPUs except the first one,
180 * since this is special on a lot of platforms, e.g. because
181 * of clock tick interrupts.
183 return cpu == 0 ? -EPERM : 0;
186 * __cpu_disable runs on the processor to be shutdown.
188 int __cpu_disable(void)
190 unsigned int cpu = smp_processor_id();
191 int ret;
193 ret = platform_cpu_disable(cpu);
194 if (ret)
195 return ret;
198 * Take this CPU offline. Once we clear this, we can't return,
199 * and we must not schedule until we're ready to give up the cpu.
201 set_cpu_online(cpu, false);
204 * OK - migrate IRQs away from this CPU
206 migrate_irqs();
209 * Flush user cache and TLB mappings, and then remove this CPU
210 * from the vm mask set of all processes.
212 * Caches are flushed to the Level of Unification Inner Shareable
213 * to write-back dirty lines to unified caches shared by all CPUs.
215 flush_cache_louis();
216 local_flush_tlb_all();
218 clear_tasks_mm_cpumask(cpu);
220 return 0;
223 static DECLARE_COMPLETION(cpu_died);
226 * called on the thread which is asking for a CPU to be shutdown -
227 * waits until shutdown has completed, or it is timed out.
229 void __cpu_die(unsigned int cpu)
231 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
232 pr_err("CPU%u: cpu didn't die\n", cpu);
233 return;
235 pr_notice("CPU%u: shutdown\n", cpu);
238 * platform_cpu_kill() is generally expected to do the powering off
239 * and/or cutting of clocks to the dying CPU. Optionally, this may
240 * be done by the CPU which is dying in preference to supporting
241 * this call, but that means there is _no_ synchronisation between
242 * the requesting CPU and the dying CPU actually losing power.
244 if (!platform_cpu_kill(cpu))
245 pr_err("CPU%u: unable to kill\n", cpu);
249 * Called from the idle thread for the CPU which has been shutdown.
251 * Note that we disable IRQs here, but do not re-enable them
252 * before returning to the caller. This is also the behaviour
253 * of the other hotplug-cpu capable cores, so presumably coming
254 * out of idle fixes this.
256 void __ref cpu_die(void)
258 unsigned int cpu = smp_processor_id();
260 idle_task_exit();
262 local_irq_disable();
265 * Flush the data out of the L1 cache for this CPU. This must be
266 * before the completion to ensure that data is safely written out
267 * before platform_cpu_kill() gets called - which may disable
268 * *this* CPU and power down its cache.
270 flush_cache_louis();
273 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
274 * this returns, power and/or clocks can be removed at any point
275 * from this CPU and its cache by platform_cpu_kill().
277 complete(&cpu_died);
280 * Ensure that the cache lines associated with that completion are
281 * written out. This covers the case where _this_ CPU is doing the
282 * powering down, to ensure that the completion is visible to the
283 * CPU waiting for this one.
285 flush_cache_louis();
288 * The actual CPU shutdown procedure is at least platform (if not
289 * CPU) specific. This may remove power, or it may simply spin.
291 * Platforms are generally expected *NOT* to return from this call,
292 * although there are some which do because they have no way to
293 * power down the CPU. These platforms are the _only_ reason we
294 * have a return path which uses the fragment of assembly below.
296 * The return path should not be used for platforms which can
297 * power off the CPU.
299 if (smp_ops.cpu_die)
300 smp_ops.cpu_die(cpu);
302 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
303 cpu);
306 * Do not return to the idle loop - jump back to the secondary
307 * cpu initialisation. There's some initialisation which needs
308 * to be repeated to undo the effects of taking the CPU offline.
310 __asm__("mov sp, %0\n"
311 " mov fp, #0\n"
312 " b secondary_start_kernel"
314 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
316 #endif /* CONFIG_HOTPLUG_CPU */
319 * Called by both boot and secondaries to move global data into
320 * per-processor storage.
322 static void smp_store_cpu_info(unsigned int cpuid)
324 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
326 cpu_info->loops_per_jiffy = loops_per_jiffy;
327 cpu_info->cpuid = read_cpuid_id();
329 store_cpu_topology(cpuid);
333 * This is the secondary CPU boot entry. We're using this CPUs
334 * idle thread stack, but a set of temporary page tables.
336 asmlinkage void secondary_start_kernel(void)
338 struct mm_struct *mm = &init_mm;
339 unsigned int cpu;
342 * The identity mapping is uncached (strongly ordered), so
343 * switch away from it before attempting any exclusive accesses.
345 cpu_switch_mm(mm->pgd, mm);
346 local_flush_bp_all();
347 enter_lazy_tlb(mm, current);
348 local_flush_tlb_all();
351 * All kernel threads share the same mm context; grab a
352 * reference and switch to it.
354 cpu = smp_processor_id();
355 atomic_inc(&mm->mm_count);
356 current->active_mm = mm;
357 cpumask_set_cpu(cpu, mm_cpumask(mm));
359 cpu_init();
361 pr_debug("CPU%u: Booted secondary processor\n", cpu);
363 preempt_disable();
364 trace_hardirqs_off();
367 * Give the platform a chance to do its own initialisation.
369 if (smp_ops.smp_secondary_init)
370 smp_ops.smp_secondary_init(cpu);
372 notify_cpu_starting(cpu);
374 calibrate_delay();
376 smp_store_cpu_info(cpu);
379 * OK, now it's safe to let the boot CPU continue. Wait for
380 * the CPU migration code to notice that the CPU is online
381 * before we continue - which happens after __cpu_up returns.
383 set_cpu_online(cpu, true);
384 complete(&cpu_running);
386 local_irq_enable();
387 local_fiq_enable();
390 * OK, it's off to the idle thread for us
392 cpu_startup_entry(CPUHP_ONLINE);
395 void __init smp_cpus_done(unsigned int max_cpus)
397 int cpu;
398 unsigned long bogosum = 0;
400 for_each_online_cpu(cpu)
401 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
403 printk(KERN_INFO "SMP: Total of %d processors activated "
404 "(%lu.%02lu BogoMIPS).\n",
405 num_online_cpus(),
406 bogosum / (500000/HZ),
407 (bogosum / (5000/HZ)) % 100);
409 hyp_mode_check();
412 void __init smp_prepare_boot_cpu(void)
414 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
417 void __init smp_prepare_cpus(unsigned int max_cpus)
419 unsigned int ncores = num_possible_cpus();
421 init_cpu_topology();
423 smp_store_cpu_info(smp_processor_id());
426 * are we trying to boot more cores than exist?
428 if (max_cpus > ncores)
429 max_cpus = ncores;
430 if (ncores > 1 && max_cpus) {
432 * Initialise the present map, which describes the set of CPUs
433 * actually populated at the present time. A platform should
434 * re-initialize the map in the platforms smp_prepare_cpus()
435 * if present != possible (e.g. physical hotplug).
437 init_cpu_present(cpu_possible_mask);
440 * Initialise the SCU if there are more than one CPU
441 * and let them know where to start.
443 if (smp_ops.smp_prepare_cpus)
444 smp_ops.smp_prepare_cpus(max_cpus);
448 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
450 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
452 if (!__smp_cross_call)
453 __smp_cross_call = fn;
456 static const char *ipi_types[NR_IPI] __tracepoint_string = {
457 #define S(x,s) [x] = s
458 S(IPI_WAKEUP, "CPU wakeup interrupts"),
459 S(IPI_TIMER, "Timer broadcast interrupts"),
460 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
461 S(IPI_CALL_FUNC, "Function call interrupts"),
462 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
463 S(IPI_CPU_STOP, "CPU stop interrupts"),
464 S(IPI_IRQ_WORK, "IRQ work interrupts"),
465 S(IPI_COMPLETION, "completion interrupts"),
468 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
470 trace_ipi_raise(target, ipi_types[ipinr]);
471 __smp_cross_call(target, ipinr);
474 void show_ipi_list(struct seq_file *p, int prec)
476 unsigned int cpu, i;
478 for (i = 0; i < NR_IPI; i++) {
479 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
481 for_each_online_cpu(cpu)
482 seq_printf(p, "%10u ",
483 __get_irq_stat(cpu, ipi_irqs[i]));
485 seq_printf(p, " %s\n", ipi_types[i]);
489 u64 smp_irq_stat_cpu(unsigned int cpu)
491 u64 sum = 0;
492 int i;
494 for (i = 0; i < NR_IPI; i++)
495 sum += __get_irq_stat(cpu, ipi_irqs[i]);
497 return sum;
500 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
502 smp_cross_call(mask, IPI_CALL_FUNC);
505 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
507 smp_cross_call(mask, IPI_WAKEUP);
510 void arch_send_call_function_single_ipi(int cpu)
512 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
515 #ifdef CONFIG_IRQ_WORK
516 void arch_irq_work_raise(void)
518 if (arch_irq_work_has_interrupt())
519 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
521 #endif
523 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
524 void tick_broadcast(const struct cpumask *mask)
526 smp_cross_call(mask, IPI_TIMER);
528 #endif
530 static DEFINE_RAW_SPINLOCK(stop_lock);
533 * ipi_cpu_stop - handle IPI from smp_send_stop()
535 static void ipi_cpu_stop(unsigned int cpu)
537 if (system_state == SYSTEM_BOOTING ||
538 system_state == SYSTEM_RUNNING) {
539 raw_spin_lock(&stop_lock);
540 pr_crit("CPU%u: stopping\n", cpu);
541 dump_stack();
542 raw_spin_unlock(&stop_lock);
545 set_cpu_online(cpu, false);
547 local_fiq_disable();
548 local_irq_disable();
550 while (1)
551 cpu_relax();
554 static DEFINE_PER_CPU(struct completion *, cpu_completion);
556 int register_ipi_completion(struct completion *completion, int cpu)
558 per_cpu(cpu_completion, cpu) = completion;
559 return IPI_COMPLETION;
562 static void ipi_complete(unsigned int cpu)
564 complete(per_cpu(cpu_completion, cpu));
568 * Main handler for inter-processor interrupts
570 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
572 handle_IPI(ipinr, regs);
575 void handle_IPI(int ipinr, struct pt_regs *regs)
577 unsigned int cpu = smp_processor_id();
578 struct pt_regs *old_regs = set_irq_regs(regs);
580 if ((unsigned)ipinr < NR_IPI) {
581 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
582 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
585 switch (ipinr) {
586 case IPI_WAKEUP:
587 break;
589 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
590 case IPI_TIMER:
591 irq_enter();
592 tick_receive_broadcast();
593 irq_exit();
594 break;
595 #endif
597 case IPI_RESCHEDULE:
598 scheduler_ipi();
599 break;
601 case IPI_CALL_FUNC:
602 irq_enter();
603 generic_smp_call_function_interrupt();
604 irq_exit();
605 break;
607 case IPI_CALL_FUNC_SINGLE:
608 irq_enter();
609 generic_smp_call_function_single_interrupt();
610 irq_exit();
611 break;
613 case IPI_CPU_STOP:
614 irq_enter();
615 ipi_cpu_stop(cpu);
616 irq_exit();
617 break;
619 #ifdef CONFIG_IRQ_WORK
620 case IPI_IRQ_WORK:
621 irq_enter();
622 irq_work_run();
623 irq_exit();
624 break;
625 #endif
627 case IPI_COMPLETION:
628 irq_enter();
629 ipi_complete(cpu);
630 irq_exit();
631 break;
633 default:
634 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
635 cpu, ipinr);
636 break;
639 if ((unsigned)ipinr < NR_IPI)
640 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
641 set_irq_regs(old_regs);
644 void smp_send_reschedule(int cpu)
646 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
649 void smp_send_stop(void)
651 unsigned long timeout;
652 struct cpumask mask;
654 cpumask_copy(&mask, cpu_online_mask);
655 cpumask_clear_cpu(smp_processor_id(), &mask);
656 if (!cpumask_empty(&mask))
657 smp_cross_call(&mask, IPI_CPU_STOP);
659 /* Wait up to one second for other CPUs to stop */
660 timeout = USEC_PER_SEC;
661 while (num_online_cpus() > 1 && timeout--)
662 udelay(1);
664 if (num_online_cpus() > 1)
665 pr_warn("SMP: failed to stop secondary CPUs\n");
669 * not supported here
671 int setup_profiling_timer(unsigned int multiplier)
673 return -EINVAL;
676 #ifdef CONFIG_CPU_FREQ
678 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
679 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
680 static unsigned long global_l_p_j_ref;
681 static unsigned long global_l_p_j_ref_freq;
683 static int cpufreq_callback(struct notifier_block *nb,
684 unsigned long val, void *data)
686 struct cpufreq_freqs *freq = data;
687 int cpu = freq->cpu;
689 if (freq->flags & CPUFREQ_CONST_LOOPS)
690 return NOTIFY_OK;
692 if (!per_cpu(l_p_j_ref, cpu)) {
693 per_cpu(l_p_j_ref, cpu) =
694 per_cpu(cpu_data, cpu).loops_per_jiffy;
695 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
696 if (!global_l_p_j_ref) {
697 global_l_p_j_ref = loops_per_jiffy;
698 global_l_p_j_ref_freq = freq->old;
702 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
703 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
704 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
705 global_l_p_j_ref_freq,
706 freq->new);
707 per_cpu(cpu_data, cpu).loops_per_jiffy =
708 cpufreq_scale(per_cpu(l_p_j_ref, cpu),
709 per_cpu(l_p_j_ref_freq, cpu),
710 freq->new);
712 return NOTIFY_OK;
715 static struct notifier_block cpufreq_notifier = {
716 .notifier_call = cpufreq_callback,
719 static int __init register_cpufreq_notifier(void)
721 return cpufreq_register_notifier(&cpufreq_notifier,
722 CPUFREQ_TRANSITION_NOTIFIER);
724 core_initcall(register_cpufreq_notifier);
726 #endif