ARM: rockchip: fix broken build
[linux/fpc-iii.git] / arch / arm / kernel / topology.c
blob08b7847bf9124f004d7214c0e9c4dae23c0fffd2
1 /*
2 * arch/arm/kernel/topology.c
4 * Copyright (C) 2011 Linaro Limited.
5 * Written by: Vincent Guittot
7 * based on arch/sh/kernel/topology.c
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
14 #include <linux/cpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/percpu.h>
19 #include <linux/node.h>
20 #include <linux/nodemask.h>
21 #include <linux/of.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
25 #include <asm/cputype.h>
26 #include <asm/topology.h>
29 * cpu capacity scale management
33 * cpu capacity table
34 * This per cpu data structure describes the relative capacity of each core.
35 * On a heteregenous system, cores don't have the same computation capacity
36 * and we reflect that difference in the cpu_capacity field so the scheduler
37 * can take this difference into account during load balance. A per cpu
38 * structure is preferred because each CPU updates its own cpu_capacity field
39 * during the load balance except for idle cores. One idle core is selected
40 * to run the rebalance_domains for all idle cores and the cpu_capacity can be
41 * updated during this sequence.
43 static DEFINE_PER_CPU(unsigned long, cpu_scale);
45 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
47 return per_cpu(cpu_scale, cpu);
50 static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
52 per_cpu(cpu_scale, cpu) = capacity;
55 #ifdef CONFIG_OF
56 struct cpu_efficiency {
57 const char *compatible;
58 unsigned long efficiency;
62 * Table of relative efficiency of each processors
63 * The efficiency value must fit in 20bit and the final
64 * cpu_scale value must be in the range
65 * 0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
66 * in order to return at most 1 when DIV_ROUND_CLOSEST
67 * is used to compute the capacity of a CPU.
68 * Processors that are not defined in the table,
69 * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
71 static const struct cpu_efficiency table_efficiency[] = {
72 {"arm,cortex-a15", 3891},
73 {"arm,cortex-a7", 2048},
74 {NULL, },
77 static unsigned long *__cpu_capacity;
78 #define cpu_capacity(cpu) __cpu_capacity[cpu]
80 static unsigned long middle_capacity = 1;
83 * Iterate all CPUs' descriptor in DT and compute the efficiency
84 * (as per table_efficiency). Also calculate a middle efficiency
85 * as close as possible to (max{eff_i} - min{eff_i}) / 2
86 * This is later used to scale the cpu_capacity field such that an
87 * 'average' CPU is of middle capacity. Also see the comments near
88 * table_efficiency[] and update_cpu_capacity().
90 static void __init parse_dt_topology(void)
92 const struct cpu_efficiency *cpu_eff;
93 struct device_node *cn = NULL;
94 unsigned long min_capacity = ULONG_MAX;
95 unsigned long max_capacity = 0;
96 unsigned long capacity = 0;
97 int cpu = 0;
99 __cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
100 GFP_NOWAIT);
102 for_each_possible_cpu(cpu) {
103 const u32 *rate;
104 int len;
106 /* too early to use cpu->of_node */
107 cn = of_get_cpu_node(cpu, NULL);
108 if (!cn) {
109 pr_err("missing device node for CPU %d\n", cpu);
110 continue;
113 for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
114 if (of_device_is_compatible(cn, cpu_eff->compatible))
115 break;
117 if (cpu_eff->compatible == NULL)
118 continue;
120 rate = of_get_property(cn, "clock-frequency", &len);
121 if (!rate || len != 4) {
122 pr_err("%s missing clock-frequency property\n",
123 cn->full_name);
124 continue;
127 capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
129 /* Save min capacity of the system */
130 if (capacity < min_capacity)
131 min_capacity = capacity;
133 /* Save max capacity of the system */
134 if (capacity > max_capacity)
135 max_capacity = capacity;
137 cpu_capacity(cpu) = capacity;
140 /* If min and max capacities are equals, we bypass the update of the
141 * cpu_scale because all CPUs have the same capacity. Otherwise, we
142 * compute a middle_capacity factor that will ensure that the capacity
143 * of an 'average' CPU of the system will be as close as possible to
144 * SCHED_CAPACITY_SCALE, which is the default value, but with the
145 * constraint explained near table_efficiency[].
147 if (4*max_capacity < (3*(max_capacity + min_capacity)))
148 middle_capacity = (min_capacity + max_capacity)
149 >> (SCHED_CAPACITY_SHIFT+1);
150 else
151 middle_capacity = ((max_capacity / 3)
152 >> (SCHED_CAPACITY_SHIFT-1)) + 1;
157 * Look for a customed capacity of a CPU in the cpu_capacity table during the
158 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
159 * function returns directly for SMP system.
161 static void update_cpu_capacity(unsigned int cpu)
163 if (!cpu_capacity(cpu))
164 return;
166 set_capacity_scale(cpu, cpu_capacity(cpu) / middle_capacity);
168 pr_info("CPU%u: update cpu_capacity %lu\n",
169 cpu, arch_scale_cpu_capacity(NULL, cpu));
172 #else
173 static inline void parse_dt_topology(void) {}
174 static inline void update_cpu_capacity(unsigned int cpuid) {}
175 #endif
178 * cpu topology table
180 struct cputopo_arm cpu_topology[NR_CPUS];
181 EXPORT_SYMBOL_GPL(cpu_topology);
183 const struct cpumask *cpu_coregroup_mask(int cpu)
185 return &cpu_topology[cpu].core_sibling;
189 * The current assumption is that we can power gate each core independently.
190 * This will be superseded by DT binding once available.
192 const struct cpumask *cpu_corepower_mask(int cpu)
194 return &cpu_topology[cpu].thread_sibling;
197 static void update_siblings_masks(unsigned int cpuid)
199 struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
200 int cpu;
202 /* update core and thread sibling masks */
203 for_each_possible_cpu(cpu) {
204 cpu_topo = &cpu_topology[cpu];
206 if (cpuid_topo->socket_id != cpu_topo->socket_id)
207 continue;
209 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
210 if (cpu != cpuid)
211 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
213 if (cpuid_topo->core_id != cpu_topo->core_id)
214 continue;
216 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
217 if (cpu != cpuid)
218 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
220 smp_wmb();
224 * store_cpu_topology is called at boot when only one cpu is running
225 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
226 * which prevents simultaneous write access to cpu_topology array
228 void store_cpu_topology(unsigned int cpuid)
230 struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
231 unsigned int mpidr;
233 /* If the cpu topology has been already set, just return */
234 if (cpuid_topo->core_id != -1)
235 return;
237 mpidr = read_cpuid_mpidr();
239 /* create cpu topology mapping */
240 if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
242 * This is a multiprocessor system
243 * multiprocessor format & multiprocessor mode field are set
246 if (mpidr & MPIDR_MT_BITMASK) {
247 /* core performance interdependency */
248 cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
249 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
250 cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
251 } else {
252 /* largely independent cores */
253 cpuid_topo->thread_id = -1;
254 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
255 cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
257 } else {
259 * This is an uniprocessor system
260 * we are in multiprocessor format but uniprocessor system
261 * or in the old uniprocessor format
263 cpuid_topo->thread_id = -1;
264 cpuid_topo->core_id = 0;
265 cpuid_topo->socket_id = -1;
268 update_siblings_masks(cpuid);
270 update_cpu_capacity(cpuid);
272 pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
273 cpuid, cpu_topology[cpuid].thread_id,
274 cpu_topology[cpuid].core_id,
275 cpu_topology[cpuid].socket_id, mpidr);
278 static inline int cpu_corepower_flags(void)
280 return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN;
283 static struct sched_domain_topology_level arm_topology[] = {
284 #ifdef CONFIG_SCHED_MC
285 { cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
286 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
287 #endif
288 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
289 { NULL, },
293 * init_cpu_topology is called at boot when only one cpu is running
294 * which prevent simultaneous write access to cpu_topology array
296 void __init init_cpu_topology(void)
298 unsigned int cpu;
300 /* init core mask and capacity */
301 for_each_possible_cpu(cpu) {
302 struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
304 cpu_topo->thread_id = -1;
305 cpu_topo->core_id = -1;
306 cpu_topo->socket_id = -1;
307 cpumask_clear(&cpu_topo->core_sibling);
308 cpumask_clear(&cpu_topo->thread_sibling);
310 set_capacity_scale(cpu, SCHED_CAPACITY_SCALE);
312 smp_wmb();
314 parse_dt_topology();
316 /* Set scheduler topology descriptor */
317 set_sched_topology(arm_topology);