2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
32 #define CREATE_TRACE_POINTS
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
49 __asm__(".arch_extension virt");
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page
);
53 static kvm_cpu_context_t __percpu
*kvm_host_cpu_state
;
54 static unsigned long hyp_default_vectors
;
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu
*, kvm_arm_running_vcpu
);
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen
= ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid
;
62 static DEFINE_SPINLOCK(kvm_vmid_lock
);
64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu
*vcpu
)
66 BUG_ON(preemptible());
67 __this_cpu_write(kvm_arm_running_vcpu
, vcpu
);
71 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72 * Must be called from non-preemptible context
74 struct kvm_vcpu
*kvm_arm_get_running_vcpu(void)
76 BUG_ON(preemptible());
77 return __this_cpu_read(kvm_arm_running_vcpu
);
81 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
83 struct kvm_vcpu
* __percpu
*kvm_get_running_vcpus(void)
85 return &kvm_arm_running_vcpu
;
88 int kvm_arch_hardware_enable(void)
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
95 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
98 int kvm_arch_hardware_setup(void)
103 void kvm_arch_check_processor_compat(void *rtn
)
110 * kvm_arch_init_vm - initializes a VM data structure
111 * @kvm: pointer to the KVM struct
113 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
120 ret
= kvm_alloc_stage2_pgd(kvm
);
124 ret
= create_hyp_mappings(kvm
, kvm
+ 1);
126 goto out_free_stage2_pgd
;
130 /* Mark the initial VMID generation invalid */
131 kvm
->arch
.vmid_gen
= 0;
133 /* The maximum number of VCPUs is limited by the host's GIC model */
134 kvm
->arch
.max_vcpus
= kvm_vgic_get_max_vcpus();
138 kvm_free_stage2_pgd(kvm
);
143 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
145 return VM_FAULT_SIGBUS
;
150 * kvm_arch_destroy_vm - destroy the VM data structure
151 * @kvm: pointer to the KVM struct
153 void kvm_arch_destroy_vm(struct kvm
*kvm
)
157 kvm_free_stage2_pgd(kvm
);
159 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
161 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
162 kvm
->vcpus
[i
] = NULL
;
166 kvm_vgic_destroy(kvm
);
169 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
173 case KVM_CAP_IRQCHIP
:
174 case KVM_CAP_IOEVENTFD
:
175 case KVM_CAP_DEVICE_CTRL
:
176 case KVM_CAP_USER_MEMORY
:
177 case KVM_CAP_SYNC_MMU
:
178 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
179 case KVM_CAP_ONE_REG
:
180 case KVM_CAP_ARM_PSCI
:
181 case KVM_CAP_ARM_PSCI_0_2
:
182 case KVM_CAP_READONLY_MEM
:
183 case KVM_CAP_MP_STATE
:
186 case KVM_CAP_COALESCED_MMIO
:
187 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
189 case KVM_CAP_ARM_SET_DEVICE_ADDR
:
192 case KVM_CAP_NR_VCPUS
:
193 r
= num_online_cpus();
195 case KVM_CAP_MAX_VCPUS
:
199 r
= kvm_arch_dev_ioctl_check_extension(ext
);
205 long kvm_arch_dev_ioctl(struct file
*filp
,
206 unsigned int ioctl
, unsigned long arg
)
212 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
, unsigned int id
)
215 struct kvm_vcpu
*vcpu
;
217 if (irqchip_in_kernel(kvm
) && vgic_initialized(kvm
)) {
222 if (id
>= kvm
->arch
.max_vcpus
) {
227 vcpu
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
233 err
= kvm_vcpu_init(vcpu
, kvm
, id
);
237 err
= create_hyp_mappings(vcpu
, vcpu
+ 1);
243 kvm_vcpu_uninit(vcpu
);
245 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
250 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
254 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
256 kvm_mmu_free_memory_caches(vcpu
);
257 kvm_timer_vcpu_terminate(vcpu
);
258 kvm_vgic_vcpu_destroy(vcpu
);
259 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
262 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
264 kvm_arch_vcpu_free(vcpu
);
267 int kvm_cpu_has_pending_timer(struct kvm_vcpu
*vcpu
)
269 return kvm_timer_should_fire(vcpu
);
272 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
274 /* Force users to call KVM_ARM_VCPU_INIT */
275 vcpu
->arch
.target
= -1;
276 bitmap_zero(vcpu
->arch
.features
, KVM_VCPU_MAX_FEATURES
);
278 /* Set up the timer */
279 kvm_timer_vcpu_init(vcpu
);
284 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
287 vcpu
->arch
.host_cpu_context
= this_cpu_ptr(kvm_host_cpu_state
);
289 kvm_arm_set_running_vcpu(vcpu
);
292 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
295 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
296 * if the vcpu is no longer assigned to a cpu. This is used for the
297 * optimized make_all_cpus_request path.
301 kvm_arm_set_running_vcpu(NULL
);
304 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
305 struct kvm_guest_debug
*dbg
)
311 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
312 struct kvm_mp_state
*mp_state
)
314 if (vcpu
->arch
.pause
)
315 mp_state
->mp_state
= KVM_MP_STATE_STOPPED
;
317 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
322 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
323 struct kvm_mp_state
*mp_state
)
325 switch (mp_state
->mp_state
) {
326 case KVM_MP_STATE_RUNNABLE
:
327 vcpu
->arch
.pause
= false;
329 case KVM_MP_STATE_STOPPED
:
330 vcpu
->arch
.pause
= true;
340 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
341 * @v: The VCPU pointer
343 * If the guest CPU is not waiting for interrupts or an interrupt line is
344 * asserted, the CPU is by definition runnable.
346 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*v
)
348 return !!v
->arch
.irq_lines
|| kvm_vgic_vcpu_pending_irq(v
);
351 /* Just ensure a guest exit from a particular CPU */
352 static void exit_vm_noop(void *info
)
356 void force_vm_exit(const cpumask_t
*mask
)
358 smp_call_function_many(mask
, exit_vm_noop
, NULL
, true);
362 * need_new_vmid_gen - check that the VMID is still valid
363 * @kvm: The VM's VMID to checkt
365 * return true if there is a new generation of VMIDs being used
367 * The hardware supports only 256 values with the value zero reserved for the
368 * host, so we check if an assigned value belongs to a previous generation,
369 * which which requires us to assign a new value. If we're the first to use a
370 * VMID for the new generation, we must flush necessary caches and TLBs on all
373 static bool need_new_vmid_gen(struct kvm
*kvm
)
375 return unlikely(kvm
->arch
.vmid_gen
!= atomic64_read(&kvm_vmid_gen
));
379 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
380 * @kvm The guest that we are about to run
382 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
383 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
386 static void update_vttbr(struct kvm
*kvm
)
388 phys_addr_t pgd_phys
;
391 if (!need_new_vmid_gen(kvm
))
394 spin_lock(&kvm_vmid_lock
);
397 * We need to re-check the vmid_gen here to ensure that if another vcpu
398 * already allocated a valid vmid for this vm, then this vcpu should
401 if (!need_new_vmid_gen(kvm
)) {
402 spin_unlock(&kvm_vmid_lock
);
406 /* First user of a new VMID generation? */
407 if (unlikely(kvm_next_vmid
== 0)) {
408 atomic64_inc(&kvm_vmid_gen
);
412 * On SMP we know no other CPUs can use this CPU's or each
413 * other's VMID after force_vm_exit returns since the
414 * kvm_vmid_lock blocks them from reentry to the guest.
416 force_vm_exit(cpu_all_mask
);
418 * Now broadcast TLB + ICACHE invalidation over the inner
419 * shareable domain to make sure all data structures are
422 kvm_call_hyp(__kvm_flush_vm_context
);
425 kvm
->arch
.vmid_gen
= atomic64_read(&kvm_vmid_gen
);
426 kvm
->arch
.vmid
= kvm_next_vmid
;
429 /* update vttbr to be used with the new vmid */
430 pgd_phys
= virt_to_phys(kvm_get_hwpgd(kvm
));
431 BUG_ON(pgd_phys
& ~VTTBR_BADDR_MASK
);
432 vmid
= ((u64
)(kvm
->arch
.vmid
) << VTTBR_VMID_SHIFT
) & VTTBR_VMID_MASK
;
433 kvm
->arch
.vttbr
= pgd_phys
| vmid
;
435 spin_unlock(&kvm_vmid_lock
);
438 static int kvm_vcpu_first_run_init(struct kvm_vcpu
*vcpu
)
440 struct kvm
*kvm
= vcpu
->kvm
;
443 if (likely(vcpu
->arch
.has_run_once
))
446 vcpu
->arch
.has_run_once
= true;
449 * Map the VGIC hardware resources before running a vcpu the first
452 if (unlikely(!vgic_ready(kvm
))) {
453 ret
= kvm_vgic_map_resources(kvm
);
459 * Enable the arch timers only if we have an in-kernel VGIC
460 * and it has been properly initialized, since we cannot handle
461 * interrupts from the virtual timer with a userspace gic.
463 if (irqchip_in_kernel(kvm
) && vgic_initialized(kvm
))
464 kvm_timer_enable(kvm
);
469 bool kvm_arch_intc_initialized(struct kvm
*kvm
)
471 return vgic_initialized(kvm
);
474 static void vcpu_pause(struct kvm_vcpu
*vcpu
)
476 wait_queue_head_t
*wq
= kvm_arch_vcpu_wq(vcpu
);
478 wait_event_interruptible(*wq
, !vcpu
->arch
.pause
);
481 static int kvm_vcpu_initialized(struct kvm_vcpu
*vcpu
)
483 return vcpu
->arch
.target
>= 0;
487 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
488 * @vcpu: The VCPU pointer
489 * @run: The kvm_run structure pointer used for userspace state exchange
491 * This function is called through the VCPU_RUN ioctl called from user space. It
492 * will execute VM code in a loop until the time slice for the process is used
493 * or some emulation is needed from user space in which case the function will
494 * return with return value 0 and with the kvm_run structure filled in with the
495 * required data for the requested emulation.
497 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
502 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
505 ret
= kvm_vcpu_first_run_init(vcpu
);
509 if (run
->exit_reason
== KVM_EXIT_MMIO
) {
510 ret
= kvm_handle_mmio_return(vcpu
, vcpu
->run
);
515 if (vcpu
->sigset_active
)
516 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
519 run
->exit_reason
= KVM_EXIT_UNKNOWN
;
522 * Check conditions before entering the guest
526 update_vttbr(vcpu
->kvm
);
528 if (vcpu
->arch
.pause
)
531 kvm_vgic_flush_hwstate(vcpu
);
532 kvm_timer_flush_hwstate(vcpu
);
538 * Re-check atomic conditions
540 if (signal_pending(current
)) {
542 run
->exit_reason
= KVM_EXIT_INTR
;
545 if (ret
<= 0 || need_new_vmid_gen(vcpu
->kvm
)) {
548 kvm_timer_sync_hwstate(vcpu
);
549 kvm_vgic_sync_hwstate(vcpu
);
553 /**************************************************************
556 trace_kvm_entry(*vcpu_pc(vcpu
));
558 vcpu
->mode
= IN_GUEST_MODE
;
560 ret
= kvm_call_hyp(__kvm_vcpu_run
, vcpu
);
562 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
565 *************************************************************/
568 * We may have taken a host interrupt in HYP mode (ie
569 * while executing the guest). This interrupt is still
570 * pending, as we haven't serviced it yet!
572 * We're now back in SVC mode, with interrupts
573 * disabled. Enabling the interrupts now will have
574 * the effect of taking the interrupt again, in SVC
580 * We do local_irq_enable() before calling kvm_guest_exit() so
581 * that if a timer interrupt hits while running the guest we
582 * account that tick as being spent in the guest. We enable
583 * preemption after calling kvm_guest_exit() so that if we get
584 * preempted we make sure ticks after that is not counted as
588 trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu
), *vcpu_pc(vcpu
));
592 kvm_timer_sync_hwstate(vcpu
);
593 kvm_vgic_sync_hwstate(vcpu
);
595 ret
= handle_exit(vcpu
, run
, ret
);
598 if (vcpu
->sigset_active
)
599 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
603 static int vcpu_interrupt_line(struct kvm_vcpu
*vcpu
, int number
, bool level
)
609 if (number
== KVM_ARM_IRQ_CPU_IRQ
)
610 bit_index
= __ffs(HCR_VI
);
611 else /* KVM_ARM_IRQ_CPU_FIQ */
612 bit_index
= __ffs(HCR_VF
);
614 ptr
= (unsigned long *)&vcpu
->arch
.irq_lines
;
616 set
= test_and_set_bit(bit_index
, ptr
);
618 set
= test_and_clear_bit(bit_index
, ptr
);
621 * If we didn't change anything, no need to wake up or kick other CPUs
627 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
628 * trigger a world-switch round on the running physical CPU to set the
629 * virtual IRQ/FIQ fields in the HCR appropriately.
636 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_level
,
639 u32 irq
= irq_level
->irq
;
640 unsigned int irq_type
, vcpu_idx
, irq_num
;
641 int nrcpus
= atomic_read(&kvm
->online_vcpus
);
642 struct kvm_vcpu
*vcpu
= NULL
;
643 bool level
= irq_level
->level
;
645 irq_type
= (irq
>> KVM_ARM_IRQ_TYPE_SHIFT
) & KVM_ARM_IRQ_TYPE_MASK
;
646 vcpu_idx
= (irq
>> KVM_ARM_IRQ_VCPU_SHIFT
) & KVM_ARM_IRQ_VCPU_MASK
;
647 irq_num
= (irq
>> KVM_ARM_IRQ_NUM_SHIFT
) & KVM_ARM_IRQ_NUM_MASK
;
649 trace_kvm_irq_line(irq_type
, vcpu_idx
, irq_num
, irq_level
->level
);
652 case KVM_ARM_IRQ_TYPE_CPU
:
653 if (irqchip_in_kernel(kvm
))
656 if (vcpu_idx
>= nrcpus
)
659 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
663 if (irq_num
> KVM_ARM_IRQ_CPU_FIQ
)
666 return vcpu_interrupt_line(vcpu
, irq_num
, level
);
667 case KVM_ARM_IRQ_TYPE_PPI
:
668 if (!irqchip_in_kernel(kvm
))
671 if (vcpu_idx
>= nrcpus
)
674 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
678 if (irq_num
< VGIC_NR_SGIS
|| irq_num
>= VGIC_NR_PRIVATE_IRQS
)
681 return kvm_vgic_inject_irq(kvm
, vcpu
->vcpu_id
, irq_num
, level
);
682 case KVM_ARM_IRQ_TYPE_SPI
:
683 if (!irqchip_in_kernel(kvm
))
686 if (irq_num
< VGIC_NR_PRIVATE_IRQS
)
689 return kvm_vgic_inject_irq(kvm
, 0, irq_num
, level
);
695 static int kvm_vcpu_set_target(struct kvm_vcpu
*vcpu
,
696 const struct kvm_vcpu_init
*init
)
699 int phys_target
= kvm_target_cpu();
701 if (init
->target
!= phys_target
)
705 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
706 * use the same target.
708 if (vcpu
->arch
.target
!= -1 && vcpu
->arch
.target
!= init
->target
)
711 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
712 for (i
= 0; i
< sizeof(init
->features
) * 8; i
++) {
713 bool set
= (init
->features
[i
/ 32] & (1 << (i
% 32)));
715 if (set
&& i
>= KVM_VCPU_MAX_FEATURES
)
719 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
720 * use the same feature set.
722 if (vcpu
->arch
.target
!= -1 && i
< KVM_VCPU_MAX_FEATURES
&&
723 test_bit(i
, vcpu
->arch
.features
) != set
)
727 set_bit(i
, vcpu
->arch
.features
);
730 vcpu
->arch
.target
= phys_target
;
732 /* Now we know what it is, we can reset it. */
733 return kvm_reset_vcpu(vcpu
);
737 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu
*vcpu
,
738 struct kvm_vcpu_init
*init
)
742 ret
= kvm_vcpu_set_target(vcpu
, init
);
747 * Ensure a rebooted VM will fault in RAM pages and detect if the
748 * guest MMU is turned off and flush the caches as needed.
750 if (vcpu
->arch
.has_run_once
)
751 stage2_unmap_vm(vcpu
->kvm
);
753 vcpu_reset_hcr(vcpu
);
756 * Handle the "start in power-off" case by marking the VCPU as paused.
758 if (test_bit(KVM_ARM_VCPU_POWER_OFF
, vcpu
->arch
.features
))
759 vcpu
->arch
.pause
= true;
761 vcpu
->arch
.pause
= false;
766 long kvm_arch_vcpu_ioctl(struct file
*filp
,
767 unsigned int ioctl
, unsigned long arg
)
769 struct kvm_vcpu
*vcpu
= filp
->private_data
;
770 void __user
*argp
= (void __user
*)arg
;
773 case KVM_ARM_VCPU_INIT
: {
774 struct kvm_vcpu_init init
;
776 if (copy_from_user(&init
, argp
, sizeof(init
)))
779 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu
, &init
);
781 case KVM_SET_ONE_REG
:
782 case KVM_GET_ONE_REG
: {
783 struct kvm_one_reg reg
;
785 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
788 if (copy_from_user(®
, argp
, sizeof(reg
)))
790 if (ioctl
== KVM_SET_ONE_REG
)
791 return kvm_arm_set_reg(vcpu
, ®
);
793 return kvm_arm_get_reg(vcpu
, ®
);
795 case KVM_GET_REG_LIST
: {
796 struct kvm_reg_list __user
*user_list
= argp
;
797 struct kvm_reg_list reg_list
;
800 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
803 if (copy_from_user(®_list
, user_list
, sizeof(reg_list
)))
806 reg_list
.n
= kvm_arm_num_regs(vcpu
);
807 if (copy_to_user(user_list
, ®_list
, sizeof(reg_list
)))
811 return kvm_arm_copy_reg_indices(vcpu
, user_list
->reg
);
819 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
821 * @log: slot id and address to which we copy the log
823 * Steps 1-4 below provide general overview of dirty page logging. See
824 * kvm_get_dirty_log_protect() function description for additional details.
826 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
827 * always flush the TLB (step 4) even if previous step failed and the dirty
828 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
829 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
830 * writes will be marked dirty for next log read.
832 * 1. Take a snapshot of the bit and clear it if needed.
833 * 2. Write protect the corresponding page.
834 * 3. Copy the snapshot to the userspace.
835 * 4. Flush TLB's if needed.
837 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
839 bool is_dirty
= false;
842 mutex_lock(&kvm
->slots_lock
);
844 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
847 kvm_flush_remote_tlbs(kvm
);
849 mutex_unlock(&kvm
->slots_lock
);
853 static int kvm_vm_ioctl_set_device_addr(struct kvm
*kvm
,
854 struct kvm_arm_device_addr
*dev_addr
)
856 unsigned long dev_id
, type
;
858 dev_id
= (dev_addr
->id
& KVM_ARM_DEVICE_ID_MASK
) >>
859 KVM_ARM_DEVICE_ID_SHIFT
;
860 type
= (dev_addr
->id
& KVM_ARM_DEVICE_TYPE_MASK
) >>
861 KVM_ARM_DEVICE_TYPE_SHIFT
;
864 case KVM_ARM_DEVICE_VGIC_V2
:
865 return kvm_vgic_addr(kvm
, type
, &dev_addr
->addr
, true);
871 long kvm_arch_vm_ioctl(struct file
*filp
,
872 unsigned int ioctl
, unsigned long arg
)
874 struct kvm
*kvm
= filp
->private_data
;
875 void __user
*argp
= (void __user
*)arg
;
878 case KVM_CREATE_IRQCHIP
: {
879 return kvm_vgic_create(kvm
, KVM_DEV_TYPE_ARM_VGIC_V2
);
881 case KVM_ARM_SET_DEVICE_ADDR
: {
882 struct kvm_arm_device_addr dev_addr
;
884 if (copy_from_user(&dev_addr
, argp
, sizeof(dev_addr
)))
886 return kvm_vm_ioctl_set_device_addr(kvm
, &dev_addr
);
888 case KVM_ARM_PREFERRED_TARGET
: {
890 struct kvm_vcpu_init init
;
892 err
= kvm_vcpu_preferred_target(&init
);
896 if (copy_to_user(argp
, &init
, sizeof(init
)))
906 static void cpu_init_hyp_mode(void *dummy
)
908 phys_addr_t boot_pgd_ptr
;
910 unsigned long hyp_stack_ptr
;
911 unsigned long stack_page
;
912 unsigned long vector_ptr
;
914 /* Switch from the HYP stub to our own HYP init vector */
915 __hyp_set_vectors(kvm_get_idmap_vector());
917 boot_pgd_ptr
= kvm_mmu_get_boot_httbr();
918 pgd_ptr
= kvm_mmu_get_httbr();
919 stack_page
= __this_cpu_read(kvm_arm_hyp_stack_page
);
920 hyp_stack_ptr
= stack_page
+ PAGE_SIZE
;
921 vector_ptr
= (unsigned long)__kvm_hyp_vector
;
923 __cpu_init_hyp_mode(boot_pgd_ptr
, pgd_ptr
, hyp_stack_ptr
, vector_ptr
);
926 static int hyp_init_cpu_notify(struct notifier_block
*self
,
927 unsigned long action
, void *cpu
)
931 case CPU_STARTING_FROZEN
:
932 if (__hyp_get_vectors() == hyp_default_vectors
)
933 cpu_init_hyp_mode(NULL
);
940 static struct notifier_block hyp_init_cpu_nb
= {
941 .notifier_call
= hyp_init_cpu_notify
,
945 static int hyp_init_cpu_pm_notifier(struct notifier_block
*self
,
949 if (cmd
== CPU_PM_EXIT
&&
950 __hyp_get_vectors() == hyp_default_vectors
) {
951 cpu_init_hyp_mode(NULL
);
958 static struct notifier_block hyp_init_cpu_pm_nb
= {
959 .notifier_call
= hyp_init_cpu_pm_notifier
,
962 static void __init
hyp_cpu_pm_init(void)
964 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb
);
967 static inline void hyp_cpu_pm_init(void)
973 * Inits Hyp-mode on all online CPUs
975 static int init_hyp_mode(void)
981 * Allocate Hyp PGD and setup Hyp identity mapping
983 err
= kvm_mmu_init();
988 * It is probably enough to obtain the default on one
989 * CPU. It's unlikely to be different on the others.
991 hyp_default_vectors
= __hyp_get_vectors();
994 * Allocate stack pages for Hypervisor-mode
996 for_each_possible_cpu(cpu
) {
997 unsigned long stack_page
;
999 stack_page
= __get_free_page(GFP_KERNEL
);
1002 goto out_free_stack_pages
;
1005 per_cpu(kvm_arm_hyp_stack_page
, cpu
) = stack_page
;
1009 * Map the Hyp-code called directly from the host
1011 err
= create_hyp_mappings(__kvm_hyp_code_start
, __kvm_hyp_code_end
);
1013 kvm_err("Cannot map world-switch code\n");
1014 goto out_free_mappings
;
1018 * Map the Hyp stack pages
1020 for_each_possible_cpu(cpu
) {
1021 char *stack_page
= (char *)per_cpu(kvm_arm_hyp_stack_page
, cpu
);
1022 err
= create_hyp_mappings(stack_page
, stack_page
+ PAGE_SIZE
);
1025 kvm_err("Cannot map hyp stack\n");
1026 goto out_free_mappings
;
1031 * Map the host CPU structures
1033 kvm_host_cpu_state
= alloc_percpu(kvm_cpu_context_t
);
1034 if (!kvm_host_cpu_state
) {
1036 kvm_err("Cannot allocate host CPU state\n");
1037 goto out_free_mappings
;
1040 for_each_possible_cpu(cpu
) {
1041 kvm_cpu_context_t
*cpu_ctxt
;
1043 cpu_ctxt
= per_cpu_ptr(kvm_host_cpu_state
, cpu
);
1044 err
= create_hyp_mappings(cpu_ctxt
, cpu_ctxt
+ 1);
1047 kvm_err("Cannot map host CPU state: %d\n", err
);
1048 goto out_free_context
;
1053 * Execute the init code on each CPU.
1055 on_each_cpu(cpu_init_hyp_mode
, NULL
, 1);
1058 * Init HYP view of VGIC
1060 err
= kvm_vgic_hyp_init();
1062 goto out_free_context
;
1065 * Init HYP architected timer support
1067 err
= kvm_timer_hyp_init();
1069 goto out_free_mappings
;
1071 #ifndef CONFIG_HOTPLUG_CPU
1072 free_boot_hyp_pgd();
1077 kvm_info("Hyp mode initialized successfully\n");
1081 free_percpu(kvm_host_cpu_state
);
1084 out_free_stack_pages
:
1085 for_each_possible_cpu(cpu
)
1086 free_page(per_cpu(kvm_arm_hyp_stack_page
, cpu
));
1088 kvm_err("error initializing Hyp mode: %d\n", err
);
1092 static void check_kvm_target_cpu(void *ret
)
1094 *(int *)ret
= kvm_target_cpu();
1097 struct kvm_vcpu
*kvm_mpidr_to_vcpu(struct kvm
*kvm
, unsigned long mpidr
)
1099 struct kvm_vcpu
*vcpu
;
1102 mpidr
&= MPIDR_HWID_BITMASK
;
1103 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1104 if (mpidr
== kvm_vcpu_get_mpidr_aff(vcpu
))
1111 * Initialize Hyp-mode and memory mappings on all CPUs.
1113 int kvm_arch_init(void *opaque
)
1118 if (!is_hyp_mode_available()) {
1119 kvm_err("HYP mode not available\n");
1123 for_each_online_cpu(cpu
) {
1124 smp_call_function_single(cpu
, check_kvm_target_cpu
, &ret
, 1);
1126 kvm_err("Error, CPU %d not supported!\n", cpu
);
1131 cpu_notifier_register_begin();
1133 err
= init_hyp_mode();
1137 err
= __register_cpu_notifier(&hyp_init_cpu_nb
);
1139 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err
);
1143 cpu_notifier_register_done();
1147 kvm_coproc_table_init();
1150 cpu_notifier_register_done();
1154 /* NOP: Compiling as a module not supported */
1155 void kvm_arch_exit(void)
1157 kvm_perf_teardown();
1160 static int arm_init(void)
1162 int rc
= kvm_init(NULL
, sizeof(struct kvm_vcpu
), 0, THIS_MODULE
);
1166 module_init(arm_init
);