ARM: rockchip: fix broken build
[linux/fpc-iii.git] / arch / arm / mach-bcm / kona_smp.c
blob66a0465528a59580980ea0ea8a16bcb4ef95ed4e
1 /*
2 * Copyright (C) 2014 Broadcom Corporation
3 * Copyright 2014 Linaro Limited
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/io.h>
18 #include <linux/of.h>
19 #include <linux/sched.h>
21 #include <asm/smp.h>
22 #include <asm/smp_plat.h>
23 #include <asm/smp_scu.h>
25 /* Size of mapped Cortex A9 SCU address space */
26 #define CORTEX_A9_SCU_SIZE 0x58
28 #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */
29 #define BOOT_ADDR_CPUID_MASK 0x3
31 /* Name of device node property defining secondary boot register location */
32 #define OF_SECONDARY_BOOT "secondary-boot-reg"
34 /* I/O address of register used to coordinate secondary core startup */
35 static u32 secondary_boot;
38 * Enable the Cortex A9 Snoop Control Unit
40 * By the time this is called we already know there are multiple
41 * cores present. We assume we're running on a Cortex A9 processor,
42 * so any trouble getting the base address register or getting the
43 * SCU base is a problem.
45 * Return 0 if successful or an error code otherwise.
47 static int __init scu_a9_enable(void)
49 unsigned long config_base;
50 void __iomem *scu_base;
52 if (!scu_a9_has_base()) {
53 pr_err("no configuration base address register!\n");
54 return -ENXIO;
57 /* Config base address register value is zero for uniprocessor */
58 config_base = scu_a9_get_base();
59 if (!config_base) {
60 pr_err("hardware reports only one core\n");
61 return -ENOENT;
64 scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
65 if (!scu_base) {
66 pr_err("failed to remap config base (%lu/%u) for SCU\n",
67 config_base, CORTEX_A9_SCU_SIZE);
68 return -ENOMEM;
71 scu_enable(scu_base);
73 iounmap(scu_base); /* That's the last we'll need of this */
75 return 0;
78 static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
80 static cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
81 struct device_node *node;
82 int ret;
84 BUG_ON(secondary_boot); /* We're called only once */
87 * This function is only called via smp_ops->smp_prepare_cpu().
88 * That only happens if a "/cpus" device tree node exists
89 * and has an "enable-method" property that selects the SMP
90 * operations defined herein.
92 node = of_find_node_by_path("/cpus");
93 BUG_ON(!node);
96 * Our secondary enable method requires a "secondary-boot-reg"
97 * property to specify a register address used to request the
98 * ROM code boot a secondary code. If we have any trouble
99 * getting this we fall back to uniprocessor mode.
101 if (of_property_read_u32(node, OF_SECONDARY_BOOT, &secondary_boot)) {
102 pr_err("%s: missing/invalid " OF_SECONDARY_BOOT " property\n",
103 node->name);
104 ret = -ENOENT; /* Arrange to disable SMP */
105 goto out;
109 * Enable the SCU on Cortex A9 based SoCs. If -ENOENT is
110 * returned, the SoC reported a uniprocessor configuration.
111 * We bail on any other error.
113 ret = scu_a9_enable();
114 out:
115 of_node_put(node);
116 if (ret) {
117 /* Update the CPU present map to reflect uniprocessor mode */
118 BUG_ON(ret != -ENOENT);
119 pr_warn("disabling SMP\n");
120 init_cpu_present(&only_cpu_0);
125 * The ROM code has the secondary cores looping, waiting for an event.
126 * When an event occurs each core examines the bottom two bits of the
127 * secondary boot register. When a core finds those bits contain its
128 * own core id, it performs initialization, including computing its boot
129 * address by clearing the boot register value's bottom two bits. The
130 * core signals that it is beginning its execution by writing its boot
131 * address back to the secondary boot register, and finally jumps to
132 * that address.
134 * So to start a core executing we need to:
135 * - Encode the (hardware) CPU id with the bottom bits of the secondary
136 * start address.
137 * - Write that value into the secondary boot register.
138 * - Generate an event to wake up the secondary CPU(s).
139 * - Wait for the secondary boot register to be re-written, which
140 * indicates the secondary core has started.
142 static int bcm_boot_secondary(unsigned int cpu, struct task_struct *idle)
144 void __iomem *boot_reg;
145 phys_addr_t boot_func;
146 u64 start_clock;
147 u32 cpu_id;
148 u32 boot_val;
149 bool timeout = false;
151 cpu_id = cpu_logical_map(cpu);
152 if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
153 pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
154 return -EINVAL;
157 if (!secondary_boot) {
158 pr_err("required secondary boot register not specified\n");
159 return -EINVAL;
162 boot_reg = ioremap_nocache((phys_addr_t)secondary_boot, sizeof(u32));
163 if (!boot_reg) {
164 pr_err("unable to map boot register for cpu %u\n", cpu_id);
165 return -ENOSYS;
169 * Secondary cores will start in secondary_startup(),
170 * defined in "arch/arm/kernel/head.S"
172 boot_func = virt_to_phys(secondary_startup);
173 BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
174 BUG_ON(boot_func > (phys_addr_t)U32_MAX);
176 /* The core to start is encoded in the low bits */
177 boot_val = (u32)boot_func | cpu_id;
178 writel_relaxed(boot_val, boot_reg);
180 sev();
182 /* The low bits will be cleared once the core has started */
183 start_clock = local_clock();
184 while (!timeout && readl_relaxed(boot_reg) == boot_val)
185 timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
187 iounmap(boot_reg);
189 if (!timeout)
190 return 0;
192 pr_err("timeout waiting for cpu %u to start\n", cpu_id);
194 return -ENOSYS;
197 static struct smp_operations bcm_smp_ops __initdata = {
198 .smp_prepare_cpus = bcm_smp_prepare_cpus,
199 .smp_boot_secondary = bcm_boot_secondary,
201 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
202 &bcm_smp_ops);