2 * linux/arch/arm/mm/dma-mapping.c
4 * Copyright (C) 2000-2004 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * DMA uncached mapping support.
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
45 * The DMA API is built upon the notion of "buffer ownership". A buffer
46 * is either exclusively owned by the CPU (and therefore may be accessed
47 * by it) or exclusively owned by the DMA device. These helper functions
48 * represent the transitions between these two ownership states.
50 * Note, however, that on later ARMs, this notion does not work due to
51 * speculative prefetches. We model our approach on the assumption that
52 * the CPU does do speculative prefetches, which means we clean caches
53 * before transfers and delay cache invalidation until transfer completion.
56 static void __dma_page_cpu_to_dev(struct page
*, unsigned long,
57 size_t, enum dma_data_direction
);
58 static void __dma_page_dev_to_cpu(struct page
*, unsigned long,
59 size_t, enum dma_data_direction
);
62 * arm_dma_map_page - map a portion of a page for streaming DMA
63 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
64 * @page: page that buffer resides in
65 * @offset: offset into page for start of buffer
66 * @size: size of buffer to map
67 * @dir: DMA transfer direction
69 * Ensure that any data held in the cache is appropriately discarded
72 * The device owns this memory once this call has completed. The CPU
73 * can regain ownership by calling dma_unmap_page().
75 static dma_addr_t
arm_dma_map_page(struct device
*dev
, struct page
*page
,
76 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
77 struct dma_attrs
*attrs
)
79 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
80 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
81 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
84 static dma_addr_t
arm_coherent_dma_map_page(struct device
*dev
, struct page
*page
,
85 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
86 struct dma_attrs
*attrs
)
88 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
92 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
93 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
94 * @handle: DMA address of buffer
95 * @size: size of buffer (same as passed to dma_map_page)
96 * @dir: DMA transfer direction (same as passed to dma_map_page)
98 * Unmap a page streaming mode DMA translation. The handle and size
99 * must match what was provided in the previous dma_map_page() call.
100 * All other usages are undefined.
102 * After this call, reads by the CPU to the buffer are guaranteed to see
103 * whatever the device wrote there.
105 static void arm_dma_unmap_page(struct device
*dev
, dma_addr_t handle
,
106 size_t size
, enum dma_data_direction dir
,
107 struct dma_attrs
*attrs
)
109 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
110 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev
, handle
)),
111 handle
& ~PAGE_MASK
, size
, dir
);
114 static void arm_dma_sync_single_for_cpu(struct device
*dev
,
115 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
117 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
118 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
119 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
122 static void arm_dma_sync_single_for_device(struct device
*dev
,
123 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
125 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
126 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
127 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
130 struct dma_map_ops arm_dma_ops
= {
131 .alloc
= arm_dma_alloc
,
132 .free
= arm_dma_free
,
133 .mmap
= arm_dma_mmap
,
134 .get_sgtable
= arm_dma_get_sgtable
,
135 .map_page
= arm_dma_map_page
,
136 .unmap_page
= arm_dma_unmap_page
,
137 .map_sg
= arm_dma_map_sg
,
138 .unmap_sg
= arm_dma_unmap_sg
,
139 .sync_single_for_cpu
= arm_dma_sync_single_for_cpu
,
140 .sync_single_for_device
= arm_dma_sync_single_for_device
,
141 .sync_sg_for_cpu
= arm_dma_sync_sg_for_cpu
,
142 .sync_sg_for_device
= arm_dma_sync_sg_for_device
,
143 .set_dma_mask
= arm_dma_set_mask
,
145 EXPORT_SYMBOL(arm_dma_ops
);
147 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
148 dma_addr_t
*handle
, gfp_t gfp
, struct dma_attrs
*attrs
);
149 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
150 dma_addr_t handle
, struct dma_attrs
*attrs
);
151 static int arm_coherent_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
152 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
153 struct dma_attrs
*attrs
);
155 struct dma_map_ops arm_coherent_dma_ops
= {
156 .alloc
= arm_coherent_dma_alloc
,
157 .free
= arm_coherent_dma_free
,
158 .mmap
= arm_coherent_dma_mmap
,
159 .get_sgtable
= arm_dma_get_sgtable
,
160 .map_page
= arm_coherent_dma_map_page
,
161 .map_sg
= arm_dma_map_sg
,
162 .set_dma_mask
= arm_dma_set_mask
,
164 EXPORT_SYMBOL(arm_coherent_dma_ops
);
166 static int __dma_supported(struct device
*dev
, u64 mask
, bool warn
)
168 unsigned long max_dma_pfn
;
171 * If the mask allows for more memory than we can address,
172 * and we actually have that much memory, then we must
173 * indicate that DMA to this device is not supported.
175 if (sizeof(mask
) != sizeof(dma_addr_t
) &&
176 mask
> (dma_addr_t
)~0 &&
177 dma_to_pfn(dev
, ~0) < max_pfn
- 1) {
179 dev_warn(dev
, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
181 dev_warn(dev
, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
186 max_dma_pfn
= min(max_pfn
, arm_dma_pfn_limit
);
189 * Translate the device's DMA mask to a PFN limit. This
190 * PFN number includes the page which we can DMA to.
192 if (dma_to_pfn(dev
, mask
) < max_dma_pfn
) {
194 dev_warn(dev
, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
196 dma_to_pfn(dev
, 0), dma_to_pfn(dev
, mask
) + 1,
204 static u64
get_coherent_dma_mask(struct device
*dev
)
206 u64 mask
= (u64
)DMA_BIT_MASK(32);
209 mask
= dev
->coherent_dma_mask
;
212 * Sanity check the DMA mask - it must be non-zero, and
213 * must be able to be satisfied by a DMA allocation.
216 dev_warn(dev
, "coherent DMA mask is unset\n");
220 if (!__dma_supported(dev
, mask
, true))
227 static void __dma_clear_buffer(struct page
*page
, size_t size
)
230 * Ensure that the allocated pages are zeroed, and that any data
231 * lurking in the kernel direct-mapped region is invalidated.
233 if (PageHighMem(page
)) {
234 phys_addr_t base
= __pfn_to_phys(page_to_pfn(page
));
235 phys_addr_t end
= base
+ size
;
237 void *ptr
= kmap_atomic(page
);
238 memset(ptr
, 0, PAGE_SIZE
);
239 dmac_flush_range(ptr
, ptr
+ PAGE_SIZE
);
244 outer_flush_range(base
, end
);
246 void *ptr
= page_address(page
);
247 memset(ptr
, 0, size
);
248 dmac_flush_range(ptr
, ptr
+ size
);
249 outer_flush_range(__pa(ptr
), __pa(ptr
) + size
);
254 * Allocate a DMA buffer for 'dev' of size 'size' using the
255 * specified gfp mask. Note that 'size' must be page aligned.
257 static struct page
*__dma_alloc_buffer(struct device
*dev
, size_t size
, gfp_t gfp
)
259 unsigned long order
= get_order(size
);
260 struct page
*page
, *p
, *e
;
262 page
= alloc_pages(gfp
, order
);
267 * Now split the huge page and free the excess pages
269 split_page(page
, order
);
270 for (p
= page
+ (size
>> PAGE_SHIFT
), e
= page
+ (1 << order
); p
< e
; p
++)
273 __dma_clear_buffer(page
, size
);
279 * Free a DMA buffer. 'size' must be page aligned.
281 static void __dma_free_buffer(struct page
*page
, size_t size
)
283 struct page
*e
= page
+ (size
>> PAGE_SHIFT
);
293 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
294 pgprot_t prot
, struct page
**ret_page
,
295 const void *caller
, bool want_vaddr
);
297 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
298 pgprot_t prot
, struct page
**ret_page
,
299 const void *caller
, bool want_vaddr
);
302 __dma_alloc_remap(struct page
*page
, size_t size
, gfp_t gfp
, pgprot_t prot
,
306 * DMA allocation can be mapped to user space, so lets
307 * set VM_USERMAP flags too.
309 return dma_common_contiguous_remap(page
, size
,
310 VM_ARM_DMA_CONSISTENT
| VM_USERMAP
,
314 static void __dma_free_remap(void *cpu_addr
, size_t size
)
316 dma_common_free_remap(cpu_addr
, size
,
317 VM_ARM_DMA_CONSISTENT
| VM_USERMAP
);
320 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
321 static struct gen_pool
*atomic_pool
;
323 static size_t atomic_pool_size
= DEFAULT_DMA_COHERENT_POOL_SIZE
;
325 static int __init
early_coherent_pool(char *p
)
327 atomic_pool_size
= memparse(p
, &p
);
330 early_param("coherent_pool", early_coherent_pool
);
332 void __init
init_dma_coherent_pool_size(unsigned long size
)
335 * Catch any attempt to set the pool size too late.
340 * Set architecture specific coherent pool size only if
341 * it has not been changed by kernel command line parameter.
343 if (atomic_pool_size
== DEFAULT_DMA_COHERENT_POOL_SIZE
)
344 atomic_pool_size
= size
;
348 * Initialise the coherent pool for atomic allocations.
350 static int __init
atomic_pool_init(void)
352 pgprot_t prot
= pgprot_dmacoherent(PAGE_KERNEL
);
353 gfp_t gfp
= GFP_KERNEL
| GFP_DMA
;
357 atomic_pool
= gen_pool_create(PAGE_SHIFT
, -1);
361 if (dev_get_cma_area(NULL
))
362 ptr
= __alloc_from_contiguous(NULL
, atomic_pool_size
, prot
,
363 &page
, atomic_pool_init
, true);
365 ptr
= __alloc_remap_buffer(NULL
, atomic_pool_size
, gfp
, prot
,
366 &page
, atomic_pool_init
, true);
370 ret
= gen_pool_add_virt(atomic_pool
, (unsigned long)ptr
,
372 atomic_pool_size
, -1);
374 goto destroy_genpool
;
376 gen_pool_set_algo(atomic_pool
,
377 gen_pool_first_fit_order_align
,
379 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
380 atomic_pool_size
/ 1024);
385 gen_pool_destroy(atomic_pool
);
388 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
389 atomic_pool_size
/ 1024);
393 * CMA is activated by core_initcall, so we must be called after it.
395 postcore_initcall(atomic_pool_init
);
397 struct dma_contig_early_reserve
{
402 static struct dma_contig_early_reserve dma_mmu_remap
[MAX_CMA_AREAS
] __initdata
;
404 static int dma_mmu_remap_num __initdata
;
406 void __init
dma_contiguous_early_fixup(phys_addr_t base
, unsigned long size
)
408 dma_mmu_remap
[dma_mmu_remap_num
].base
= base
;
409 dma_mmu_remap
[dma_mmu_remap_num
].size
= size
;
413 void __init
dma_contiguous_remap(void)
416 for (i
= 0; i
< dma_mmu_remap_num
; i
++) {
417 phys_addr_t start
= dma_mmu_remap
[i
].base
;
418 phys_addr_t end
= start
+ dma_mmu_remap
[i
].size
;
422 if (end
> arm_lowmem_limit
)
423 end
= arm_lowmem_limit
;
427 map
.pfn
= __phys_to_pfn(start
);
428 map
.virtual = __phys_to_virt(start
);
429 map
.length
= end
- start
;
430 map
.type
= MT_MEMORY_DMA_READY
;
433 * Clear previous low-memory mapping to ensure that the
434 * TLB does not see any conflicting entries, then flush
435 * the TLB of the old entries before creating new mappings.
437 * This ensures that any speculatively loaded TLB entries
438 * (even though they may be rare) can not cause any problems,
439 * and ensures that this code is architecturally compliant.
441 for (addr
= __phys_to_virt(start
); addr
< __phys_to_virt(end
);
443 pmd_clear(pmd_off_k(addr
));
445 flush_tlb_kernel_range(__phys_to_virt(start
),
446 __phys_to_virt(end
));
448 iotable_init(&map
, 1);
452 static int __dma_update_pte(pte_t
*pte
, pgtable_t token
, unsigned long addr
,
455 struct page
*page
= virt_to_page(addr
);
456 pgprot_t prot
= *(pgprot_t
*)data
;
458 set_pte_ext(pte
, mk_pte(page
, prot
), 0);
462 static void __dma_remap(struct page
*page
, size_t size
, pgprot_t prot
)
464 unsigned long start
= (unsigned long) page_address(page
);
465 unsigned end
= start
+ size
;
467 apply_to_page_range(&init_mm
, start
, size
, __dma_update_pte
, &prot
);
468 flush_tlb_kernel_range(start
, end
);
471 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
472 pgprot_t prot
, struct page
**ret_page
,
473 const void *caller
, bool want_vaddr
)
477 page
= __dma_alloc_buffer(dev
, size
, gfp
);
483 ptr
= __dma_alloc_remap(page
, size
, gfp
, prot
, caller
);
485 __dma_free_buffer(page
, size
);
494 static void *__alloc_from_pool(size_t size
, struct page
**ret_page
)
500 WARN(1, "coherent pool not initialised!\n");
504 val
= gen_pool_alloc(atomic_pool
, size
);
506 phys_addr_t phys
= gen_pool_virt_to_phys(atomic_pool
, val
);
508 *ret_page
= phys_to_page(phys
);
515 static bool __in_atomic_pool(void *start
, size_t size
)
517 return addr_in_gen_pool(atomic_pool
, (unsigned long)start
, size
);
520 static int __free_from_pool(void *start
, size_t size
)
522 if (!__in_atomic_pool(start
, size
))
525 gen_pool_free(atomic_pool
, (unsigned long)start
, size
);
530 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
531 pgprot_t prot
, struct page
**ret_page
,
532 const void *caller
, bool want_vaddr
)
534 unsigned long order
= get_order(size
);
535 size_t count
= size
>> PAGE_SHIFT
;
539 page
= dma_alloc_from_contiguous(dev
, count
, order
);
543 __dma_clear_buffer(page
, size
);
548 if (PageHighMem(page
)) {
549 ptr
= __dma_alloc_remap(page
, size
, GFP_KERNEL
, prot
, caller
);
551 dma_release_from_contiguous(dev
, page
, count
);
555 __dma_remap(page
, size
, prot
);
556 ptr
= page_address(page
);
564 static void __free_from_contiguous(struct device
*dev
, struct page
*page
,
565 void *cpu_addr
, size_t size
, bool want_vaddr
)
568 if (PageHighMem(page
))
569 __dma_free_remap(cpu_addr
, size
);
571 __dma_remap(page
, size
, PAGE_KERNEL
);
573 dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
);
576 static inline pgprot_t
__get_dma_pgprot(struct dma_attrs
*attrs
, pgprot_t prot
)
578 prot
= dma_get_attr(DMA_ATTR_WRITE_COMBINE
, attrs
) ?
579 pgprot_writecombine(prot
) :
580 pgprot_dmacoherent(prot
);
586 #else /* !CONFIG_MMU */
590 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
591 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
592 #define __alloc_from_pool(size, ret_page) NULL
593 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL
594 #define __free_from_pool(cpu_addr, size) 0
595 #define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
596 #define __dma_free_remap(cpu_addr, size) do { } while (0)
598 #endif /* CONFIG_MMU */
600 static void *__alloc_simple_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
601 struct page
**ret_page
)
604 page
= __dma_alloc_buffer(dev
, size
, gfp
);
609 return page_address(page
);
614 static void *__dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
615 gfp_t gfp
, pgprot_t prot
, bool is_coherent
,
616 struct dma_attrs
*attrs
, const void *caller
)
618 u64 mask
= get_coherent_dma_mask(dev
);
619 struct page
*page
= NULL
;
623 #ifdef CONFIG_DMA_API_DEBUG
624 u64 limit
= (mask
+ 1) & ~mask
;
625 if (limit
&& size
>= limit
) {
626 dev_warn(dev
, "coherent allocation too big (requested %#x mask %#llx)\n",
635 if (mask
< 0xffffffffULL
)
639 * Following is a work-around (a.k.a. hack) to prevent pages
640 * with __GFP_COMP being passed to split_page() which cannot
641 * handle them. The real problem is that this flag probably
642 * should be 0 on ARM as it is not supported on this
643 * platform; see CONFIG_HUGETLBFS.
645 gfp
&= ~(__GFP_COMP
);
647 *handle
= DMA_ERROR_CODE
;
648 size
= PAGE_ALIGN(size
);
649 want_vaddr
= !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING
, attrs
);
651 if (is_coherent
|| nommu())
652 addr
= __alloc_simple_buffer(dev
, size
, gfp
, &page
);
653 else if (!(gfp
& __GFP_WAIT
))
654 addr
= __alloc_from_pool(size
, &page
);
655 else if (!dev_get_cma_area(dev
))
656 addr
= __alloc_remap_buffer(dev
, size
, gfp
, prot
, &page
, caller
, want_vaddr
);
658 addr
= __alloc_from_contiguous(dev
, size
, prot
, &page
, caller
, want_vaddr
);
661 *handle
= pfn_to_dma(dev
, page_to_pfn(page
));
663 return want_vaddr
? addr
: page
;
667 * Allocate DMA-coherent memory space and return both the kernel remapped
668 * virtual and bus address for that space.
670 void *arm_dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
671 gfp_t gfp
, struct dma_attrs
*attrs
)
673 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
676 if (dma_alloc_from_coherent(dev
, size
, handle
, &memory
))
679 return __dma_alloc(dev
, size
, handle
, gfp
, prot
, false,
680 attrs
, __builtin_return_address(0));
683 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
684 dma_addr_t
*handle
, gfp_t gfp
, struct dma_attrs
*attrs
)
686 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
689 if (dma_alloc_from_coherent(dev
, size
, handle
, &memory
))
692 return __dma_alloc(dev
, size
, handle
, gfp
, prot
, true,
693 attrs
, __builtin_return_address(0));
696 static int __arm_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
697 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
698 struct dma_attrs
*attrs
)
702 unsigned long nr_vma_pages
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
703 unsigned long nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
704 unsigned long pfn
= dma_to_pfn(dev
, dma_addr
);
705 unsigned long off
= vma
->vm_pgoff
;
707 if (dma_mmap_from_coherent(dev
, vma
, cpu_addr
, size
, &ret
))
710 if (off
< nr_pages
&& nr_vma_pages
<= (nr_pages
- off
)) {
711 ret
= remap_pfn_range(vma
, vma
->vm_start
,
713 vma
->vm_end
- vma
->vm_start
,
716 #endif /* CONFIG_MMU */
722 * Create userspace mapping for the DMA-coherent memory.
724 static int arm_coherent_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
725 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
726 struct dma_attrs
*attrs
)
728 return __arm_dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
731 int arm_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
732 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
733 struct dma_attrs
*attrs
)
736 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
737 #endif /* CONFIG_MMU */
738 return __arm_dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
742 * Free a buffer as defined by the above mapping.
744 static void __arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
745 dma_addr_t handle
, struct dma_attrs
*attrs
,
748 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
));
749 bool want_vaddr
= !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING
, attrs
);
751 if (dma_release_from_coherent(dev
, get_order(size
), cpu_addr
))
754 size
= PAGE_ALIGN(size
);
756 if (is_coherent
|| nommu()) {
757 __dma_free_buffer(page
, size
);
758 } else if (__free_from_pool(cpu_addr
, size
)) {
760 } else if (!dev_get_cma_area(dev
)) {
762 __dma_free_remap(cpu_addr
, size
);
763 __dma_free_buffer(page
, size
);
766 * Non-atomic allocations cannot be freed with IRQs disabled
768 WARN_ON(irqs_disabled());
769 __free_from_contiguous(dev
, page
, cpu_addr
, size
, want_vaddr
);
773 void arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
774 dma_addr_t handle
, struct dma_attrs
*attrs
)
776 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, false);
779 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
780 dma_addr_t handle
, struct dma_attrs
*attrs
)
782 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, true);
785 int arm_dma_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
786 void *cpu_addr
, dma_addr_t handle
, size_t size
,
787 struct dma_attrs
*attrs
)
789 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
));
792 ret
= sg_alloc_table(sgt
, 1, GFP_KERNEL
);
796 sg_set_page(sgt
->sgl
, page
, PAGE_ALIGN(size
), 0);
800 static void dma_cache_maint_page(struct page
*page
, unsigned long offset
,
801 size_t size
, enum dma_data_direction dir
,
802 void (*op
)(const void *, size_t, int))
807 pfn
= page_to_pfn(page
) + offset
/ PAGE_SIZE
;
811 * A single sg entry may refer to multiple physically contiguous
812 * pages. But we still need to process highmem pages individually.
813 * If highmem is not configured then the bulk of this loop gets
820 page
= pfn_to_page(pfn
);
822 if (PageHighMem(page
)) {
823 if (len
+ offset
> PAGE_SIZE
)
824 len
= PAGE_SIZE
- offset
;
826 if (cache_is_vipt_nonaliasing()) {
827 vaddr
= kmap_atomic(page
);
828 op(vaddr
+ offset
, len
, dir
);
829 kunmap_atomic(vaddr
);
831 vaddr
= kmap_high_get(page
);
833 op(vaddr
+ offset
, len
, dir
);
838 vaddr
= page_address(page
) + offset
;
848 * Make an area consistent for devices.
849 * Note: Drivers should NOT use this function directly, as it will break
850 * platforms with CONFIG_DMABOUNCE.
851 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
853 static void __dma_page_cpu_to_dev(struct page
*page
, unsigned long off
,
854 size_t size
, enum dma_data_direction dir
)
858 dma_cache_maint_page(page
, off
, size
, dir
, dmac_map_area
);
860 paddr
= page_to_phys(page
) + off
;
861 if (dir
== DMA_FROM_DEVICE
) {
862 outer_inv_range(paddr
, paddr
+ size
);
864 outer_clean_range(paddr
, paddr
+ size
);
866 /* FIXME: non-speculating: flush on bidirectional mappings? */
869 static void __dma_page_dev_to_cpu(struct page
*page
, unsigned long off
,
870 size_t size
, enum dma_data_direction dir
)
872 phys_addr_t paddr
= page_to_phys(page
) + off
;
874 /* FIXME: non-speculating: not required */
875 /* in any case, don't bother invalidating if DMA to device */
876 if (dir
!= DMA_TO_DEVICE
) {
877 outer_inv_range(paddr
, paddr
+ size
);
879 dma_cache_maint_page(page
, off
, size
, dir
, dmac_unmap_area
);
883 * Mark the D-cache clean for these pages to avoid extra flushing.
885 if (dir
!= DMA_TO_DEVICE
&& size
>= PAGE_SIZE
) {
889 pfn
= page_to_pfn(page
) + off
/ PAGE_SIZE
;
893 left
-= PAGE_SIZE
- off
;
895 while (left
>= PAGE_SIZE
) {
896 page
= pfn_to_page(pfn
++);
897 set_bit(PG_dcache_clean
, &page
->flags
);
904 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
905 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
906 * @sg: list of buffers
907 * @nents: number of buffers to map
908 * @dir: DMA transfer direction
910 * Map a set of buffers described by scatterlist in streaming mode for DMA.
911 * This is the scatter-gather version of the dma_map_single interface.
912 * Here the scatter gather list elements are each tagged with the
913 * appropriate dma address and length. They are obtained via
914 * sg_dma_{address,length}.
916 * Device ownership issues as mentioned for dma_map_single are the same
919 int arm_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
920 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
922 struct dma_map_ops
*ops
= get_dma_ops(dev
);
923 struct scatterlist
*s
;
926 for_each_sg(sg
, s
, nents
, i
) {
927 #ifdef CONFIG_NEED_SG_DMA_LENGTH
928 s
->dma_length
= s
->length
;
930 s
->dma_address
= ops
->map_page(dev
, sg_page(s
), s
->offset
,
931 s
->length
, dir
, attrs
);
932 if (dma_mapping_error(dev
, s
->dma_address
))
938 for_each_sg(sg
, s
, i
, j
)
939 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
944 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
945 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
946 * @sg: list of buffers
947 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
948 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
950 * Unmap a set of streaming mode DMA translations. Again, CPU access
951 * rules concerning calls here are the same as for dma_unmap_single().
953 void arm_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
954 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
956 struct dma_map_ops
*ops
= get_dma_ops(dev
);
957 struct scatterlist
*s
;
961 for_each_sg(sg
, s
, nents
, i
)
962 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
966 * arm_dma_sync_sg_for_cpu
967 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
968 * @sg: list of buffers
969 * @nents: number of buffers to map (returned from dma_map_sg)
970 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
972 void arm_dma_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
973 int nents
, enum dma_data_direction dir
)
975 struct dma_map_ops
*ops
= get_dma_ops(dev
);
976 struct scatterlist
*s
;
979 for_each_sg(sg
, s
, nents
, i
)
980 ops
->sync_single_for_cpu(dev
, sg_dma_address(s
), s
->length
,
985 * arm_dma_sync_sg_for_device
986 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
987 * @sg: list of buffers
988 * @nents: number of buffers to map (returned from dma_map_sg)
989 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
991 void arm_dma_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
992 int nents
, enum dma_data_direction dir
)
994 struct dma_map_ops
*ops
= get_dma_ops(dev
);
995 struct scatterlist
*s
;
998 for_each_sg(sg
, s
, nents
, i
)
999 ops
->sync_single_for_device(dev
, sg_dma_address(s
), s
->length
,
1004 * Return whether the given device DMA address mask can be supported
1005 * properly. For example, if your device can only drive the low 24-bits
1006 * during bus mastering, then you would pass 0x00ffffff as the mask
1009 int dma_supported(struct device
*dev
, u64 mask
)
1011 return __dma_supported(dev
, mask
, false);
1013 EXPORT_SYMBOL(dma_supported
);
1015 int arm_dma_set_mask(struct device
*dev
, u64 dma_mask
)
1017 if (!dev
->dma_mask
|| !dma_supported(dev
, dma_mask
))
1020 *dev
->dma_mask
= dma_mask
;
1025 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1027 static int __init
dma_debug_do_init(void)
1029 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES
);
1032 fs_initcall(dma_debug_do_init
);
1034 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1038 static int extend_iommu_mapping(struct dma_iommu_mapping
*mapping
);
1040 static inline dma_addr_t
__alloc_iova(struct dma_iommu_mapping
*mapping
,
1043 unsigned int order
= get_order(size
);
1044 unsigned int align
= 0;
1045 unsigned int count
, start
;
1046 size_t mapping_size
= mapping
->bits
<< PAGE_SHIFT
;
1047 unsigned long flags
;
1051 if (order
> CONFIG_ARM_DMA_IOMMU_ALIGNMENT
)
1052 order
= CONFIG_ARM_DMA_IOMMU_ALIGNMENT
;
1054 count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1055 align
= (1 << order
) - 1;
1057 spin_lock_irqsave(&mapping
->lock
, flags
);
1058 for (i
= 0; i
< mapping
->nr_bitmaps
; i
++) {
1059 start
= bitmap_find_next_zero_area(mapping
->bitmaps
[i
],
1060 mapping
->bits
, 0, count
, align
);
1062 if (start
> mapping
->bits
)
1065 bitmap_set(mapping
->bitmaps
[i
], start
, count
);
1070 * No unused range found. Try to extend the existing mapping
1071 * and perform a second attempt to reserve an IO virtual
1072 * address range of size bytes.
1074 if (i
== mapping
->nr_bitmaps
) {
1075 if (extend_iommu_mapping(mapping
)) {
1076 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1077 return DMA_ERROR_CODE
;
1080 start
= bitmap_find_next_zero_area(mapping
->bitmaps
[i
],
1081 mapping
->bits
, 0, count
, align
);
1083 if (start
> mapping
->bits
) {
1084 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1085 return DMA_ERROR_CODE
;
1088 bitmap_set(mapping
->bitmaps
[i
], start
, count
);
1090 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1092 iova
= mapping
->base
+ (mapping_size
* i
);
1093 iova
+= start
<< PAGE_SHIFT
;
1098 static inline void __free_iova(struct dma_iommu_mapping
*mapping
,
1099 dma_addr_t addr
, size_t size
)
1101 unsigned int start
, count
;
1102 size_t mapping_size
= mapping
->bits
<< PAGE_SHIFT
;
1103 unsigned long flags
;
1104 dma_addr_t bitmap_base
;
1110 bitmap_index
= (u32
) (addr
- mapping
->base
) / (u32
) mapping_size
;
1111 BUG_ON(addr
< mapping
->base
|| bitmap_index
> mapping
->extensions
);
1113 bitmap_base
= mapping
->base
+ mapping_size
* bitmap_index
;
1115 start
= (addr
- bitmap_base
) >> PAGE_SHIFT
;
1117 if (addr
+ size
> bitmap_base
+ mapping_size
) {
1119 * The address range to be freed reaches into the iova
1120 * range of the next bitmap. This should not happen as
1121 * we don't allow this in __alloc_iova (at the
1126 count
= size
>> PAGE_SHIFT
;
1128 spin_lock_irqsave(&mapping
->lock
, flags
);
1129 bitmap_clear(mapping
->bitmaps
[bitmap_index
], start
, count
);
1130 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1133 static struct page
**__iommu_alloc_buffer(struct device
*dev
, size_t size
,
1134 gfp_t gfp
, struct dma_attrs
*attrs
)
1136 struct page
**pages
;
1137 int count
= size
>> PAGE_SHIFT
;
1138 int array_size
= count
* sizeof(struct page
*);
1141 if (array_size
<= PAGE_SIZE
)
1142 pages
= kzalloc(array_size
, GFP_KERNEL
);
1144 pages
= vzalloc(array_size
);
1148 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS
, attrs
))
1150 unsigned long order
= get_order(size
);
1153 page
= dma_alloc_from_contiguous(dev
, count
, order
);
1157 __dma_clear_buffer(page
, size
);
1159 for (i
= 0; i
< count
; i
++)
1160 pages
[i
] = page
+ i
;
1166 * IOMMU can map any pages, so himem can also be used here
1168 gfp
|= __GFP_NOWARN
| __GFP_HIGHMEM
;
1173 for (order
= __fls(count
); order
> 0; --order
) {
1175 * We do not want OOM killer to be invoked as long
1176 * as we can fall back to single pages, so we force
1177 * __GFP_NORETRY for orders higher than zero.
1179 pages
[i
] = alloc_pages(gfp
| __GFP_NORETRY
, order
);
1186 * Fall back to single page allocation.
1187 * Might invoke OOM killer as last resort.
1189 pages
[i
] = alloc_pages(gfp
, 0);
1195 split_page(pages
[i
], order
);
1198 pages
[i
+ j
] = pages
[i
] + j
;
1201 __dma_clear_buffer(pages
[i
], PAGE_SIZE
<< order
);
1203 count
-= 1 << order
;
1210 __free_pages(pages
[i
], 0);
1211 if (array_size
<= PAGE_SIZE
)
1218 static int __iommu_free_buffer(struct device
*dev
, struct page
**pages
,
1219 size_t size
, struct dma_attrs
*attrs
)
1221 int count
= size
>> PAGE_SHIFT
;
1222 int array_size
= count
* sizeof(struct page
*);
1225 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS
, attrs
)) {
1226 dma_release_from_contiguous(dev
, pages
[0], count
);
1228 for (i
= 0; i
< count
; i
++)
1230 __free_pages(pages
[i
], 0);
1233 if (array_size
<= PAGE_SIZE
)
1241 * Create a CPU mapping for a specified pages
1244 __iommu_alloc_remap(struct page
**pages
, size_t size
, gfp_t gfp
, pgprot_t prot
,
1247 return dma_common_pages_remap(pages
, size
,
1248 VM_ARM_DMA_CONSISTENT
| VM_USERMAP
, prot
, caller
);
1252 * Create a mapping in device IO address space for specified pages
1255 __iommu_create_mapping(struct device
*dev
, struct page
**pages
, size_t size
)
1257 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1258 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1259 dma_addr_t dma_addr
, iova
;
1260 int i
, ret
= DMA_ERROR_CODE
;
1262 dma_addr
= __alloc_iova(mapping
, size
);
1263 if (dma_addr
== DMA_ERROR_CODE
)
1267 for (i
= 0; i
< count
; ) {
1268 unsigned int next_pfn
= page_to_pfn(pages
[i
]) + 1;
1269 phys_addr_t phys
= page_to_phys(pages
[i
]);
1270 unsigned int len
, j
;
1272 for (j
= i
+ 1; j
< count
; j
++, next_pfn
++)
1273 if (page_to_pfn(pages
[j
]) != next_pfn
)
1276 len
= (j
- i
) << PAGE_SHIFT
;
1277 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
,
1278 IOMMU_READ
|IOMMU_WRITE
);
1286 iommu_unmap(mapping
->domain
, dma_addr
, iova
-dma_addr
);
1287 __free_iova(mapping
, dma_addr
, size
);
1288 return DMA_ERROR_CODE
;
1291 static int __iommu_remove_mapping(struct device
*dev
, dma_addr_t iova
, size_t size
)
1293 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1296 * add optional in-page offset from iova to size and align
1297 * result to page size
1299 size
= PAGE_ALIGN((iova
& ~PAGE_MASK
) + size
);
1302 iommu_unmap(mapping
->domain
, iova
, size
);
1303 __free_iova(mapping
, iova
, size
);
1307 static struct page
**__atomic_get_pages(void *addr
)
1312 phys
= gen_pool_virt_to_phys(atomic_pool
, (unsigned long)addr
);
1313 page
= phys_to_page(phys
);
1315 return (struct page
**)page
;
1318 static struct page
**__iommu_get_pages(void *cpu_addr
, struct dma_attrs
*attrs
)
1320 struct vm_struct
*area
;
1322 if (__in_atomic_pool(cpu_addr
, PAGE_SIZE
))
1323 return __atomic_get_pages(cpu_addr
);
1325 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING
, attrs
))
1328 area
= find_vm_area(cpu_addr
);
1329 if (area
&& (area
->flags
& VM_ARM_DMA_CONSISTENT
))
1334 static void *__iommu_alloc_atomic(struct device
*dev
, size_t size
,
1340 addr
= __alloc_from_pool(size
, &page
);
1344 *handle
= __iommu_create_mapping(dev
, &page
, size
);
1345 if (*handle
== DMA_ERROR_CODE
)
1351 __free_from_pool(addr
, size
);
1355 static void __iommu_free_atomic(struct device
*dev
, void *cpu_addr
,
1356 dma_addr_t handle
, size_t size
)
1358 __iommu_remove_mapping(dev
, handle
, size
);
1359 __free_from_pool(cpu_addr
, size
);
1362 static void *arm_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1363 dma_addr_t
*handle
, gfp_t gfp
, struct dma_attrs
*attrs
)
1365 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
1366 struct page
**pages
;
1369 *handle
= DMA_ERROR_CODE
;
1370 size
= PAGE_ALIGN(size
);
1372 if (!(gfp
& __GFP_WAIT
))
1373 return __iommu_alloc_atomic(dev
, size
, handle
);
1376 * Following is a work-around (a.k.a. hack) to prevent pages
1377 * with __GFP_COMP being passed to split_page() which cannot
1378 * handle them. The real problem is that this flag probably
1379 * should be 0 on ARM as it is not supported on this
1380 * platform; see CONFIG_HUGETLBFS.
1382 gfp
&= ~(__GFP_COMP
);
1384 pages
= __iommu_alloc_buffer(dev
, size
, gfp
, attrs
);
1388 *handle
= __iommu_create_mapping(dev
, pages
, size
);
1389 if (*handle
== DMA_ERROR_CODE
)
1392 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING
, attrs
))
1395 addr
= __iommu_alloc_remap(pages
, size
, gfp
, prot
,
1396 __builtin_return_address(0));
1403 __iommu_remove_mapping(dev
, *handle
, size
);
1405 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1409 static int arm_iommu_mmap_attrs(struct device
*dev
, struct vm_area_struct
*vma
,
1410 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
1411 struct dma_attrs
*attrs
)
1413 unsigned long uaddr
= vma
->vm_start
;
1414 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1415 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1417 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
1423 int ret
= vm_insert_page(vma
, uaddr
, *pages
++);
1425 pr_err("Remapping memory failed: %d\n", ret
);
1430 } while (usize
> 0);
1436 * free a page as defined by the above mapping.
1437 * Must not be called with IRQs disabled.
1439 void arm_iommu_free_attrs(struct device
*dev
, size_t size
, void *cpu_addr
,
1440 dma_addr_t handle
, struct dma_attrs
*attrs
)
1442 struct page
**pages
;
1443 size
= PAGE_ALIGN(size
);
1445 if (__in_atomic_pool(cpu_addr
, size
)) {
1446 __iommu_free_atomic(dev
, cpu_addr
, handle
, size
);
1450 pages
= __iommu_get_pages(cpu_addr
, attrs
);
1452 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr
);
1456 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING
, attrs
)) {
1457 dma_common_free_remap(cpu_addr
, size
,
1458 VM_ARM_DMA_CONSISTENT
| VM_USERMAP
);
1461 __iommu_remove_mapping(dev
, handle
, size
);
1462 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1465 static int arm_iommu_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
1466 void *cpu_addr
, dma_addr_t dma_addr
,
1467 size_t size
, struct dma_attrs
*attrs
)
1469 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1470 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1475 return sg_alloc_table_from_pages(sgt
, pages
, count
, 0, size
,
1479 static int __dma_direction_to_prot(enum dma_data_direction dir
)
1484 case DMA_BIDIRECTIONAL
:
1485 prot
= IOMMU_READ
| IOMMU_WRITE
;
1490 case DMA_FROM_DEVICE
:
1501 * Map a part of the scatter-gather list into contiguous io address space
1503 static int __map_sg_chunk(struct device
*dev
, struct scatterlist
*sg
,
1504 size_t size
, dma_addr_t
*handle
,
1505 enum dma_data_direction dir
, struct dma_attrs
*attrs
,
1508 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1509 dma_addr_t iova
, iova_base
;
1512 struct scatterlist
*s
;
1515 size
= PAGE_ALIGN(size
);
1516 *handle
= DMA_ERROR_CODE
;
1518 iova_base
= iova
= __alloc_iova(mapping
, size
);
1519 if (iova
== DMA_ERROR_CODE
)
1522 for (count
= 0, s
= sg
; count
< (size
>> PAGE_SHIFT
); s
= sg_next(s
)) {
1523 phys_addr_t phys
= page_to_phys(sg_page(s
));
1524 unsigned int len
= PAGE_ALIGN(s
->offset
+ s
->length
);
1527 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
1528 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1530 prot
= __dma_direction_to_prot(dir
);
1532 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
, prot
);
1535 count
+= len
>> PAGE_SHIFT
;
1538 *handle
= iova_base
;
1542 iommu_unmap(mapping
->domain
, iova_base
, count
* PAGE_SIZE
);
1543 __free_iova(mapping
, iova_base
, size
);
1547 static int __iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1548 enum dma_data_direction dir
, struct dma_attrs
*attrs
,
1551 struct scatterlist
*s
= sg
, *dma
= sg
, *start
= sg
;
1553 unsigned int offset
= s
->offset
;
1554 unsigned int size
= s
->offset
+ s
->length
;
1555 unsigned int max
= dma_get_max_seg_size(dev
);
1557 for (i
= 1; i
< nents
; i
++) {
1560 s
->dma_address
= DMA_ERROR_CODE
;
1563 if (s
->offset
|| (size
& ~PAGE_MASK
) || size
+ s
->length
> max
) {
1564 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
,
1565 dir
, attrs
, is_coherent
) < 0)
1568 dma
->dma_address
+= offset
;
1569 dma
->dma_length
= size
- offset
;
1571 size
= offset
= s
->offset
;
1578 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
, dir
, attrs
,
1582 dma
->dma_address
+= offset
;
1583 dma
->dma_length
= size
- offset
;
1588 for_each_sg(sg
, s
, count
, i
)
1589 __iommu_remove_mapping(dev
, sg_dma_address(s
), sg_dma_len(s
));
1594 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1595 * @dev: valid struct device pointer
1596 * @sg: list of buffers
1597 * @nents: number of buffers to map
1598 * @dir: DMA transfer direction
1600 * Map a set of i/o coherent buffers described by scatterlist in streaming
1601 * mode for DMA. The scatter gather list elements are merged together (if
1602 * possible) and tagged with the appropriate dma address and length. They are
1603 * obtained via sg_dma_{address,length}.
1605 int arm_coherent_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1606 int nents
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
1608 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, true);
1612 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1613 * @dev: valid struct device pointer
1614 * @sg: list of buffers
1615 * @nents: number of buffers to map
1616 * @dir: DMA transfer direction
1618 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1619 * The scatter gather list elements are merged together (if possible) and
1620 * tagged with the appropriate dma address and length. They are obtained via
1621 * sg_dma_{address,length}.
1623 int arm_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1624 int nents
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
1626 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, false);
1629 static void __iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
,
1630 int nents
, enum dma_data_direction dir
, struct dma_attrs
*attrs
,
1633 struct scatterlist
*s
;
1636 for_each_sg(sg
, s
, nents
, i
) {
1638 __iommu_remove_mapping(dev
, sg_dma_address(s
),
1641 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
1642 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
,
1648 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1649 * @dev: valid struct device pointer
1650 * @sg: list of buffers
1651 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1652 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1654 * Unmap a set of streaming mode DMA translations. Again, CPU access
1655 * rules concerning calls here are the same as for dma_unmap_single().
1657 void arm_coherent_iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
,
1658 int nents
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
1660 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, true);
1664 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1665 * @dev: valid struct device pointer
1666 * @sg: list of buffers
1667 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1668 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1670 * Unmap a set of streaming mode DMA translations. Again, CPU access
1671 * rules concerning calls here are the same as for dma_unmap_single().
1673 void arm_iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1674 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
1676 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, false);
1680 * arm_iommu_sync_sg_for_cpu
1681 * @dev: valid struct device pointer
1682 * @sg: list of buffers
1683 * @nents: number of buffers to map (returned from dma_map_sg)
1684 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1686 void arm_iommu_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
1687 int nents
, enum dma_data_direction dir
)
1689 struct scatterlist
*s
;
1692 for_each_sg(sg
, s
, nents
, i
)
1693 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
, s
->length
, dir
);
1698 * arm_iommu_sync_sg_for_device
1699 * @dev: valid struct device pointer
1700 * @sg: list of buffers
1701 * @nents: number of buffers to map (returned from dma_map_sg)
1702 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1704 void arm_iommu_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
1705 int nents
, enum dma_data_direction dir
)
1707 struct scatterlist
*s
;
1710 for_each_sg(sg
, s
, nents
, i
)
1711 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1716 * arm_coherent_iommu_map_page
1717 * @dev: valid struct device pointer
1718 * @page: page that buffer resides in
1719 * @offset: offset into page for start of buffer
1720 * @size: size of buffer to map
1721 * @dir: DMA transfer direction
1723 * Coherent IOMMU aware version of arm_dma_map_page()
1725 static dma_addr_t
arm_coherent_iommu_map_page(struct device
*dev
, struct page
*page
,
1726 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1727 struct dma_attrs
*attrs
)
1729 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1730 dma_addr_t dma_addr
;
1731 int ret
, prot
, len
= PAGE_ALIGN(size
+ offset
);
1733 dma_addr
= __alloc_iova(mapping
, len
);
1734 if (dma_addr
== DMA_ERROR_CODE
)
1737 prot
= __dma_direction_to_prot(dir
);
1739 ret
= iommu_map(mapping
->domain
, dma_addr
, page_to_phys(page
), len
, prot
);
1743 return dma_addr
+ offset
;
1745 __free_iova(mapping
, dma_addr
, len
);
1746 return DMA_ERROR_CODE
;
1750 * arm_iommu_map_page
1751 * @dev: valid struct device pointer
1752 * @page: page that buffer resides in
1753 * @offset: offset into page for start of buffer
1754 * @size: size of buffer to map
1755 * @dir: DMA transfer direction
1757 * IOMMU aware version of arm_dma_map_page()
1759 static dma_addr_t
arm_iommu_map_page(struct device
*dev
, struct page
*page
,
1760 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1761 struct dma_attrs
*attrs
)
1763 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
1764 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
1766 return arm_coherent_iommu_map_page(dev
, page
, offset
, size
, dir
, attrs
);
1770 * arm_coherent_iommu_unmap_page
1771 * @dev: valid struct device pointer
1772 * @handle: DMA address of buffer
1773 * @size: size of buffer (same as passed to dma_map_page)
1774 * @dir: DMA transfer direction (same as passed to dma_map_page)
1776 * Coherent IOMMU aware version of arm_dma_unmap_page()
1778 static void arm_coherent_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1779 size_t size
, enum dma_data_direction dir
,
1780 struct dma_attrs
*attrs
)
1782 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1783 dma_addr_t iova
= handle
& PAGE_MASK
;
1784 int offset
= handle
& ~PAGE_MASK
;
1785 int len
= PAGE_ALIGN(size
+ offset
);
1790 iommu_unmap(mapping
->domain
, iova
, len
);
1791 __free_iova(mapping
, iova
, len
);
1795 * arm_iommu_unmap_page
1796 * @dev: valid struct device pointer
1797 * @handle: DMA address of buffer
1798 * @size: size of buffer (same as passed to dma_map_page)
1799 * @dir: DMA transfer direction (same as passed to dma_map_page)
1801 * IOMMU aware version of arm_dma_unmap_page()
1803 static void arm_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1804 size_t size
, enum dma_data_direction dir
,
1805 struct dma_attrs
*attrs
)
1807 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1808 dma_addr_t iova
= handle
& PAGE_MASK
;
1809 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1810 int offset
= handle
& ~PAGE_MASK
;
1811 int len
= PAGE_ALIGN(size
+ offset
);
1816 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
1817 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
1819 iommu_unmap(mapping
->domain
, iova
, len
);
1820 __free_iova(mapping
, iova
, len
);
1823 static void arm_iommu_sync_single_for_cpu(struct device
*dev
,
1824 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
1826 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1827 dma_addr_t iova
= handle
& PAGE_MASK
;
1828 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1829 unsigned int offset
= handle
& ~PAGE_MASK
;
1834 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
1837 static void arm_iommu_sync_single_for_device(struct device
*dev
,
1838 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
1840 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1841 dma_addr_t iova
= handle
& PAGE_MASK
;
1842 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1843 unsigned int offset
= handle
& ~PAGE_MASK
;
1848 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
1851 struct dma_map_ops iommu_ops
= {
1852 .alloc
= arm_iommu_alloc_attrs
,
1853 .free
= arm_iommu_free_attrs
,
1854 .mmap
= arm_iommu_mmap_attrs
,
1855 .get_sgtable
= arm_iommu_get_sgtable
,
1857 .map_page
= arm_iommu_map_page
,
1858 .unmap_page
= arm_iommu_unmap_page
,
1859 .sync_single_for_cpu
= arm_iommu_sync_single_for_cpu
,
1860 .sync_single_for_device
= arm_iommu_sync_single_for_device
,
1862 .map_sg
= arm_iommu_map_sg
,
1863 .unmap_sg
= arm_iommu_unmap_sg
,
1864 .sync_sg_for_cpu
= arm_iommu_sync_sg_for_cpu
,
1865 .sync_sg_for_device
= arm_iommu_sync_sg_for_device
,
1867 .set_dma_mask
= arm_dma_set_mask
,
1870 struct dma_map_ops iommu_coherent_ops
= {
1871 .alloc
= arm_iommu_alloc_attrs
,
1872 .free
= arm_iommu_free_attrs
,
1873 .mmap
= arm_iommu_mmap_attrs
,
1874 .get_sgtable
= arm_iommu_get_sgtable
,
1876 .map_page
= arm_coherent_iommu_map_page
,
1877 .unmap_page
= arm_coherent_iommu_unmap_page
,
1879 .map_sg
= arm_coherent_iommu_map_sg
,
1880 .unmap_sg
= arm_coherent_iommu_unmap_sg
,
1882 .set_dma_mask
= arm_dma_set_mask
,
1886 * arm_iommu_create_mapping
1887 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1888 * @base: start address of the valid IO address space
1889 * @size: maximum size of the valid IO address space
1891 * Creates a mapping structure which holds information about used/unused
1892 * IO address ranges, which is required to perform memory allocation and
1893 * mapping with IOMMU aware functions.
1895 * The client device need to be attached to the mapping with
1896 * arm_iommu_attach_device function.
1898 struct dma_iommu_mapping
*
1899 arm_iommu_create_mapping(struct bus_type
*bus
, dma_addr_t base
, u64 size
)
1901 unsigned int bits
= size
>> PAGE_SHIFT
;
1902 unsigned int bitmap_size
= BITS_TO_LONGS(bits
) * sizeof(long);
1903 struct dma_iommu_mapping
*mapping
;
1907 /* currently only 32-bit DMA address space is supported */
1908 if (size
> DMA_BIT_MASK(32) + 1)
1909 return ERR_PTR(-ERANGE
);
1912 return ERR_PTR(-EINVAL
);
1914 if (bitmap_size
> PAGE_SIZE
) {
1915 extensions
= bitmap_size
/ PAGE_SIZE
;
1916 bitmap_size
= PAGE_SIZE
;
1919 mapping
= kzalloc(sizeof(struct dma_iommu_mapping
), GFP_KERNEL
);
1923 mapping
->bitmap_size
= bitmap_size
;
1924 mapping
->bitmaps
= kzalloc(extensions
* sizeof(unsigned long *),
1926 if (!mapping
->bitmaps
)
1929 mapping
->bitmaps
[0] = kzalloc(bitmap_size
, GFP_KERNEL
);
1930 if (!mapping
->bitmaps
[0])
1933 mapping
->nr_bitmaps
= 1;
1934 mapping
->extensions
= extensions
;
1935 mapping
->base
= base
;
1936 mapping
->bits
= BITS_PER_BYTE
* bitmap_size
;
1938 spin_lock_init(&mapping
->lock
);
1940 mapping
->domain
= iommu_domain_alloc(bus
);
1941 if (!mapping
->domain
)
1944 kref_init(&mapping
->kref
);
1947 kfree(mapping
->bitmaps
[0]);
1949 kfree(mapping
->bitmaps
);
1953 return ERR_PTR(err
);
1955 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping
);
1957 static void release_iommu_mapping(struct kref
*kref
)
1960 struct dma_iommu_mapping
*mapping
=
1961 container_of(kref
, struct dma_iommu_mapping
, kref
);
1963 iommu_domain_free(mapping
->domain
);
1964 for (i
= 0; i
< mapping
->nr_bitmaps
; i
++)
1965 kfree(mapping
->bitmaps
[i
]);
1966 kfree(mapping
->bitmaps
);
1970 static int extend_iommu_mapping(struct dma_iommu_mapping
*mapping
)
1974 if (mapping
->nr_bitmaps
>= mapping
->extensions
)
1977 next_bitmap
= mapping
->nr_bitmaps
;
1978 mapping
->bitmaps
[next_bitmap
] = kzalloc(mapping
->bitmap_size
,
1980 if (!mapping
->bitmaps
[next_bitmap
])
1983 mapping
->nr_bitmaps
++;
1988 void arm_iommu_release_mapping(struct dma_iommu_mapping
*mapping
)
1991 kref_put(&mapping
->kref
, release_iommu_mapping
);
1993 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping
);
1995 static int __arm_iommu_attach_device(struct device
*dev
,
1996 struct dma_iommu_mapping
*mapping
)
2000 err
= iommu_attach_device(mapping
->domain
, dev
);
2004 kref_get(&mapping
->kref
);
2005 to_dma_iommu_mapping(dev
) = mapping
;
2007 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev
));
2012 * arm_iommu_attach_device
2013 * @dev: valid struct device pointer
2014 * @mapping: io address space mapping structure (returned from
2015 * arm_iommu_create_mapping)
2017 * Attaches specified io address space mapping to the provided device.
2018 * This replaces the dma operations (dma_map_ops pointer) with the
2019 * IOMMU aware version.
2021 * More than one client might be attached to the same io address space
2024 int arm_iommu_attach_device(struct device
*dev
,
2025 struct dma_iommu_mapping
*mapping
)
2029 err
= __arm_iommu_attach_device(dev
, mapping
);
2033 set_dma_ops(dev
, &iommu_ops
);
2036 EXPORT_SYMBOL_GPL(arm_iommu_attach_device
);
2038 static void __arm_iommu_detach_device(struct device
*dev
)
2040 struct dma_iommu_mapping
*mapping
;
2042 mapping
= to_dma_iommu_mapping(dev
);
2044 dev_warn(dev
, "Not attached\n");
2048 iommu_detach_device(mapping
->domain
, dev
);
2049 kref_put(&mapping
->kref
, release_iommu_mapping
);
2050 to_dma_iommu_mapping(dev
) = NULL
;
2052 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev
));
2056 * arm_iommu_detach_device
2057 * @dev: valid struct device pointer
2059 * Detaches the provided device from a previously attached map.
2060 * This voids the dma operations (dma_map_ops pointer)
2062 void arm_iommu_detach_device(struct device
*dev
)
2064 __arm_iommu_detach_device(dev
);
2065 set_dma_ops(dev
, NULL
);
2067 EXPORT_SYMBOL_GPL(arm_iommu_detach_device
);
2069 static struct dma_map_ops
*arm_get_iommu_dma_map_ops(bool coherent
)
2071 return coherent
? &iommu_coherent_ops
: &iommu_ops
;
2074 static bool arm_setup_iommu_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2075 struct iommu_ops
*iommu
)
2077 struct dma_iommu_mapping
*mapping
;
2082 mapping
= arm_iommu_create_mapping(dev
->bus
, dma_base
, size
);
2083 if (IS_ERR(mapping
)) {
2084 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2085 size
, dev_name(dev
));
2089 if (__arm_iommu_attach_device(dev
, mapping
)) {
2090 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2092 arm_iommu_release_mapping(mapping
);
2099 static void arm_teardown_iommu_dma_ops(struct device
*dev
)
2101 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2106 __arm_iommu_detach_device(dev
);
2107 arm_iommu_release_mapping(mapping
);
2112 static bool arm_setup_iommu_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2113 struct iommu_ops
*iommu
)
2118 static void arm_teardown_iommu_dma_ops(struct device
*dev
) { }
2120 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2122 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2124 static struct dma_map_ops
*arm_get_dma_map_ops(bool coherent
)
2126 return coherent
? &arm_coherent_dma_ops
: &arm_dma_ops
;
2129 void arch_setup_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2130 struct iommu_ops
*iommu
, bool coherent
)
2132 struct dma_map_ops
*dma_ops
;
2134 dev
->archdata
.dma_coherent
= coherent
;
2135 if (arm_setup_iommu_dma_ops(dev
, dma_base
, size
, iommu
))
2136 dma_ops
= arm_get_iommu_dma_map_ops(coherent
);
2138 dma_ops
= arm_get_dma_map_ops(coherent
);
2140 set_dma_ops(dev
, dma_ops
);
2143 void arch_teardown_dma_ops(struct device
*dev
)
2145 arm_teardown_iommu_dma_ops(dev
);