ARM: rockchip: fix broken build
[linux/fpc-iii.git] / arch / arm / mm / dma-mapping.c
blobcba12f34ff774ca08216c5d2b6061b07b68b1a99
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
4 * Copyright (C) 2000-2004 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * DMA uncached mapping support.
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
42 #include "mm.h"
45 * The DMA API is built upon the notion of "buffer ownership". A buffer
46 * is either exclusively owned by the CPU (and therefore may be accessed
47 * by it) or exclusively owned by the DMA device. These helper functions
48 * represent the transitions between these two ownership states.
50 * Note, however, that on later ARMs, this notion does not work due to
51 * speculative prefetches. We model our approach on the assumption that
52 * the CPU does do speculative prefetches, which means we clean caches
53 * before transfers and delay cache invalidation until transfer completion.
56 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
57 size_t, enum dma_data_direction);
58 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
59 size_t, enum dma_data_direction);
61 /**
62 * arm_dma_map_page - map a portion of a page for streaming DMA
63 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
64 * @page: page that buffer resides in
65 * @offset: offset into page for start of buffer
66 * @size: size of buffer to map
67 * @dir: DMA transfer direction
69 * Ensure that any data held in the cache is appropriately discarded
70 * or written back.
72 * The device owns this memory once this call has completed. The CPU
73 * can regain ownership by calling dma_unmap_page().
75 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
76 unsigned long offset, size_t size, enum dma_data_direction dir,
77 struct dma_attrs *attrs)
79 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
80 __dma_page_cpu_to_dev(page, offset, size, dir);
81 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
84 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
85 unsigned long offset, size_t size, enum dma_data_direction dir,
86 struct dma_attrs *attrs)
88 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
91 /**
92 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
93 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
94 * @handle: DMA address of buffer
95 * @size: size of buffer (same as passed to dma_map_page)
96 * @dir: DMA transfer direction (same as passed to dma_map_page)
98 * Unmap a page streaming mode DMA translation. The handle and size
99 * must match what was provided in the previous dma_map_page() call.
100 * All other usages are undefined.
102 * After this call, reads by the CPU to the buffer are guaranteed to see
103 * whatever the device wrote there.
105 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
106 size_t size, enum dma_data_direction dir,
107 struct dma_attrs *attrs)
109 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
110 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
111 handle & ~PAGE_MASK, size, dir);
114 static void arm_dma_sync_single_for_cpu(struct device *dev,
115 dma_addr_t handle, size_t size, enum dma_data_direction dir)
117 unsigned int offset = handle & (PAGE_SIZE - 1);
118 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
119 __dma_page_dev_to_cpu(page, offset, size, dir);
122 static void arm_dma_sync_single_for_device(struct device *dev,
123 dma_addr_t handle, size_t size, enum dma_data_direction dir)
125 unsigned int offset = handle & (PAGE_SIZE - 1);
126 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
127 __dma_page_cpu_to_dev(page, offset, size, dir);
130 struct dma_map_ops arm_dma_ops = {
131 .alloc = arm_dma_alloc,
132 .free = arm_dma_free,
133 .mmap = arm_dma_mmap,
134 .get_sgtable = arm_dma_get_sgtable,
135 .map_page = arm_dma_map_page,
136 .unmap_page = arm_dma_unmap_page,
137 .map_sg = arm_dma_map_sg,
138 .unmap_sg = arm_dma_unmap_sg,
139 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
140 .sync_single_for_device = arm_dma_sync_single_for_device,
141 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
142 .sync_sg_for_device = arm_dma_sync_sg_for_device,
143 .set_dma_mask = arm_dma_set_mask,
145 EXPORT_SYMBOL(arm_dma_ops);
147 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
148 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
149 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
150 dma_addr_t handle, struct dma_attrs *attrs);
151 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
152 void *cpu_addr, dma_addr_t dma_addr, size_t size,
153 struct dma_attrs *attrs);
155 struct dma_map_ops arm_coherent_dma_ops = {
156 .alloc = arm_coherent_dma_alloc,
157 .free = arm_coherent_dma_free,
158 .mmap = arm_coherent_dma_mmap,
159 .get_sgtable = arm_dma_get_sgtable,
160 .map_page = arm_coherent_dma_map_page,
161 .map_sg = arm_dma_map_sg,
162 .set_dma_mask = arm_dma_set_mask,
164 EXPORT_SYMBOL(arm_coherent_dma_ops);
166 static int __dma_supported(struct device *dev, u64 mask, bool warn)
168 unsigned long max_dma_pfn;
171 * If the mask allows for more memory than we can address,
172 * and we actually have that much memory, then we must
173 * indicate that DMA to this device is not supported.
175 if (sizeof(mask) != sizeof(dma_addr_t) &&
176 mask > (dma_addr_t)~0 &&
177 dma_to_pfn(dev, ~0) < max_pfn - 1) {
178 if (warn) {
179 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
180 mask);
181 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
183 return 0;
186 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
189 * Translate the device's DMA mask to a PFN limit. This
190 * PFN number includes the page which we can DMA to.
192 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
193 if (warn)
194 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
195 mask,
196 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
197 max_dma_pfn + 1);
198 return 0;
201 return 1;
204 static u64 get_coherent_dma_mask(struct device *dev)
206 u64 mask = (u64)DMA_BIT_MASK(32);
208 if (dev) {
209 mask = dev->coherent_dma_mask;
212 * Sanity check the DMA mask - it must be non-zero, and
213 * must be able to be satisfied by a DMA allocation.
215 if (mask == 0) {
216 dev_warn(dev, "coherent DMA mask is unset\n");
217 return 0;
220 if (!__dma_supported(dev, mask, true))
221 return 0;
224 return mask;
227 static void __dma_clear_buffer(struct page *page, size_t size)
230 * Ensure that the allocated pages are zeroed, and that any data
231 * lurking in the kernel direct-mapped region is invalidated.
233 if (PageHighMem(page)) {
234 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
235 phys_addr_t end = base + size;
236 while (size > 0) {
237 void *ptr = kmap_atomic(page);
238 memset(ptr, 0, PAGE_SIZE);
239 dmac_flush_range(ptr, ptr + PAGE_SIZE);
240 kunmap_atomic(ptr);
241 page++;
242 size -= PAGE_SIZE;
244 outer_flush_range(base, end);
245 } else {
246 void *ptr = page_address(page);
247 memset(ptr, 0, size);
248 dmac_flush_range(ptr, ptr + size);
249 outer_flush_range(__pa(ptr), __pa(ptr) + size);
254 * Allocate a DMA buffer for 'dev' of size 'size' using the
255 * specified gfp mask. Note that 'size' must be page aligned.
257 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
259 unsigned long order = get_order(size);
260 struct page *page, *p, *e;
262 page = alloc_pages(gfp, order);
263 if (!page)
264 return NULL;
267 * Now split the huge page and free the excess pages
269 split_page(page, order);
270 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
271 __free_page(p);
273 __dma_clear_buffer(page, size);
275 return page;
279 * Free a DMA buffer. 'size' must be page aligned.
281 static void __dma_free_buffer(struct page *page, size_t size)
283 struct page *e = page + (size >> PAGE_SHIFT);
285 while (page < e) {
286 __free_page(page);
287 page++;
291 #ifdef CONFIG_MMU
293 static void *__alloc_from_contiguous(struct device *dev, size_t size,
294 pgprot_t prot, struct page **ret_page,
295 const void *caller, bool want_vaddr);
297 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
298 pgprot_t prot, struct page **ret_page,
299 const void *caller, bool want_vaddr);
301 static void *
302 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
303 const void *caller)
306 * DMA allocation can be mapped to user space, so lets
307 * set VM_USERMAP flags too.
309 return dma_common_contiguous_remap(page, size,
310 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
311 prot, caller);
314 static void __dma_free_remap(void *cpu_addr, size_t size)
316 dma_common_free_remap(cpu_addr, size,
317 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
320 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
321 static struct gen_pool *atomic_pool;
323 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
325 static int __init early_coherent_pool(char *p)
327 atomic_pool_size = memparse(p, &p);
328 return 0;
330 early_param("coherent_pool", early_coherent_pool);
332 void __init init_dma_coherent_pool_size(unsigned long size)
335 * Catch any attempt to set the pool size too late.
337 BUG_ON(atomic_pool);
340 * Set architecture specific coherent pool size only if
341 * it has not been changed by kernel command line parameter.
343 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
344 atomic_pool_size = size;
348 * Initialise the coherent pool for atomic allocations.
350 static int __init atomic_pool_init(void)
352 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
353 gfp_t gfp = GFP_KERNEL | GFP_DMA;
354 struct page *page;
355 void *ptr;
357 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
358 if (!atomic_pool)
359 goto out;
361 if (dev_get_cma_area(NULL))
362 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
363 &page, atomic_pool_init, true);
364 else
365 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
366 &page, atomic_pool_init, true);
367 if (ptr) {
368 int ret;
370 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
371 page_to_phys(page),
372 atomic_pool_size, -1);
373 if (ret)
374 goto destroy_genpool;
376 gen_pool_set_algo(atomic_pool,
377 gen_pool_first_fit_order_align,
378 (void *)PAGE_SHIFT);
379 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
380 atomic_pool_size / 1024);
381 return 0;
384 destroy_genpool:
385 gen_pool_destroy(atomic_pool);
386 atomic_pool = NULL;
387 out:
388 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
389 atomic_pool_size / 1024);
390 return -ENOMEM;
393 * CMA is activated by core_initcall, so we must be called after it.
395 postcore_initcall(atomic_pool_init);
397 struct dma_contig_early_reserve {
398 phys_addr_t base;
399 unsigned long size;
402 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
404 static int dma_mmu_remap_num __initdata;
406 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
408 dma_mmu_remap[dma_mmu_remap_num].base = base;
409 dma_mmu_remap[dma_mmu_remap_num].size = size;
410 dma_mmu_remap_num++;
413 void __init dma_contiguous_remap(void)
415 int i;
416 for (i = 0; i < dma_mmu_remap_num; i++) {
417 phys_addr_t start = dma_mmu_remap[i].base;
418 phys_addr_t end = start + dma_mmu_remap[i].size;
419 struct map_desc map;
420 unsigned long addr;
422 if (end > arm_lowmem_limit)
423 end = arm_lowmem_limit;
424 if (start >= end)
425 continue;
427 map.pfn = __phys_to_pfn(start);
428 map.virtual = __phys_to_virt(start);
429 map.length = end - start;
430 map.type = MT_MEMORY_DMA_READY;
433 * Clear previous low-memory mapping to ensure that the
434 * TLB does not see any conflicting entries, then flush
435 * the TLB of the old entries before creating new mappings.
437 * This ensures that any speculatively loaded TLB entries
438 * (even though they may be rare) can not cause any problems,
439 * and ensures that this code is architecturally compliant.
441 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
442 addr += PMD_SIZE)
443 pmd_clear(pmd_off_k(addr));
445 flush_tlb_kernel_range(__phys_to_virt(start),
446 __phys_to_virt(end));
448 iotable_init(&map, 1);
452 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
453 void *data)
455 struct page *page = virt_to_page(addr);
456 pgprot_t prot = *(pgprot_t *)data;
458 set_pte_ext(pte, mk_pte(page, prot), 0);
459 return 0;
462 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
464 unsigned long start = (unsigned long) page_address(page);
465 unsigned end = start + size;
467 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
468 flush_tlb_kernel_range(start, end);
471 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
472 pgprot_t prot, struct page **ret_page,
473 const void *caller, bool want_vaddr)
475 struct page *page;
476 void *ptr = NULL;
477 page = __dma_alloc_buffer(dev, size, gfp);
478 if (!page)
479 return NULL;
480 if (!want_vaddr)
481 goto out;
483 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
484 if (!ptr) {
485 __dma_free_buffer(page, size);
486 return NULL;
489 out:
490 *ret_page = page;
491 return ptr;
494 static void *__alloc_from_pool(size_t size, struct page **ret_page)
496 unsigned long val;
497 void *ptr = NULL;
499 if (!atomic_pool) {
500 WARN(1, "coherent pool not initialised!\n");
501 return NULL;
504 val = gen_pool_alloc(atomic_pool, size);
505 if (val) {
506 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
508 *ret_page = phys_to_page(phys);
509 ptr = (void *)val;
512 return ptr;
515 static bool __in_atomic_pool(void *start, size_t size)
517 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
520 static int __free_from_pool(void *start, size_t size)
522 if (!__in_atomic_pool(start, size))
523 return 0;
525 gen_pool_free(atomic_pool, (unsigned long)start, size);
527 return 1;
530 static void *__alloc_from_contiguous(struct device *dev, size_t size,
531 pgprot_t prot, struct page **ret_page,
532 const void *caller, bool want_vaddr)
534 unsigned long order = get_order(size);
535 size_t count = size >> PAGE_SHIFT;
536 struct page *page;
537 void *ptr = NULL;
539 page = dma_alloc_from_contiguous(dev, count, order);
540 if (!page)
541 return NULL;
543 __dma_clear_buffer(page, size);
545 if (!want_vaddr)
546 goto out;
548 if (PageHighMem(page)) {
549 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
550 if (!ptr) {
551 dma_release_from_contiguous(dev, page, count);
552 return NULL;
554 } else {
555 __dma_remap(page, size, prot);
556 ptr = page_address(page);
559 out:
560 *ret_page = page;
561 return ptr;
564 static void __free_from_contiguous(struct device *dev, struct page *page,
565 void *cpu_addr, size_t size, bool want_vaddr)
567 if (want_vaddr) {
568 if (PageHighMem(page))
569 __dma_free_remap(cpu_addr, size);
570 else
571 __dma_remap(page, size, PAGE_KERNEL);
573 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
576 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
578 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
579 pgprot_writecombine(prot) :
580 pgprot_dmacoherent(prot);
581 return prot;
584 #define nommu() 0
586 #else /* !CONFIG_MMU */
588 #define nommu() 1
590 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
591 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
592 #define __alloc_from_pool(size, ret_page) NULL
593 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL
594 #define __free_from_pool(cpu_addr, size) 0
595 #define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
596 #define __dma_free_remap(cpu_addr, size) do { } while (0)
598 #endif /* CONFIG_MMU */
600 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
601 struct page **ret_page)
603 struct page *page;
604 page = __dma_alloc_buffer(dev, size, gfp);
605 if (!page)
606 return NULL;
608 *ret_page = page;
609 return page_address(page);
614 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
615 gfp_t gfp, pgprot_t prot, bool is_coherent,
616 struct dma_attrs *attrs, const void *caller)
618 u64 mask = get_coherent_dma_mask(dev);
619 struct page *page = NULL;
620 void *addr;
621 bool want_vaddr;
623 #ifdef CONFIG_DMA_API_DEBUG
624 u64 limit = (mask + 1) & ~mask;
625 if (limit && size >= limit) {
626 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
627 size, mask);
628 return NULL;
630 #endif
632 if (!mask)
633 return NULL;
635 if (mask < 0xffffffffULL)
636 gfp |= GFP_DMA;
639 * Following is a work-around (a.k.a. hack) to prevent pages
640 * with __GFP_COMP being passed to split_page() which cannot
641 * handle them. The real problem is that this flag probably
642 * should be 0 on ARM as it is not supported on this
643 * platform; see CONFIG_HUGETLBFS.
645 gfp &= ~(__GFP_COMP);
647 *handle = DMA_ERROR_CODE;
648 size = PAGE_ALIGN(size);
649 want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
651 if (is_coherent || nommu())
652 addr = __alloc_simple_buffer(dev, size, gfp, &page);
653 else if (!(gfp & __GFP_WAIT))
654 addr = __alloc_from_pool(size, &page);
655 else if (!dev_get_cma_area(dev))
656 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller, want_vaddr);
657 else
658 addr = __alloc_from_contiguous(dev, size, prot, &page, caller, want_vaddr);
660 if (page)
661 *handle = pfn_to_dma(dev, page_to_pfn(page));
663 return want_vaddr ? addr : page;
667 * Allocate DMA-coherent memory space and return both the kernel remapped
668 * virtual and bus address for that space.
670 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
671 gfp_t gfp, struct dma_attrs *attrs)
673 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
674 void *memory;
676 if (dma_alloc_from_coherent(dev, size, handle, &memory))
677 return memory;
679 return __dma_alloc(dev, size, handle, gfp, prot, false,
680 attrs, __builtin_return_address(0));
683 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
684 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
686 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
687 void *memory;
689 if (dma_alloc_from_coherent(dev, size, handle, &memory))
690 return memory;
692 return __dma_alloc(dev, size, handle, gfp, prot, true,
693 attrs, __builtin_return_address(0));
696 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
697 void *cpu_addr, dma_addr_t dma_addr, size_t size,
698 struct dma_attrs *attrs)
700 int ret = -ENXIO;
701 #ifdef CONFIG_MMU
702 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
703 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
704 unsigned long pfn = dma_to_pfn(dev, dma_addr);
705 unsigned long off = vma->vm_pgoff;
707 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
708 return ret;
710 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
711 ret = remap_pfn_range(vma, vma->vm_start,
712 pfn + off,
713 vma->vm_end - vma->vm_start,
714 vma->vm_page_prot);
716 #endif /* CONFIG_MMU */
718 return ret;
722 * Create userspace mapping for the DMA-coherent memory.
724 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
725 void *cpu_addr, dma_addr_t dma_addr, size_t size,
726 struct dma_attrs *attrs)
728 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
731 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
732 void *cpu_addr, dma_addr_t dma_addr, size_t size,
733 struct dma_attrs *attrs)
735 #ifdef CONFIG_MMU
736 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
737 #endif /* CONFIG_MMU */
738 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
742 * Free a buffer as defined by the above mapping.
744 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
745 dma_addr_t handle, struct dma_attrs *attrs,
746 bool is_coherent)
748 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
749 bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
751 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
752 return;
754 size = PAGE_ALIGN(size);
756 if (is_coherent || nommu()) {
757 __dma_free_buffer(page, size);
758 } else if (__free_from_pool(cpu_addr, size)) {
759 return;
760 } else if (!dev_get_cma_area(dev)) {
761 if (want_vaddr)
762 __dma_free_remap(cpu_addr, size);
763 __dma_free_buffer(page, size);
764 } else {
766 * Non-atomic allocations cannot be freed with IRQs disabled
768 WARN_ON(irqs_disabled());
769 __free_from_contiguous(dev, page, cpu_addr, size, want_vaddr);
773 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
774 dma_addr_t handle, struct dma_attrs *attrs)
776 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
779 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
780 dma_addr_t handle, struct dma_attrs *attrs)
782 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
785 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
786 void *cpu_addr, dma_addr_t handle, size_t size,
787 struct dma_attrs *attrs)
789 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
790 int ret;
792 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
793 if (unlikely(ret))
794 return ret;
796 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
797 return 0;
800 static void dma_cache_maint_page(struct page *page, unsigned long offset,
801 size_t size, enum dma_data_direction dir,
802 void (*op)(const void *, size_t, int))
804 unsigned long pfn;
805 size_t left = size;
807 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
808 offset %= PAGE_SIZE;
811 * A single sg entry may refer to multiple physically contiguous
812 * pages. But we still need to process highmem pages individually.
813 * If highmem is not configured then the bulk of this loop gets
814 * optimized out.
816 do {
817 size_t len = left;
818 void *vaddr;
820 page = pfn_to_page(pfn);
822 if (PageHighMem(page)) {
823 if (len + offset > PAGE_SIZE)
824 len = PAGE_SIZE - offset;
826 if (cache_is_vipt_nonaliasing()) {
827 vaddr = kmap_atomic(page);
828 op(vaddr + offset, len, dir);
829 kunmap_atomic(vaddr);
830 } else {
831 vaddr = kmap_high_get(page);
832 if (vaddr) {
833 op(vaddr + offset, len, dir);
834 kunmap_high(page);
837 } else {
838 vaddr = page_address(page) + offset;
839 op(vaddr, len, dir);
841 offset = 0;
842 pfn++;
843 left -= len;
844 } while (left);
848 * Make an area consistent for devices.
849 * Note: Drivers should NOT use this function directly, as it will break
850 * platforms with CONFIG_DMABOUNCE.
851 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
853 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
854 size_t size, enum dma_data_direction dir)
856 phys_addr_t paddr;
858 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
860 paddr = page_to_phys(page) + off;
861 if (dir == DMA_FROM_DEVICE) {
862 outer_inv_range(paddr, paddr + size);
863 } else {
864 outer_clean_range(paddr, paddr + size);
866 /* FIXME: non-speculating: flush on bidirectional mappings? */
869 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
870 size_t size, enum dma_data_direction dir)
872 phys_addr_t paddr = page_to_phys(page) + off;
874 /* FIXME: non-speculating: not required */
875 /* in any case, don't bother invalidating if DMA to device */
876 if (dir != DMA_TO_DEVICE) {
877 outer_inv_range(paddr, paddr + size);
879 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
883 * Mark the D-cache clean for these pages to avoid extra flushing.
885 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
886 unsigned long pfn;
887 size_t left = size;
889 pfn = page_to_pfn(page) + off / PAGE_SIZE;
890 off %= PAGE_SIZE;
891 if (off) {
892 pfn++;
893 left -= PAGE_SIZE - off;
895 while (left >= PAGE_SIZE) {
896 page = pfn_to_page(pfn++);
897 set_bit(PG_dcache_clean, &page->flags);
898 left -= PAGE_SIZE;
904 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
905 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
906 * @sg: list of buffers
907 * @nents: number of buffers to map
908 * @dir: DMA transfer direction
910 * Map a set of buffers described by scatterlist in streaming mode for DMA.
911 * This is the scatter-gather version of the dma_map_single interface.
912 * Here the scatter gather list elements are each tagged with the
913 * appropriate dma address and length. They are obtained via
914 * sg_dma_{address,length}.
916 * Device ownership issues as mentioned for dma_map_single are the same
917 * here.
919 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
920 enum dma_data_direction dir, struct dma_attrs *attrs)
922 struct dma_map_ops *ops = get_dma_ops(dev);
923 struct scatterlist *s;
924 int i, j;
926 for_each_sg(sg, s, nents, i) {
927 #ifdef CONFIG_NEED_SG_DMA_LENGTH
928 s->dma_length = s->length;
929 #endif
930 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
931 s->length, dir, attrs);
932 if (dma_mapping_error(dev, s->dma_address))
933 goto bad_mapping;
935 return nents;
937 bad_mapping:
938 for_each_sg(sg, s, i, j)
939 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
940 return 0;
944 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
945 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
946 * @sg: list of buffers
947 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
948 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
950 * Unmap a set of streaming mode DMA translations. Again, CPU access
951 * rules concerning calls here are the same as for dma_unmap_single().
953 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
954 enum dma_data_direction dir, struct dma_attrs *attrs)
956 struct dma_map_ops *ops = get_dma_ops(dev);
957 struct scatterlist *s;
959 int i;
961 for_each_sg(sg, s, nents, i)
962 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
966 * arm_dma_sync_sg_for_cpu
967 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
968 * @sg: list of buffers
969 * @nents: number of buffers to map (returned from dma_map_sg)
970 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
972 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
973 int nents, enum dma_data_direction dir)
975 struct dma_map_ops *ops = get_dma_ops(dev);
976 struct scatterlist *s;
977 int i;
979 for_each_sg(sg, s, nents, i)
980 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
981 dir);
985 * arm_dma_sync_sg_for_device
986 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
987 * @sg: list of buffers
988 * @nents: number of buffers to map (returned from dma_map_sg)
989 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
991 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
992 int nents, enum dma_data_direction dir)
994 struct dma_map_ops *ops = get_dma_ops(dev);
995 struct scatterlist *s;
996 int i;
998 for_each_sg(sg, s, nents, i)
999 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1000 dir);
1004 * Return whether the given device DMA address mask can be supported
1005 * properly. For example, if your device can only drive the low 24-bits
1006 * during bus mastering, then you would pass 0x00ffffff as the mask
1007 * to this function.
1009 int dma_supported(struct device *dev, u64 mask)
1011 return __dma_supported(dev, mask, false);
1013 EXPORT_SYMBOL(dma_supported);
1015 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1017 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1018 return -EIO;
1020 *dev->dma_mask = dma_mask;
1022 return 0;
1025 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1027 static int __init dma_debug_do_init(void)
1029 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1030 return 0;
1032 fs_initcall(dma_debug_do_init);
1034 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1036 /* IOMMU */
1038 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1040 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1041 size_t size)
1043 unsigned int order = get_order(size);
1044 unsigned int align = 0;
1045 unsigned int count, start;
1046 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1047 unsigned long flags;
1048 dma_addr_t iova;
1049 int i;
1051 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1052 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1054 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1055 align = (1 << order) - 1;
1057 spin_lock_irqsave(&mapping->lock, flags);
1058 for (i = 0; i < mapping->nr_bitmaps; i++) {
1059 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1060 mapping->bits, 0, count, align);
1062 if (start > mapping->bits)
1063 continue;
1065 bitmap_set(mapping->bitmaps[i], start, count);
1066 break;
1070 * No unused range found. Try to extend the existing mapping
1071 * and perform a second attempt to reserve an IO virtual
1072 * address range of size bytes.
1074 if (i == mapping->nr_bitmaps) {
1075 if (extend_iommu_mapping(mapping)) {
1076 spin_unlock_irqrestore(&mapping->lock, flags);
1077 return DMA_ERROR_CODE;
1080 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1081 mapping->bits, 0, count, align);
1083 if (start > mapping->bits) {
1084 spin_unlock_irqrestore(&mapping->lock, flags);
1085 return DMA_ERROR_CODE;
1088 bitmap_set(mapping->bitmaps[i], start, count);
1090 spin_unlock_irqrestore(&mapping->lock, flags);
1092 iova = mapping->base + (mapping_size * i);
1093 iova += start << PAGE_SHIFT;
1095 return iova;
1098 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1099 dma_addr_t addr, size_t size)
1101 unsigned int start, count;
1102 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1103 unsigned long flags;
1104 dma_addr_t bitmap_base;
1105 u32 bitmap_index;
1107 if (!size)
1108 return;
1110 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1111 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1113 bitmap_base = mapping->base + mapping_size * bitmap_index;
1115 start = (addr - bitmap_base) >> PAGE_SHIFT;
1117 if (addr + size > bitmap_base + mapping_size) {
1119 * The address range to be freed reaches into the iova
1120 * range of the next bitmap. This should not happen as
1121 * we don't allow this in __alloc_iova (at the
1122 * moment).
1124 BUG();
1125 } else
1126 count = size >> PAGE_SHIFT;
1128 spin_lock_irqsave(&mapping->lock, flags);
1129 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1130 spin_unlock_irqrestore(&mapping->lock, flags);
1133 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1134 gfp_t gfp, struct dma_attrs *attrs)
1136 struct page **pages;
1137 int count = size >> PAGE_SHIFT;
1138 int array_size = count * sizeof(struct page *);
1139 int i = 0;
1141 if (array_size <= PAGE_SIZE)
1142 pages = kzalloc(array_size, GFP_KERNEL);
1143 else
1144 pages = vzalloc(array_size);
1145 if (!pages)
1146 return NULL;
1148 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1150 unsigned long order = get_order(size);
1151 struct page *page;
1153 page = dma_alloc_from_contiguous(dev, count, order);
1154 if (!page)
1155 goto error;
1157 __dma_clear_buffer(page, size);
1159 for (i = 0; i < count; i++)
1160 pages[i] = page + i;
1162 return pages;
1166 * IOMMU can map any pages, so himem can also be used here
1168 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1170 while (count) {
1171 int j, order;
1173 for (order = __fls(count); order > 0; --order) {
1175 * We do not want OOM killer to be invoked as long
1176 * as we can fall back to single pages, so we force
1177 * __GFP_NORETRY for orders higher than zero.
1179 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1180 if (pages[i])
1181 break;
1184 if (!pages[i]) {
1186 * Fall back to single page allocation.
1187 * Might invoke OOM killer as last resort.
1189 pages[i] = alloc_pages(gfp, 0);
1190 if (!pages[i])
1191 goto error;
1194 if (order) {
1195 split_page(pages[i], order);
1196 j = 1 << order;
1197 while (--j)
1198 pages[i + j] = pages[i] + j;
1201 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1202 i += 1 << order;
1203 count -= 1 << order;
1206 return pages;
1207 error:
1208 while (i--)
1209 if (pages[i])
1210 __free_pages(pages[i], 0);
1211 if (array_size <= PAGE_SIZE)
1212 kfree(pages);
1213 else
1214 vfree(pages);
1215 return NULL;
1218 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1219 size_t size, struct dma_attrs *attrs)
1221 int count = size >> PAGE_SHIFT;
1222 int array_size = count * sizeof(struct page *);
1223 int i;
1225 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1226 dma_release_from_contiguous(dev, pages[0], count);
1227 } else {
1228 for (i = 0; i < count; i++)
1229 if (pages[i])
1230 __free_pages(pages[i], 0);
1233 if (array_size <= PAGE_SIZE)
1234 kfree(pages);
1235 else
1236 vfree(pages);
1237 return 0;
1241 * Create a CPU mapping for a specified pages
1243 static void *
1244 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1245 const void *caller)
1247 return dma_common_pages_remap(pages, size,
1248 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1252 * Create a mapping in device IO address space for specified pages
1254 static dma_addr_t
1255 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1257 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1258 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1259 dma_addr_t dma_addr, iova;
1260 int i, ret = DMA_ERROR_CODE;
1262 dma_addr = __alloc_iova(mapping, size);
1263 if (dma_addr == DMA_ERROR_CODE)
1264 return dma_addr;
1266 iova = dma_addr;
1267 for (i = 0; i < count; ) {
1268 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1269 phys_addr_t phys = page_to_phys(pages[i]);
1270 unsigned int len, j;
1272 for (j = i + 1; j < count; j++, next_pfn++)
1273 if (page_to_pfn(pages[j]) != next_pfn)
1274 break;
1276 len = (j - i) << PAGE_SHIFT;
1277 ret = iommu_map(mapping->domain, iova, phys, len,
1278 IOMMU_READ|IOMMU_WRITE);
1279 if (ret < 0)
1280 goto fail;
1281 iova += len;
1282 i = j;
1284 return dma_addr;
1285 fail:
1286 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1287 __free_iova(mapping, dma_addr, size);
1288 return DMA_ERROR_CODE;
1291 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1293 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1296 * add optional in-page offset from iova to size and align
1297 * result to page size
1299 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1300 iova &= PAGE_MASK;
1302 iommu_unmap(mapping->domain, iova, size);
1303 __free_iova(mapping, iova, size);
1304 return 0;
1307 static struct page **__atomic_get_pages(void *addr)
1309 struct page *page;
1310 phys_addr_t phys;
1312 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1313 page = phys_to_page(phys);
1315 return (struct page **)page;
1318 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1320 struct vm_struct *area;
1322 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1323 return __atomic_get_pages(cpu_addr);
1325 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1326 return cpu_addr;
1328 area = find_vm_area(cpu_addr);
1329 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1330 return area->pages;
1331 return NULL;
1334 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1335 dma_addr_t *handle)
1337 struct page *page;
1338 void *addr;
1340 addr = __alloc_from_pool(size, &page);
1341 if (!addr)
1342 return NULL;
1344 *handle = __iommu_create_mapping(dev, &page, size);
1345 if (*handle == DMA_ERROR_CODE)
1346 goto err_mapping;
1348 return addr;
1350 err_mapping:
1351 __free_from_pool(addr, size);
1352 return NULL;
1355 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1356 dma_addr_t handle, size_t size)
1358 __iommu_remove_mapping(dev, handle, size);
1359 __free_from_pool(cpu_addr, size);
1362 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1363 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1365 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1366 struct page **pages;
1367 void *addr = NULL;
1369 *handle = DMA_ERROR_CODE;
1370 size = PAGE_ALIGN(size);
1372 if (!(gfp & __GFP_WAIT))
1373 return __iommu_alloc_atomic(dev, size, handle);
1376 * Following is a work-around (a.k.a. hack) to prevent pages
1377 * with __GFP_COMP being passed to split_page() which cannot
1378 * handle them. The real problem is that this flag probably
1379 * should be 0 on ARM as it is not supported on this
1380 * platform; see CONFIG_HUGETLBFS.
1382 gfp &= ~(__GFP_COMP);
1384 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1385 if (!pages)
1386 return NULL;
1388 *handle = __iommu_create_mapping(dev, pages, size);
1389 if (*handle == DMA_ERROR_CODE)
1390 goto err_buffer;
1392 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1393 return pages;
1395 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1396 __builtin_return_address(0));
1397 if (!addr)
1398 goto err_mapping;
1400 return addr;
1402 err_mapping:
1403 __iommu_remove_mapping(dev, *handle, size);
1404 err_buffer:
1405 __iommu_free_buffer(dev, pages, size, attrs);
1406 return NULL;
1409 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1410 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1411 struct dma_attrs *attrs)
1413 unsigned long uaddr = vma->vm_start;
1414 unsigned long usize = vma->vm_end - vma->vm_start;
1415 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1417 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1419 if (!pages)
1420 return -ENXIO;
1422 do {
1423 int ret = vm_insert_page(vma, uaddr, *pages++);
1424 if (ret) {
1425 pr_err("Remapping memory failed: %d\n", ret);
1426 return ret;
1428 uaddr += PAGE_SIZE;
1429 usize -= PAGE_SIZE;
1430 } while (usize > 0);
1432 return 0;
1436 * free a page as defined by the above mapping.
1437 * Must not be called with IRQs disabled.
1439 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1440 dma_addr_t handle, struct dma_attrs *attrs)
1442 struct page **pages;
1443 size = PAGE_ALIGN(size);
1445 if (__in_atomic_pool(cpu_addr, size)) {
1446 __iommu_free_atomic(dev, cpu_addr, handle, size);
1447 return;
1450 pages = __iommu_get_pages(cpu_addr, attrs);
1451 if (!pages) {
1452 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1453 return;
1456 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1457 dma_common_free_remap(cpu_addr, size,
1458 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1461 __iommu_remove_mapping(dev, handle, size);
1462 __iommu_free_buffer(dev, pages, size, attrs);
1465 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1466 void *cpu_addr, dma_addr_t dma_addr,
1467 size_t size, struct dma_attrs *attrs)
1469 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1470 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1472 if (!pages)
1473 return -ENXIO;
1475 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1476 GFP_KERNEL);
1479 static int __dma_direction_to_prot(enum dma_data_direction dir)
1481 int prot;
1483 switch (dir) {
1484 case DMA_BIDIRECTIONAL:
1485 prot = IOMMU_READ | IOMMU_WRITE;
1486 break;
1487 case DMA_TO_DEVICE:
1488 prot = IOMMU_READ;
1489 break;
1490 case DMA_FROM_DEVICE:
1491 prot = IOMMU_WRITE;
1492 break;
1493 default:
1494 prot = 0;
1497 return prot;
1501 * Map a part of the scatter-gather list into contiguous io address space
1503 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1504 size_t size, dma_addr_t *handle,
1505 enum dma_data_direction dir, struct dma_attrs *attrs,
1506 bool is_coherent)
1508 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1509 dma_addr_t iova, iova_base;
1510 int ret = 0;
1511 unsigned int count;
1512 struct scatterlist *s;
1513 int prot;
1515 size = PAGE_ALIGN(size);
1516 *handle = DMA_ERROR_CODE;
1518 iova_base = iova = __alloc_iova(mapping, size);
1519 if (iova == DMA_ERROR_CODE)
1520 return -ENOMEM;
1522 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1523 phys_addr_t phys = page_to_phys(sg_page(s));
1524 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1526 if (!is_coherent &&
1527 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1528 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1530 prot = __dma_direction_to_prot(dir);
1532 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1533 if (ret < 0)
1534 goto fail;
1535 count += len >> PAGE_SHIFT;
1536 iova += len;
1538 *handle = iova_base;
1540 return 0;
1541 fail:
1542 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1543 __free_iova(mapping, iova_base, size);
1544 return ret;
1547 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1548 enum dma_data_direction dir, struct dma_attrs *attrs,
1549 bool is_coherent)
1551 struct scatterlist *s = sg, *dma = sg, *start = sg;
1552 int i, count = 0;
1553 unsigned int offset = s->offset;
1554 unsigned int size = s->offset + s->length;
1555 unsigned int max = dma_get_max_seg_size(dev);
1557 for (i = 1; i < nents; i++) {
1558 s = sg_next(s);
1560 s->dma_address = DMA_ERROR_CODE;
1561 s->dma_length = 0;
1563 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1564 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1565 dir, attrs, is_coherent) < 0)
1566 goto bad_mapping;
1568 dma->dma_address += offset;
1569 dma->dma_length = size - offset;
1571 size = offset = s->offset;
1572 start = s;
1573 dma = sg_next(dma);
1574 count += 1;
1576 size += s->length;
1578 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1579 is_coherent) < 0)
1580 goto bad_mapping;
1582 dma->dma_address += offset;
1583 dma->dma_length = size - offset;
1585 return count+1;
1587 bad_mapping:
1588 for_each_sg(sg, s, count, i)
1589 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1590 return 0;
1594 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1595 * @dev: valid struct device pointer
1596 * @sg: list of buffers
1597 * @nents: number of buffers to map
1598 * @dir: DMA transfer direction
1600 * Map a set of i/o coherent buffers described by scatterlist in streaming
1601 * mode for DMA. The scatter gather list elements are merged together (if
1602 * possible) and tagged with the appropriate dma address and length. They are
1603 * obtained via sg_dma_{address,length}.
1605 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1606 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1608 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1612 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1613 * @dev: valid struct device pointer
1614 * @sg: list of buffers
1615 * @nents: number of buffers to map
1616 * @dir: DMA transfer direction
1618 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1619 * The scatter gather list elements are merged together (if possible) and
1620 * tagged with the appropriate dma address and length. They are obtained via
1621 * sg_dma_{address,length}.
1623 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1624 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1626 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1629 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1630 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1631 bool is_coherent)
1633 struct scatterlist *s;
1634 int i;
1636 for_each_sg(sg, s, nents, i) {
1637 if (sg_dma_len(s))
1638 __iommu_remove_mapping(dev, sg_dma_address(s),
1639 sg_dma_len(s));
1640 if (!is_coherent &&
1641 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1642 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1643 s->length, dir);
1648 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1649 * @dev: valid struct device pointer
1650 * @sg: list of buffers
1651 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1652 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1654 * Unmap a set of streaming mode DMA translations. Again, CPU access
1655 * rules concerning calls here are the same as for dma_unmap_single().
1657 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1658 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1660 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1664 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1665 * @dev: valid struct device pointer
1666 * @sg: list of buffers
1667 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1668 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1670 * Unmap a set of streaming mode DMA translations. Again, CPU access
1671 * rules concerning calls here are the same as for dma_unmap_single().
1673 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1674 enum dma_data_direction dir, struct dma_attrs *attrs)
1676 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1680 * arm_iommu_sync_sg_for_cpu
1681 * @dev: valid struct device pointer
1682 * @sg: list of buffers
1683 * @nents: number of buffers to map (returned from dma_map_sg)
1684 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1686 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1687 int nents, enum dma_data_direction dir)
1689 struct scatterlist *s;
1690 int i;
1692 for_each_sg(sg, s, nents, i)
1693 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1698 * arm_iommu_sync_sg_for_device
1699 * @dev: valid struct device pointer
1700 * @sg: list of buffers
1701 * @nents: number of buffers to map (returned from dma_map_sg)
1702 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1704 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1705 int nents, enum dma_data_direction dir)
1707 struct scatterlist *s;
1708 int i;
1710 for_each_sg(sg, s, nents, i)
1711 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1716 * arm_coherent_iommu_map_page
1717 * @dev: valid struct device pointer
1718 * @page: page that buffer resides in
1719 * @offset: offset into page for start of buffer
1720 * @size: size of buffer to map
1721 * @dir: DMA transfer direction
1723 * Coherent IOMMU aware version of arm_dma_map_page()
1725 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1726 unsigned long offset, size_t size, enum dma_data_direction dir,
1727 struct dma_attrs *attrs)
1729 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1730 dma_addr_t dma_addr;
1731 int ret, prot, len = PAGE_ALIGN(size + offset);
1733 dma_addr = __alloc_iova(mapping, len);
1734 if (dma_addr == DMA_ERROR_CODE)
1735 return dma_addr;
1737 prot = __dma_direction_to_prot(dir);
1739 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1740 if (ret < 0)
1741 goto fail;
1743 return dma_addr + offset;
1744 fail:
1745 __free_iova(mapping, dma_addr, len);
1746 return DMA_ERROR_CODE;
1750 * arm_iommu_map_page
1751 * @dev: valid struct device pointer
1752 * @page: page that buffer resides in
1753 * @offset: offset into page for start of buffer
1754 * @size: size of buffer to map
1755 * @dir: DMA transfer direction
1757 * IOMMU aware version of arm_dma_map_page()
1759 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1760 unsigned long offset, size_t size, enum dma_data_direction dir,
1761 struct dma_attrs *attrs)
1763 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1764 __dma_page_cpu_to_dev(page, offset, size, dir);
1766 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1770 * arm_coherent_iommu_unmap_page
1771 * @dev: valid struct device pointer
1772 * @handle: DMA address of buffer
1773 * @size: size of buffer (same as passed to dma_map_page)
1774 * @dir: DMA transfer direction (same as passed to dma_map_page)
1776 * Coherent IOMMU aware version of arm_dma_unmap_page()
1778 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1779 size_t size, enum dma_data_direction dir,
1780 struct dma_attrs *attrs)
1782 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1783 dma_addr_t iova = handle & PAGE_MASK;
1784 int offset = handle & ~PAGE_MASK;
1785 int len = PAGE_ALIGN(size + offset);
1787 if (!iova)
1788 return;
1790 iommu_unmap(mapping->domain, iova, len);
1791 __free_iova(mapping, iova, len);
1795 * arm_iommu_unmap_page
1796 * @dev: valid struct device pointer
1797 * @handle: DMA address of buffer
1798 * @size: size of buffer (same as passed to dma_map_page)
1799 * @dir: DMA transfer direction (same as passed to dma_map_page)
1801 * IOMMU aware version of arm_dma_unmap_page()
1803 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1804 size_t size, enum dma_data_direction dir,
1805 struct dma_attrs *attrs)
1807 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1808 dma_addr_t iova = handle & PAGE_MASK;
1809 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1810 int offset = handle & ~PAGE_MASK;
1811 int len = PAGE_ALIGN(size + offset);
1813 if (!iova)
1814 return;
1816 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1817 __dma_page_dev_to_cpu(page, offset, size, dir);
1819 iommu_unmap(mapping->domain, iova, len);
1820 __free_iova(mapping, iova, len);
1823 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1824 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1826 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1827 dma_addr_t iova = handle & PAGE_MASK;
1828 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1829 unsigned int offset = handle & ~PAGE_MASK;
1831 if (!iova)
1832 return;
1834 __dma_page_dev_to_cpu(page, offset, size, dir);
1837 static void arm_iommu_sync_single_for_device(struct device *dev,
1838 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1840 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1841 dma_addr_t iova = handle & PAGE_MASK;
1842 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1843 unsigned int offset = handle & ~PAGE_MASK;
1845 if (!iova)
1846 return;
1848 __dma_page_cpu_to_dev(page, offset, size, dir);
1851 struct dma_map_ops iommu_ops = {
1852 .alloc = arm_iommu_alloc_attrs,
1853 .free = arm_iommu_free_attrs,
1854 .mmap = arm_iommu_mmap_attrs,
1855 .get_sgtable = arm_iommu_get_sgtable,
1857 .map_page = arm_iommu_map_page,
1858 .unmap_page = arm_iommu_unmap_page,
1859 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1860 .sync_single_for_device = arm_iommu_sync_single_for_device,
1862 .map_sg = arm_iommu_map_sg,
1863 .unmap_sg = arm_iommu_unmap_sg,
1864 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1865 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1867 .set_dma_mask = arm_dma_set_mask,
1870 struct dma_map_ops iommu_coherent_ops = {
1871 .alloc = arm_iommu_alloc_attrs,
1872 .free = arm_iommu_free_attrs,
1873 .mmap = arm_iommu_mmap_attrs,
1874 .get_sgtable = arm_iommu_get_sgtable,
1876 .map_page = arm_coherent_iommu_map_page,
1877 .unmap_page = arm_coherent_iommu_unmap_page,
1879 .map_sg = arm_coherent_iommu_map_sg,
1880 .unmap_sg = arm_coherent_iommu_unmap_sg,
1882 .set_dma_mask = arm_dma_set_mask,
1886 * arm_iommu_create_mapping
1887 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1888 * @base: start address of the valid IO address space
1889 * @size: maximum size of the valid IO address space
1891 * Creates a mapping structure which holds information about used/unused
1892 * IO address ranges, which is required to perform memory allocation and
1893 * mapping with IOMMU aware functions.
1895 * The client device need to be attached to the mapping with
1896 * arm_iommu_attach_device function.
1898 struct dma_iommu_mapping *
1899 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
1901 unsigned int bits = size >> PAGE_SHIFT;
1902 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1903 struct dma_iommu_mapping *mapping;
1904 int extensions = 1;
1905 int err = -ENOMEM;
1907 /* currently only 32-bit DMA address space is supported */
1908 if (size > DMA_BIT_MASK(32) + 1)
1909 return ERR_PTR(-ERANGE);
1911 if (!bitmap_size)
1912 return ERR_PTR(-EINVAL);
1914 if (bitmap_size > PAGE_SIZE) {
1915 extensions = bitmap_size / PAGE_SIZE;
1916 bitmap_size = PAGE_SIZE;
1919 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1920 if (!mapping)
1921 goto err;
1923 mapping->bitmap_size = bitmap_size;
1924 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1925 GFP_KERNEL);
1926 if (!mapping->bitmaps)
1927 goto err2;
1929 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1930 if (!mapping->bitmaps[0])
1931 goto err3;
1933 mapping->nr_bitmaps = 1;
1934 mapping->extensions = extensions;
1935 mapping->base = base;
1936 mapping->bits = BITS_PER_BYTE * bitmap_size;
1938 spin_lock_init(&mapping->lock);
1940 mapping->domain = iommu_domain_alloc(bus);
1941 if (!mapping->domain)
1942 goto err4;
1944 kref_init(&mapping->kref);
1945 return mapping;
1946 err4:
1947 kfree(mapping->bitmaps[0]);
1948 err3:
1949 kfree(mapping->bitmaps);
1950 err2:
1951 kfree(mapping);
1952 err:
1953 return ERR_PTR(err);
1955 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1957 static void release_iommu_mapping(struct kref *kref)
1959 int i;
1960 struct dma_iommu_mapping *mapping =
1961 container_of(kref, struct dma_iommu_mapping, kref);
1963 iommu_domain_free(mapping->domain);
1964 for (i = 0; i < mapping->nr_bitmaps; i++)
1965 kfree(mapping->bitmaps[i]);
1966 kfree(mapping->bitmaps);
1967 kfree(mapping);
1970 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1972 int next_bitmap;
1974 if (mapping->nr_bitmaps >= mapping->extensions)
1975 return -EINVAL;
1977 next_bitmap = mapping->nr_bitmaps;
1978 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1979 GFP_ATOMIC);
1980 if (!mapping->bitmaps[next_bitmap])
1981 return -ENOMEM;
1983 mapping->nr_bitmaps++;
1985 return 0;
1988 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1990 if (mapping)
1991 kref_put(&mapping->kref, release_iommu_mapping);
1993 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1995 static int __arm_iommu_attach_device(struct device *dev,
1996 struct dma_iommu_mapping *mapping)
1998 int err;
2000 err = iommu_attach_device(mapping->domain, dev);
2001 if (err)
2002 return err;
2004 kref_get(&mapping->kref);
2005 to_dma_iommu_mapping(dev) = mapping;
2007 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2008 return 0;
2012 * arm_iommu_attach_device
2013 * @dev: valid struct device pointer
2014 * @mapping: io address space mapping structure (returned from
2015 * arm_iommu_create_mapping)
2017 * Attaches specified io address space mapping to the provided device.
2018 * This replaces the dma operations (dma_map_ops pointer) with the
2019 * IOMMU aware version.
2021 * More than one client might be attached to the same io address space
2022 * mapping.
2024 int arm_iommu_attach_device(struct device *dev,
2025 struct dma_iommu_mapping *mapping)
2027 int err;
2029 err = __arm_iommu_attach_device(dev, mapping);
2030 if (err)
2031 return err;
2033 set_dma_ops(dev, &iommu_ops);
2034 return 0;
2036 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2038 static void __arm_iommu_detach_device(struct device *dev)
2040 struct dma_iommu_mapping *mapping;
2042 mapping = to_dma_iommu_mapping(dev);
2043 if (!mapping) {
2044 dev_warn(dev, "Not attached\n");
2045 return;
2048 iommu_detach_device(mapping->domain, dev);
2049 kref_put(&mapping->kref, release_iommu_mapping);
2050 to_dma_iommu_mapping(dev) = NULL;
2052 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2056 * arm_iommu_detach_device
2057 * @dev: valid struct device pointer
2059 * Detaches the provided device from a previously attached map.
2060 * This voids the dma operations (dma_map_ops pointer)
2062 void arm_iommu_detach_device(struct device *dev)
2064 __arm_iommu_detach_device(dev);
2065 set_dma_ops(dev, NULL);
2067 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2069 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2071 return coherent ? &iommu_coherent_ops : &iommu_ops;
2074 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2075 struct iommu_ops *iommu)
2077 struct dma_iommu_mapping *mapping;
2079 if (!iommu)
2080 return false;
2082 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2083 if (IS_ERR(mapping)) {
2084 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2085 size, dev_name(dev));
2086 return false;
2089 if (__arm_iommu_attach_device(dev, mapping)) {
2090 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2091 dev_name(dev));
2092 arm_iommu_release_mapping(mapping);
2093 return false;
2096 return true;
2099 static void arm_teardown_iommu_dma_ops(struct device *dev)
2101 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2103 if (!mapping)
2104 return;
2106 __arm_iommu_detach_device(dev);
2107 arm_iommu_release_mapping(mapping);
2110 #else
2112 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2113 struct iommu_ops *iommu)
2115 return false;
2118 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2120 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2122 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2124 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2126 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2129 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2130 struct iommu_ops *iommu, bool coherent)
2132 struct dma_map_ops *dma_ops;
2134 dev->archdata.dma_coherent = coherent;
2135 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2136 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2137 else
2138 dma_ops = arm_get_dma_map_ops(coherent);
2140 set_dma_ops(dev, dma_ops);
2143 void arch_teardown_dma_ops(struct device *dev)
2145 arm_teardown_iommu_dma_ops(dev);