2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <linux/kvm_host.h>
25 #include <linux/uaccess.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/debug-monitors.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_coproc.h>
33 #include <asm/kvm_emulate.h>
34 #include <asm/kvm_host.h>
35 #include <asm/kvm_mmu.h>
37 #include <trace/events/kvm.h>
42 * All of this file is extremly similar to the ARM coproc.c, but the
43 * types are different. My gut feeling is that it should be pretty
44 * easy to merge, but that would be an ABI breakage -- again. VFP
45 * would also need to be abstracted.
47 * For AArch32, we only take care of what is being trapped. Anything
48 * that has to do with init and userspace access has to go via the
52 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
53 static u32 cache_levels
;
55 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
58 /* Which cache CCSIDR represents depends on CSSELR value. */
59 static u32
get_ccsidr(u32 csselr
)
63 /* Make sure noone else changes CSSELR during this! */
65 /* Put value into CSSELR */
66 asm volatile("msr csselr_el1, %x0" : : "r" (csselr
));
68 /* Read result out of CCSIDR */
69 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr
));
76 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
78 static bool access_dcsw(struct kvm_vcpu
*vcpu
,
79 const struct sys_reg_params
*p
,
80 const struct sys_reg_desc
*r
)
83 return read_from_write_only(vcpu
, p
);
85 kvm_set_way_flush(vcpu
);
90 * Generic accessor for VM registers. Only called as long as HCR_TVM
91 * is set. If the guest enables the MMU, we stop trapping the VM
92 * sys_regs and leave it in complete control of the caches.
94 static bool access_vm_reg(struct kvm_vcpu
*vcpu
,
95 const struct sys_reg_params
*p
,
96 const struct sys_reg_desc
*r
)
99 bool was_enabled
= vcpu_has_cache_enabled(vcpu
);
101 BUG_ON(!p
->is_write
);
103 val
= *vcpu_reg(vcpu
, p
->Rt
);
104 if (!p
->is_aarch32
) {
105 vcpu_sys_reg(vcpu
, r
->reg
) = val
;
108 vcpu_cp15_64_high(vcpu
, r
->reg
) = val
>> 32;
109 vcpu_cp15_64_low(vcpu
, r
->reg
) = val
& 0xffffffffUL
;
112 kvm_toggle_cache(vcpu
, was_enabled
);
117 * Trap handler for the GICv3 SGI generation system register.
118 * Forward the request to the VGIC emulation.
119 * The cp15_64 code makes sure this automatically works
120 * for both AArch64 and AArch32 accesses.
122 static bool access_gic_sgi(struct kvm_vcpu
*vcpu
,
123 const struct sys_reg_params
*p
,
124 const struct sys_reg_desc
*r
)
129 return read_from_write_only(vcpu
, p
);
131 val
= *vcpu_reg(vcpu
, p
->Rt
);
132 vgic_v3_dispatch_sgi(vcpu
, val
);
137 static bool trap_raz_wi(struct kvm_vcpu
*vcpu
,
138 const struct sys_reg_params
*p
,
139 const struct sys_reg_desc
*r
)
142 return ignore_write(vcpu
, p
);
144 return read_zero(vcpu
, p
);
147 static bool trap_oslsr_el1(struct kvm_vcpu
*vcpu
,
148 const struct sys_reg_params
*p
,
149 const struct sys_reg_desc
*r
)
152 return ignore_write(vcpu
, p
);
154 *vcpu_reg(vcpu
, p
->Rt
) = (1 << 3);
159 static bool trap_dbgauthstatus_el1(struct kvm_vcpu
*vcpu
,
160 const struct sys_reg_params
*p
,
161 const struct sys_reg_desc
*r
)
164 return ignore_write(vcpu
, p
);
167 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val
));
168 *vcpu_reg(vcpu
, p
->Rt
) = val
;
174 * We want to avoid world-switching all the DBG registers all the
177 * - If we've touched any debug register, it is likely that we're
178 * going to touch more of them. It then makes sense to disable the
179 * traps and start doing the save/restore dance
180 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
181 * then mandatory to save/restore the registers, as the guest
184 * For this, we use a DIRTY bit, indicating the guest has modified the
185 * debug registers, used as follow:
188 * - If the dirty bit is set (because we're coming back from trapping),
189 * disable the traps, save host registers, restore guest registers.
190 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
191 * set the dirty bit, disable the traps, save host registers,
192 * restore guest registers.
193 * - Otherwise, enable the traps
196 * - If the dirty bit is set, save guest registers, restore host
197 * registers and clear the dirty bit. This ensure that the host can
198 * now use the debug registers.
200 static bool trap_debug_regs(struct kvm_vcpu
*vcpu
,
201 const struct sys_reg_params
*p
,
202 const struct sys_reg_desc
*r
)
205 vcpu_sys_reg(vcpu
, r
->reg
) = *vcpu_reg(vcpu
, p
->Rt
);
206 vcpu
->arch
.debug_flags
|= KVM_ARM64_DEBUG_DIRTY
;
208 *vcpu_reg(vcpu
, p
->Rt
) = vcpu_sys_reg(vcpu
, r
->reg
);
214 static void reset_amair_el1(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
218 asm volatile("mrs %0, amair_el1\n" : "=r" (amair
));
219 vcpu_sys_reg(vcpu
, AMAIR_EL1
) = amair
;
222 static void reset_mpidr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
227 * Map the vcpu_id into the first three affinity level fields of
228 * the MPIDR. We limit the number of VCPUs in level 0 due to a
229 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
230 * of the GICv3 to be able to address each CPU directly when
233 mpidr
= (vcpu
->vcpu_id
& 0x0f) << MPIDR_LEVEL_SHIFT(0);
234 mpidr
|= ((vcpu
->vcpu_id
>> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
235 mpidr
|= ((vcpu
->vcpu_id
>> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
236 vcpu_sys_reg(vcpu
, MPIDR_EL1
) = (1ULL << 31) | mpidr
;
239 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
240 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
242 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
243 trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 }, \
245 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
246 trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 }, \
248 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
249 trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 }, \
251 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
252 trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
255 * Architected system registers.
256 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
258 * We could trap ID_DFR0 and tell the guest we don't support performance
259 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
260 * NAKed, so it will read the PMCR anyway.
262 * Therefore we tell the guest we have 0 counters. Unfortunately, we
263 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
264 * all PM registers, which doesn't crash the guest kernel at least.
266 * Debug handling: We do trap most, if not all debug related system
267 * registers. The implementation is good enough to ensure that a guest
268 * can use these with minimal performance degradation. The drawback is
269 * that we don't implement any of the external debug, none of the
270 * OSlock protocol. This should be revisited if we ever encounter a
271 * more demanding guest...
273 static const struct sys_reg_desc sys_reg_descs
[] = {
275 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
278 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
281 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
284 DBG_BCR_BVR_WCR_WVR_EL1(0),
285 DBG_BCR_BVR_WCR_WVR_EL1(1),
287 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
288 trap_debug_regs
, reset_val
, MDCCINT_EL1
, 0 },
290 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
291 trap_debug_regs
, reset_val
, MDSCR_EL1
, 0 },
292 DBG_BCR_BVR_WCR_WVR_EL1(2),
293 DBG_BCR_BVR_WCR_WVR_EL1(3),
294 DBG_BCR_BVR_WCR_WVR_EL1(4),
295 DBG_BCR_BVR_WCR_WVR_EL1(5),
296 DBG_BCR_BVR_WCR_WVR_EL1(6),
297 DBG_BCR_BVR_WCR_WVR_EL1(7),
298 DBG_BCR_BVR_WCR_WVR_EL1(8),
299 DBG_BCR_BVR_WCR_WVR_EL1(9),
300 DBG_BCR_BVR_WCR_WVR_EL1(10),
301 DBG_BCR_BVR_WCR_WVR_EL1(11),
302 DBG_BCR_BVR_WCR_WVR_EL1(12),
303 DBG_BCR_BVR_WCR_WVR_EL1(13),
304 DBG_BCR_BVR_WCR_WVR_EL1(14),
305 DBG_BCR_BVR_WCR_WVR_EL1(15),
308 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
311 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
314 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
317 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
320 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
322 /* DBGCLAIMSET_EL1 */
323 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
325 /* DBGCLAIMCLR_EL1 */
326 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
328 /* DBGAUTHSTATUS_EL1 */
329 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
330 trap_dbgauthstatus_el1
},
333 { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
334 NULL
, reset_val
, TEECR32_EL1
, 0 },
336 { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
337 NULL
, reset_val
, TEEHBR32_EL1
, 0 },
340 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
343 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
345 /* DBGDTR[TR]X_EL0 */
346 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
350 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
351 NULL
, reset_val
, DBGVCR32_EL2
, 0 },
354 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
355 NULL
, reset_mpidr
, MPIDR_EL1
},
357 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
358 access_vm_reg
, reset_val
, SCTLR_EL1
, 0x00C50078 },
360 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
361 NULL
, reset_val
, CPACR_EL1
, 0 },
363 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
364 access_vm_reg
, reset_unknown
, TTBR0_EL1
},
366 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
367 access_vm_reg
, reset_unknown
, TTBR1_EL1
},
369 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
370 access_vm_reg
, reset_val
, TCR_EL1
, 0 },
373 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
374 access_vm_reg
, reset_unknown
, AFSR0_EL1
},
376 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
377 access_vm_reg
, reset_unknown
, AFSR1_EL1
},
379 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
380 access_vm_reg
, reset_unknown
, ESR_EL1
},
382 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
383 access_vm_reg
, reset_unknown
, FAR_EL1
},
385 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
386 NULL
, reset_unknown
, PAR_EL1
},
389 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
392 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
396 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
397 access_vm_reg
, reset_unknown
, MAIR_EL1
},
399 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
400 access_vm_reg
, reset_amair_el1
, AMAIR_EL1
},
403 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
404 NULL
, reset_val
, VBAR_EL1
, 0 },
407 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
410 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
414 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
415 access_vm_reg
, reset_val
, CONTEXTIDR_EL1
, 0 },
417 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
418 NULL
, reset_unknown
, TPIDR_EL1
},
421 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
422 NULL
, reset_val
, CNTKCTL_EL1
, 0},
425 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
426 NULL
, reset_unknown
, CSSELR_EL1
},
429 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
432 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
435 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
438 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
441 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
444 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
447 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
450 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
453 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
456 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
459 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
462 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
465 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
469 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
470 NULL
, reset_unknown
, TPIDR_EL0
},
472 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
473 NULL
, reset_unknown
, TPIDRRO_EL0
},
476 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
477 NULL
, reset_unknown
, DACR32_EL2
},
479 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
480 NULL
, reset_unknown
, IFSR32_EL2
},
482 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
483 NULL
, reset_val
, FPEXC32_EL2
, 0x70 },
486 static bool trap_dbgidr(struct kvm_vcpu
*vcpu
,
487 const struct sys_reg_params
*p
,
488 const struct sys_reg_desc
*r
)
491 return ignore_write(vcpu
, p
);
493 u64 dfr
= read_cpuid(ID_AA64DFR0_EL1
);
494 u64 pfr
= read_cpuid(ID_AA64PFR0_EL1
);
495 u32 el3
= !!((pfr
>> 12) & 0xf);
497 *vcpu_reg(vcpu
, p
->Rt
) = ((((dfr
>> 20) & 0xf) << 28) |
498 (((dfr
>> 12) & 0xf) << 24) |
499 (((dfr
>> 28) & 0xf) << 20) |
500 (6 << 16) | (el3
<< 14) | (el3
<< 12));
505 static bool trap_debug32(struct kvm_vcpu
*vcpu
,
506 const struct sys_reg_params
*p
,
507 const struct sys_reg_desc
*r
)
510 vcpu_cp14(vcpu
, r
->reg
) = *vcpu_reg(vcpu
, p
->Rt
);
511 vcpu
->arch
.debug_flags
|= KVM_ARM64_DEBUG_DIRTY
;
513 *vcpu_reg(vcpu
, p
->Rt
) = vcpu_cp14(vcpu
, r
->reg
);
519 #define DBG_BCR_BVR_WCR_WVR(n) \
521 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_debug32, \
522 NULL, (cp14_DBGBVR0 + (n) * 2) }, \
524 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_debug32, \
525 NULL, (cp14_DBGBCR0 + (n) * 2) }, \
527 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_debug32, \
528 NULL, (cp14_DBGWVR0 + (n) * 2) }, \
530 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_debug32, \
531 NULL, (cp14_DBGWCR0 + (n) * 2) }
534 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_debug32, \
535 NULL, cp14_DBGBXVR0 + n * 2 }
538 * Trapped cp14 registers. We generally ignore most of the external
539 * debug, on the principle that they don't really make sense to a
540 * guest. Revisit this one day, whould this principle change.
542 static const struct sys_reg_desc cp14_regs
[] = {
544 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr
},
546 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi
},
548 DBG_BCR_BVR_WCR_WVR(0),
550 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi
},
551 DBG_BCR_BVR_WCR_WVR(1),
553 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32
},
555 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32
},
556 DBG_BCR_BVR_WCR_WVR(2),
558 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi
},
560 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi
},
561 DBG_BCR_BVR_WCR_WVR(3),
562 DBG_BCR_BVR_WCR_WVR(4),
563 DBG_BCR_BVR_WCR_WVR(5),
565 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi
},
567 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi
},
568 DBG_BCR_BVR_WCR_WVR(6),
570 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32
},
571 DBG_BCR_BVR_WCR_WVR(7),
572 DBG_BCR_BVR_WCR_WVR(8),
573 DBG_BCR_BVR_WCR_WVR(9),
574 DBG_BCR_BVR_WCR_WVR(10),
575 DBG_BCR_BVR_WCR_WVR(11),
576 DBG_BCR_BVR_WCR_WVR(12),
577 DBG_BCR_BVR_WCR_WVR(13),
578 DBG_BCR_BVR_WCR_WVR(14),
579 DBG_BCR_BVR_WCR_WVR(15),
581 /* DBGDRAR (32bit) */
582 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi
},
586 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi
},
589 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1
},
593 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi
},
596 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi
},
609 /* DBGDSAR (32bit) */
610 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi
},
613 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi
},
615 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi
},
617 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi
},
619 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi
},
621 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi
},
623 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1
},
626 /* Trapped cp14 64bit registers */
627 static const struct sys_reg_desc cp14_64_regs
[] = {
628 /* DBGDRAR (64bit) */
629 { Op1( 0), CRm( 1), .access
= trap_raz_wi
},
631 /* DBGDSAR (64bit) */
632 { Op1( 0), CRm( 2), .access
= trap_raz_wi
},
636 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
637 * depending on the way they are accessed (as a 32bit or a 64bit
640 static const struct sys_reg_desc cp15_regs
[] = {
641 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi
},
643 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c1_SCTLR
},
644 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c2_TTBR0
},
645 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg
, NULL
, c2_TTBR1
},
646 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg
, NULL
, c2_TTBCR
},
647 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c3_DACR
},
648 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c5_DFSR
},
649 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg
, NULL
, c5_IFSR
},
650 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg
, NULL
, c5_ADFSR
},
651 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg
, NULL
, c5_AIFSR
},
652 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg
, NULL
, c6_DFAR
},
653 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg
, NULL
, c6_IFAR
},
656 * DC{C,I,CI}SW operations:
658 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw
},
659 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw
},
660 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw
},
663 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi
},
664 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi
},
665 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi
},
666 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi
},
667 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi
},
668 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi
},
669 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi
},
670 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi
},
671 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi
},
672 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi
},
673 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi
},
674 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi
},
675 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi
},
677 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg
, NULL
, c10_PRRR
},
678 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg
, NULL
, c10_NMRR
},
679 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg
, NULL
, c10_AMAIR0
},
680 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg
, NULL
, c10_AMAIR1
},
683 { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi
},
685 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg
, NULL
, c13_CID
},
688 static const struct sys_reg_desc cp15_64_regs
[] = {
689 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg
, NULL
, c2_TTBR0
},
690 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi
},
691 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg
, NULL
, c2_TTBR1
},
694 /* Target specific emulation tables */
695 static struct kvm_sys_reg_target_table
*target_tables
[KVM_ARM_NUM_TARGETS
];
697 void kvm_register_target_sys_reg_table(unsigned int target
,
698 struct kvm_sys_reg_target_table
*table
)
700 target_tables
[target
] = table
;
703 /* Get specific register table for this target. */
704 static const struct sys_reg_desc
*get_target_table(unsigned target
,
708 struct kvm_sys_reg_target_table
*table
;
710 table
= target_tables
[target
];
712 *num
= table
->table64
.num
;
713 return table
->table64
.table
;
715 *num
= table
->table32
.num
;
716 return table
->table32
.table
;
720 static const struct sys_reg_desc
*find_reg(const struct sys_reg_params
*params
,
721 const struct sys_reg_desc table
[],
726 for (i
= 0; i
< num
; i
++) {
727 const struct sys_reg_desc
*r
= &table
[i
];
729 if (params
->Op0
!= r
->Op0
)
731 if (params
->Op1
!= r
->Op1
)
733 if (params
->CRn
!= r
->CRn
)
735 if (params
->CRm
!= r
->CRm
)
737 if (params
->Op2
!= r
->Op2
)
745 int kvm_handle_cp14_load_store(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
747 kvm_inject_undefined(vcpu
);
752 * emulate_cp -- tries to match a sys_reg access in a handling table, and
753 * call the corresponding trap handler.
755 * @params: pointer to the descriptor of the access
756 * @table: array of trap descriptors
757 * @num: size of the trap descriptor array
759 * Return 0 if the access has been handled, and -1 if not.
761 static int emulate_cp(struct kvm_vcpu
*vcpu
,
762 const struct sys_reg_params
*params
,
763 const struct sys_reg_desc
*table
,
766 const struct sys_reg_desc
*r
;
769 return -1; /* Not handled */
771 r
= find_reg(params
, table
, num
);
775 * Not having an accessor means that we have
776 * configured a trap that we don't know how to
777 * handle. This certainly qualifies as a gross bug
778 * that should be fixed right away.
782 if (likely(r
->access(vcpu
, params
, r
))) {
783 /* Skip instruction, since it was emulated */
784 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
795 static void unhandled_cp_access(struct kvm_vcpu
*vcpu
,
796 struct sys_reg_params
*params
)
798 u8 hsr_ec
= kvm_vcpu_trap_get_class(vcpu
);
802 case ESR_ELx_EC_CP15_32
:
803 case ESR_ELx_EC_CP15_64
:
806 case ESR_ELx_EC_CP14_MR
:
807 case ESR_ELx_EC_CP14_64
:
814 kvm_err("Unsupported guest CP%d access at: %08lx\n",
816 print_sys_reg_instr(params
);
817 kvm_inject_undefined(vcpu
);
821 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
822 * @vcpu: The VCPU pointer
823 * @run: The kvm_run struct
825 static int kvm_handle_cp_64(struct kvm_vcpu
*vcpu
,
826 const struct sys_reg_desc
*global
,
828 const struct sys_reg_desc
*target_specific
,
831 struct sys_reg_params params
;
832 u32 hsr
= kvm_vcpu_get_hsr(vcpu
);
833 int Rt2
= (hsr
>> 10) & 0xf;
835 params
.is_aarch32
= true;
836 params
.is_32bit
= false;
837 params
.CRm
= (hsr
>> 1) & 0xf;
838 params
.Rt
= (hsr
>> 5) & 0xf;
839 params
.is_write
= ((hsr
& 1) == 0);
842 params
.Op1
= (hsr
>> 16) & 0xf;
847 * Massive hack here. Store Rt2 in the top 32bits so we only
848 * have one register to deal with. As we use the same trap
849 * backends between AArch32 and AArch64, we get away with it.
851 if (params
.is_write
) {
852 u64 val
= *vcpu_reg(vcpu
, params
.Rt
);
854 val
|= *vcpu_reg(vcpu
, Rt2
) << 32;
855 *vcpu_reg(vcpu
, params
.Rt
) = val
;
858 if (!emulate_cp(vcpu
, ¶ms
, target_specific
, nr_specific
))
860 if (!emulate_cp(vcpu
, ¶ms
, global
, nr_global
))
863 unhandled_cp_access(vcpu
, ¶ms
);
866 /* Do the opposite hack for the read side */
867 if (!params
.is_write
) {
868 u64 val
= *vcpu_reg(vcpu
, params
.Rt
);
870 *vcpu_reg(vcpu
, Rt2
) = val
;
877 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
878 * @vcpu: The VCPU pointer
879 * @run: The kvm_run struct
881 static int kvm_handle_cp_32(struct kvm_vcpu
*vcpu
,
882 const struct sys_reg_desc
*global
,
884 const struct sys_reg_desc
*target_specific
,
887 struct sys_reg_params params
;
888 u32 hsr
= kvm_vcpu_get_hsr(vcpu
);
890 params
.is_aarch32
= true;
891 params
.is_32bit
= true;
892 params
.CRm
= (hsr
>> 1) & 0xf;
893 params
.Rt
= (hsr
>> 5) & 0xf;
894 params
.is_write
= ((hsr
& 1) == 0);
895 params
.CRn
= (hsr
>> 10) & 0xf;
897 params
.Op1
= (hsr
>> 14) & 0x7;
898 params
.Op2
= (hsr
>> 17) & 0x7;
900 if (!emulate_cp(vcpu
, ¶ms
, target_specific
, nr_specific
))
902 if (!emulate_cp(vcpu
, ¶ms
, global
, nr_global
))
905 unhandled_cp_access(vcpu
, ¶ms
);
909 int kvm_handle_cp15_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
911 const struct sys_reg_desc
*target_specific
;
914 target_specific
= get_target_table(vcpu
->arch
.target
, false, &num
);
915 return kvm_handle_cp_64(vcpu
,
916 cp15_64_regs
, ARRAY_SIZE(cp15_64_regs
),
917 target_specific
, num
);
920 int kvm_handle_cp15_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
922 const struct sys_reg_desc
*target_specific
;
925 target_specific
= get_target_table(vcpu
->arch
.target
, false, &num
);
926 return kvm_handle_cp_32(vcpu
,
927 cp15_regs
, ARRAY_SIZE(cp15_regs
),
928 target_specific
, num
);
931 int kvm_handle_cp14_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
933 return kvm_handle_cp_64(vcpu
,
934 cp14_64_regs
, ARRAY_SIZE(cp14_64_regs
),
938 int kvm_handle_cp14_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
940 return kvm_handle_cp_32(vcpu
,
941 cp14_regs
, ARRAY_SIZE(cp14_regs
),
945 static int emulate_sys_reg(struct kvm_vcpu
*vcpu
,
946 const struct sys_reg_params
*params
)
949 const struct sys_reg_desc
*table
, *r
;
951 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
953 /* Search target-specific then generic table. */
954 r
= find_reg(params
, table
, num
);
956 r
= find_reg(params
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
960 * Not having an accessor means that we have
961 * configured a trap that we don't know how to
962 * handle. This certainly qualifies as a gross bug
963 * that should be fixed right away.
967 if (likely(r
->access(vcpu
, params
, r
))) {
968 /* Skip instruction, since it was emulated */
969 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
972 /* If access function fails, it should complain. */
974 kvm_err("Unsupported guest sys_reg access at: %lx\n",
976 print_sys_reg_instr(params
);
978 kvm_inject_undefined(vcpu
);
982 static void reset_sys_reg_descs(struct kvm_vcpu
*vcpu
,
983 const struct sys_reg_desc
*table
, size_t num
)
987 for (i
= 0; i
< num
; i
++)
989 table
[i
].reset(vcpu
, &table
[i
]);
993 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
994 * @vcpu: The VCPU pointer
995 * @run: The kvm_run struct
997 int kvm_handle_sys_reg(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
999 struct sys_reg_params params
;
1000 unsigned long esr
= kvm_vcpu_get_hsr(vcpu
);
1002 params
.is_aarch32
= false;
1003 params
.is_32bit
= false;
1004 params
.Op0
= (esr
>> 20) & 3;
1005 params
.Op1
= (esr
>> 14) & 0x7;
1006 params
.CRn
= (esr
>> 10) & 0xf;
1007 params
.CRm
= (esr
>> 1) & 0xf;
1008 params
.Op2
= (esr
>> 17) & 0x7;
1009 params
.Rt
= (esr
>> 5) & 0x1f;
1010 params
.is_write
= !(esr
& 1);
1012 return emulate_sys_reg(vcpu
, ¶ms
);
1015 /******************************************************************************
1017 *****************************************************************************/
1019 static bool index_to_params(u64 id
, struct sys_reg_params
*params
)
1021 switch (id
& KVM_REG_SIZE_MASK
) {
1022 case KVM_REG_SIZE_U64
:
1023 /* Any unused index bits means it's not valid. */
1024 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
1025 | KVM_REG_ARM_COPROC_MASK
1026 | KVM_REG_ARM64_SYSREG_OP0_MASK
1027 | KVM_REG_ARM64_SYSREG_OP1_MASK
1028 | KVM_REG_ARM64_SYSREG_CRN_MASK
1029 | KVM_REG_ARM64_SYSREG_CRM_MASK
1030 | KVM_REG_ARM64_SYSREG_OP2_MASK
))
1032 params
->Op0
= ((id
& KVM_REG_ARM64_SYSREG_OP0_MASK
)
1033 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT
);
1034 params
->Op1
= ((id
& KVM_REG_ARM64_SYSREG_OP1_MASK
)
1035 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT
);
1036 params
->CRn
= ((id
& KVM_REG_ARM64_SYSREG_CRN_MASK
)
1037 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT
);
1038 params
->CRm
= ((id
& KVM_REG_ARM64_SYSREG_CRM_MASK
)
1039 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT
);
1040 params
->Op2
= ((id
& KVM_REG_ARM64_SYSREG_OP2_MASK
)
1041 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT
);
1048 /* Decode an index value, and find the sys_reg_desc entry. */
1049 static const struct sys_reg_desc
*index_to_sys_reg_desc(struct kvm_vcpu
*vcpu
,
1053 const struct sys_reg_desc
*table
, *r
;
1054 struct sys_reg_params params
;
1056 /* We only do sys_reg for now. */
1057 if ((id
& KVM_REG_ARM_COPROC_MASK
) != KVM_REG_ARM64_SYSREG
)
1060 if (!index_to_params(id
, ¶ms
))
1063 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
1064 r
= find_reg(¶ms
, table
, num
);
1066 r
= find_reg(¶ms
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
1068 /* Not saved in the sys_reg array? */
1076 * These are the invariant sys_reg registers: we let the guest see the
1077 * host versions of these, so they're part of the guest state.
1079 * A future CPU may provide a mechanism to present different values to
1080 * the guest, or a future kvm may trap them.
1083 #define FUNCTION_INVARIANT(reg) \
1084 static void get_##reg(struct kvm_vcpu *v, \
1085 const struct sys_reg_desc *r) \
1089 asm volatile("mrs %0, " __stringify(reg) "\n" \
1091 ((struct sys_reg_desc *)r)->val = val; \
1094 FUNCTION_INVARIANT(midr_el1
)
1095 FUNCTION_INVARIANT(ctr_el0
)
1096 FUNCTION_INVARIANT(revidr_el1
)
1097 FUNCTION_INVARIANT(id_pfr0_el1
)
1098 FUNCTION_INVARIANT(id_pfr1_el1
)
1099 FUNCTION_INVARIANT(id_dfr0_el1
)
1100 FUNCTION_INVARIANT(id_afr0_el1
)
1101 FUNCTION_INVARIANT(id_mmfr0_el1
)
1102 FUNCTION_INVARIANT(id_mmfr1_el1
)
1103 FUNCTION_INVARIANT(id_mmfr2_el1
)
1104 FUNCTION_INVARIANT(id_mmfr3_el1
)
1105 FUNCTION_INVARIANT(id_isar0_el1
)
1106 FUNCTION_INVARIANT(id_isar1_el1
)
1107 FUNCTION_INVARIANT(id_isar2_el1
)
1108 FUNCTION_INVARIANT(id_isar3_el1
)
1109 FUNCTION_INVARIANT(id_isar4_el1
)
1110 FUNCTION_INVARIANT(id_isar5_el1
)
1111 FUNCTION_INVARIANT(clidr_el1
)
1112 FUNCTION_INVARIANT(aidr_el1
)
1114 /* ->val is filled in by kvm_sys_reg_table_init() */
1115 static struct sys_reg_desc invariant_sys_regs
[] = {
1116 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1117 NULL
, get_midr_el1
},
1118 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1119 NULL
, get_revidr_el1
},
1120 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1121 NULL
, get_id_pfr0_el1
},
1122 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1123 NULL
, get_id_pfr1_el1
},
1124 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1125 NULL
, get_id_dfr0_el1
},
1126 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1127 NULL
, get_id_afr0_el1
},
1128 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1129 NULL
, get_id_mmfr0_el1
},
1130 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1131 NULL
, get_id_mmfr1_el1
},
1132 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1133 NULL
, get_id_mmfr2_el1
},
1134 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1135 NULL
, get_id_mmfr3_el1
},
1136 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1137 NULL
, get_id_isar0_el1
},
1138 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1139 NULL
, get_id_isar1_el1
},
1140 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1141 NULL
, get_id_isar2_el1
},
1142 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1143 NULL
, get_id_isar3_el1
},
1144 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1145 NULL
, get_id_isar4_el1
},
1146 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1147 NULL
, get_id_isar5_el1
},
1148 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1149 NULL
, get_clidr_el1
},
1150 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1151 NULL
, get_aidr_el1
},
1152 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1153 NULL
, get_ctr_el0
},
1156 static int reg_from_user(u64
*val
, const void __user
*uaddr
, u64 id
)
1158 if (copy_from_user(val
, uaddr
, KVM_REG_SIZE(id
)) != 0)
1163 static int reg_to_user(void __user
*uaddr
, const u64
*val
, u64 id
)
1165 if (copy_to_user(uaddr
, val
, KVM_REG_SIZE(id
)) != 0)
1170 static int get_invariant_sys_reg(u64 id
, void __user
*uaddr
)
1172 struct sys_reg_params params
;
1173 const struct sys_reg_desc
*r
;
1175 if (!index_to_params(id
, ¶ms
))
1178 r
= find_reg(¶ms
, invariant_sys_regs
, ARRAY_SIZE(invariant_sys_regs
));
1182 return reg_to_user(uaddr
, &r
->val
, id
);
1185 static int set_invariant_sys_reg(u64 id
, void __user
*uaddr
)
1187 struct sys_reg_params params
;
1188 const struct sys_reg_desc
*r
;
1190 u64 val
= 0; /* Make sure high bits are 0 for 32-bit regs */
1192 if (!index_to_params(id
, ¶ms
))
1194 r
= find_reg(¶ms
, invariant_sys_regs
, ARRAY_SIZE(invariant_sys_regs
));
1198 err
= reg_from_user(&val
, uaddr
, id
);
1202 /* This is what we mean by invariant: you can't change it. */
1209 static bool is_valid_cache(u32 val
)
1213 if (val
>= CSSELR_MAX
)
1216 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1218 ctype
= (cache_levels
>> (level
* 3)) & 7;
1221 case 0: /* No cache */
1223 case 1: /* Instruction cache only */
1225 case 2: /* Data cache only */
1226 case 4: /* Unified cache */
1228 case 3: /* Separate instruction and data caches */
1230 default: /* Reserved: we can't know instruction or data. */
1235 static int demux_c15_get(u64 id
, void __user
*uaddr
)
1238 u32 __user
*uval
= uaddr
;
1240 /* Fail if we have unknown bits set. */
1241 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
1242 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
1245 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
1246 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
1247 if (KVM_REG_SIZE(id
) != 4)
1249 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
1250 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
1251 if (!is_valid_cache(val
))
1254 return put_user(get_ccsidr(val
), uval
);
1260 static int demux_c15_set(u64 id
, void __user
*uaddr
)
1263 u32 __user
*uval
= uaddr
;
1265 /* Fail if we have unknown bits set. */
1266 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
1267 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
1270 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
1271 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
1272 if (KVM_REG_SIZE(id
) != 4)
1274 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
1275 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
1276 if (!is_valid_cache(val
))
1279 if (get_user(newval
, uval
))
1282 /* This is also invariant: you can't change it. */
1283 if (newval
!= get_ccsidr(val
))
1291 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
1293 const struct sys_reg_desc
*r
;
1294 void __user
*uaddr
= (void __user
*)(unsigned long)reg
->addr
;
1296 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
1297 return demux_c15_get(reg
->id
, uaddr
);
1299 if (KVM_REG_SIZE(reg
->id
) != sizeof(__u64
))
1302 r
= index_to_sys_reg_desc(vcpu
, reg
->id
);
1304 return get_invariant_sys_reg(reg
->id
, uaddr
);
1306 return reg_to_user(uaddr
, &vcpu_sys_reg(vcpu
, r
->reg
), reg
->id
);
1309 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
1311 const struct sys_reg_desc
*r
;
1312 void __user
*uaddr
= (void __user
*)(unsigned long)reg
->addr
;
1314 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
1315 return demux_c15_set(reg
->id
, uaddr
);
1317 if (KVM_REG_SIZE(reg
->id
) != sizeof(__u64
))
1320 r
= index_to_sys_reg_desc(vcpu
, reg
->id
);
1322 return set_invariant_sys_reg(reg
->id
, uaddr
);
1324 return reg_from_user(&vcpu_sys_reg(vcpu
, r
->reg
), uaddr
, reg
->id
);
1327 static unsigned int num_demux_regs(void)
1329 unsigned int i
, count
= 0;
1331 for (i
= 0; i
< CSSELR_MAX
; i
++)
1332 if (is_valid_cache(i
))
1338 static int write_demux_regids(u64 __user
*uindices
)
1340 u64 val
= KVM_REG_ARM64
| KVM_REG_SIZE_U32
| KVM_REG_ARM_DEMUX
;
1343 val
|= KVM_REG_ARM_DEMUX_ID_CCSIDR
;
1344 for (i
= 0; i
< CSSELR_MAX
; i
++) {
1345 if (!is_valid_cache(i
))
1347 if (put_user(val
| i
, uindices
))
1354 static u64
sys_reg_to_index(const struct sys_reg_desc
*reg
)
1356 return (KVM_REG_ARM64
| KVM_REG_SIZE_U64
|
1357 KVM_REG_ARM64_SYSREG
|
1358 (reg
->Op0
<< KVM_REG_ARM64_SYSREG_OP0_SHIFT
) |
1359 (reg
->Op1
<< KVM_REG_ARM64_SYSREG_OP1_SHIFT
) |
1360 (reg
->CRn
<< KVM_REG_ARM64_SYSREG_CRN_SHIFT
) |
1361 (reg
->CRm
<< KVM_REG_ARM64_SYSREG_CRM_SHIFT
) |
1362 (reg
->Op2
<< KVM_REG_ARM64_SYSREG_OP2_SHIFT
));
1365 static bool copy_reg_to_user(const struct sys_reg_desc
*reg
, u64 __user
**uind
)
1370 if (put_user(sys_reg_to_index(reg
), *uind
))
1377 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1378 static int walk_sys_regs(struct kvm_vcpu
*vcpu
, u64 __user
*uind
)
1380 const struct sys_reg_desc
*i1
, *i2
, *end1
, *end2
;
1381 unsigned int total
= 0;
1384 /* We check for duplicates here, to allow arch-specific overrides. */
1385 i1
= get_target_table(vcpu
->arch
.target
, true, &num
);
1388 end2
= sys_reg_descs
+ ARRAY_SIZE(sys_reg_descs
);
1390 BUG_ON(i1
== end1
|| i2
== end2
);
1392 /* Walk carefully, as both tables may refer to the same register. */
1394 int cmp
= cmp_sys_reg(i1
, i2
);
1395 /* target-specific overrides generic entry. */
1397 /* Ignore registers we trap but don't save. */
1399 if (!copy_reg_to_user(i1
, &uind
))
1404 /* Ignore registers we trap but don't save. */
1406 if (!copy_reg_to_user(i2
, &uind
))
1412 if (cmp
<= 0 && ++i1
== end1
)
1414 if (cmp
>= 0 && ++i2
== end2
)
1420 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu
*vcpu
)
1422 return ARRAY_SIZE(invariant_sys_regs
)
1424 + walk_sys_regs(vcpu
, (u64 __user
*)NULL
);
1427 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu
*vcpu
, u64 __user
*uindices
)
1432 /* Then give them all the invariant registers' indices. */
1433 for (i
= 0; i
< ARRAY_SIZE(invariant_sys_regs
); i
++) {
1434 if (put_user(sys_reg_to_index(&invariant_sys_regs
[i
]), uindices
))
1439 err
= walk_sys_regs(vcpu
, uindices
);
1444 return write_demux_regids(uindices
);
1447 static int check_sysreg_table(const struct sys_reg_desc
*table
, unsigned int n
)
1451 for (i
= 1; i
< n
; i
++) {
1452 if (cmp_sys_reg(&table
[i
-1], &table
[i
]) >= 0) {
1453 kvm_err("sys_reg table %p out of order (%d)\n", table
, i
- 1);
1461 void kvm_sys_reg_table_init(void)
1464 struct sys_reg_desc clidr
;
1466 /* Make sure tables are unique and in order. */
1467 BUG_ON(check_sysreg_table(sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
)));
1468 BUG_ON(check_sysreg_table(cp14_regs
, ARRAY_SIZE(cp14_regs
)));
1469 BUG_ON(check_sysreg_table(cp14_64_regs
, ARRAY_SIZE(cp14_64_regs
)));
1470 BUG_ON(check_sysreg_table(cp15_regs
, ARRAY_SIZE(cp15_regs
)));
1471 BUG_ON(check_sysreg_table(cp15_64_regs
, ARRAY_SIZE(cp15_64_regs
)));
1472 BUG_ON(check_sysreg_table(invariant_sys_regs
, ARRAY_SIZE(invariant_sys_regs
)));
1474 /* We abuse the reset function to overwrite the table itself. */
1475 for (i
= 0; i
< ARRAY_SIZE(invariant_sys_regs
); i
++)
1476 invariant_sys_regs
[i
].reset(NULL
, &invariant_sys_regs
[i
]);
1479 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1481 * If software reads the Cache Type fields from Ctype1
1482 * upwards, once it has seen a value of 0b000, no caches
1483 * exist at further-out levels of the hierarchy. So, for
1484 * example, if Ctype3 is the first Cache Type field with a
1485 * value of 0b000, the values of Ctype4 to Ctype7 must be
1488 get_clidr_el1(NULL
, &clidr
); /* Ugly... */
1489 cache_levels
= clidr
.val
;
1490 for (i
= 0; i
< 7; i
++)
1491 if (((cache_levels
>> (i
*3)) & 7) == 0)
1493 /* Clear all higher bits. */
1494 cache_levels
&= (1 << (i
*3))-1;
1498 * kvm_reset_sys_regs - sets system registers to reset value
1499 * @vcpu: The VCPU pointer
1501 * This function finds the right table above and sets the registers on the
1502 * virtual CPU struct to their architecturally defined reset values.
1504 void kvm_reset_sys_regs(struct kvm_vcpu
*vcpu
)
1507 const struct sys_reg_desc
*table
;
1509 /* Catch someone adding a register without putting in reset entry. */
1510 memset(&vcpu
->arch
.ctxt
.sys_regs
, 0x42, sizeof(vcpu
->arch
.ctxt
.sys_regs
));
1512 /* Generic chip reset first (so target could override). */
1513 reset_sys_reg_descs(vcpu
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
1515 table
= get_target_table(vcpu
->arch
.target
, true, &num
);
1516 reset_sys_reg_descs(vcpu
, table
, num
);
1518 for (num
= 1; num
< NR_SYS_REGS
; num
++)
1519 if (vcpu_sys_reg(vcpu
, num
) == 0x4242424242424242)
1520 panic("Didn't reset vcpu_sys_reg(%zi)", num
);