ARM: rockchip: fix broken build
[linux/fpc-iii.git] / arch / arm64 / kvm / sys_regs.c
blobc370b4014799697c292a99cf24721a425fcb3790
1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <linux/kvm_host.h>
24 #include <linux/mm.h>
25 #include <linux/uaccess.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/debug-monitors.h>
30 #include <asm/esr.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_coproc.h>
33 #include <asm/kvm_emulate.h>
34 #include <asm/kvm_host.h>
35 #include <asm/kvm_mmu.h>
37 #include <trace/events/kvm.h>
39 #include "sys_regs.h"
42 * All of this file is extremly similar to the ARM coproc.c, but the
43 * types are different. My gut feeling is that it should be pretty
44 * easy to merge, but that would be an ABI breakage -- again. VFP
45 * would also need to be abstracted.
47 * For AArch32, we only take care of what is being trapped. Anything
48 * that has to do with init and userspace access has to go via the
49 * 64bit interface.
52 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
53 static u32 cache_levels;
55 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
56 #define CSSELR_MAX 12
58 /* Which cache CCSIDR represents depends on CSSELR value. */
59 static u32 get_ccsidr(u32 csselr)
61 u32 ccsidr;
63 /* Make sure noone else changes CSSELR during this! */
64 local_irq_disable();
65 /* Put value into CSSELR */
66 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
67 isb();
68 /* Read result out of CCSIDR */
69 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
70 local_irq_enable();
72 return ccsidr;
76 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
78 static bool access_dcsw(struct kvm_vcpu *vcpu,
79 const struct sys_reg_params *p,
80 const struct sys_reg_desc *r)
82 if (!p->is_write)
83 return read_from_write_only(vcpu, p);
85 kvm_set_way_flush(vcpu);
86 return true;
90 * Generic accessor for VM registers. Only called as long as HCR_TVM
91 * is set. If the guest enables the MMU, we stop trapping the VM
92 * sys_regs and leave it in complete control of the caches.
94 static bool access_vm_reg(struct kvm_vcpu *vcpu,
95 const struct sys_reg_params *p,
96 const struct sys_reg_desc *r)
98 unsigned long val;
99 bool was_enabled = vcpu_has_cache_enabled(vcpu);
101 BUG_ON(!p->is_write);
103 val = *vcpu_reg(vcpu, p->Rt);
104 if (!p->is_aarch32) {
105 vcpu_sys_reg(vcpu, r->reg) = val;
106 } else {
107 if (!p->is_32bit)
108 vcpu_cp15_64_high(vcpu, r->reg) = val >> 32;
109 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
112 kvm_toggle_cache(vcpu, was_enabled);
113 return true;
117 * Trap handler for the GICv3 SGI generation system register.
118 * Forward the request to the VGIC emulation.
119 * The cp15_64 code makes sure this automatically works
120 * for both AArch64 and AArch32 accesses.
122 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
123 const struct sys_reg_params *p,
124 const struct sys_reg_desc *r)
126 u64 val;
128 if (!p->is_write)
129 return read_from_write_only(vcpu, p);
131 val = *vcpu_reg(vcpu, p->Rt);
132 vgic_v3_dispatch_sgi(vcpu, val);
134 return true;
137 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
138 const struct sys_reg_params *p,
139 const struct sys_reg_desc *r)
141 if (p->is_write)
142 return ignore_write(vcpu, p);
143 else
144 return read_zero(vcpu, p);
147 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
148 const struct sys_reg_params *p,
149 const struct sys_reg_desc *r)
151 if (p->is_write) {
152 return ignore_write(vcpu, p);
153 } else {
154 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
155 return true;
159 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
160 const struct sys_reg_params *p,
161 const struct sys_reg_desc *r)
163 if (p->is_write) {
164 return ignore_write(vcpu, p);
165 } else {
166 u32 val;
167 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
168 *vcpu_reg(vcpu, p->Rt) = val;
169 return true;
174 * We want to avoid world-switching all the DBG registers all the
175 * time:
177 * - If we've touched any debug register, it is likely that we're
178 * going to touch more of them. It then makes sense to disable the
179 * traps and start doing the save/restore dance
180 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
181 * then mandatory to save/restore the registers, as the guest
182 * depends on them.
184 * For this, we use a DIRTY bit, indicating the guest has modified the
185 * debug registers, used as follow:
187 * On guest entry:
188 * - If the dirty bit is set (because we're coming back from trapping),
189 * disable the traps, save host registers, restore guest registers.
190 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
191 * set the dirty bit, disable the traps, save host registers,
192 * restore guest registers.
193 * - Otherwise, enable the traps
195 * On guest exit:
196 * - If the dirty bit is set, save guest registers, restore host
197 * registers and clear the dirty bit. This ensure that the host can
198 * now use the debug registers.
200 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
201 const struct sys_reg_params *p,
202 const struct sys_reg_desc *r)
204 if (p->is_write) {
205 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
206 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
207 } else {
208 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
211 return true;
214 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
216 u64 amair;
218 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
219 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
222 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
224 u64 mpidr;
227 * Map the vcpu_id into the first three affinity level fields of
228 * the MPIDR. We limit the number of VCPUs in level 0 due to a
229 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
230 * of the GICv3 to be able to address each CPU directly when
231 * sending IPIs.
233 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
234 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
235 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
236 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
239 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
240 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
241 /* DBGBVRn_EL1 */ \
242 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
243 trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 }, \
244 /* DBGBCRn_EL1 */ \
245 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
246 trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 }, \
247 /* DBGWVRn_EL1 */ \
248 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
249 trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 }, \
250 /* DBGWCRn_EL1 */ \
251 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
252 trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
255 * Architected system registers.
256 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
258 * We could trap ID_DFR0 and tell the guest we don't support performance
259 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
260 * NAKed, so it will read the PMCR anyway.
262 * Therefore we tell the guest we have 0 counters. Unfortunately, we
263 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
264 * all PM registers, which doesn't crash the guest kernel at least.
266 * Debug handling: We do trap most, if not all debug related system
267 * registers. The implementation is good enough to ensure that a guest
268 * can use these with minimal performance degradation. The drawback is
269 * that we don't implement any of the external debug, none of the
270 * OSlock protocol. This should be revisited if we ever encounter a
271 * more demanding guest...
273 static const struct sys_reg_desc sys_reg_descs[] = {
274 /* DC ISW */
275 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
276 access_dcsw },
277 /* DC CSW */
278 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
279 access_dcsw },
280 /* DC CISW */
281 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
282 access_dcsw },
284 DBG_BCR_BVR_WCR_WVR_EL1(0),
285 DBG_BCR_BVR_WCR_WVR_EL1(1),
286 /* MDCCINT_EL1 */
287 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
288 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
289 /* MDSCR_EL1 */
290 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
291 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
292 DBG_BCR_BVR_WCR_WVR_EL1(2),
293 DBG_BCR_BVR_WCR_WVR_EL1(3),
294 DBG_BCR_BVR_WCR_WVR_EL1(4),
295 DBG_BCR_BVR_WCR_WVR_EL1(5),
296 DBG_BCR_BVR_WCR_WVR_EL1(6),
297 DBG_BCR_BVR_WCR_WVR_EL1(7),
298 DBG_BCR_BVR_WCR_WVR_EL1(8),
299 DBG_BCR_BVR_WCR_WVR_EL1(9),
300 DBG_BCR_BVR_WCR_WVR_EL1(10),
301 DBG_BCR_BVR_WCR_WVR_EL1(11),
302 DBG_BCR_BVR_WCR_WVR_EL1(12),
303 DBG_BCR_BVR_WCR_WVR_EL1(13),
304 DBG_BCR_BVR_WCR_WVR_EL1(14),
305 DBG_BCR_BVR_WCR_WVR_EL1(15),
307 /* MDRAR_EL1 */
308 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
309 trap_raz_wi },
310 /* OSLAR_EL1 */
311 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
312 trap_raz_wi },
313 /* OSLSR_EL1 */
314 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
315 trap_oslsr_el1 },
316 /* OSDLR_EL1 */
317 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
318 trap_raz_wi },
319 /* DBGPRCR_EL1 */
320 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
321 trap_raz_wi },
322 /* DBGCLAIMSET_EL1 */
323 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
324 trap_raz_wi },
325 /* DBGCLAIMCLR_EL1 */
326 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
327 trap_raz_wi },
328 /* DBGAUTHSTATUS_EL1 */
329 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
330 trap_dbgauthstatus_el1 },
332 /* TEECR32_EL1 */
333 { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
334 NULL, reset_val, TEECR32_EL1, 0 },
335 /* TEEHBR32_EL1 */
336 { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
337 NULL, reset_val, TEEHBR32_EL1, 0 },
339 /* MDCCSR_EL1 */
340 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
341 trap_raz_wi },
342 /* DBGDTR_EL0 */
343 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
344 trap_raz_wi },
345 /* DBGDTR[TR]X_EL0 */
346 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
347 trap_raz_wi },
349 /* DBGVCR32_EL2 */
350 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
351 NULL, reset_val, DBGVCR32_EL2, 0 },
353 /* MPIDR_EL1 */
354 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
355 NULL, reset_mpidr, MPIDR_EL1 },
356 /* SCTLR_EL1 */
357 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
358 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
359 /* CPACR_EL1 */
360 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
361 NULL, reset_val, CPACR_EL1, 0 },
362 /* TTBR0_EL1 */
363 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
364 access_vm_reg, reset_unknown, TTBR0_EL1 },
365 /* TTBR1_EL1 */
366 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
367 access_vm_reg, reset_unknown, TTBR1_EL1 },
368 /* TCR_EL1 */
369 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
370 access_vm_reg, reset_val, TCR_EL1, 0 },
372 /* AFSR0_EL1 */
373 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
374 access_vm_reg, reset_unknown, AFSR0_EL1 },
375 /* AFSR1_EL1 */
376 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
377 access_vm_reg, reset_unknown, AFSR1_EL1 },
378 /* ESR_EL1 */
379 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
380 access_vm_reg, reset_unknown, ESR_EL1 },
381 /* FAR_EL1 */
382 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
383 access_vm_reg, reset_unknown, FAR_EL1 },
384 /* PAR_EL1 */
385 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
386 NULL, reset_unknown, PAR_EL1 },
388 /* PMINTENSET_EL1 */
389 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
390 trap_raz_wi },
391 /* PMINTENCLR_EL1 */
392 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
393 trap_raz_wi },
395 /* MAIR_EL1 */
396 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
397 access_vm_reg, reset_unknown, MAIR_EL1 },
398 /* AMAIR_EL1 */
399 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
400 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
402 /* VBAR_EL1 */
403 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
404 NULL, reset_val, VBAR_EL1, 0 },
406 /* ICC_SGI1R_EL1 */
407 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
408 access_gic_sgi },
409 /* ICC_SRE_EL1 */
410 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
411 trap_raz_wi },
413 /* CONTEXTIDR_EL1 */
414 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
415 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
416 /* TPIDR_EL1 */
417 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
418 NULL, reset_unknown, TPIDR_EL1 },
420 /* CNTKCTL_EL1 */
421 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
422 NULL, reset_val, CNTKCTL_EL1, 0},
424 /* CSSELR_EL1 */
425 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
426 NULL, reset_unknown, CSSELR_EL1 },
428 /* PMCR_EL0 */
429 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
430 trap_raz_wi },
431 /* PMCNTENSET_EL0 */
432 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
433 trap_raz_wi },
434 /* PMCNTENCLR_EL0 */
435 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
436 trap_raz_wi },
437 /* PMOVSCLR_EL0 */
438 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
439 trap_raz_wi },
440 /* PMSWINC_EL0 */
441 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
442 trap_raz_wi },
443 /* PMSELR_EL0 */
444 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
445 trap_raz_wi },
446 /* PMCEID0_EL0 */
447 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
448 trap_raz_wi },
449 /* PMCEID1_EL0 */
450 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
451 trap_raz_wi },
452 /* PMCCNTR_EL0 */
453 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
454 trap_raz_wi },
455 /* PMXEVTYPER_EL0 */
456 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
457 trap_raz_wi },
458 /* PMXEVCNTR_EL0 */
459 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
460 trap_raz_wi },
461 /* PMUSERENR_EL0 */
462 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
463 trap_raz_wi },
464 /* PMOVSSET_EL0 */
465 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
466 trap_raz_wi },
468 /* TPIDR_EL0 */
469 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
470 NULL, reset_unknown, TPIDR_EL0 },
471 /* TPIDRRO_EL0 */
472 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
473 NULL, reset_unknown, TPIDRRO_EL0 },
475 /* DACR32_EL2 */
476 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
477 NULL, reset_unknown, DACR32_EL2 },
478 /* IFSR32_EL2 */
479 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
480 NULL, reset_unknown, IFSR32_EL2 },
481 /* FPEXC32_EL2 */
482 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
483 NULL, reset_val, FPEXC32_EL2, 0x70 },
486 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
487 const struct sys_reg_params *p,
488 const struct sys_reg_desc *r)
490 if (p->is_write) {
491 return ignore_write(vcpu, p);
492 } else {
493 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
494 u64 pfr = read_cpuid(ID_AA64PFR0_EL1);
495 u32 el3 = !!((pfr >> 12) & 0xf);
497 *vcpu_reg(vcpu, p->Rt) = ((((dfr >> 20) & 0xf) << 28) |
498 (((dfr >> 12) & 0xf) << 24) |
499 (((dfr >> 28) & 0xf) << 20) |
500 (6 << 16) | (el3 << 14) | (el3 << 12));
501 return true;
505 static bool trap_debug32(struct kvm_vcpu *vcpu,
506 const struct sys_reg_params *p,
507 const struct sys_reg_desc *r)
509 if (p->is_write) {
510 vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
511 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
512 } else {
513 *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
516 return true;
519 #define DBG_BCR_BVR_WCR_WVR(n) \
520 /* DBGBVRn */ \
521 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_debug32, \
522 NULL, (cp14_DBGBVR0 + (n) * 2) }, \
523 /* DBGBCRn */ \
524 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_debug32, \
525 NULL, (cp14_DBGBCR0 + (n) * 2) }, \
526 /* DBGWVRn */ \
527 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_debug32, \
528 NULL, (cp14_DBGWVR0 + (n) * 2) }, \
529 /* DBGWCRn */ \
530 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_debug32, \
531 NULL, (cp14_DBGWCR0 + (n) * 2) }
533 #define DBGBXVR(n) \
534 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_debug32, \
535 NULL, cp14_DBGBXVR0 + n * 2 }
538 * Trapped cp14 registers. We generally ignore most of the external
539 * debug, on the principle that they don't really make sense to a
540 * guest. Revisit this one day, whould this principle change.
542 static const struct sys_reg_desc cp14_regs[] = {
543 /* DBGIDR */
544 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
545 /* DBGDTRRXext */
546 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
548 DBG_BCR_BVR_WCR_WVR(0),
549 /* DBGDSCRint */
550 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
551 DBG_BCR_BVR_WCR_WVR(1),
552 /* DBGDCCINT */
553 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
554 /* DBGDSCRext */
555 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
556 DBG_BCR_BVR_WCR_WVR(2),
557 /* DBGDTR[RT]Xint */
558 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
559 /* DBGDTR[RT]Xext */
560 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
561 DBG_BCR_BVR_WCR_WVR(3),
562 DBG_BCR_BVR_WCR_WVR(4),
563 DBG_BCR_BVR_WCR_WVR(5),
564 /* DBGWFAR */
565 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
566 /* DBGOSECCR */
567 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
568 DBG_BCR_BVR_WCR_WVR(6),
569 /* DBGVCR */
570 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
571 DBG_BCR_BVR_WCR_WVR(7),
572 DBG_BCR_BVR_WCR_WVR(8),
573 DBG_BCR_BVR_WCR_WVR(9),
574 DBG_BCR_BVR_WCR_WVR(10),
575 DBG_BCR_BVR_WCR_WVR(11),
576 DBG_BCR_BVR_WCR_WVR(12),
577 DBG_BCR_BVR_WCR_WVR(13),
578 DBG_BCR_BVR_WCR_WVR(14),
579 DBG_BCR_BVR_WCR_WVR(15),
581 /* DBGDRAR (32bit) */
582 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
584 DBGBXVR(0),
585 /* DBGOSLAR */
586 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
587 DBGBXVR(1),
588 /* DBGOSLSR */
589 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
590 DBGBXVR(2),
591 DBGBXVR(3),
592 /* DBGOSDLR */
593 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
594 DBGBXVR(4),
595 /* DBGPRCR */
596 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
597 DBGBXVR(5),
598 DBGBXVR(6),
599 DBGBXVR(7),
600 DBGBXVR(8),
601 DBGBXVR(9),
602 DBGBXVR(10),
603 DBGBXVR(11),
604 DBGBXVR(12),
605 DBGBXVR(13),
606 DBGBXVR(14),
607 DBGBXVR(15),
609 /* DBGDSAR (32bit) */
610 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
612 /* DBGDEVID2 */
613 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
614 /* DBGDEVID1 */
615 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
616 /* DBGDEVID */
617 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
618 /* DBGCLAIMSET */
619 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
620 /* DBGCLAIMCLR */
621 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
622 /* DBGAUTHSTATUS */
623 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
626 /* Trapped cp14 64bit registers */
627 static const struct sys_reg_desc cp14_64_regs[] = {
628 /* DBGDRAR (64bit) */
629 { Op1( 0), CRm( 1), .access = trap_raz_wi },
631 /* DBGDSAR (64bit) */
632 { Op1( 0), CRm( 2), .access = trap_raz_wi },
636 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
637 * depending on the way they are accessed (as a 32bit or a 64bit
638 * register).
640 static const struct sys_reg_desc cp15_regs[] = {
641 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
643 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
644 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
645 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
646 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
647 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
648 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
649 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
650 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
651 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
652 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
653 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
656 * DC{C,I,CI}SW operations:
658 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
659 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
660 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
662 /* PMU */
663 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
664 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
665 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
666 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
667 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
668 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
669 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
670 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
671 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
672 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
673 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
674 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
675 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
677 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
678 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
679 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
680 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
682 /* ICC_SRE */
683 { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
685 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
688 static const struct sys_reg_desc cp15_64_regs[] = {
689 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
690 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
691 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
694 /* Target specific emulation tables */
695 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
697 void kvm_register_target_sys_reg_table(unsigned int target,
698 struct kvm_sys_reg_target_table *table)
700 target_tables[target] = table;
703 /* Get specific register table for this target. */
704 static const struct sys_reg_desc *get_target_table(unsigned target,
705 bool mode_is_64,
706 size_t *num)
708 struct kvm_sys_reg_target_table *table;
710 table = target_tables[target];
711 if (mode_is_64) {
712 *num = table->table64.num;
713 return table->table64.table;
714 } else {
715 *num = table->table32.num;
716 return table->table32.table;
720 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
721 const struct sys_reg_desc table[],
722 unsigned int num)
724 unsigned int i;
726 for (i = 0; i < num; i++) {
727 const struct sys_reg_desc *r = &table[i];
729 if (params->Op0 != r->Op0)
730 continue;
731 if (params->Op1 != r->Op1)
732 continue;
733 if (params->CRn != r->CRn)
734 continue;
735 if (params->CRm != r->CRm)
736 continue;
737 if (params->Op2 != r->Op2)
738 continue;
740 return r;
742 return NULL;
745 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
747 kvm_inject_undefined(vcpu);
748 return 1;
752 * emulate_cp -- tries to match a sys_reg access in a handling table, and
753 * call the corresponding trap handler.
755 * @params: pointer to the descriptor of the access
756 * @table: array of trap descriptors
757 * @num: size of the trap descriptor array
759 * Return 0 if the access has been handled, and -1 if not.
761 static int emulate_cp(struct kvm_vcpu *vcpu,
762 const struct sys_reg_params *params,
763 const struct sys_reg_desc *table,
764 size_t num)
766 const struct sys_reg_desc *r;
768 if (!table)
769 return -1; /* Not handled */
771 r = find_reg(params, table, num);
773 if (r) {
775 * Not having an accessor means that we have
776 * configured a trap that we don't know how to
777 * handle. This certainly qualifies as a gross bug
778 * that should be fixed right away.
780 BUG_ON(!r->access);
782 if (likely(r->access(vcpu, params, r))) {
783 /* Skip instruction, since it was emulated */
784 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
787 /* Handled */
788 return 0;
791 /* Not handled */
792 return -1;
795 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
796 struct sys_reg_params *params)
798 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
799 int cp;
801 switch(hsr_ec) {
802 case ESR_ELx_EC_CP15_32:
803 case ESR_ELx_EC_CP15_64:
804 cp = 15;
805 break;
806 case ESR_ELx_EC_CP14_MR:
807 case ESR_ELx_EC_CP14_64:
808 cp = 14;
809 break;
810 default:
811 WARN_ON((cp = -1));
814 kvm_err("Unsupported guest CP%d access at: %08lx\n",
815 cp, *vcpu_pc(vcpu));
816 print_sys_reg_instr(params);
817 kvm_inject_undefined(vcpu);
821 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
822 * @vcpu: The VCPU pointer
823 * @run: The kvm_run struct
825 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
826 const struct sys_reg_desc *global,
827 size_t nr_global,
828 const struct sys_reg_desc *target_specific,
829 size_t nr_specific)
831 struct sys_reg_params params;
832 u32 hsr = kvm_vcpu_get_hsr(vcpu);
833 int Rt2 = (hsr >> 10) & 0xf;
835 params.is_aarch32 = true;
836 params.is_32bit = false;
837 params.CRm = (hsr >> 1) & 0xf;
838 params.Rt = (hsr >> 5) & 0xf;
839 params.is_write = ((hsr & 1) == 0);
841 params.Op0 = 0;
842 params.Op1 = (hsr >> 16) & 0xf;
843 params.Op2 = 0;
844 params.CRn = 0;
847 * Massive hack here. Store Rt2 in the top 32bits so we only
848 * have one register to deal with. As we use the same trap
849 * backends between AArch32 and AArch64, we get away with it.
851 if (params.is_write) {
852 u64 val = *vcpu_reg(vcpu, params.Rt);
853 val &= 0xffffffff;
854 val |= *vcpu_reg(vcpu, Rt2) << 32;
855 *vcpu_reg(vcpu, params.Rt) = val;
858 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
859 goto out;
860 if (!emulate_cp(vcpu, &params, global, nr_global))
861 goto out;
863 unhandled_cp_access(vcpu, &params);
865 out:
866 /* Do the opposite hack for the read side */
867 if (!params.is_write) {
868 u64 val = *vcpu_reg(vcpu, params.Rt);
869 val >>= 32;
870 *vcpu_reg(vcpu, Rt2) = val;
873 return 1;
877 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
878 * @vcpu: The VCPU pointer
879 * @run: The kvm_run struct
881 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
882 const struct sys_reg_desc *global,
883 size_t nr_global,
884 const struct sys_reg_desc *target_specific,
885 size_t nr_specific)
887 struct sys_reg_params params;
888 u32 hsr = kvm_vcpu_get_hsr(vcpu);
890 params.is_aarch32 = true;
891 params.is_32bit = true;
892 params.CRm = (hsr >> 1) & 0xf;
893 params.Rt = (hsr >> 5) & 0xf;
894 params.is_write = ((hsr & 1) == 0);
895 params.CRn = (hsr >> 10) & 0xf;
896 params.Op0 = 0;
897 params.Op1 = (hsr >> 14) & 0x7;
898 params.Op2 = (hsr >> 17) & 0x7;
900 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
901 return 1;
902 if (!emulate_cp(vcpu, &params, global, nr_global))
903 return 1;
905 unhandled_cp_access(vcpu, &params);
906 return 1;
909 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
911 const struct sys_reg_desc *target_specific;
912 size_t num;
914 target_specific = get_target_table(vcpu->arch.target, false, &num);
915 return kvm_handle_cp_64(vcpu,
916 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
917 target_specific, num);
920 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
922 const struct sys_reg_desc *target_specific;
923 size_t num;
925 target_specific = get_target_table(vcpu->arch.target, false, &num);
926 return kvm_handle_cp_32(vcpu,
927 cp15_regs, ARRAY_SIZE(cp15_regs),
928 target_specific, num);
931 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
933 return kvm_handle_cp_64(vcpu,
934 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
935 NULL, 0);
938 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
940 return kvm_handle_cp_32(vcpu,
941 cp14_regs, ARRAY_SIZE(cp14_regs),
942 NULL, 0);
945 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
946 const struct sys_reg_params *params)
948 size_t num;
949 const struct sys_reg_desc *table, *r;
951 table = get_target_table(vcpu->arch.target, true, &num);
953 /* Search target-specific then generic table. */
954 r = find_reg(params, table, num);
955 if (!r)
956 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
958 if (likely(r)) {
960 * Not having an accessor means that we have
961 * configured a trap that we don't know how to
962 * handle. This certainly qualifies as a gross bug
963 * that should be fixed right away.
965 BUG_ON(!r->access);
967 if (likely(r->access(vcpu, params, r))) {
968 /* Skip instruction, since it was emulated */
969 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
970 return 1;
972 /* If access function fails, it should complain. */
973 } else {
974 kvm_err("Unsupported guest sys_reg access at: %lx\n",
975 *vcpu_pc(vcpu));
976 print_sys_reg_instr(params);
978 kvm_inject_undefined(vcpu);
979 return 1;
982 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
983 const struct sys_reg_desc *table, size_t num)
985 unsigned long i;
987 for (i = 0; i < num; i++)
988 if (table[i].reset)
989 table[i].reset(vcpu, &table[i]);
993 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
994 * @vcpu: The VCPU pointer
995 * @run: The kvm_run struct
997 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
999 struct sys_reg_params params;
1000 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1002 params.is_aarch32 = false;
1003 params.is_32bit = false;
1004 params.Op0 = (esr >> 20) & 3;
1005 params.Op1 = (esr >> 14) & 0x7;
1006 params.CRn = (esr >> 10) & 0xf;
1007 params.CRm = (esr >> 1) & 0xf;
1008 params.Op2 = (esr >> 17) & 0x7;
1009 params.Rt = (esr >> 5) & 0x1f;
1010 params.is_write = !(esr & 1);
1012 return emulate_sys_reg(vcpu, &params);
1015 /******************************************************************************
1016 * Userspace API
1017 *****************************************************************************/
1019 static bool index_to_params(u64 id, struct sys_reg_params *params)
1021 switch (id & KVM_REG_SIZE_MASK) {
1022 case KVM_REG_SIZE_U64:
1023 /* Any unused index bits means it's not valid. */
1024 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1025 | KVM_REG_ARM_COPROC_MASK
1026 | KVM_REG_ARM64_SYSREG_OP0_MASK
1027 | KVM_REG_ARM64_SYSREG_OP1_MASK
1028 | KVM_REG_ARM64_SYSREG_CRN_MASK
1029 | KVM_REG_ARM64_SYSREG_CRM_MASK
1030 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1031 return false;
1032 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1033 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1034 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1035 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1036 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1037 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1038 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1039 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1040 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1041 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1042 return true;
1043 default:
1044 return false;
1048 /* Decode an index value, and find the sys_reg_desc entry. */
1049 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1050 u64 id)
1052 size_t num;
1053 const struct sys_reg_desc *table, *r;
1054 struct sys_reg_params params;
1056 /* We only do sys_reg for now. */
1057 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1058 return NULL;
1060 if (!index_to_params(id, &params))
1061 return NULL;
1063 table = get_target_table(vcpu->arch.target, true, &num);
1064 r = find_reg(&params, table, num);
1065 if (!r)
1066 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1068 /* Not saved in the sys_reg array? */
1069 if (r && !r->reg)
1070 r = NULL;
1072 return r;
1076 * These are the invariant sys_reg registers: we let the guest see the
1077 * host versions of these, so they're part of the guest state.
1079 * A future CPU may provide a mechanism to present different values to
1080 * the guest, or a future kvm may trap them.
1083 #define FUNCTION_INVARIANT(reg) \
1084 static void get_##reg(struct kvm_vcpu *v, \
1085 const struct sys_reg_desc *r) \
1087 u64 val; \
1089 asm volatile("mrs %0, " __stringify(reg) "\n" \
1090 : "=r" (val)); \
1091 ((struct sys_reg_desc *)r)->val = val; \
1094 FUNCTION_INVARIANT(midr_el1)
1095 FUNCTION_INVARIANT(ctr_el0)
1096 FUNCTION_INVARIANT(revidr_el1)
1097 FUNCTION_INVARIANT(id_pfr0_el1)
1098 FUNCTION_INVARIANT(id_pfr1_el1)
1099 FUNCTION_INVARIANT(id_dfr0_el1)
1100 FUNCTION_INVARIANT(id_afr0_el1)
1101 FUNCTION_INVARIANT(id_mmfr0_el1)
1102 FUNCTION_INVARIANT(id_mmfr1_el1)
1103 FUNCTION_INVARIANT(id_mmfr2_el1)
1104 FUNCTION_INVARIANT(id_mmfr3_el1)
1105 FUNCTION_INVARIANT(id_isar0_el1)
1106 FUNCTION_INVARIANT(id_isar1_el1)
1107 FUNCTION_INVARIANT(id_isar2_el1)
1108 FUNCTION_INVARIANT(id_isar3_el1)
1109 FUNCTION_INVARIANT(id_isar4_el1)
1110 FUNCTION_INVARIANT(id_isar5_el1)
1111 FUNCTION_INVARIANT(clidr_el1)
1112 FUNCTION_INVARIANT(aidr_el1)
1114 /* ->val is filled in by kvm_sys_reg_table_init() */
1115 static struct sys_reg_desc invariant_sys_regs[] = {
1116 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1117 NULL, get_midr_el1 },
1118 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1119 NULL, get_revidr_el1 },
1120 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1121 NULL, get_id_pfr0_el1 },
1122 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1123 NULL, get_id_pfr1_el1 },
1124 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1125 NULL, get_id_dfr0_el1 },
1126 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1127 NULL, get_id_afr0_el1 },
1128 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1129 NULL, get_id_mmfr0_el1 },
1130 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1131 NULL, get_id_mmfr1_el1 },
1132 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1133 NULL, get_id_mmfr2_el1 },
1134 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1135 NULL, get_id_mmfr3_el1 },
1136 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1137 NULL, get_id_isar0_el1 },
1138 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1139 NULL, get_id_isar1_el1 },
1140 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1141 NULL, get_id_isar2_el1 },
1142 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1143 NULL, get_id_isar3_el1 },
1144 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1145 NULL, get_id_isar4_el1 },
1146 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1147 NULL, get_id_isar5_el1 },
1148 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1149 NULL, get_clidr_el1 },
1150 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1151 NULL, get_aidr_el1 },
1152 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1153 NULL, get_ctr_el0 },
1156 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1158 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1159 return -EFAULT;
1160 return 0;
1163 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1165 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1166 return -EFAULT;
1167 return 0;
1170 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1172 struct sys_reg_params params;
1173 const struct sys_reg_desc *r;
1175 if (!index_to_params(id, &params))
1176 return -ENOENT;
1178 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1179 if (!r)
1180 return -ENOENT;
1182 return reg_to_user(uaddr, &r->val, id);
1185 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1187 struct sys_reg_params params;
1188 const struct sys_reg_desc *r;
1189 int err;
1190 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1192 if (!index_to_params(id, &params))
1193 return -ENOENT;
1194 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1195 if (!r)
1196 return -ENOENT;
1198 err = reg_from_user(&val, uaddr, id);
1199 if (err)
1200 return err;
1202 /* This is what we mean by invariant: you can't change it. */
1203 if (r->val != val)
1204 return -EINVAL;
1206 return 0;
1209 static bool is_valid_cache(u32 val)
1211 u32 level, ctype;
1213 if (val >= CSSELR_MAX)
1214 return false;
1216 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1217 level = (val >> 1);
1218 ctype = (cache_levels >> (level * 3)) & 7;
1220 switch (ctype) {
1221 case 0: /* No cache */
1222 return false;
1223 case 1: /* Instruction cache only */
1224 return (val & 1);
1225 case 2: /* Data cache only */
1226 case 4: /* Unified cache */
1227 return !(val & 1);
1228 case 3: /* Separate instruction and data caches */
1229 return true;
1230 default: /* Reserved: we can't know instruction or data. */
1231 return false;
1235 static int demux_c15_get(u64 id, void __user *uaddr)
1237 u32 val;
1238 u32 __user *uval = uaddr;
1240 /* Fail if we have unknown bits set. */
1241 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1242 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1243 return -ENOENT;
1245 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1246 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1247 if (KVM_REG_SIZE(id) != 4)
1248 return -ENOENT;
1249 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1250 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1251 if (!is_valid_cache(val))
1252 return -ENOENT;
1254 return put_user(get_ccsidr(val), uval);
1255 default:
1256 return -ENOENT;
1260 static int demux_c15_set(u64 id, void __user *uaddr)
1262 u32 val, newval;
1263 u32 __user *uval = uaddr;
1265 /* Fail if we have unknown bits set. */
1266 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1267 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1268 return -ENOENT;
1270 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1271 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1272 if (KVM_REG_SIZE(id) != 4)
1273 return -ENOENT;
1274 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1275 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1276 if (!is_valid_cache(val))
1277 return -ENOENT;
1279 if (get_user(newval, uval))
1280 return -EFAULT;
1282 /* This is also invariant: you can't change it. */
1283 if (newval != get_ccsidr(val))
1284 return -EINVAL;
1285 return 0;
1286 default:
1287 return -ENOENT;
1291 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1293 const struct sys_reg_desc *r;
1294 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1296 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1297 return demux_c15_get(reg->id, uaddr);
1299 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1300 return -ENOENT;
1302 r = index_to_sys_reg_desc(vcpu, reg->id);
1303 if (!r)
1304 return get_invariant_sys_reg(reg->id, uaddr);
1306 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1309 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1311 const struct sys_reg_desc *r;
1312 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1314 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1315 return demux_c15_set(reg->id, uaddr);
1317 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1318 return -ENOENT;
1320 r = index_to_sys_reg_desc(vcpu, reg->id);
1321 if (!r)
1322 return set_invariant_sys_reg(reg->id, uaddr);
1324 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1327 static unsigned int num_demux_regs(void)
1329 unsigned int i, count = 0;
1331 for (i = 0; i < CSSELR_MAX; i++)
1332 if (is_valid_cache(i))
1333 count++;
1335 return count;
1338 static int write_demux_regids(u64 __user *uindices)
1340 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1341 unsigned int i;
1343 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1344 for (i = 0; i < CSSELR_MAX; i++) {
1345 if (!is_valid_cache(i))
1346 continue;
1347 if (put_user(val | i, uindices))
1348 return -EFAULT;
1349 uindices++;
1351 return 0;
1354 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1356 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1357 KVM_REG_ARM64_SYSREG |
1358 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1359 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1360 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1361 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1362 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1365 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1367 if (!*uind)
1368 return true;
1370 if (put_user(sys_reg_to_index(reg), *uind))
1371 return false;
1373 (*uind)++;
1374 return true;
1377 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1378 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1380 const struct sys_reg_desc *i1, *i2, *end1, *end2;
1381 unsigned int total = 0;
1382 size_t num;
1384 /* We check for duplicates here, to allow arch-specific overrides. */
1385 i1 = get_target_table(vcpu->arch.target, true, &num);
1386 end1 = i1 + num;
1387 i2 = sys_reg_descs;
1388 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1390 BUG_ON(i1 == end1 || i2 == end2);
1392 /* Walk carefully, as both tables may refer to the same register. */
1393 while (i1 || i2) {
1394 int cmp = cmp_sys_reg(i1, i2);
1395 /* target-specific overrides generic entry. */
1396 if (cmp <= 0) {
1397 /* Ignore registers we trap but don't save. */
1398 if (i1->reg) {
1399 if (!copy_reg_to_user(i1, &uind))
1400 return -EFAULT;
1401 total++;
1403 } else {
1404 /* Ignore registers we trap but don't save. */
1405 if (i2->reg) {
1406 if (!copy_reg_to_user(i2, &uind))
1407 return -EFAULT;
1408 total++;
1412 if (cmp <= 0 && ++i1 == end1)
1413 i1 = NULL;
1414 if (cmp >= 0 && ++i2 == end2)
1415 i2 = NULL;
1417 return total;
1420 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1422 return ARRAY_SIZE(invariant_sys_regs)
1423 + num_demux_regs()
1424 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1427 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1429 unsigned int i;
1430 int err;
1432 /* Then give them all the invariant registers' indices. */
1433 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1434 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1435 return -EFAULT;
1436 uindices++;
1439 err = walk_sys_regs(vcpu, uindices);
1440 if (err < 0)
1441 return err;
1442 uindices += err;
1444 return write_demux_regids(uindices);
1447 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1449 unsigned int i;
1451 for (i = 1; i < n; i++) {
1452 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1453 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1454 return 1;
1458 return 0;
1461 void kvm_sys_reg_table_init(void)
1463 unsigned int i;
1464 struct sys_reg_desc clidr;
1466 /* Make sure tables are unique and in order. */
1467 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1468 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1469 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1470 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1471 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1472 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1474 /* We abuse the reset function to overwrite the table itself. */
1475 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1476 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1479 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1481 * If software reads the Cache Type fields from Ctype1
1482 * upwards, once it has seen a value of 0b000, no caches
1483 * exist at further-out levels of the hierarchy. So, for
1484 * example, if Ctype3 is the first Cache Type field with a
1485 * value of 0b000, the values of Ctype4 to Ctype7 must be
1486 * ignored.
1488 get_clidr_el1(NULL, &clidr); /* Ugly... */
1489 cache_levels = clidr.val;
1490 for (i = 0; i < 7; i++)
1491 if (((cache_levels >> (i*3)) & 7) == 0)
1492 break;
1493 /* Clear all higher bits. */
1494 cache_levels &= (1 << (i*3))-1;
1498 * kvm_reset_sys_regs - sets system registers to reset value
1499 * @vcpu: The VCPU pointer
1501 * This function finds the right table above and sets the registers on the
1502 * virtual CPU struct to their architecturally defined reset values.
1504 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1506 size_t num;
1507 const struct sys_reg_desc *table;
1509 /* Catch someone adding a register without putting in reset entry. */
1510 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1512 /* Generic chip reset first (so target could override). */
1513 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1515 table = get_target_table(vcpu->arch.target, true, &num);
1516 reset_sys_reg_descs(vcpu, table, num);
1518 for (num = 1; num < NR_SYS_REGS; num++)
1519 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1520 panic("Didn't reset vcpu_sys_reg(%zi)", num);