2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * KVM/MIPS: Instruction/Exception emulation
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
33 #include "interrupt.h"
39 * Compute the return address and do emulate branch simulation, if required.
40 * This function should be called only in branch delay slot active.
42 unsigned long kvm_compute_return_epc(struct kvm_vcpu
*vcpu
,
45 unsigned int dspcontrol
;
46 union mips_instruction insn
;
47 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
49 long nextpc
= KVM_INVALID_INST
;
54 /* Read the instruction */
55 insn
.word
= kvm_get_inst((uint32_t *) epc
, vcpu
);
57 if (insn
.word
== KVM_INVALID_INST
)
58 return KVM_INVALID_INST
;
60 switch (insn
.i_format
.opcode
) {
61 /* jr and jalr are in r_format format. */
63 switch (insn
.r_format
.func
) {
65 arch
->gprs
[insn
.r_format
.rd
] = epc
+ 8;
68 nextpc
= arch
->gprs
[insn
.r_format
.rs
];
74 * This group contains:
75 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
79 switch (insn
.i_format
.rt
) {
82 if ((long)arch
->gprs
[insn
.i_format
.rs
] < 0)
83 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
91 if ((long)arch
->gprs
[insn
.i_format
.rs
] >= 0)
92 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
100 arch
->gprs
[31] = epc
+ 8;
101 if ((long)arch
->gprs
[insn
.i_format
.rs
] < 0)
102 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
110 arch
->gprs
[31] = epc
+ 8;
111 if ((long)arch
->gprs
[insn
.i_format
.rs
] >= 0)
112 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
121 dspcontrol
= rddsp(0x01);
123 if (dspcontrol
>= 32)
124 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
132 /* These are unconditional and in j_format. */
134 arch
->gprs
[31] = instpc
+ 8;
139 epc
|= (insn
.j_format
.target
<< 2);
143 /* These are conditional and in i_format. */
146 if (arch
->gprs
[insn
.i_format
.rs
] ==
147 arch
->gprs
[insn
.i_format
.rt
])
148 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
156 if (arch
->gprs
[insn
.i_format
.rs
] !=
157 arch
->gprs
[insn
.i_format
.rt
])
158 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
164 case blez_op
: /* not really i_format */
166 /* rt field assumed to be zero */
167 if ((long)arch
->gprs
[insn
.i_format
.rs
] <= 0)
168 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
176 /* rt field assumed to be zero */
177 if ((long)arch
->gprs
[insn
.i_format
.rs
] > 0)
178 epc
= epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
184 /* And now the FPA/cp1 branch instructions. */
186 kvm_err("%s: unsupported cop1_op\n", __func__
);
193 kvm_err("%s: unaligned epc\n", __func__
);
197 kvm_err("%s: DSP branch but not DSP ASE\n", __func__
);
201 enum emulation_result
update_pc(struct kvm_vcpu
*vcpu
, uint32_t cause
)
203 unsigned long branch_pc
;
204 enum emulation_result er
= EMULATE_DONE
;
206 if (cause
& CAUSEF_BD
) {
207 branch_pc
= kvm_compute_return_epc(vcpu
, vcpu
->arch
.pc
);
208 if (branch_pc
== KVM_INVALID_INST
) {
211 vcpu
->arch
.pc
= branch_pc
;
212 kvm_debug("BD update_pc(): New PC: %#lx\n",
218 kvm_debug("update_pc(): New PC: %#lx\n", vcpu
->arch
.pc
);
224 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225 * @vcpu: Virtual CPU.
227 * Returns: 1 if the CP0_Count timer is disabled by either the guest
228 * CP0_Cause.DC bit or the count_ctl.DC bit.
229 * 0 otherwise (in which case CP0_Count timer is running).
231 static inline int kvm_mips_count_disabled(struct kvm_vcpu
*vcpu
)
233 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
235 return (vcpu
->arch
.count_ctl
& KVM_REG_MIPS_COUNT_CTL_DC
) ||
236 (kvm_read_c0_guest_cause(cop0
) & CAUSEF_DC
);
240 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
242 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
244 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
246 static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu
*vcpu
, ktime_t now
)
251 now_ns
= ktime_to_ns(now
);
252 delta
= now_ns
+ vcpu
->arch
.count_dyn_bias
;
254 if (delta
>= vcpu
->arch
.count_period
) {
255 /* If delta is out of safe range the bias needs adjusting */
256 periods
= div64_s64(now_ns
, vcpu
->arch
.count_period
);
257 vcpu
->arch
.count_dyn_bias
= -periods
* vcpu
->arch
.count_period
;
258 /* Recalculate delta with new bias */
259 delta
= now_ns
+ vcpu
->arch
.count_dyn_bias
;
263 * We've ensured that:
264 * delta < count_period
266 * Therefore the intermediate delta*count_hz will never overflow since
267 * at the boundary condition:
268 * delta = count_period
269 * delta = NSEC_PER_SEC * 2^32 / count_hz
270 * delta * count_hz = NSEC_PER_SEC * 2^32
272 return div_u64(delta
* vcpu
->arch
.count_hz
, NSEC_PER_SEC
);
276 * kvm_mips_count_time() - Get effective current time.
277 * @vcpu: Virtual CPU.
279 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280 * except when the master disable bit is set in count_ctl, in which case it is
281 * count_resume, i.e. the time that the count was disabled.
283 * Returns: Effective monotonic ktime for CP0_Count.
285 static inline ktime_t
kvm_mips_count_time(struct kvm_vcpu
*vcpu
)
287 if (unlikely(vcpu
->arch
.count_ctl
& KVM_REG_MIPS_COUNT_CTL_DC
))
288 return vcpu
->arch
.count_resume
;
294 * kvm_mips_read_count_running() - Read the current count value as if running.
295 * @vcpu: Virtual CPU.
296 * @now: Kernel time to read CP0_Count at.
298 * Returns the current guest CP0_Count register at time @now and handles if the
299 * timer interrupt is pending and hasn't been handled yet.
301 * Returns: The current value of the guest CP0_Count register.
303 static uint32_t kvm_mips_read_count_running(struct kvm_vcpu
*vcpu
, ktime_t now
)
308 /* Is the hrtimer pending? */
309 expires
= hrtimer_get_expires(&vcpu
->arch
.comparecount_timer
);
310 if (ktime_compare(now
, expires
) >= 0) {
312 * Cancel it while we handle it so there's no chance of
313 * interference with the timeout handler.
315 running
= hrtimer_cancel(&vcpu
->arch
.comparecount_timer
);
317 /* Nothing should be waiting on the timeout */
318 kvm_mips_callbacks
->queue_timer_int(vcpu
);
321 * Restart the timer if it was running based on the expiry time
322 * we read, so that we don't push it back 2 periods.
325 expires
= ktime_add_ns(expires
,
326 vcpu
->arch
.count_period
);
327 hrtimer_start(&vcpu
->arch
.comparecount_timer
, expires
,
332 /* Return the biased and scaled guest CP0_Count */
333 return vcpu
->arch
.count_bias
+ kvm_mips_ktime_to_count(vcpu
, now
);
337 * kvm_mips_read_count() - Read the current count value.
338 * @vcpu: Virtual CPU.
340 * Read the current guest CP0_Count value, taking into account whether the timer
343 * Returns: The current guest CP0_Count value.
345 uint32_t kvm_mips_read_count(struct kvm_vcpu
*vcpu
)
347 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
349 /* If count disabled just read static copy of count */
350 if (kvm_mips_count_disabled(vcpu
))
351 return kvm_read_c0_guest_count(cop0
);
353 return kvm_mips_read_count_running(vcpu
, ktime_get());
357 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
358 * @vcpu: Virtual CPU.
359 * @count: Output pointer for CP0_Count value at point of freeze.
361 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
362 * at the point it was frozen. It is guaranteed that any pending interrupts at
363 * the point it was frozen are handled, and none after that point.
365 * This is useful where the time/CP0_Count is needed in the calculation of the
368 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
370 * Returns: The ktime at the point of freeze.
372 static ktime_t
kvm_mips_freeze_hrtimer(struct kvm_vcpu
*vcpu
,
377 /* stop hrtimer before finding time */
378 hrtimer_cancel(&vcpu
->arch
.comparecount_timer
);
381 /* find count at this point and handle pending hrtimer */
382 *count
= kvm_mips_read_count_running(vcpu
, now
);
388 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
389 * @vcpu: Virtual CPU.
390 * @now: ktime at point of resume.
391 * @count: CP0_Count at point of resume.
393 * Resumes the timer and updates the timer expiry based on @now and @count.
394 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
395 * parameters need to be changed.
397 * It is guaranteed that a timer interrupt immediately after resume will be
398 * handled, but not if CP_Compare is exactly at @count. That case is already
399 * handled by kvm_mips_freeze_timer().
401 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
403 static void kvm_mips_resume_hrtimer(struct kvm_vcpu
*vcpu
,
404 ktime_t now
, uint32_t count
)
406 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
411 /* Calculate timeout (wrap 0 to 2^32) */
412 compare
= kvm_read_c0_guest_compare(cop0
);
413 delta
= (u64
)(uint32_t)(compare
- count
- 1) + 1;
414 delta
= div_u64(delta
* NSEC_PER_SEC
, vcpu
->arch
.count_hz
);
415 expire
= ktime_add_ns(now
, delta
);
417 /* Update hrtimer to use new timeout */
418 hrtimer_cancel(&vcpu
->arch
.comparecount_timer
);
419 hrtimer_start(&vcpu
->arch
.comparecount_timer
, expire
, HRTIMER_MODE_ABS
);
423 * kvm_mips_update_hrtimer() - Update next expiry time of hrtimer.
424 * @vcpu: Virtual CPU.
426 * Recalculates and updates the expiry time of the hrtimer. This can be used
427 * after timer parameters have been altered which do not depend on the time that
428 * the change occurs (in those cases kvm_mips_freeze_hrtimer() and
429 * kvm_mips_resume_hrtimer() are used directly).
431 * It is guaranteed that no timer interrupts will be lost in the process.
433 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
435 static void kvm_mips_update_hrtimer(struct kvm_vcpu
*vcpu
)
441 * freeze_hrtimer takes care of a timer interrupts <= count, and
442 * resume_hrtimer the hrtimer takes care of a timer interrupts > count.
444 now
= kvm_mips_freeze_hrtimer(vcpu
, &count
);
445 kvm_mips_resume_hrtimer(vcpu
, now
, count
);
449 * kvm_mips_write_count() - Modify the count and update timer.
450 * @vcpu: Virtual CPU.
451 * @count: Guest CP0_Count value to set.
453 * Sets the CP0_Count value and updates the timer accordingly.
455 void kvm_mips_write_count(struct kvm_vcpu
*vcpu
, uint32_t count
)
457 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
461 now
= kvm_mips_count_time(vcpu
);
462 vcpu
->arch
.count_bias
= count
- kvm_mips_ktime_to_count(vcpu
, now
);
464 if (kvm_mips_count_disabled(vcpu
))
465 /* The timer's disabled, adjust the static count */
466 kvm_write_c0_guest_count(cop0
, count
);
469 kvm_mips_resume_hrtimer(vcpu
, now
, count
);
473 * kvm_mips_init_count() - Initialise timer.
474 * @vcpu: Virtual CPU.
476 * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
477 * it going if it's enabled.
479 void kvm_mips_init_count(struct kvm_vcpu
*vcpu
)
482 vcpu
->arch
.count_hz
= 100*1000*1000;
483 vcpu
->arch
.count_period
= div_u64((u64
)NSEC_PER_SEC
<< 32,
484 vcpu
->arch
.count_hz
);
485 vcpu
->arch
.count_dyn_bias
= 0;
488 kvm_mips_write_count(vcpu
, 0);
492 * kvm_mips_set_count_hz() - Update the frequency of the timer.
493 * @vcpu: Virtual CPU.
494 * @count_hz: Frequency of CP0_Count timer in Hz.
496 * Change the frequency of the CP0_Count timer. This is done atomically so that
497 * CP0_Count is continuous and no timer interrupt is lost.
499 * Returns: -EINVAL if @count_hz is out of range.
502 int kvm_mips_set_count_hz(struct kvm_vcpu
*vcpu
, s64 count_hz
)
504 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
509 /* ensure the frequency is in a sensible range... */
510 if (count_hz
<= 0 || count_hz
> NSEC_PER_SEC
)
512 /* ... and has actually changed */
513 if (vcpu
->arch
.count_hz
== count_hz
)
516 /* Safely freeze timer so we can keep it continuous */
517 dc
= kvm_mips_count_disabled(vcpu
);
519 now
= kvm_mips_count_time(vcpu
);
520 count
= kvm_read_c0_guest_count(cop0
);
522 now
= kvm_mips_freeze_hrtimer(vcpu
, &count
);
525 /* Update the frequency */
526 vcpu
->arch
.count_hz
= count_hz
;
527 vcpu
->arch
.count_period
= div_u64((u64
)NSEC_PER_SEC
<< 32, count_hz
);
528 vcpu
->arch
.count_dyn_bias
= 0;
530 /* Calculate adjusted bias so dynamic count is unchanged */
531 vcpu
->arch
.count_bias
= count
- kvm_mips_ktime_to_count(vcpu
, now
);
533 /* Update and resume hrtimer */
535 kvm_mips_resume_hrtimer(vcpu
, now
, count
);
540 * kvm_mips_write_compare() - Modify compare and update timer.
541 * @vcpu: Virtual CPU.
542 * @compare: New CP0_Compare value.
544 * Update CP0_Compare to a new value and update the timeout.
546 void kvm_mips_write_compare(struct kvm_vcpu
*vcpu
, uint32_t compare
)
548 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
550 /* if unchanged, must just be an ack */
551 if (kvm_read_c0_guest_compare(cop0
) == compare
)
555 kvm_write_c0_guest_compare(cop0
, compare
);
557 /* Update timeout if count enabled */
558 if (!kvm_mips_count_disabled(vcpu
))
559 kvm_mips_update_hrtimer(vcpu
);
563 * kvm_mips_count_disable() - Disable count.
564 * @vcpu: Virtual CPU.
566 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
567 * time will be handled but not after.
569 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
570 * count_ctl.DC has been set (count disabled).
572 * Returns: The time that the timer was stopped.
574 static ktime_t
kvm_mips_count_disable(struct kvm_vcpu
*vcpu
)
576 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
581 hrtimer_cancel(&vcpu
->arch
.comparecount_timer
);
583 /* Set the static count from the dynamic count, handling pending TI */
585 count
= kvm_mips_read_count_running(vcpu
, now
);
586 kvm_write_c0_guest_count(cop0
, count
);
592 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
593 * @vcpu: Virtual CPU.
595 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
596 * before the final stop time will be handled if the timer isn't disabled by
597 * count_ctl.DC, but not after.
599 * Assumes CP0_Cause.DC is clear (count enabled).
601 void kvm_mips_count_disable_cause(struct kvm_vcpu
*vcpu
)
603 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
605 kvm_set_c0_guest_cause(cop0
, CAUSEF_DC
);
606 if (!(vcpu
->arch
.count_ctl
& KVM_REG_MIPS_COUNT_CTL_DC
))
607 kvm_mips_count_disable(vcpu
);
611 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
612 * @vcpu: Virtual CPU.
614 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
615 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
616 * potentially before even returning, so the caller should be careful with
617 * ordering of CP0_Cause modifications so as not to lose it.
619 * Assumes CP0_Cause.DC is set (count disabled).
621 void kvm_mips_count_enable_cause(struct kvm_vcpu
*vcpu
)
623 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
626 kvm_clear_c0_guest_cause(cop0
, CAUSEF_DC
);
629 * Set the dynamic count to match the static count.
630 * This starts the hrtimer if count_ctl.DC allows it.
631 * Otherwise it conveniently updates the biases.
633 count
= kvm_read_c0_guest_count(cop0
);
634 kvm_mips_write_count(vcpu
, count
);
638 * kvm_mips_set_count_ctl() - Update the count control KVM register.
639 * @vcpu: Virtual CPU.
640 * @count_ctl: Count control register new value.
642 * Set the count control KVM register. The timer is updated accordingly.
644 * Returns: -EINVAL if reserved bits are set.
647 int kvm_mips_set_count_ctl(struct kvm_vcpu
*vcpu
, s64 count_ctl
)
649 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
650 s64 changed
= count_ctl
^ vcpu
->arch
.count_ctl
;
653 uint32_t count
, compare
;
655 /* Only allow defined bits to be changed */
656 if (changed
& ~(s64
)(KVM_REG_MIPS_COUNT_CTL_DC
))
659 /* Apply new value */
660 vcpu
->arch
.count_ctl
= count_ctl
;
662 /* Master CP0_Count disable */
663 if (changed
& KVM_REG_MIPS_COUNT_CTL_DC
) {
664 /* Is CP0_Cause.DC already disabling CP0_Count? */
665 if (kvm_read_c0_guest_cause(cop0
) & CAUSEF_DC
) {
666 if (count_ctl
& KVM_REG_MIPS_COUNT_CTL_DC
)
667 /* Just record the current time */
668 vcpu
->arch
.count_resume
= ktime_get();
669 } else if (count_ctl
& KVM_REG_MIPS_COUNT_CTL_DC
) {
670 /* disable timer and record current time */
671 vcpu
->arch
.count_resume
= kvm_mips_count_disable(vcpu
);
674 * Calculate timeout relative to static count at resume
675 * time (wrap 0 to 2^32).
677 count
= kvm_read_c0_guest_count(cop0
);
678 compare
= kvm_read_c0_guest_compare(cop0
);
679 delta
= (u64
)(uint32_t)(compare
- count
- 1) + 1;
680 delta
= div_u64(delta
* NSEC_PER_SEC
,
681 vcpu
->arch
.count_hz
);
682 expire
= ktime_add_ns(vcpu
->arch
.count_resume
, delta
);
684 /* Handle pending interrupt */
686 if (ktime_compare(now
, expire
) >= 0)
687 /* Nothing should be waiting on the timeout */
688 kvm_mips_callbacks
->queue_timer_int(vcpu
);
690 /* Resume hrtimer without changing bias */
691 count
= kvm_mips_read_count_running(vcpu
, now
);
692 kvm_mips_resume_hrtimer(vcpu
, now
, count
);
700 * kvm_mips_set_count_resume() - Update the count resume KVM register.
701 * @vcpu: Virtual CPU.
702 * @count_resume: Count resume register new value.
704 * Set the count resume KVM register.
706 * Returns: -EINVAL if out of valid range (0..now).
709 int kvm_mips_set_count_resume(struct kvm_vcpu
*vcpu
, s64 count_resume
)
712 * It doesn't make sense for the resume time to be in the future, as it
713 * would be possible for the next interrupt to be more than a full
714 * period in the future.
716 if (count_resume
< 0 || count_resume
> ktime_to_ns(ktime_get()))
719 vcpu
->arch
.count_resume
= ns_to_ktime(count_resume
);
724 * kvm_mips_count_timeout() - Push timer forward on timeout.
725 * @vcpu: Virtual CPU.
727 * Handle an hrtimer event by push the hrtimer forward a period.
729 * Returns: The hrtimer_restart value to return to the hrtimer subsystem.
731 enum hrtimer_restart
kvm_mips_count_timeout(struct kvm_vcpu
*vcpu
)
733 /* Add the Count period to the current expiry time */
734 hrtimer_add_expires_ns(&vcpu
->arch
.comparecount_timer
,
735 vcpu
->arch
.count_period
);
736 return HRTIMER_RESTART
;
739 enum emulation_result
kvm_mips_emul_eret(struct kvm_vcpu
*vcpu
)
741 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
742 enum emulation_result er
= EMULATE_DONE
;
744 if (kvm_read_c0_guest_status(cop0
) & ST0_EXL
) {
745 kvm_debug("[%#lx] ERET to %#lx\n", vcpu
->arch
.pc
,
746 kvm_read_c0_guest_epc(cop0
));
747 kvm_clear_c0_guest_status(cop0
, ST0_EXL
);
748 vcpu
->arch
.pc
= kvm_read_c0_guest_epc(cop0
);
750 } else if (kvm_read_c0_guest_status(cop0
) & ST0_ERL
) {
751 kvm_clear_c0_guest_status(cop0
, ST0_ERL
);
752 vcpu
->arch
.pc
= kvm_read_c0_guest_errorepc(cop0
);
754 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
762 enum emulation_result
kvm_mips_emul_wait(struct kvm_vcpu
*vcpu
)
764 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu
->arch
.pc
,
765 vcpu
->arch
.pending_exceptions
);
767 ++vcpu
->stat
.wait_exits
;
768 trace_kvm_exit(vcpu
, WAIT_EXITS
);
769 if (!vcpu
->arch
.pending_exceptions
) {
771 kvm_vcpu_block(vcpu
);
774 * We we are runnable, then definitely go off to user space to
775 * check if any I/O interrupts are pending.
777 if (kvm_check_request(KVM_REQ_UNHALT
, vcpu
)) {
778 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
779 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
787 * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
788 * we can catch this, if things ever change
790 enum emulation_result
kvm_mips_emul_tlbr(struct kvm_vcpu
*vcpu
)
792 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
793 uint32_t pc
= vcpu
->arch
.pc
;
795 kvm_err("[%#x] COP0_TLBR [%ld]\n", pc
, kvm_read_c0_guest_index(cop0
));
799 /* Write Guest TLB Entry @ Index */
800 enum emulation_result
kvm_mips_emul_tlbwi(struct kvm_vcpu
*vcpu
)
802 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
803 int index
= kvm_read_c0_guest_index(cop0
);
804 struct kvm_mips_tlb
*tlb
= NULL
;
805 uint32_t pc
= vcpu
->arch
.pc
;
807 if (index
< 0 || index
>= KVM_MIPS_GUEST_TLB_SIZE
) {
808 kvm_debug("%s: illegal index: %d\n", __func__
, index
);
809 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
810 pc
, index
, kvm_read_c0_guest_entryhi(cop0
),
811 kvm_read_c0_guest_entrylo0(cop0
),
812 kvm_read_c0_guest_entrylo1(cop0
),
813 kvm_read_c0_guest_pagemask(cop0
));
814 index
= (index
& ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE
;
817 tlb
= &vcpu
->arch
.guest_tlb
[index
];
819 * Probe the shadow host TLB for the entry being overwritten, if one
820 * matches, invalidate it
822 kvm_mips_host_tlb_inv(vcpu
, tlb
->tlb_hi
);
824 tlb
->tlb_mask
= kvm_read_c0_guest_pagemask(cop0
);
825 tlb
->tlb_hi
= kvm_read_c0_guest_entryhi(cop0
);
826 tlb
->tlb_lo0
= kvm_read_c0_guest_entrylo0(cop0
);
827 tlb
->tlb_lo1
= kvm_read_c0_guest_entrylo1(cop0
);
829 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
830 pc
, index
, kvm_read_c0_guest_entryhi(cop0
),
831 kvm_read_c0_guest_entrylo0(cop0
),
832 kvm_read_c0_guest_entrylo1(cop0
),
833 kvm_read_c0_guest_pagemask(cop0
));
838 /* Write Guest TLB Entry @ Random Index */
839 enum emulation_result
kvm_mips_emul_tlbwr(struct kvm_vcpu
*vcpu
)
841 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
842 struct kvm_mips_tlb
*tlb
= NULL
;
843 uint32_t pc
= vcpu
->arch
.pc
;
846 get_random_bytes(&index
, sizeof(index
));
847 index
&= (KVM_MIPS_GUEST_TLB_SIZE
- 1);
849 tlb
= &vcpu
->arch
.guest_tlb
[index
];
852 * Probe the shadow host TLB for the entry being overwritten, if one
853 * matches, invalidate it
855 kvm_mips_host_tlb_inv(vcpu
, tlb
->tlb_hi
);
857 tlb
->tlb_mask
= kvm_read_c0_guest_pagemask(cop0
);
858 tlb
->tlb_hi
= kvm_read_c0_guest_entryhi(cop0
);
859 tlb
->tlb_lo0
= kvm_read_c0_guest_entrylo0(cop0
);
860 tlb
->tlb_lo1
= kvm_read_c0_guest_entrylo1(cop0
);
862 kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
863 pc
, index
, kvm_read_c0_guest_entryhi(cop0
),
864 kvm_read_c0_guest_entrylo0(cop0
),
865 kvm_read_c0_guest_entrylo1(cop0
));
870 enum emulation_result
kvm_mips_emul_tlbp(struct kvm_vcpu
*vcpu
)
872 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
873 long entryhi
= kvm_read_c0_guest_entryhi(cop0
);
874 uint32_t pc
= vcpu
->arch
.pc
;
877 index
= kvm_mips_guest_tlb_lookup(vcpu
, entryhi
);
879 kvm_write_c0_guest_index(cop0
, index
);
881 kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc
, entryhi
,
888 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
889 * @vcpu: Virtual CPU.
891 * Finds the mask of bits which are writable in the guest's Config1 CP0
892 * register, by userland (currently read-only to the guest).
894 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu
*vcpu
)
896 unsigned int mask
= 0;
898 /* Permit FPU to be present if FPU is supported */
899 if (kvm_mips_guest_can_have_fpu(&vcpu
->arch
))
900 mask
|= MIPS_CONF1_FP
;
906 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
907 * @vcpu: Virtual CPU.
909 * Finds the mask of bits which are writable in the guest's Config3 CP0
910 * register, by userland (currently read-only to the guest).
912 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu
*vcpu
)
914 /* Config4 is optional */
915 unsigned int mask
= MIPS_CONF_M
;
917 /* Permit MSA to be present if MSA is supported */
918 if (kvm_mips_guest_can_have_msa(&vcpu
->arch
))
919 mask
|= MIPS_CONF3_MSA
;
925 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
926 * @vcpu: Virtual CPU.
928 * Finds the mask of bits which are writable in the guest's Config4 CP0
929 * register, by userland (currently read-only to the guest).
931 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu
*vcpu
)
933 /* Config5 is optional */
938 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
939 * @vcpu: Virtual CPU.
941 * Finds the mask of bits which are writable in the guest's Config5 CP0
942 * register, by the guest itself.
944 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu
*vcpu
)
946 unsigned int mask
= 0;
948 /* Permit MSAEn changes if MSA supported and enabled */
949 if (kvm_mips_guest_has_msa(&vcpu
->arch
))
950 mask
|= MIPS_CONF5_MSAEN
;
953 * Permit guest FPU mode changes if FPU is enabled and the relevant
954 * feature exists according to FIR register.
956 if (kvm_mips_guest_has_fpu(&vcpu
->arch
)) {
958 mask
|= MIPS_CONF5_FRE
;
959 /* We don't support UFR or UFE */
965 enum emulation_result
kvm_mips_emulate_CP0(uint32_t inst
, uint32_t *opc
,
966 uint32_t cause
, struct kvm_run
*run
,
967 struct kvm_vcpu
*vcpu
)
969 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
970 enum emulation_result er
= EMULATE_DONE
;
971 int32_t rt
, rd
, copz
, sel
, co_bit
, op
;
972 uint32_t pc
= vcpu
->arch
.pc
;
973 unsigned long curr_pc
;
976 * Update PC and hold onto current PC in case there is
977 * an error and we want to rollback the PC
979 curr_pc
= vcpu
->arch
.pc
;
980 er
= update_pc(vcpu
, cause
);
981 if (er
== EMULATE_FAIL
)
984 copz
= (inst
>> 21) & 0x1f;
985 rt
= (inst
>> 16) & 0x1f;
986 rd
= (inst
>> 11) & 0x1f;
988 co_bit
= (inst
>> 25) & 1;
994 case tlbr_op
: /* Read indexed TLB entry */
995 er
= kvm_mips_emul_tlbr(vcpu
);
997 case tlbwi_op
: /* Write indexed */
998 er
= kvm_mips_emul_tlbwi(vcpu
);
1000 case tlbwr_op
: /* Write random */
1001 er
= kvm_mips_emul_tlbwr(vcpu
);
1003 case tlbp_op
: /* TLB Probe */
1004 er
= kvm_mips_emul_tlbp(vcpu
);
1007 kvm_err("!!!COP0_RFE!!!\n");
1010 er
= kvm_mips_emul_eret(vcpu
);
1011 goto dont_update_pc
;
1014 er
= kvm_mips_emul_wait(vcpu
);
1020 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1021 cop0
->stat
[rd
][sel
]++;
1024 if ((rd
== MIPS_CP0_COUNT
) && (sel
== 0)) {
1025 vcpu
->arch
.gprs
[rt
] = kvm_mips_read_count(vcpu
);
1026 } else if ((rd
== MIPS_CP0_ERRCTL
) && (sel
== 0)) {
1027 vcpu
->arch
.gprs
[rt
] = 0x0;
1028 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1029 kvm_mips_trans_mfc0(inst
, opc
, vcpu
);
1032 vcpu
->arch
.gprs
[rt
] = cop0
->reg
[rd
][sel
];
1034 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1035 kvm_mips_trans_mfc0(inst
, opc
, vcpu
);
1040 ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
1041 pc
, rd
, sel
, rt
, vcpu
->arch
.gprs
[rt
]);
1046 vcpu
->arch
.gprs
[rt
] = cop0
->reg
[rd
][sel
];
1050 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1051 cop0
->stat
[rd
][sel
]++;
1053 if ((rd
== MIPS_CP0_TLB_INDEX
)
1054 && (vcpu
->arch
.gprs
[rt
] >=
1055 KVM_MIPS_GUEST_TLB_SIZE
)) {
1056 kvm_err("Invalid TLB Index: %ld",
1057 vcpu
->arch
.gprs
[rt
]);
1061 #define C0_EBASE_CORE_MASK 0xff
1062 if ((rd
== MIPS_CP0_PRID
) && (sel
== 1)) {
1063 /* Preserve CORE number */
1064 kvm_change_c0_guest_ebase(cop0
,
1065 ~(C0_EBASE_CORE_MASK
),
1066 vcpu
->arch
.gprs
[rt
]);
1067 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1068 kvm_read_c0_guest_ebase(cop0
));
1069 } else if (rd
== MIPS_CP0_TLB_HI
&& sel
== 0) {
1071 vcpu
->arch
.gprs
[rt
] & ASID_MASK
;
1072 if ((KSEGX(vcpu
->arch
.gprs
[rt
]) != CKSEG0
) &&
1073 ((kvm_read_c0_guest_entryhi(cop0
) &
1074 ASID_MASK
) != nasid
)) {
1075 kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1076 kvm_read_c0_guest_entryhi(cop0
)
1081 /* Blow away the shadow host TLBs */
1082 kvm_mips_flush_host_tlb(1);
1084 kvm_write_c0_guest_entryhi(cop0
,
1085 vcpu
->arch
.gprs
[rt
]);
1087 /* Are we writing to COUNT */
1088 else if ((rd
== MIPS_CP0_COUNT
) && (sel
== 0)) {
1089 kvm_mips_write_count(vcpu
, vcpu
->arch
.gprs
[rt
]);
1091 } else if ((rd
== MIPS_CP0_COMPARE
) && (sel
== 0)) {
1092 kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1093 pc
, kvm_read_c0_guest_compare(cop0
),
1094 vcpu
->arch
.gprs
[rt
]);
1096 /* If we are writing to COMPARE */
1097 /* Clear pending timer interrupt, if any */
1098 kvm_mips_callbacks
->dequeue_timer_int(vcpu
);
1099 kvm_mips_write_compare(vcpu
,
1100 vcpu
->arch
.gprs
[rt
]);
1101 } else if ((rd
== MIPS_CP0_STATUS
) && (sel
== 0)) {
1102 unsigned int old_val
, val
, change
;
1104 old_val
= kvm_read_c0_guest_status(cop0
);
1105 val
= vcpu
->arch
.gprs
[rt
];
1106 change
= val
^ old_val
;
1108 /* Make sure that the NMI bit is never set */
1112 * Don't allow CU1 or FR to be set unless FPU
1113 * capability enabled and exists in guest
1116 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
1117 val
&= ~(ST0_CU1
| ST0_FR
);
1120 * Also don't allow FR to be set if host doesn't
1123 if (!(current_cpu_data
.fpu_id
& MIPS_FPIR_F64
))
1127 /* Handle changes in FPU mode */
1131 * FPU and Vector register state is made
1132 * UNPREDICTABLE by a change of FR, so don't
1133 * even bother saving it.
1135 if (change
& ST0_FR
)
1139 * If MSA state is already live, it is undefined
1140 * how it interacts with FR=0 FPU state, and we
1141 * don't want to hit reserved instruction
1142 * exceptions trying to save the MSA state later
1143 * when CU=1 && FR=1, so play it safe and save
1146 if (change
& ST0_CU1
&& !(val
& ST0_FR
) &&
1147 vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_MSA
)
1151 * Propagate CU1 (FPU enable) changes
1152 * immediately if the FPU context is already
1153 * loaded. When disabling we leave the context
1154 * loaded so it can be quickly enabled again in
1157 if (change
& ST0_CU1
&&
1158 vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_FPU
)
1159 change_c0_status(ST0_CU1
, val
);
1163 kvm_write_c0_guest_status(cop0
, val
);
1165 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1167 * If FPU present, we need CU1/FR bits to take
1168 * effect fairly soon.
1170 if (!kvm_mips_guest_has_fpu(&vcpu
->arch
))
1171 kvm_mips_trans_mtc0(inst
, opc
, vcpu
);
1173 } else if ((rd
== MIPS_CP0_CONFIG
) && (sel
== 5)) {
1174 unsigned int old_val
, val
, change
, wrmask
;
1176 old_val
= kvm_read_c0_guest_config5(cop0
);
1177 val
= vcpu
->arch
.gprs
[rt
];
1179 /* Only a few bits are writable in Config5 */
1180 wrmask
= kvm_mips_config5_wrmask(vcpu
);
1181 change
= (val
^ old_val
) & wrmask
;
1182 val
= old_val
^ change
;
1185 /* Handle changes in FPU/MSA modes */
1189 * Propagate FRE changes immediately if the FPU
1190 * context is already loaded.
1192 if (change
& MIPS_CONF5_FRE
&&
1193 vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_FPU
)
1194 change_c0_config5(MIPS_CONF5_FRE
, val
);
1197 * Propagate MSAEn changes immediately if the
1198 * MSA context is already loaded. When disabling
1199 * we leave the context loaded so it can be
1200 * quickly enabled again in the near future.
1202 if (change
& MIPS_CONF5_MSAEN
&&
1203 vcpu
->arch
.fpu_inuse
& KVM_MIPS_FPU_MSA
)
1204 change_c0_config5(MIPS_CONF5_MSAEN
,
1209 kvm_write_c0_guest_config5(cop0
, val
);
1210 } else if ((rd
== MIPS_CP0_CAUSE
) && (sel
== 0)) {
1211 uint32_t old_cause
, new_cause
;
1213 old_cause
= kvm_read_c0_guest_cause(cop0
);
1214 new_cause
= vcpu
->arch
.gprs
[rt
];
1215 /* Update R/W bits */
1216 kvm_change_c0_guest_cause(cop0
, 0x08800300,
1218 /* DC bit enabling/disabling timer? */
1219 if ((old_cause
^ new_cause
) & CAUSEF_DC
) {
1220 if (new_cause
& CAUSEF_DC
)
1221 kvm_mips_count_disable_cause(vcpu
);
1223 kvm_mips_count_enable_cause(vcpu
);
1226 cop0
->reg
[rd
][sel
] = vcpu
->arch
.gprs
[rt
];
1227 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1228 kvm_mips_trans_mtc0(inst
, opc
, vcpu
);
1232 kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc
,
1233 rd
, sel
, cop0
->reg
[rd
][sel
]);
1237 kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1238 vcpu
->arch
.pc
, rt
, rd
, sel
);
1243 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1244 cop0
->stat
[MIPS_CP0_STATUS
][0]++;
1247 vcpu
->arch
.gprs
[rt
] =
1248 kvm_read_c0_guest_status(cop0
);
1252 kvm_debug("[%#lx] mfmcz_op: EI\n",
1254 kvm_set_c0_guest_status(cop0
, ST0_IE
);
1256 kvm_debug("[%#lx] mfmcz_op: DI\n",
1258 kvm_clear_c0_guest_status(cop0
, ST0_IE
);
1266 cop0
->reg
[MIPS_CP0_STATUS
][2] & 0xf;
1268 (cop0
->reg
[MIPS_CP0_STATUS
][2] >> 6) & 0xf;
1270 * We don't support any shadow register sets, so
1271 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1277 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss
, rd
,
1278 vcpu
->arch
.gprs
[rt
]);
1279 vcpu
->arch
.gprs
[rd
] = vcpu
->arch
.gprs
[rt
];
1283 kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1284 vcpu
->arch
.pc
, copz
);
1291 /* Rollback PC only if emulation was unsuccessful */
1292 if (er
== EMULATE_FAIL
)
1293 vcpu
->arch
.pc
= curr_pc
;
1297 * This is for special instructions whose emulation
1298 * updates the PC, so do not overwrite the PC under
1305 enum emulation_result
kvm_mips_emulate_store(uint32_t inst
, uint32_t cause
,
1306 struct kvm_run
*run
,
1307 struct kvm_vcpu
*vcpu
)
1309 enum emulation_result er
= EMULATE_DO_MMIO
;
1310 int32_t op
, base
, rt
, offset
;
1312 void *data
= run
->mmio
.data
;
1313 unsigned long curr_pc
;
1316 * Update PC and hold onto current PC in case there is
1317 * an error and we want to rollback the PC
1319 curr_pc
= vcpu
->arch
.pc
;
1320 er
= update_pc(vcpu
, cause
);
1321 if (er
== EMULATE_FAIL
)
1324 rt
= (inst
>> 16) & 0x1f;
1325 base
= (inst
>> 21) & 0x1f;
1326 offset
= inst
& 0xffff;
1327 op
= (inst
>> 26) & 0x3f;
1332 if (bytes
> sizeof(run
->mmio
.data
)) {
1333 kvm_err("%s: bad MMIO length: %d\n", __func__
,
1336 run
->mmio
.phys_addr
=
1337 kvm_mips_callbacks
->gva_to_gpa(vcpu
->arch
.
1339 if (run
->mmio
.phys_addr
== KVM_INVALID_ADDR
) {
1343 run
->mmio
.len
= bytes
;
1344 run
->mmio
.is_write
= 1;
1345 vcpu
->mmio_needed
= 1;
1346 vcpu
->mmio_is_write
= 1;
1347 *(u8
*) data
= vcpu
->arch
.gprs
[rt
];
1348 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1349 vcpu
->arch
.host_cp0_badvaddr
, vcpu
->arch
.gprs
[rt
],
1356 if (bytes
> sizeof(run
->mmio
.data
)) {
1357 kvm_err("%s: bad MMIO length: %d\n", __func__
,
1360 run
->mmio
.phys_addr
=
1361 kvm_mips_callbacks
->gva_to_gpa(vcpu
->arch
.
1363 if (run
->mmio
.phys_addr
== KVM_INVALID_ADDR
) {
1368 run
->mmio
.len
= bytes
;
1369 run
->mmio
.is_write
= 1;
1370 vcpu
->mmio_needed
= 1;
1371 vcpu
->mmio_is_write
= 1;
1372 *(uint32_t *) data
= vcpu
->arch
.gprs
[rt
];
1374 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1375 vcpu
->arch
.pc
, vcpu
->arch
.host_cp0_badvaddr
,
1376 vcpu
->arch
.gprs
[rt
], *(uint32_t *) data
);
1381 if (bytes
> sizeof(run
->mmio
.data
)) {
1382 kvm_err("%s: bad MMIO length: %d\n", __func__
,
1385 run
->mmio
.phys_addr
=
1386 kvm_mips_callbacks
->gva_to_gpa(vcpu
->arch
.
1388 if (run
->mmio
.phys_addr
== KVM_INVALID_ADDR
) {
1393 run
->mmio
.len
= bytes
;
1394 run
->mmio
.is_write
= 1;
1395 vcpu
->mmio_needed
= 1;
1396 vcpu
->mmio_is_write
= 1;
1397 *(uint16_t *) data
= vcpu
->arch
.gprs
[rt
];
1399 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1400 vcpu
->arch
.pc
, vcpu
->arch
.host_cp0_badvaddr
,
1401 vcpu
->arch
.gprs
[rt
], *(uint32_t *) data
);
1405 kvm_err("Store not yet supported");
1410 /* Rollback PC if emulation was unsuccessful */
1411 if (er
== EMULATE_FAIL
)
1412 vcpu
->arch
.pc
= curr_pc
;
1417 enum emulation_result
kvm_mips_emulate_load(uint32_t inst
, uint32_t cause
,
1418 struct kvm_run
*run
,
1419 struct kvm_vcpu
*vcpu
)
1421 enum emulation_result er
= EMULATE_DO_MMIO
;
1422 int32_t op
, base
, rt
, offset
;
1425 rt
= (inst
>> 16) & 0x1f;
1426 base
= (inst
>> 21) & 0x1f;
1427 offset
= inst
& 0xffff;
1428 op
= (inst
>> 26) & 0x3f;
1430 vcpu
->arch
.pending_load_cause
= cause
;
1431 vcpu
->arch
.io_gpr
= rt
;
1436 if (bytes
> sizeof(run
->mmio
.data
)) {
1437 kvm_err("%s: bad MMIO length: %d\n", __func__
,
1442 run
->mmio
.phys_addr
=
1443 kvm_mips_callbacks
->gva_to_gpa(vcpu
->arch
.
1445 if (run
->mmio
.phys_addr
== KVM_INVALID_ADDR
) {
1450 run
->mmio
.len
= bytes
;
1451 run
->mmio
.is_write
= 0;
1452 vcpu
->mmio_needed
= 1;
1453 vcpu
->mmio_is_write
= 0;
1459 if (bytes
> sizeof(run
->mmio
.data
)) {
1460 kvm_err("%s: bad MMIO length: %d\n", __func__
,
1465 run
->mmio
.phys_addr
=
1466 kvm_mips_callbacks
->gva_to_gpa(vcpu
->arch
.
1468 if (run
->mmio
.phys_addr
== KVM_INVALID_ADDR
) {
1473 run
->mmio
.len
= bytes
;
1474 run
->mmio
.is_write
= 0;
1475 vcpu
->mmio_needed
= 1;
1476 vcpu
->mmio_is_write
= 0;
1479 vcpu
->mmio_needed
= 2;
1481 vcpu
->mmio_needed
= 1;
1488 if (bytes
> sizeof(run
->mmio
.data
)) {
1489 kvm_err("%s: bad MMIO length: %d\n", __func__
,
1494 run
->mmio
.phys_addr
=
1495 kvm_mips_callbacks
->gva_to_gpa(vcpu
->arch
.
1497 if (run
->mmio
.phys_addr
== KVM_INVALID_ADDR
) {
1502 run
->mmio
.len
= bytes
;
1503 run
->mmio
.is_write
= 0;
1504 vcpu
->mmio_is_write
= 0;
1507 vcpu
->mmio_needed
= 2;
1509 vcpu
->mmio_needed
= 1;
1514 kvm_err("Load not yet supported");
1522 int kvm_mips_sync_icache(unsigned long va
, struct kvm_vcpu
*vcpu
)
1524 unsigned long offset
= (va
& ~PAGE_MASK
);
1525 struct kvm
*kvm
= vcpu
->kvm
;
1530 gfn
= va
>> PAGE_SHIFT
;
1532 if (gfn
>= kvm
->arch
.guest_pmap_npages
) {
1533 kvm_err("%s: Invalid gfn: %#llx\n", __func__
, gfn
);
1534 kvm_mips_dump_host_tlbs();
1535 kvm_arch_vcpu_dump_regs(vcpu
);
1538 pfn
= kvm
->arch
.guest_pmap
[gfn
];
1539 pa
= (pfn
<< PAGE_SHIFT
) | offset
;
1541 kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__
, va
,
1544 local_flush_icache_range(CKSEG0ADDR(pa
), 32);
1548 #define MIPS_CACHE_OP_INDEX_INV 0x0
1549 #define MIPS_CACHE_OP_INDEX_LD_TAG 0x1
1550 #define MIPS_CACHE_OP_INDEX_ST_TAG 0x2
1551 #define MIPS_CACHE_OP_IMP 0x3
1552 #define MIPS_CACHE_OP_HIT_INV 0x4
1553 #define MIPS_CACHE_OP_FILL_WB_INV 0x5
1554 #define MIPS_CACHE_OP_HIT_HB 0x6
1555 #define MIPS_CACHE_OP_FETCH_LOCK 0x7
1557 #define MIPS_CACHE_ICACHE 0x0
1558 #define MIPS_CACHE_DCACHE 0x1
1559 #define MIPS_CACHE_SEC 0x3
1561 enum emulation_result
kvm_mips_emulate_cache(uint32_t inst
, uint32_t *opc
,
1563 struct kvm_run
*run
,
1564 struct kvm_vcpu
*vcpu
)
1566 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1567 enum emulation_result er
= EMULATE_DONE
;
1568 int32_t offset
, cache
, op_inst
, op
, base
;
1569 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
1571 unsigned long curr_pc
;
1574 * Update PC and hold onto current PC in case there is
1575 * an error and we want to rollback the PC
1577 curr_pc
= vcpu
->arch
.pc
;
1578 er
= update_pc(vcpu
, cause
);
1579 if (er
== EMULATE_FAIL
)
1582 base
= (inst
>> 21) & 0x1f;
1583 op_inst
= (inst
>> 16) & 0x1f;
1584 offset
= inst
& 0xffff;
1585 cache
= (inst
>> 16) & 0x3;
1586 op
= (inst
>> 18) & 0x7;
1588 va
= arch
->gprs
[base
] + offset
;
1590 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1591 cache
, op
, base
, arch
->gprs
[base
], offset
);
1594 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1595 * invalidate the caches entirely by stepping through all the
1598 if (op
== MIPS_CACHE_OP_INDEX_INV
) {
1599 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1600 vcpu
->arch
.pc
, vcpu
->arch
.gprs
[31], cache
, op
, base
,
1601 arch
->gprs
[base
], offset
);
1603 if (cache
== MIPS_CACHE_DCACHE
)
1605 else if (cache
== MIPS_CACHE_ICACHE
)
1608 kvm_err("%s: unsupported CACHE INDEX operation\n",
1610 return EMULATE_FAIL
;
1613 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1614 kvm_mips_trans_cache_index(inst
, opc
, vcpu
);
1620 if (KVM_GUEST_KSEGX(va
) == KVM_GUEST_KSEG0
) {
1621 if (kvm_mips_host_tlb_lookup(vcpu
, va
) < 0)
1622 kvm_mips_handle_kseg0_tlb_fault(va
, vcpu
);
1623 } else if ((KVM_GUEST_KSEGX(va
) < KVM_GUEST_KSEG0
) ||
1624 KVM_GUEST_KSEGX(va
) == KVM_GUEST_KSEG23
) {
1627 /* If an entry already exists then skip */
1628 if (kvm_mips_host_tlb_lookup(vcpu
, va
) >= 0)
1632 * If address not in the guest TLB, then give the guest a fault,
1633 * the resulting handler will do the right thing
1635 index
= kvm_mips_guest_tlb_lookup(vcpu
, (va
& VPN2_MASK
) |
1636 (kvm_read_c0_guest_entryhi
1637 (cop0
) & ASID_MASK
));
1640 vcpu
->arch
.host_cp0_entryhi
= (va
& VPN2_MASK
);
1641 vcpu
->arch
.host_cp0_badvaddr
= va
;
1642 er
= kvm_mips_emulate_tlbmiss_ld(cause
, NULL
, run
,
1645 goto dont_update_pc
;
1647 struct kvm_mips_tlb
*tlb
= &vcpu
->arch
.guest_tlb
[index
];
1649 * Check if the entry is valid, if not then setup a TLB
1650 * invalid exception to the guest
1652 if (!TLB_IS_VALID(*tlb
, va
)) {
1653 er
= kvm_mips_emulate_tlbinv_ld(cause
, NULL
,
1656 goto dont_update_pc
;
1659 * We fault an entry from the guest tlb to the
1662 kvm_mips_handle_mapped_seg_tlb_fault(vcpu
, tlb
,
1668 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1669 cache
, op
, base
, arch
->gprs
[base
], offset
);
1672 goto dont_update_pc
;
1677 /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1678 if (cache
== MIPS_CACHE_DCACHE
1679 && (op
== MIPS_CACHE_OP_FILL_WB_INV
1680 || op
== MIPS_CACHE_OP_HIT_INV
)) {
1681 flush_dcache_line(va
);
1683 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1685 * Replace the CACHE instruction, with a SYNCI, not the same,
1688 kvm_mips_trans_cache_va(inst
, opc
, vcpu
);
1690 } else if (op
== MIPS_CACHE_OP_HIT_INV
&& cache
== MIPS_CACHE_ICACHE
) {
1691 flush_dcache_line(va
);
1692 flush_icache_line(va
);
1694 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1695 /* Replace the CACHE instruction, with a SYNCI */
1696 kvm_mips_trans_cache_va(inst
, opc
, vcpu
);
1699 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1700 cache
, op
, base
, arch
->gprs
[base
], offset
);
1703 goto dont_update_pc
;
1710 vcpu
->arch
.pc
= curr_pc
;
1715 enum emulation_result
kvm_mips_emulate_inst(unsigned long cause
, uint32_t *opc
,
1716 struct kvm_run
*run
,
1717 struct kvm_vcpu
*vcpu
)
1719 enum emulation_result er
= EMULATE_DONE
;
1722 /* Fetch the instruction. */
1723 if (cause
& CAUSEF_BD
)
1726 inst
= kvm_get_inst(opc
, vcpu
);
1728 switch (((union mips_instruction
)inst
).r_format
.opcode
) {
1730 er
= kvm_mips_emulate_CP0(inst
, opc
, cause
, run
, vcpu
);
1735 er
= kvm_mips_emulate_store(inst
, cause
, run
, vcpu
);
1742 er
= kvm_mips_emulate_load(inst
, cause
, run
, vcpu
);
1746 ++vcpu
->stat
.cache_exits
;
1747 trace_kvm_exit(vcpu
, CACHE_EXITS
);
1748 er
= kvm_mips_emulate_cache(inst
, opc
, cause
, run
, vcpu
);
1752 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc
,
1754 kvm_arch_vcpu_dump_regs(vcpu
);
1762 enum emulation_result
kvm_mips_emulate_syscall(unsigned long cause
,
1764 struct kvm_run
*run
,
1765 struct kvm_vcpu
*vcpu
)
1767 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1768 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
1769 enum emulation_result er
= EMULATE_DONE
;
1771 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
1773 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
1774 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
1776 if (cause
& CAUSEF_BD
)
1777 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
1779 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
1781 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch
->pc
);
1783 kvm_change_c0_guest_cause(cop0
, (0xff),
1784 (T_SYSCALL
<< CAUSEB_EXCCODE
));
1786 /* Set PC to the exception entry point */
1787 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
1790 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1797 enum emulation_result
kvm_mips_emulate_tlbmiss_ld(unsigned long cause
,
1799 struct kvm_run
*run
,
1800 struct kvm_vcpu
*vcpu
)
1802 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1803 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
1804 unsigned long entryhi
= (vcpu
->arch
. host_cp0_badvaddr
& VPN2_MASK
) |
1805 (kvm_read_c0_guest_entryhi(cop0
) & ASID_MASK
);
1807 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
1809 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
1810 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
1812 if (cause
& CAUSEF_BD
)
1813 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
1815 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
1817 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1820 /* set pc to the exception entry point */
1821 arch
->pc
= KVM_GUEST_KSEG0
+ 0x0;
1824 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1827 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
1830 kvm_change_c0_guest_cause(cop0
, (0xff),
1831 (T_TLB_LD_MISS
<< CAUSEB_EXCCODE
));
1833 /* setup badvaddr, context and entryhi registers for the guest */
1834 kvm_write_c0_guest_badvaddr(cop0
, vcpu
->arch
.host_cp0_badvaddr
);
1835 /* XXXKYMA: is the context register used by linux??? */
1836 kvm_write_c0_guest_entryhi(cop0
, entryhi
);
1837 /* Blow away the shadow host TLBs */
1838 kvm_mips_flush_host_tlb(1);
1840 return EMULATE_DONE
;
1843 enum emulation_result
kvm_mips_emulate_tlbinv_ld(unsigned long cause
,
1845 struct kvm_run
*run
,
1846 struct kvm_vcpu
*vcpu
)
1848 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1849 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
1850 unsigned long entryhi
=
1851 (vcpu
->arch
.host_cp0_badvaddr
& VPN2_MASK
) |
1852 (kvm_read_c0_guest_entryhi(cop0
) & ASID_MASK
);
1854 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
1856 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
1857 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
1859 if (cause
& CAUSEF_BD
)
1860 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
1862 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
1864 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1867 /* set pc to the exception entry point */
1868 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
1871 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1873 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
1876 kvm_change_c0_guest_cause(cop0
, (0xff),
1877 (T_TLB_LD_MISS
<< CAUSEB_EXCCODE
));
1879 /* setup badvaddr, context and entryhi registers for the guest */
1880 kvm_write_c0_guest_badvaddr(cop0
, vcpu
->arch
.host_cp0_badvaddr
);
1881 /* XXXKYMA: is the context register used by linux??? */
1882 kvm_write_c0_guest_entryhi(cop0
, entryhi
);
1883 /* Blow away the shadow host TLBs */
1884 kvm_mips_flush_host_tlb(1);
1886 return EMULATE_DONE
;
1889 enum emulation_result
kvm_mips_emulate_tlbmiss_st(unsigned long cause
,
1891 struct kvm_run
*run
,
1892 struct kvm_vcpu
*vcpu
)
1894 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1895 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
1896 unsigned long entryhi
= (vcpu
->arch
.host_cp0_badvaddr
& VPN2_MASK
) |
1897 (kvm_read_c0_guest_entryhi(cop0
) & ASID_MASK
);
1899 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
1901 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
1902 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
1904 if (cause
& CAUSEF_BD
)
1905 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
1907 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
1909 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1912 /* Set PC to the exception entry point */
1913 arch
->pc
= KVM_GUEST_KSEG0
+ 0x0;
1915 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1917 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
1920 kvm_change_c0_guest_cause(cop0
, (0xff),
1921 (T_TLB_ST_MISS
<< CAUSEB_EXCCODE
));
1923 /* setup badvaddr, context and entryhi registers for the guest */
1924 kvm_write_c0_guest_badvaddr(cop0
, vcpu
->arch
.host_cp0_badvaddr
);
1925 /* XXXKYMA: is the context register used by linux??? */
1926 kvm_write_c0_guest_entryhi(cop0
, entryhi
);
1927 /* Blow away the shadow host TLBs */
1928 kvm_mips_flush_host_tlb(1);
1930 return EMULATE_DONE
;
1933 enum emulation_result
kvm_mips_emulate_tlbinv_st(unsigned long cause
,
1935 struct kvm_run
*run
,
1936 struct kvm_vcpu
*vcpu
)
1938 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1939 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
1940 unsigned long entryhi
= (vcpu
->arch
.host_cp0_badvaddr
& VPN2_MASK
) |
1941 (kvm_read_c0_guest_entryhi(cop0
) & ASID_MASK
);
1943 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
1945 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
1946 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
1948 if (cause
& CAUSEF_BD
)
1949 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
1951 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
1953 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1956 /* Set PC to the exception entry point */
1957 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
1959 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1961 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
1964 kvm_change_c0_guest_cause(cop0
, (0xff),
1965 (T_TLB_ST_MISS
<< CAUSEB_EXCCODE
));
1967 /* setup badvaddr, context and entryhi registers for the guest */
1968 kvm_write_c0_guest_badvaddr(cop0
, vcpu
->arch
.host_cp0_badvaddr
);
1969 /* XXXKYMA: is the context register used by linux??? */
1970 kvm_write_c0_guest_entryhi(cop0
, entryhi
);
1971 /* Blow away the shadow host TLBs */
1972 kvm_mips_flush_host_tlb(1);
1974 return EMULATE_DONE
;
1977 /* TLBMOD: store into address matching TLB with Dirty bit off */
1978 enum emulation_result
kvm_mips_handle_tlbmod(unsigned long cause
, uint32_t *opc
,
1979 struct kvm_run
*run
,
1980 struct kvm_vcpu
*vcpu
)
1982 enum emulation_result er
= EMULATE_DONE
;
1984 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
1985 unsigned long entryhi
= (vcpu
->arch
.host_cp0_badvaddr
& VPN2_MASK
) |
1986 (kvm_read_c0_guest_entryhi(cop0
) & ASID_MASK
);
1989 /* If address not in the guest TLB, then we are in trouble */
1990 index
= kvm_mips_guest_tlb_lookup(vcpu
, entryhi
);
1992 /* XXXKYMA Invalidate and retry */
1993 kvm_mips_host_tlb_inv(vcpu
, vcpu
->arch
.host_cp0_badvaddr
);
1994 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1996 kvm_mips_dump_guest_tlbs(vcpu
);
1997 kvm_mips_dump_host_tlbs();
1998 return EMULATE_FAIL
;
2002 er
= kvm_mips_emulate_tlbmod(cause
, opc
, run
, vcpu
);
2006 enum emulation_result
kvm_mips_emulate_tlbmod(unsigned long cause
,
2008 struct kvm_run
*run
,
2009 struct kvm_vcpu
*vcpu
)
2011 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2012 unsigned long entryhi
= (vcpu
->arch
.host_cp0_badvaddr
& VPN2_MASK
) |
2013 (kvm_read_c0_guest_entryhi(cop0
) & ASID_MASK
);
2014 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2016 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2018 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2019 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2021 if (cause
& CAUSEF_BD
)
2022 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2024 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2026 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2029 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
2031 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2033 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
2036 kvm_change_c0_guest_cause(cop0
, (0xff), (T_TLB_MOD
<< CAUSEB_EXCCODE
));
2038 /* setup badvaddr, context and entryhi registers for the guest */
2039 kvm_write_c0_guest_badvaddr(cop0
, vcpu
->arch
.host_cp0_badvaddr
);
2040 /* XXXKYMA: is the context register used by linux??? */
2041 kvm_write_c0_guest_entryhi(cop0
, entryhi
);
2042 /* Blow away the shadow host TLBs */
2043 kvm_mips_flush_host_tlb(1);
2045 return EMULATE_DONE
;
2048 enum emulation_result
kvm_mips_emulate_fpu_exc(unsigned long cause
,
2050 struct kvm_run
*run
,
2051 struct kvm_vcpu
*vcpu
)
2053 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2054 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2056 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2058 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2059 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2061 if (cause
& CAUSEF_BD
)
2062 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2064 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2068 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
2070 kvm_change_c0_guest_cause(cop0
, (0xff),
2071 (T_COP_UNUSABLE
<< CAUSEB_EXCCODE
));
2072 kvm_change_c0_guest_cause(cop0
, (CAUSEF_CE
), (0x1 << CAUSEB_CE
));
2074 return EMULATE_DONE
;
2077 enum emulation_result
kvm_mips_emulate_ri_exc(unsigned long cause
,
2079 struct kvm_run
*run
,
2080 struct kvm_vcpu
*vcpu
)
2082 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2083 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2084 enum emulation_result er
= EMULATE_DONE
;
2086 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2088 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2089 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2091 if (cause
& CAUSEF_BD
)
2092 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2094 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2096 kvm_debug("Delivering RI @ pc %#lx\n", arch
->pc
);
2098 kvm_change_c0_guest_cause(cop0
, (0xff),
2099 (T_RES_INST
<< CAUSEB_EXCCODE
));
2101 /* Set PC to the exception entry point */
2102 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
2105 kvm_err("Trying to deliver RI when EXL is already set\n");
2112 enum emulation_result
kvm_mips_emulate_bp_exc(unsigned long cause
,
2114 struct kvm_run
*run
,
2115 struct kvm_vcpu
*vcpu
)
2117 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2118 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2119 enum emulation_result er
= EMULATE_DONE
;
2121 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2123 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2124 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2126 if (cause
& CAUSEF_BD
)
2127 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2129 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2131 kvm_debug("Delivering BP @ pc %#lx\n", arch
->pc
);
2133 kvm_change_c0_guest_cause(cop0
, (0xff),
2134 (T_BREAK
<< CAUSEB_EXCCODE
));
2136 /* Set PC to the exception entry point */
2137 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
2140 kvm_err("Trying to deliver BP when EXL is already set\n");
2147 enum emulation_result
kvm_mips_emulate_trap_exc(unsigned long cause
,
2149 struct kvm_run
*run
,
2150 struct kvm_vcpu
*vcpu
)
2152 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2153 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2154 enum emulation_result er
= EMULATE_DONE
;
2156 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2158 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2159 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2161 if (cause
& CAUSEF_BD
)
2162 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2164 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2166 kvm_debug("Delivering TRAP @ pc %#lx\n", arch
->pc
);
2168 kvm_change_c0_guest_cause(cop0
, (0xff),
2169 (T_TRAP
<< CAUSEB_EXCCODE
));
2171 /* Set PC to the exception entry point */
2172 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
2175 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2182 enum emulation_result
kvm_mips_emulate_msafpe_exc(unsigned long cause
,
2184 struct kvm_run
*run
,
2185 struct kvm_vcpu
*vcpu
)
2187 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2188 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2189 enum emulation_result er
= EMULATE_DONE
;
2191 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2193 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2194 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2196 if (cause
& CAUSEF_BD
)
2197 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2199 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2201 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch
->pc
);
2203 kvm_change_c0_guest_cause(cop0
, (0xff),
2204 (T_MSAFPE
<< CAUSEB_EXCCODE
));
2206 /* Set PC to the exception entry point */
2207 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
2210 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2217 enum emulation_result
kvm_mips_emulate_fpe_exc(unsigned long cause
,
2219 struct kvm_run
*run
,
2220 struct kvm_vcpu
*vcpu
)
2222 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2223 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2224 enum emulation_result er
= EMULATE_DONE
;
2226 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2228 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2229 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2231 if (cause
& CAUSEF_BD
)
2232 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2234 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2236 kvm_debug("Delivering FPE @ pc %#lx\n", arch
->pc
);
2238 kvm_change_c0_guest_cause(cop0
, (0xff),
2239 (T_FPE
<< CAUSEB_EXCCODE
));
2241 /* Set PC to the exception entry point */
2242 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
2245 kvm_err("Trying to deliver FPE when EXL is already set\n");
2252 enum emulation_result
kvm_mips_emulate_msadis_exc(unsigned long cause
,
2254 struct kvm_run
*run
,
2255 struct kvm_vcpu
*vcpu
)
2257 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2258 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2259 enum emulation_result er
= EMULATE_DONE
;
2261 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2263 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2264 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2266 if (cause
& CAUSEF_BD
)
2267 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2269 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2271 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch
->pc
);
2273 kvm_change_c0_guest_cause(cop0
, (0xff),
2274 (T_MSADIS
<< CAUSEB_EXCCODE
));
2276 /* Set PC to the exception entry point */
2277 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
2280 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2287 /* ll/sc, rdhwr, sync emulation */
2289 #define OPCODE 0xfc000000
2290 #define BASE 0x03e00000
2291 #define RT 0x001f0000
2292 #define OFFSET 0x0000ffff
2293 #define LL 0xc0000000
2294 #define SC 0xe0000000
2295 #define SPEC0 0x00000000
2296 #define SPEC3 0x7c000000
2297 #define RD 0x0000f800
2298 #define FUNC 0x0000003f
2299 #define SYNC 0x0000000f
2300 #define RDHWR 0x0000003b
2302 enum emulation_result
kvm_mips_handle_ri(unsigned long cause
, uint32_t *opc
,
2303 struct kvm_run
*run
,
2304 struct kvm_vcpu
*vcpu
)
2306 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2307 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2308 enum emulation_result er
= EMULATE_DONE
;
2309 unsigned long curr_pc
;
2313 * Update PC and hold onto current PC in case there is
2314 * an error and we want to rollback the PC
2316 curr_pc
= vcpu
->arch
.pc
;
2317 er
= update_pc(vcpu
, cause
);
2318 if (er
== EMULATE_FAIL
)
2321 /* Fetch the instruction. */
2322 if (cause
& CAUSEF_BD
)
2325 inst
= kvm_get_inst(opc
, vcpu
);
2327 if (inst
== KVM_INVALID_INST
) {
2328 kvm_err("%s: Cannot get inst @ %p\n", __func__
, opc
);
2329 return EMULATE_FAIL
;
2332 if ((inst
& OPCODE
) == SPEC3
&& (inst
& FUNC
) == RDHWR
) {
2333 int usermode
= !KVM_GUEST_KERNEL_MODE(vcpu
);
2334 int rd
= (inst
& RD
) >> 11;
2335 int rt
= (inst
& RT
) >> 16;
2336 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2337 if (usermode
&& !(kvm_read_c0_guest_hwrena(cop0
) & BIT(rd
))) {
2338 kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2343 case 0: /* CPU number */
2346 case 1: /* SYNCI length */
2347 arch
->gprs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
2348 current_cpu_data
.icache
.linesz
);
2350 case 2: /* Read count register */
2351 arch
->gprs
[rt
] = kvm_mips_read_count(vcpu
);
2353 case 3: /* Count register resolution */
2354 switch (current_cpu_data
.cputype
) {
2364 arch
->gprs
[rt
] = kvm_read_c0_guest_userlocal(cop0
);
2368 kvm_debug("RDHWR %#x not supported @ %p\n", rd
, opc
);
2372 kvm_debug("Emulate RI not supported @ %p: %#x\n", opc
, inst
);
2376 return EMULATE_DONE
;
2380 * Rollback PC (if in branch delay slot then the PC already points to
2381 * branch target), and pass the RI exception to the guest OS.
2383 vcpu
->arch
.pc
= curr_pc
;
2384 return kvm_mips_emulate_ri_exc(cause
, opc
, run
, vcpu
);
2387 enum emulation_result
kvm_mips_complete_mmio_load(struct kvm_vcpu
*vcpu
,
2388 struct kvm_run
*run
)
2390 unsigned long *gpr
= &vcpu
->arch
.gprs
[vcpu
->arch
.io_gpr
];
2391 enum emulation_result er
= EMULATE_DONE
;
2393 if (run
->mmio
.len
> sizeof(*gpr
)) {
2394 kvm_err("Bad MMIO length: %d", run
->mmio
.len
);
2399 er
= update_pc(vcpu
, vcpu
->arch
.pending_load_cause
);
2400 if (er
== EMULATE_FAIL
)
2403 switch (run
->mmio
.len
) {
2405 *gpr
= *(int32_t *) run
->mmio
.data
;
2409 if (vcpu
->mmio_needed
== 2)
2410 *gpr
= *(int16_t *) run
->mmio
.data
;
2412 *gpr
= *(uint16_t *)run
->mmio
.data
;
2416 if (vcpu
->mmio_needed
== 2)
2417 *gpr
= *(int8_t *) run
->mmio
.data
;
2419 *gpr
= *(u8
*) run
->mmio
.data
;
2423 if (vcpu
->arch
.pending_load_cause
& CAUSEF_BD
)
2424 kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2425 vcpu
->arch
.pc
, run
->mmio
.len
, vcpu
->arch
.io_gpr
, *gpr
,
2432 static enum emulation_result
kvm_mips_emulate_exc(unsigned long cause
,
2434 struct kvm_run
*run
,
2435 struct kvm_vcpu
*vcpu
)
2437 uint32_t exccode
= (cause
>> CAUSEB_EXCCODE
) & 0x1f;
2438 struct mips_coproc
*cop0
= vcpu
->arch
.cop0
;
2439 struct kvm_vcpu_arch
*arch
= &vcpu
->arch
;
2440 enum emulation_result er
= EMULATE_DONE
;
2442 if ((kvm_read_c0_guest_status(cop0
) & ST0_EXL
) == 0) {
2444 kvm_write_c0_guest_epc(cop0
, arch
->pc
);
2445 kvm_set_c0_guest_status(cop0
, ST0_EXL
);
2447 if (cause
& CAUSEF_BD
)
2448 kvm_set_c0_guest_cause(cop0
, CAUSEF_BD
);
2450 kvm_clear_c0_guest_cause(cop0
, CAUSEF_BD
);
2452 kvm_change_c0_guest_cause(cop0
, (0xff),
2453 (exccode
<< CAUSEB_EXCCODE
));
2455 /* Set PC to the exception entry point */
2456 arch
->pc
= KVM_GUEST_KSEG0
+ 0x180;
2457 kvm_write_c0_guest_badvaddr(cop0
, vcpu
->arch
.host_cp0_badvaddr
);
2459 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2460 exccode
, kvm_read_c0_guest_epc(cop0
),
2461 kvm_read_c0_guest_badvaddr(cop0
));
2463 kvm_err("Trying to deliver EXC when EXL is already set\n");
2470 enum emulation_result
kvm_mips_check_privilege(unsigned long cause
,
2472 struct kvm_run
*run
,
2473 struct kvm_vcpu
*vcpu
)
2475 enum emulation_result er
= EMULATE_DONE
;
2476 uint32_t exccode
= (cause
>> CAUSEB_EXCCODE
) & 0x1f;
2477 unsigned long badvaddr
= vcpu
->arch
.host_cp0_badvaddr
;
2479 int usermode
= !KVM_GUEST_KERNEL_MODE(vcpu
);
2493 case T_COP_UNUSABLE
:
2494 if (((cause
& CAUSEF_CE
) >> CAUSEB_CE
) == 0)
2495 er
= EMULATE_PRIV_FAIL
;
2503 * We we are accessing Guest kernel space, then send an
2504 * address error exception to the guest
2506 if (badvaddr
>= (unsigned long) KVM_GUEST_KSEG0
) {
2507 kvm_debug("%s: LD MISS @ %#lx\n", __func__
,
2510 cause
|= (T_ADDR_ERR_LD
<< CAUSEB_EXCCODE
);
2511 er
= EMULATE_PRIV_FAIL
;
2517 * We we are accessing Guest kernel space, then send an
2518 * address error exception to the guest
2520 if (badvaddr
>= (unsigned long) KVM_GUEST_KSEG0
) {
2521 kvm_debug("%s: ST MISS @ %#lx\n", __func__
,
2524 cause
|= (T_ADDR_ERR_ST
<< CAUSEB_EXCCODE
);
2525 er
= EMULATE_PRIV_FAIL
;
2530 kvm_debug("%s: address error ST @ %#lx\n", __func__
,
2532 if ((badvaddr
& PAGE_MASK
) == KVM_GUEST_COMMPAGE_ADDR
) {
2534 cause
|= (T_TLB_ST_MISS
<< CAUSEB_EXCCODE
);
2536 er
= EMULATE_PRIV_FAIL
;
2539 kvm_debug("%s: address error LD @ %#lx\n", __func__
,
2541 if ((badvaddr
& PAGE_MASK
) == KVM_GUEST_COMMPAGE_ADDR
) {
2543 cause
|= (T_TLB_LD_MISS
<< CAUSEB_EXCCODE
);
2545 er
= EMULATE_PRIV_FAIL
;
2548 er
= EMULATE_PRIV_FAIL
;
2553 if (er
== EMULATE_PRIV_FAIL
)
2554 kvm_mips_emulate_exc(cause
, opc
, run
, vcpu
);
2560 * User Address (UA) fault, this could happen if
2561 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2562 * case we pass on the fault to the guest kernel and let it handle it.
2563 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2564 * case we inject the TLB from the Guest TLB into the shadow host TLB
2566 enum emulation_result
kvm_mips_handle_tlbmiss(unsigned long cause
,
2568 struct kvm_run
*run
,
2569 struct kvm_vcpu
*vcpu
)
2571 enum emulation_result er
= EMULATE_DONE
;
2572 uint32_t exccode
= (cause
>> CAUSEB_EXCCODE
) & 0x1f;
2573 unsigned long va
= vcpu
->arch
.host_cp0_badvaddr
;
2576 kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2577 vcpu
->arch
.host_cp0_badvaddr
, vcpu
->arch
.host_cp0_entryhi
);
2580 * KVM would not have got the exception if this entry was valid in the
2581 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2582 * send the guest an exception. The guest exc handler should then inject
2583 * an entry into the guest TLB.
2585 index
= kvm_mips_guest_tlb_lookup(vcpu
,
2587 (kvm_read_c0_guest_entryhi
2588 (vcpu
->arch
.cop0
) & ASID_MASK
));
2590 if (exccode
== T_TLB_LD_MISS
) {
2591 er
= kvm_mips_emulate_tlbmiss_ld(cause
, opc
, run
, vcpu
);
2592 } else if (exccode
== T_TLB_ST_MISS
) {
2593 er
= kvm_mips_emulate_tlbmiss_st(cause
, opc
, run
, vcpu
);
2595 kvm_err("%s: invalid exc code: %d\n", __func__
,
2600 struct kvm_mips_tlb
*tlb
= &vcpu
->arch
.guest_tlb
[index
];
2603 * Check if the entry is valid, if not then setup a TLB invalid
2604 * exception to the guest
2606 if (!TLB_IS_VALID(*tlb
, va
)) {
2607 if (exccode
== T_TLB_LD_MISS
) {
2608 er
= kvm_mips_emulate_tlbinv_ld(cause
, opc
, run
,
2610 } else if (exccode
== T_TLB_ST_MISS
) {
2611 er
= kvm_mips_emulate_tlbinv_st(cause
, opc
, run
,
2614 kvm_err("%s: invalid exc code: %d\n", __func__
,
2619 kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2620 tlb
->tlb_hi
, tlb
->tlb_lo0
, tlb
->tlb_lo1
);
2622 * OK we have a Guest TLB entry, now inject it into the
2625 kvm_mips_handle_mapped_seg_tlb_fault(vcpu
, tlb
, NULL
,