ARM: rockchip: fix broken build
[linux/fpc-iii.git] / arch / mips / sibyte / sb1250 / irq.c
blob6d8dba5cf3480af010e2f1807238a19a468884de
1 /*
2 * Copyright (C) 2000, 2001, 2002, 2003 Broadcom Corporation
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/linkage.h>
21 #include <linux/interrupt.h>
22 #include <linux/spinlock.h>
23 #include <linux/smp.h>
24 #include <linux/mm.h>
25 #include <linux/kernel_stat.h>
27 #include <asm/errno.h>
28 #include <asm/signal.h>
29 #include <asm/time.h>
30 #include <asm/io.h>
32 #include <asm/sibyte/sb1250_regs.h>
33 #include <asm/sibyte/sb1250_int.h>
34 #include <asm/sibyte/sb1250_uart.h>
35 #include <asm/sibyte/sb1250_scd.h>
36 #include <asm/sibyte/sb1250.h>
39 * These are the routines that handle all the low level interrupt stuff.
40 * Actions handled here are: initialization of the interrupt map, requesting of
41 * interrupt lines by handlers, dispatching if interrupts to handlers, probing
42 * for interrupt lines
45 #ifdef CONFIG_SIBYTE_HAS_LDT
46 extern unsigned long ldt_eoi_space;
47 #endif
49 /* Store the CPU id (not the logical number) */
50 int sb1250_irq_owner[SB1250_NR_IRQS];
52 static DEFINE_RAW_SPINLOCK(sb1250_imr_lock);
54 void sb1250_mask_irq(int cpu, int irq)
56 unsigned long flags;
57 u64 cur_ints;
59 raw_spin_lock_irqsave(&sb1250_imr_lock, flags);
60 cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) +
61 R_IMR_INTERRUPT_MASK));
62 cur_ints |= (((u64) 1) << irq);
63 ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) +
64 R_IMR_INTERRUPT_MASK));
65 raw_spin_unlock_irqrestore(&sb1250_imr_lock, flags);
68 void sb1250_unmask_irq(int cpu, int irq)
70 unsigned long flags;
71 u64 cur_ints;
73 raw_spin_lock_irqsave(&sb1250_imr_lock, flags);
74 cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) +
75 R_IMR_INTERRUPT_MASK));
76 cur_ints &= ~(((u64) 1) << irq);
77 ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) +
78 R_IMR_INTERRUPT_MASK));
79 raw_spin_unlock_irqrestore(&sb1250_imr_lock, flags);
82 #ifdef CONFIG_SMP
83 static int sb1250_set_affinity(struct irq_data *d, const struct cpumask *mask,
84 bool force)
86 int i = 0, old_cpu, cpu, int_on;
87 unsigned int irq = d->irq;
88 u64 cur_ints;
89 unsigned long flags;
91 i = cpumask_first_and(mask, cpu_online_mask);
93 /* Convert logical CPU to physical CPU */
94 cpu = cpu_logical_map(i);
96 /* Protect against other affinity changers and IMR manipulation */
97 raw_spin_lock_irqsave(&sb1250_imr_lock, flags);
99 /* Swizzle each CPU's IMR (but leave the IP selection alone) */
100 old_cpu = sb1250_irq_owner[irq];
101 cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(old_cpu) +
102 R_IMR_INTERRUPT_MASK));
103 int_on = !(cur_ints & (((u64) 1) << irq));
104 if (int_on) {
105 /* If it was on, mask it */
106 cur_ints |= (((u64) 1) << irq);
107 ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(old_cpu) +
108 R_IMR_INTERRUPT_MASK));
110 sb1250_irq_owner[irq] = cpu;
111 if (int_on) {
112 /* unmask for the new CPU */
113 cur_ints = ____raw_readq(IOADDR(A_IMR_MAPPER(cpu) +
114 R_IMR_INTERRUPT_MASK));
115 cur_ints &= ~(((u64) 1) << irq);
116 ____raw_writeq(cur_ints, IOADDR(A_IMR_MAPPER(cpu) +
117 R_IMR_INTERRUPT_MASK));
119 raw_spin_unlock_irqrestore(&sb1250_imr_lock, flags);
121 return 0;
123 #endif
125 static void disable_sb1250_irq(struct irq_data *d)
127 unsigned int irq = d->irq;
129 sb1250_mask_irq(sb1250_irq_owner[irq], irq);
132 static void enable_sb1250_irq(struct irq_data *d)
134 unsigned int irq = d->irq;
136 sb1250_unmask_irq(sb1250_irq_owner[irq], irq);
140 static void ack_sb1250_irq(struct irq_data *d)
142 unsigned int irq = d->irq;
143 #ifdef CONFIG_SIBYTE_HAS_LDT
144 u64 pending;
147 * If the interrupt was an HT interrupt, now is the time to
148 * clear it. NOTE: we assume the HT bridge was set up to
149 * deliver the interrupts to all CPUs (which makes affinity
150 * changing easier for us)
152 pending = __raw_readq(IOADDR(A_IMR_REGISTER(sb1250_irq_owner[irq],
153 R_IMR_LDT_INTERRUPT)));
154 pending &= ((u64)1 << (irq));
155 if (pending) {
156 int i;
157 for (i=0; i<NR_CPUS; i++) {
158 int cpu;
159 #ifdef CONFIG_SMP
160 cpu = cpu_logical_map(i);
161 #else
162 cpu = i;
163 #endif
165 * Clear for all CPUs so an affinity switch
166 * doesn't find an old status
168 __raw_writeq(pending,
169 IOADDR(A_IMR_REGISTER(cpu,
170 R_IMR_LDT_INTERRUPT_CLR)));
174 * Generate EOI. For Pass 1 parts, EOI is a nop. For
175 * Pass 2, the LDT world may be edge-triggered, but
176 * this EOI shouldn't hurt. If they are
177 * level-sensitive, the EOI is required.
179 *(uint32_t *)(ldt_eoi_space+(irq<<16)+(7<<2)) = 0;
181 #endif
182 sb1250_mask_irq(sb1250_irq_owner[irq], irq);
185 static struct irq_chip sb1250_irq_type = {
186 .name = "SB1250-IMR",
187 .irq_mask_ack = ack_sb1250_irq,
188 .irq_unmask = enable_sb1250_irq,
189 .irq_mask = disable_sb1250_irq,
190 #ifdef CONFIG_SMP
191 .irq_set_affinity = sb1250_set_affinity
192 #endif
195 void __init init_sb1250_irqs(void)
197 int i;
199 for (i = 0; i < SB1250_NR_IRQS; i++) {
200 irq_set_chip_and_handler(i, &sb1250_irq_type,
201 handle_level_irq);
202 sb1250_irq_owner[i] = 0;
208 * arch_init_irq is called early in the boot sequence from init/main.c via
209 * init_IRQ. It is responsible for setting up the interrupt mapper and
210 * installing the handler that will be responsible for dispatching interrupts
211 * to the "right" place.
214 * For now, map all interrupts to IP[2]. We could save
215 * some cycles by parceling out system interrupts to different
216 * IP lines, but keep it simple for bringup. We'll also direct
217 * all interrupts to a single CPU; we should probably route
218 * PCI and LDT to one cpu and everything else to the other
219 * to balance the load a bit.
221 * On the second cpu, everything is set to IP5, which is
222 * ignored, EXCEPT the mailbox interrupt. That one is
223 * set to IP[2] so it is handled. This is needed so we
224 * can do cross-cpu function calls, as required by SMP
227 #define IMR_IP2_VAL K_INT_MAP_I0
228 #define IMR_IP3_VAL K_INT_MAP_I1
229 #define IMR_IP4_VAL K_INT_MAP_I2
230 #define IMR_IP5_VAL K_INT_MAP_I3
231 #define IMR_IP6_VAL K_INT_MAP_I4
233 void __init arch_init_irq(void)
236 unsigned int i;
237 u64 tmp;
238 unsigned int imask = STATUSF_IP4 | STATUSF_IP3 | STATUSF_IP2 |
239 STATUSF_IP1 | STATUSF_IP0;
241 /* Default everything to IP2 */
242 for (i = 0; i < SB1250_NR_IRQS; i++) { /* was I0 */
243 __raw_writeq(IMR_IP2_VAL,
244 IOADDR(A_IMR_REGISTER(0,
245 R_IMR_INTERRUPT_MAP_BASE) +
246 (i << 3)));
247 __raw_writeq(IMR_IP2_VAL,
248 IOADDR(A_IMR_REGISTER(1,
249 R_IMR_INTERRUPT_MAP_BASE) +
250 (i << 3)));
253 init_sb1250_irqs();
256 * Map the high 16 bits of the mailbox registers to IP[3], for
257 * inter-cpu messages
259 /* Was I1 */
260 __raw_writeq(IMR_IP3_VAL,
261 IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MAP_BASE) +
262 (K_INT_MBOX_0 << 3)));
263 __raw_writeq(IMR_IP3_VAL,
264 IOADDR(A_IMR_REGISTER(1, R_IMR_INTERRUPT_MAP_BASE) +
265 (K_INT_MBOX_0 << 3)));
267 /* Clear the mailboxes. The firmware may leave them dirty */
268 __raw_writeq(0xffffffffffffffffULL,
269 IOADDR(A_IMR_REGISTER(0, R_IMR_MAILBOX_CLR_CPU)));
270 __raw_writeq(0xffffffffffffffffULL,
271 IOADDR(A_IMR_REGISTER(1, R_IMR_MAILBOX_CLR_CPU)));
273 /* Mask everything except the mailbox registers for both cpus */
274 tmp = ~((u64) 0) ^ (((u64) 1) << K_INT_MBOX_0);
275 __raw_writeq(tmp, IOADDR(A_IMR_REGISTER(0, R_IMR_INTERRUPT_MASK)));
276 __raw_writeq(tmp, IOADDR(A_IMR_REGISTER(1, R_IMR_INTERRUPT_MASK)));
279 * Note that the timer interrupts are also mapped, but this is
280 * done in sb1250_time_init(). Also, the profiling driver
281 * does its own management of IP7.
284 /* Enable necessary IPs, disable the rest */
285 change_c0_status(ST0_IM, imask);
288 extern void sb1250_mailbox_interrupt(void);
290 static inline void dispatch_ip2(void)
292 unsigned int cpu = smp_processor_id();
293 unsigned long long mask;
296 * Default...we've hit an IP[2] interrupt, which means we've got to
297 * check the 1250 interrupt registers to figure out what to do. Need
298 * to detect which CPU we're on, now that smp_affinity is supported.
300 mask = __raw_readq(IOADDR(A_IMR_REGISTER(cpu,
301 R_IMR_INTERRUPT_STATUS_BASE)));
302 if (mask)
303 do_IRQ(fls64(mask) - 1);
306 asmlinkage void plat_irq_dispatch(void)
308 unsigned int cpu = smp_processor_id();
309 unsigned int pending;
312 * What a pain. We have to be really careful saving the upper 32 bits
313 * of any * register across function calls if we don't want them
314 * trashed--since were running in -o32, the calling routing never saves
315 * the full 64 bits of a register across a function call. Being the
316 * interrupt handler, we're guaranteed that interrupts are disabled
317 * during this code so we don't have to worry about random interrupts
318 * blasting the high 32 bits.
321 pending = read_c0_cause() & read_c0_status() & ST0_IM;
323 if (pending & CAUSEF_IP7) /* CPU performance counter interrupt */
324 do_IRQ(MIPS_CPU_IRQ_BASE + 7);
325 else if (pending & CAUSEF_IP4)
326 do_IRQ(K_INT_TIMER_0 + cpu); /* sb1250_timer_interrupt() */
328 #ifdef CONFIG_SMP
329 else if (pending & CAUSEF_IP3)
330 sb1250_mailbox_interrupt();
331 #endif
333 else if (pending & CAUSEF_IP2)
334 dispatch_ip2();
335 else
336 spurious_interrupt();