ARM: rockchip: fix broken build
[linux/fpc-iii.git] / arch / x86 / kernel / process.c
blobc27cad7267655c3794972344adf0b7924e38c138
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/tick.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/fpu/internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31 #include <asm/tlbflush.h>
34 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
35 * no more per-task TSS's. The TSS size is kept cacheline-aligned
36 * so they are allowed to end up in the .data..cacheline_aligned
37 * section. Since TSS's are completely CPU-local, we want them
38 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
40 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
41 .x86_tss = {
42 .sp0 = TOP_OF_INIT_STACK,
43 #ifdef CONFIG_X86_32
44 .ss0 = __KERNEL_DS,
45 .ss1 = __KERNEL_CS,
46 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
47 #endif
49 #ifdef CONFIG_X86_32
51 * Note that the .io_bitmap member must be extra-big. This is because
52 * the CPU will access an additional byte beyond the end of the IO
53 * permission bitmap. The extra byte must be all 1 bits, and must
54 * be within the limit.
56 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
57 #endif
59 EXPORT_PER_CPU_SYMBOL(cpu_tss);
61 #ifdef CONFIG_X86_64
62 static DEFINE_PER_CPU(unsigned char, is_idle);
63 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
65 void idle_notifier_register(struct notifier_block *n)
67 atomic_notifier_chain_register(&idle_notifier, n);
69 EXPORT_SYMBOL_GPL(idle_notifier_register);
71 void idle_notifier_unregister(struct notifier_block *n)
73 atomic_notifier_chain_unregister(&idle_notifier, n);
75 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
76 #endif
79 * this gets called so that we can store lazy state into memory and copy the
80 * current task into the new thread.
82 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
84 memcpy(dst, src, arch_task_struct_size);
86 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
90 * Free current thread data structures etc..
92 void exit_thread(void)
94 struct task_struct *me = current;
95 struct thread_struct *t = &me->thread;
96 unsigned long *bp = t->io_bitmap_ptr;
97 struct fpu *fpu = &t->fpu;
99 if (bp) {
100 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
102 t->io_bitmap_ptr = NULL;
103 clear_thread_flag(TIF_IO_BITMAP);
105 * Careful, clear this in the TSS too:
107 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
108 t->io_bitmap_max = 0;
109 put_cpu();
110 kfree(bp);
113 fpu__drop(fpu);
116 void flush_thread(void)
118 struct task_struct *tsk = current;
120 flush_ptrace_hw_breakpoint(tsk);
121 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
123 fpu__clear(&tsk->thread.fpu);
126 static void hard_disable_TSC(void)
128 cr4_set_bits(X86_CR4_TSD);
131 void disable_TSC(void)
133 preempt_disable();
134 if (!test_and_set_thread_flag(TIF_NOTSC))
136 * Must flip the CPU state synchronously with
137 * TIF_NOTSC in the current running context.
139 hard_disable_TSC();
140 preempt_enable();
143 static void hard_enable_TSC(void)
145 cr4_clear_bits(X86_CR4_TSD);
148 static void enable_TSC(void)
150 preempt_disable();
151 if (test_and_clear_thread_flag(TIF_NOTSC))
153 * Must flip the CPU state synchronously with
154 * TIF_NOTSC in the current running context.
156 hard_enable_TSC();
157 preempt_enable();
160 int get_tsc_mode(unsigned long adr)
162 unsigned int val;
164 if (test_thread_flag(TIF_NOTSC))
165 val = PR_TSC_SIGSEGV;
166 else
167 val = PR_TSC_ENABLE;
169 return put_user(val, (unsigned int __user *)adr);
172 int set_tsc_mode(unsigned int val)
174 if (val == PR_TSC_SIGSEGV)
175 disable_TSC();
176 else if (val == PR_TSC_ENABLE)
177 enable_TSC();
178 else
179 return -EINVAL;
181 return 0;
184 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
185 struct tss_struct *tss)
187 struct thread_struct *prev, *next;
189 prev = &prev_p->thread;
190 next = &next_p->thread;
192 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
193 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
194 unsigned long debugctl = get_debugctlmsr();
196 debugctl &= ~DEBUGCTLMSR_BTF;
197 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
198 debugctl |= DEBUGCTLMSR_BTF;
200 update_debugctlmsr(debugctl);
203 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
204 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
205 /* prev and next are different */
206 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
207 hard_disable_TSC();
208 else
209 hard_enable_TSC();
212 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
214 * Copy the relevant range of the IO bitmap.
215 * Normally this is 128 bytes or less:
217 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
218 max(prev->io_bitmap_max, next->io_bitmap_max));
219 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
221 * Clear any possible leftover bits:
223 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
225 propagate_user_return_notify(prev_p, next_p);
229 * Idle related variables and functions
231 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
232 EXPORT_SYMBOL(boot_option_idle_override);
234 static void (*x86_idle)(void);
236 #ifndef CONFIG_SMP
237 static inline void play_dead(void)
239 BUG();
241 #endif
243 #ifdef CONFIG_X86_64
244 void enter_idle(void)
246 this_cpu_write(is_idle, 1);
247 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
250 static void __exit_idle(void)
252 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
253 return;
254 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
257 /* Called from interrupts to signify idle end */
258 void exit_idle(void)
260 /* idle loop has pid 0 */
261 if (current->pid)
262 return;
263 __exit_idle();
265 #endif
267 void arch_cpu_idle_enter(void)
269 local_touch_nmi();
270 enter_idle();
273 void arch_cpu_idle_exit(void)
275 __exit_idle();
278 void arch_cpu_idle_dead(void)
280 play_dead();
284 * Called from the generic idle code.
286 void arch_cpu_idle(void)
288 x86_idle();
292 * We use this if we don't have any better idle routine..
294 void default_idle(void)
296 trace_cpu_idle_rcuidle(1, smp_processor_id());
297 safe_halt();
298 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
300 #ifdef CONFIG_APM_MODULE
301 EXPORT_SYMBOL(default_idle);
302 #endif
304 #ifdef CONFIG_XEN
305 bool xen_set_default_idle(void)
307 bool ret = !!x86_idle;
309 x86_idle = default_idle;
311 return ret;
313 #endif
314 void stop_this_cpu(void *dummy)
316 local_irq_disable();
318 * Remove this CPU:
320 set_cpu_online(smp_processor_id(), false);
321 disable_local_APIC();
323 for (;;)
324 halt();
327 bool amd_e400_c1e_detected;
328 EXPORT_SYMBOL(amd_e400_c1e_detected);
330 static cpumask_var_t amd_e400_c1e_mask;
332 void amd_e400_remove_cpu(int cpu)
334 if (amd_e400_c1e_mask != NULL)
335 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
339 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
340 * pending message MSR. If we detect C1E, then we handle it the same
341 * way as C3 power states (local apic timer and TSC stop)
343 static void amd_e400_idle(void)
345 if (!amd_e400_c1e_detected) {
346 u32 lo, hi;
348 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
350 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
351 amd_e400_c1e_detected = true;
352 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
353 mark_tsc_unstable("TSC halt in AMD C1E");
354 pr_info("System has AMD C1E enabled\n");
358 if (amd_e400_c1e_detected) {
359 int cpu = smp_processor_id();
361 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
362 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
363 /* Force broadcast so ACPI can not interfere. */
364 tick_broadcast_force();
365 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
367 tick_broadcast_enter();
369 default_idle();
372 * The switch back from broadcast mode needs to be
373 * called with interrupts disabled.
375 local_irq_disable();
376 tick_broadcast_exit();
377 local_irq_enable();
378 } else
379 default_idle();
383 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
384 * We can't rely on cpuidle installing MWAIT, because it will not load
385 * on systems that support only C1 -- so the boot default must be MWAIT.
387 * Some AMD machines are the opposite, they depend on using HALT.
389 * So for default C1, which is used during boot until cpuidle loads,
390 * use MWAIT-C1 on Intel HW that has it, else use HALT.
392 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
394 if (c->x86_vendor != X86_VENDOR_INTEL)
395 return 0;
397 if (!cpu_has(c, X86_FEATURE_MWAIT))
398 return 0;
400 return 1;
404 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
405 * with interrupts enabled and no flags, which is backwards compatible with the
406 * original MWAIT implementation.
408 static void mwait_idle(void)
410 if (!current_set_polling_and_test()) {
411 trace_cpu_idle_rcuidle(1, smp_processor_id());
412 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
413 smp_mb(); /* quirk */
414 clflush((void *)&current_thread_info()->flags);
415 smp_mb(); /* quirk */
418 __monitor((void *)&current_thread_info()->flags, 0, 0);
419 if (!need_resched())
420 __sti_mwait(0, 0);
421 else
422 local_irq_enable();
423 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
424 } else {
425 local_irq_enable();
427 __current_clr_polling();
430 void select_idle_routine(const struct cpuinfo_x86 *c)
432 #ifdef CONFIG_SMP
433 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
434 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
435 #endif
436 if (x86_idle || boot_option_idle_override == IDLE_POLL)
437 return;
439 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
440 /* E400: APIC timer interrupt does not wake up CPU from C1e */
441 pr_info("using AMD E400 aware idle routine\n");
442 x86_idle = amd_e400_idle;
443 } else if (prefer_mwait_c1_over_halt(c)) {
444 pr_info("using mwait in idle threads\n");
445 x86_idle = mwait_idle;
446 } else
447 x86_idle = default_idle;
450 void __init init_amd_e400_c1e_mask(void)
452 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
453 if (x86_idle == amd_e400_idle)
454 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
457 static int __init idle_setup(char *str)
459 if (!str)
460 return -EINVAL;
462 if (!strcmp(str, "poll")) {
463 pr_info("using polling idle threads\n");
464 boot_option_idle_override = IDLE_POLL;
465 cpu_idle_poll_ctrl(true);
466 } else if (!strcmp(str, "halt")) {
468 * When the boot option of idle=halt is added, halt is
469 * forced to be used for CPU idle. In such case CPU C2/C3
470 * won't be used again.
471 * To continue to load the CPU idle driver, don't touch
472 * the boot_option_idle_override.
474 x86_idle = default_idle;
475 boot_option_idle_override = IDLE_HALT;
476 } else if (!strcmp(str, "nomwait")) {
478 * If the boot option of "idle=nomwait" is added,
479 * it means that mwait will be disabled for CPU C2/C3
480 * states. In such case it won't touch the variable
481 * of boot_option_idle_override.
483 boot_option_idle_override = IDLE_NOMWAIT;
484 } else
485 return -1;
487 return 0;
489 early_param("idle", idle_setup);
491 unsigned long arch_align_stack(unsigned long sp)
493 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
494 sp -= get_random_int() % 8192;
495 return sp & ~0xf;
498 unsigned long arch_randomize_brk(struct mm_struct *mm)
500 unsigned long range_end = mm->brk + 0x02000000;
501 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;