1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
23 #include <asm/x86_init.h>
25 unsigned int __read_mostly cpu_khz
; /* TSC clocks / usec, not used here */
26 EXPORT_SYMBOL(cpu_khz
);
28 unsigned int __read_mostly tsc_khz
;
29 EXPORT_SYMBOL(tsc_khz
);
32 * TSC can be unstable due to cpufreq or due to unsynced TSCs
34 static int __read_mostly tsc_unstable
;
36 /* native_sched_clock() is called before tsc_init(), so
37 we must start with the TSC soft disabled to prevent
38 erroneous rdtsc usage on !cpu_has_tsc processors */
39 static int __read_mostly tsc_disabled
= -1;
41 static struct static_key __use_tsc
= STATIC_KEY_INIT
;
43 int tsc_clocksource_reliable
;
46 * Use a ring-buffer like data structure, where a writer advances the head by
47 * writing a new data entry and a reader advances the tail when it observes a
50 * Writers are made to wait on readers until there's space to write a new
53 * This means that we can always use an {offset, mul} pair to compute a ns
54 * value that is 'roughly' in the right direction, even if we're writing a new
55 * {offset, mul} pair during the clock read.
57 * The down-side is that we can no longer guarantee strict monotonicity anymore
58 * (assuming the TSC was that to begin with), because while we compute the
59 * intersection point of the two clock slopes and make sure the time is
60 * continuous at the point of switching; we can no longer guarantee a reader is
61 * strictly before or after the switch point.
63 * It does mean a reader no longer needs to disable IRQs in order to avoid
64 * CPU-Freq updates messing with his times, and similarly an NMI reader will
65 * no longer run the risk of hitting half-written state.
69 struct cyc2ns_data data
[2]; /* 0 + 2*24 = 48 */
70 struct cyc2ns_data
*head
; /* 48 + 8 = 56 */
71 struct cyc2ns_data
*tail
; /* 56 + 8 = 64 */
72 }; /* exactly fits one cacheline */
74 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns
, cyc2ns
);
76 struct cyc2ns_data
*cyc2ns_read_begin(void)
78 struct cyc2ns_data
*head
;
82 head
= this_cpu_read(cyc2ns
.head
);
84 * Ensure we observe the entry when we observe the pointer to it.
85 * matches the wmb from cyc2ns_write_end().
87 smp_read_barrier_depends();
94 void cyc2ns_read_end(struct cyc2ns_data
*head
)
98 * If we're the outer most nested read; update the tail pointer
99 * when we're done. This notifies possible pending writers
100 * that we've observed the head pointer and that the other
103 if (!--head
->__count
) {
105 * x86-TSO does not reorder writes with older reads;
106 * therefore once this write becomes visible to another
107 * cpu, we must be finished reading the cyc2ns_data.
109 * matches with cyc2ns_write_begin().
111 this_cpu_write(cyc2ns
.tail
, head
);
117 * Begin writing a new @data entry for @cpu.
119 * Assumes some sort of write side lock; currently 'provided' by the assumption
120 * that cpufreq will call its notifiers sequentially.
122 static struct cyc2ns_data
*cyc2ns_write_begin(int cpu
)
124 struct cyc2ns
*c2n
= &per_cpu(cyc2ns
, cpu
);
125 struct cyc2ns_data
*data
= c2n
->data
;
127 if (data
== c2n
->head
)
130 /* XXX send an IPI to @cpu in order to guarantee a read? */
133 * When we observe the tail write from cyc2ns_read_end(),
134 * the cpu must be done with that entry and its safe
135 * to start writing to it.
137 while (c2n
->tail
== data
)
143 static void cyc2ns_write_end(int cpu
, struct cyc2ns_data
*data
)
145 struct cyc2ns
*c2n
= &per_cpu(cyc2ns
, cpu
);
148 * Ensure the @data writes are visible before we publish the
149 * entry. Matches the data-depencency in cyc2ns_read_begin().
153 ACCESS_ONCE(c2n
->head
) = data
;
157 * Accelerators for sched_clock()
158 * convert from cycles(64bits) => nanoseconds (64bits)
160 * ns = cycles / (freq / ns_per_sec)
161 * ns = cycles * (ns_per_sec / freq)
162 * ns = cycles * (10^9 / (cpu_khz * 10^3))
163 * ns = cycles * (10^6 / cpu_khz)
165 * Then we use scaling math (suggested by george@mvista.com) to get:
166 * ns = cycles * (10^6 * SC / cpu_khz) / SC
167 * ns = cycles * cyc2ns_scale / SC
169 * And since SC is a constant power of two, we can convert the div
172 * We can use khz divisor instead of mhz to keep a better precision, since
173 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
174 * (mathieu.desnoyers@polymtl.ca)
176 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
179 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
181 static void cyc2ns_data_init(struct cyc2ns_data
*data
)
183 data
->cyc2ns_mul
= 0;
184 data
->cyc2ns_shift
= CYC2NS_SCALE_FACTOR
;
185 data
->cyc2ns_offset
= 0;
189 static void cyc2ns_init(int cpu
)
191 struct cyc2ns
*c2n
= &per_cpu(cyc2ns
, cpu
);
193 cyc2ns_data_init(&c2n
->data
[0]);
194 cyc2ns_data_init(&c2n
->data
[1]);
196 c2n
->head
= c2n
->data
;
197 c2n
->tail
= c2n
->data
;
200 static inline unsigned long long cycles_2_ns(unsigned long long cyc
)
202 struct cyc2ns_data
*data
, *tail
;
203 unsigned long long ns
;
206 * See cyc2ns_read_*() for details; replicated in order to avoid
207 * an extra few instructions that came with the abstraction.
208 * Notable, it allows us to only do the __count and tail update
209 * dance when its actually needed.
212 preempt_disable_notrace();
213 data
= this_cpu_read(cyc2ns
.head
);
214 tail
= this_cpu_read(cyc2ns
.tail
);
216 if (likely(data
== tail
)) {
217 ns
= data
->cyc2ns_offset
;
218 ns
+= mul_u64_u32_shr(cyc
, data
->cyc2ns_mul
, CYC2NS_SCALE_FACTOR
);
224 ns
= data
->cyc2ns_offset
;
225 ns
+= mul_u64_u32_shr(cyc
, data
->cyc2ns_mul
, CYC2NS_SCALE_FACTOR
);
229 if (!--data
->__count
)
230 this_cpu_write(cyc2ns
.tail
, data
);
232 preempt_enable_notrace();
237 static void set_cyc2ns_scale(unsigned long cpu_khz
, int cpu
)
239 unsigned long long tsc_now
, ns_now
;
240 struct cyc2ns_data
*data
;
243 local_irq_save(flags
);
244 sched_clock_idle_sleep_event();
249 data
= cyc2ns_write_begin(cpu
);
252 ns_now
= cycles_2_ns(tsc_now
);
255 * Compute a new multiplier as per the above comment and ensure our
256 * time function is continuous; see the comment near struct
260 DIV_ROUND_CLOSEST(NSEC_PER_MSEC
<< CYC2NS_SCALE_FACTOR
,
262 data
->cyc2ns_shift
= CYC2NS_SCALE_FACTOR
;
263 data
->cyc2ns_offset
= ns_now
-
264 mul_u64_u32_shr(tsc_now
, data
->cyc2ns_mul
, CYC2NS_SCALE_FACTOR
);
266 cyc2ns_write_end(cpu
, data
);
269 sched_clock_idle_wakeup_event(0);
270 local_irq_restore(flags
);
273 * Scheduler clock - returns current time in nanosec units.
275 u64
native_sched_clock(void)
280 * Fall back to jiffies if there's no TSC available:
281 * ( But note that we still use it if the TSC is marked
282 * unstable. We do this because unlike Time Of Day,
283 * the scheduler clock tolerates small errors and it's
284 * very important for it to be as fast as the platform
287 if (!static_key_false(&__use_tsc
)) {
288 /* No locking but a rare wrong value is not a big deal: */
289 return (jiffies_64
- INITIAL_JIFFIES
) * (1000000000 / HZ
);
292 /* read the Time Stamp Counter: */
295 /* return the value in ns */
296 return cycles_2_ns(tsc_now
);
299 /* We need to define a real function for sched_clock, to override the
300 weak default version */
301 #ifdef CONFIG_PARAVIRT
302 unsigned long long sched_clock(void)
304 return paravirt_sched_clock();
308 sched_clock(void) __attribute__((alias("native_sched_clock")));
311 unsigned long long native_read_tsc(void)
313 return __native_read_tsc();
315 EXPORT_SYMBOL(native_read_tsc
);
317 int check_tsc_unstable(void)
321 EXPORT_SYMBOL_GPL(check_tsc_unstable
);
323 int check_tsc_disabled(void)
327 EXPORT_SYMBOL_GPL(check_tsc_disabled
);
329 #ifdef CONFIG_X86_TSC
330 int __init
notsc_setup(char *str
)
332 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
338 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
341 int __init
notsc_setup(char *str
)
343 setup_clear_cpu_cap(X86_FEATURE_TSC
);
348 __setup("notsc", notsc_setup
);
350 static int no_sched_irq_time
;
352 static int __init
tsc_setup(char *str
)
354 if (!strcmp(str
, "reliable"))
355 tsc_clocksource_reliable
= 1;
356 if (!strncmp(str
, "noirqtime", 9))
357 no_sched_irq_time
= 1;
361 __setup("tsc=", tsc_setup
);
363 #define MAX_RETRIES 5
364 #define SMI_TRESHOLD 50000
367 * Read TSC and the reference counters. Take care of SMI disturbance
369 static u64
tsc_read_refs(u64
*p
, int hpet
)
374 for (i
= 0; i
< MAX_RETRIES
; i
++) {
377 *p
= hpet_readl(HPET_COUNTER
) & 0xFFFFFFFF;
379 *p
= acpi_pm_read_early();
381 if ((t2
- t1
) < SMI_TRESHOLD
)
388 * Calculate the TSC frequency from HPET reference
390 static unsigned long calc_hpet_ref(u64 deltatsc
, u64 hpet1
, u64 hpet2
)
395 hpet2
+= 0x100000000ULL
;
397 tmp
= ((u64
)hpet2
* hpet_readl(HPET_PERIOD
));
398 do_div(tmp
, 1000000);
399 do_div(deltatsc
, tmp
);
401 return (unsigned long) deltatsc
;
405 * Calculate the TSC frequency from PMTimer reference
407 static unsigned long calc_pmtimer_ref(u64 deltatsc
, u64 pm1
, u64 pm2
)
415 pm2
+= (u64
)ACPI_PM_OVRRUN
;
417 tmp
= pm2
* 1000000000LL;
418 do_div(tmp
, PMTMR_TICKS_PER_SEC
);
419 do_div(deltatsc
, tmp
);
421 return (unsigned long) deltatsc
;
425 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
426 #define CAL_PIT_LOOPS 1000
429 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
430 #define CAL2_PIT_LOOPS 5000
434 * Try to calibrate the TSC against the Programmable
435 * Interrupt Timer and return the frequency of the TSC
438 * Return ULONG_MAX on failure to calibrate.
440 static unsigned long pit_calibrate_tsc(u32 latch
, unsigned long ms
, int loopmin
)
442 u64 tsc
, t1
, t2
, delta
;
443 unsigned long tscmin
, tscmax
;
446 /* Set the Gate high, disable speaker */
447 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
450 * Setup CTC channel 2* for mode 0, (interrupt on terminal
451 * count mode), binary count. Set the latch register to 50ms
452 * (LSB then MSB) to begin countdown.
455 outb(latch
& 0xff, 0x42);
456 outb(latch
>> 8, 0x42);
458 tsc
= t1
= t2
= get_cycles();
463 while ((inb(0x61) & 0x20) == 0) {
467 if ((unsigned long) delta
< tscmin
)
468 tscmin
= (unsigned int) delta
;
469 if ((unsigned long) delta
> tscmax
)
470 tscmax
= (unsigned int) delta
;
477 * If we were not able to read the PIT more than loopmin
478 * times, then we have been hit by a massive SMI
480 * If the maximum is 10 times larger than the minimum,
481 * then we got hit by an SMI as well.
483 if (pitcnt
< loopmin
|| tscmax
> 10 * tscmin
)
486 /* Calculate the PIT value */
493 * This reads the current MSB of the PIT counter, and
494 * checks if we are running on sufficiently fast and
495 * non-virtualized hardware.
497 * Our expectations are:
499 * - the PIT is running at roughly 1.19MHz
501 * - each IO is going to take about 1us on real hardware,
502 * but we allow it to be much faster (by a factor of 10) or
503 * _slightly_ slower (ie we allow up to a 2us read+counter
504 * update - anything else implies a unacceptably slow CPU
505 * or PIT for the fast calibration to work.
507 * - with 256 PIT ticks to read the value, we have 214us to
508 * see the same MSB (and overhead like doing a single TSC
509 * read per MSB value etc).
511 * - We're doing 2 reads per loop (LSB, MSB), and we expect
512 * them each to take about a microsecond on real hardware.
513 * So we expect a count value of around 100. But we'll be
514 * generous, and accept anything over 50.
516 * - if the PIT is stuck, and we see *many* more reads, we
517 * return early (and the next caller of pit_expect_msb()
518 * then consider it a failure when they don't see the
519 * next expected value).
521 * These expectations mean that we know that we have seen the
522 * transition from one expected value to another with a fairly
523 * high accuracy, and we didn't miss any events. We can thus
524 * use the TSC value at the transitions to calculate a pretty
525 * good value for the TSC frequencty.
527 static inline int pit_verify_msb(unsigned char val
)
531 return inb(0x42) == val
;
534 static inline int pit_expect_msb(unsigned char val
, u64
*tscp
, unsigned long *deltap
)
537 u64 tsc
= 0, prev_tsc
= 0;
539 for (count
= 0; count
< 50000; count
++) {
540 if (!pit_verify_msb(val
))
545 *deltap
= get_cycles() - prev_tsc
;
549 * We require _some_ success, but the quality control
550 * will be based on the error terms on the TSC values.
556 * How many MSB values do we want to see? We aim for
557 * a maximum error rate of 500ppm (in practice the
558 * real error is much smaller), but refuse to spend
559 * more than 50ms on it.
561 #define MAX_QUICK_PIT_MS 50
562 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
564 static unsigned long quick_pit_calibrate(void)
568 unsigned long d1
, d2
;
570 /* Set the Gate high, disable speaker */
571 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
574 * Counter 2, mode 0 (one-shot), binary count
576 * NOTE! Mode 2 decrements by two (and then the
577 * output is flipped each time, giving the same
578 * final output frequency as a decrement-by-one),
579 * so mode 0 is much better when looking at the
584 /* Start at 0xffff */
589 * The PIT starts counting at the next edge, so we
590 * need to delay for a microsecond. The easiest way
591 * to do that is to just read back the 16-bit counter
596 if (pit_expect_msb(0xff, &tsc
, &d1
)) {
597 for (i
= 1; i
<= MAX_QUICK_PIT_ITERATIONS
; i
++) {
598 if (!pit_expect_msb(0xff-i
, &delta
, &d2
))
604 * Extrapolate the error and fail fast if the error will
605 * never be below 500 ppm.
608 d1
+ d2
>= (delta
* MAX_QUICK_PIT_ITERATIONS
) >> 11)
612 * Iterate until the error is less than 500 ppm
614 if (d1
+d2
>= delta
>> 11)
618 * Check the PIT one more time to verify that
619 * all TSC reads were stable wrt the PIT.
621 * This also guarantees serialization of the
622 * last cycle read ('d2') in pit_expect_msb.
624 if (!pit_verify_msb(0xfe - i
))
629 pr_info("Fast TSC calibration failed\n");
634 * Ok, if we get here, then we've seen the
635 * MSB of the PIT decrement 'i' times, and the
636 * error has shrunk to less than 500 ppm.
638 * As a result, we can depend on there not being
639 * any odd delays anywhere, and the TSC reads are
640 * reliable (within the error).
642 * kHz = ticks / time-in-seconds / 1000;
643 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
644 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
646 delta
*= PIT_TICK_RATE
;
647 do_div(delta
, i
*256*1000);
648 pr_info("Fast TSC calibration using PIT\n");
653 * native_calibrate_tsc - calibrate the tsc on boot
655 unsigned long native_calibrate_tsc(void)
657 u64 tsc1
, tsc2
, delta
, ref1
, ref2
;
658 unsigned long tsc_pit_min
= ULONG_MAX
, tsc_ref_min
= ULONG_MAX
;
659 unsigned long flags
, latch
, ms
, fast_calibrate
;
660 int hpet
= is_hpet_enabled(), i
, loopmin
;
662 /* Calibrate TSC using MSR for Intel Atom SoCs */
663 local_irq_save(flags
);
664 fast_calibrate
= try_msr_calibrate_tsc();
665 local_irq_restore(flags
);
667 return fast_calibrate
;
669 local_irq_save(flags
);
670 fast_calibrate
= quick_pit_calibrate();
671 local_irq_restore(flags
);
673 return fast_calibrate
;
676 * Run 5 calibration loops to get the lowest frequency value
677 * (the best estimate). We use two different calibration modes
680 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
681 * load a timeout of 50ms. We read the time right after we
682 * started the timer and wait until the PIT count down reaches
683 * zero. In each wait loop iteration we read the TSC and check
684 * the delta to the previous read. We keep track of the min
685 * and max values of that delta. The delta is mostly defined
686 * by the IO time of the PIT access, so we can detect when a
687 * SMI/SMM disturbance happened between the two reads. If the
688 * maximum time is significantly larger than the minimum time,
689 * then we discard the result and have another try.
691 * 2) Reference counter. If available we use the HPET or the
692 * PMTIMER as a reference to check the sanity of that value.
693 * We use separate TSC readouts and check inside of the
694 * reference read for a SMI/SMM disturbance. We dicard
695 * disturbed values here as well. We do that around the PIT
696 * calibration delay loop as we have to wait for a certain
697 * amount of time anyway.
700 /* Preset PIT loop values */
703 loopmin
= CAL_PIT_LOOPS
;
705 for (i
= 0; i
< 3; i
++) {
706 unsigned long tsc_pit_khz
;
709 * Read the start value and the reference count of
710 * hpet/pmtimer when available. Then do the PIT
711 * calibration, which will take at least 50ms, and
712 * read the end value.
714 local_irq_save(flags
);
715 tsc1
= tsc_read_refs(&ref1
, hpet
);
716 tsc_pit_khz
= pit_calibrate_tsc(latch
, ms
, loopmin
);
717 tsc2
= tsc_read_refs(&ref2
, hpet
);
718 local_irq_restore(flags
);
720 /* Pick the lowest PIT TSC calibration so far */
721 tsc_pit_min
= min(tsc_pit_min
, tsc_pit_khz
);
723 /* hpet or pmtimer available ? */
727 /* Check, whether the sampling was disturbed by an SMI */
728 if (tsc1
== ULLONG_MAX
|| tsc2
== ULLONG_MAX
)
731 tsc2
= (tsc2
- tsc1
) * 1000000LL;
733 tsc2
= calc_hpet_ref(tsc2
, ref1
, ref2
);
735 tsc2
= calc_pmtimer_ref(tsc2
, ref1
, ref2
);
737 tsc_ref_min
= min(tsc_ref_min
, (unsigned long) tsc2
);
739 /* Check the reference deviation */
740 delta
= ((u64
) tsc_pit_min
) * 100;
741 do_div(delta
, tsc_ref_min
);
744 * If both calibration results are inside a 10% window
745 * then we can be sure, that the calibration
746 * succeeded. We break out of the loop right away. We
747 * use the reference value, as it is more precise.
749 if (delta
>= 90 && delta
<= 110) {
750 pr_info("PIT calibration matches %s. %d loops\n",
751 hpet
? "HPET" : "PMTIMER", i
+ 1);
756 * Check whether PIT failed more than once. This
757 * happens in virtualized environments. We need to
758 * give the virtual PC a slightly longer timeframe for
759 * the HPET/PMTIMER to make the result precise.
761 if (i
== 1 && tsc_pit_min
== ULONG_MAX
) {
764 loopmin
= CAL2_PIT_LOOPS
;
769 * Now check the results.
771 if (tsc_pit_min
== ULONG_MAX
) {
772 /* PIT gave no useful value */
773 pr_warn("Unable to calibrate against PIT\n");
775 /* We don't have an alternative source, disable TSC */
776 if (!hpet
&& !ref1
&& !ref2
) {
777 pr_notice("No reference (HPET/PMTIMER) available\n");
781 /* The alternative source failed as well, disable TSC */
782 if (tsc_ref_min
== ULONG_MAX
) {
783 pr_warn("HPET/PMTIMER calibration failed\n");
787 /* Use the alternative source */
788 pr_info("using %s reference calibration\n",
789 hpet
? "HPET" : "PMTIMER");
794 /* We don't have an alternative source, use the PIT calibration value */
795 if (!hpet
&& !ref1
&& !ref2
) {
796 pr_info("Using PIT calibration value\n");
800 /* The alternative source failed, use the PIT calibration value */
801 if (tsc_ref_min
== ULONG_MAX
) {
802 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
807 * The calibration values differ too much. In doubt, we use
808 * the PIT value as we know that there are PMTIMERs around
809 * running at double speed. At least we let the user know:
811 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
812 hpet
? "HPET" : "PMTIMER", tsc_pit_min
, tsc_ref_min
);
813 pr_info("Using PIT calibration value\n");
817 int recalibrate_cpu_khz(void)
820 unsigned long cpu_khz_old
= cpu_khz
;
823 tsc_khz
= x86_platform
.calibrate_tsc();
825 cpu_data(0).loops_per_jiffy
=
826 cpufreq_scale(cpu_data(0).loops_per_jiffy
,
827 cpu_khz_old
, cpu_khz
);
836 EXPORT_SYMBOL(recalibrate_cpu_khz
);
839 static unsigned long long cyc2ns_suspend
;
841 void tsc_save_sched_clock_state(void)
843 if (!sched_clock_stable())
846 cyc2ns_suspend
= sched_clock();
850 * Even on processors with invariant TSC, TSC gets reset in some the
851 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
852 * arbitrary value (still sync'd across cpu's) during resume from such sleep
853 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
854 * that sched_clock() continues from the point where it was left off during
857 void tsc_restore_sched_clock_state(void)
859 unsigned long long offset
;
863 if (!sched_clock_stable())
866 local_irq_save(flags
);
869 * We're comming out of suspend, there's no concurrency yet; don't
870 * bother being nice about the RCU stuff, just write to both
874 this_cpu_write(cyc2ns
.data
[0].cyc2ns_offset
, 0);
875 this_cpu_write(cyc2ns
.data
[1].cyc2ns_offset
, 0);
877 offset
= cyc2ns_suspend
- sched_clock();
879 for_each_possible_cpu(cpu
) {
880 per_cpu(cyc2ns
.data
[0].cyc2ns_offset
, cpu
) = offset
;
881 per_cpu(cyc2ns
.data
[1].cyc2ns_offset
, cpu
) = offset
;
884 local_irq_restore(flags
);
887 #ifdef CONFIG_CPU_FREQ
889 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
892 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
893 * not that important because current Opteron setups do not support
894 * scaling on SMP anyroads.
896 * Should fix up last_tsc too. Currently gettimeofday in the
897 * first tick after the change will be slightly wrong.
900 static unsigned int ref_freq
;
901 static unsigned long loops_per_jiffy_ref
;
902 static unsigned long tsc_khz_ref
;
904 static int time_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
907 struct cpufreq_freqs
*freq
= data
;
910 if (cpu_has(&cpu_data(freq
->cpu
), X86_FEATURE_CONSTANT_TSC
))
913 lpj
= &boot_cpu_data
.loops_per_jiffy
;
915 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
916 lpj
= &cpu_data(freq
->cpu
).loops_per_jiffy
;
920 ref_freq
= freq
->old
;
921 loops_per_jiffy_ref
= *lpj
;
922 tsc_khz_ref
= tsc_khz
;
924 if ((val
== CPUFREQ_PRECHANGE
&& freq
->old
< freq
->new) ||
925 (val
== CPUFREQ_POSTCHANGE
&& freq
->old
> freq
->new)) {
926 *lpj
= cpufreq_scale(loops_per_jiffy_ref
, ref_freq
, freq
->new);
928 tsc_khz
= cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
929 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
930 mark_tsc_unstable("cpufreq changes");
932 set_cyc2ns_scale(tsc_khz
, freq
->cpu
);
938 static struct notifier_block time_cpufreq_notifier_block
= {
939 .notifier_call
= time_cpufreq_notifier
942 static int __init
cpufreq_tsc(void)
946 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
948 cpufreq_register_notifier(&time_cpufreq_notifier_block
,
949 CPUFREQ_TRANSITION_NOTIFIER
);
953 core_initcall(cpufreq_tsc
);
955 #endif /* CONFIG_CPU_FREQ */
957 /* clocksource code */
959 static struct clocksource clocksource_tsc
;
962 * We used to compare the TSC to the cycle_last value in the clocksource
963 * structure to avoid a nasty time-warp. This can be observed in a
964 * very small window right after one CPU updated cycle_last under
965 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
966 * is smaller than the cycle_last reference value due to a TSC which
967 * is slighty behind. This delta is nowhere else observable, but in
968 * that case it results in a forward time jump in the range of hours
969 * due to the unsigned delta calculation of the time keeping core
970 * code, which is necessary to support wrapping clocksources like pm
973 * This sanity check is now done in the core timekeeping code.
974 * checking the result of read_tsc() - cycle_last for being negative.
975 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
977 static cycle_t
read_tsc(struct clocksource
*cs
)
979 return (cycle_t
)get_cycles();
983 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
985 static struct clocksource clocksource_tsc
= {
989 .mask
= CLOCKSOURCE_MASK(64),
990 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
|
991 CLOCK_SOURCE_MUST_VERIFY
,
992 .archdata
= { .vclock_mode
= VCLOCK_TSC
},
995 void mark_tsc_unstable(char *reason
)
999 clear_sched_clock_stable();
1000 disable_sched_clock_irqtime();
1001 pr_info("Marking TSC unstable due to %s\n", reason
);
1002 /* Change only the rating, when not registered */
1003 if (clocksource_tsc
.mult
)
1004 clocksource_mark_unstable(&clocksource_tsc
);
1006 clocksource_tsc
.flags
|= CLOCK_SOURCE_UNSTABLE
;
1007 clocksource_tsc
.rating
= 0;
1012 EXPORT_SYMBOL_GPL(mark_tsc_unstable
);
1014 static void __init
check_system_tsc_reliable(void)
1016 #ifdef CONFIG_MGEODE_LX
1017 /* RTSC counts during suspend */
1018 #define RTSC_SUSP 0x100
1019 unsigned long res_low
, res_high
;
1021 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0
, &res_low
, &res_high
);
1022 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1023 if (res_low
& RTSC_SUSP
)
1024 tsc_clocksource_reliable
= 1;
1026 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE
))
1027 tsc_clocksource_reliable
= 1;
1031 * Make an educated guess if the TSC is trustworthy and synchronized
1034 int unsynchronized_tsc(void)
1036 if (!cpu_has_tsc
|| tsc_unstable
)
1040 if (apic_is_clustered_box())
1044 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
1047 if (tsc_clocksource_reliable
)
1050 * Intel systems are normally all synchronized.
1051 * Exceptions must mark TSC as unstable:
1053 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
) {
1054 /* assume multi socket systems are not synchronized: */
1055 if (num_possible_cpus() > 1)
1063 static void tsc_refine_calibration_work(struct work_struct
*work
);
1064 static DECLARE_DELAYED_WORK(tsc_irqwork
, tsc_refine_calibration_work
);
1066 * tsc_refine_calibration_work - Further refine tsc freq calibration
1069 * This functions uses delayed work over a period of a
1070 * second to further refine the TSC freq value. Since this is
1071 * timer based, instead of loop based, we don't block the boot
1072 * process while this longer calibration is done.
1074 * If there are any calibration anomalies (too many SMIs, etc),
1075 * or the refined calibration is off by 1% of the fast early
1076 * calibration, we throw out the new calibration and use the
1077 * early calibration.
1079 static void tsc_refine_calibration_work(struct work_struct
*work
)
1081 static u64 tsc_start
= -1, ref_start
;
1083 u64 tsc_stop
, ref_stop
, delta
;
1086 /* Don't bother refining TSC on unstable systems */
1087 if (check_tsc_unstable())
1091 * Since the work is started early in boot, we may be
1092 * delayed the first time we expire. So set the workqueue
1093 * again once we know timers are working.
1095 if (tsc_start
== -1) {
1097 * Only set hpet once, to avoid mixing hardware
1098 * if the hpet becomes enabled later.
1100 hpet
= is_hpet_enabled();
1101 schedule_delayed_work(&tsc_irqwork
, HZ
);
1102 tsc_start
= tsc_read_refs(&ref_start
, hpet
);
1106 tsc_stop
= tsc_read_refs(&ref_stop
, hpet
);
1108 /* hpet or pmtimer available ? */
1109 if (ref_start
== ref_stop
)
1112 /* Check, whether the sampling was disturbed by an SMI */
1113 if (tsc_start
== ULLONG_MAX
|| tsc_stop
== ULLONG_MAX
)
1116 delta
= tsc_stop
- tsc_start
;
1119 freq
= calc_hpet_ref(delta
, ref_start
, ref_stop
);
1121 freq
= calc_pmtimer_ref(delta
, ref_start
, ref_stop
);
1123 /* Make sure we're within 1% */
1124 if (abs(tsc_khz
- freq
) > tsc_khz
/100)
1128 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1129 (unsigned long)tsc_khz
/ 1000,
1130 (unsigned long)tsc_khz
% 1000);
1133 clocksource_register_khz(&clocksource_tsc
, tsc_khz
);
1137 static int __init
init_tsc_clocksource(void)
1139 if (!cpu_has_tsc
|| tsc_disabled
> 0 || !tsc_khz
)
1142 if (tsc_clocksource_reliable
)
1143 clocksource_tsc
.flags
&= ~CLOCK_SOURCE_MUST_VERIFY
;
1144 /* lower the rating if we already know its unstable: */
1145 if (check_tsc_unstable()) {
1146 clocksource_tsc
.rating
= 0;
1147 clocksource_tsc
.flags
&= ~CLOCK_SOURCE_IS_CONTINUOUS
;
1150 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3
))
1151 clocksource_tsc
.flags
|= CLOCK_SOURCE_SUSPEND_NONSTOP
;
1154 * Trust the results of the earlier calibration on systems
1155 * exporting a reliable TSC.
1157 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE
)) {
1158 clocksource_register_khz(&clocksource_tsc
, tsc_khz
);
1162 schedule_delayed_work(&tsc_irqwork
, 0);
1166 * We use device_initcall here, to ensure we run after the hpet
1167 * is fully initialized, which may occur at fs_initcall time.
1169 device_initcall(init_tsc_clocksource
);
1171 void __init
tsc_init(void)
1176 x86_init
.timers
.tsc_pre_init();
1179 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER
);
1183 tsc_khz
= x86_platform
.calibrate_tsc();
1187 mark_tsc_unstable("could not calculate TSC khz");
1188 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER
);
1192 pr_info("Detected %lu.%03lu MHz processor\n",
1193 (unsigned long)cpu_khz
/ 1000,
1194 (unsigned long)cpu_khz
% 1000);
1197 * Secondary CPUs do not run through tsc_init(), so set up
1198 * all the scale factors for all CPUs, assuming the same
1199 * speed as the bootup CPU. (cpufreq notifiers will fix this
1200 * up if their speed diverges)
1202 for_each_possible_cpu(cpu
) {
1204 set_cyc2ns_scale(cpu_khz
, cpu
);
1207 if (tsc_disabled
> 0)
1210 /* now allow native_sched_clock() to use rdtsc */
1213 static_key_slow_inc(&__use_tsc
);
1215 if (!no_sched_irq_time
)
1216 enable_sched_clock_irqtime();
1218 lpj
= ((u64
)tsc_khz
* 1000);
1224 if (unsynchronized_tsc())
1225 mark_tsc_unstable("TSCs unsynchronized");
1227 check_system_tsc_reliable();
1232 * If we have a constant TSC and are using the TSC for the delay loop,
1233 * we can skip clock calibration if another cpu in the same socket has already
1234 * been calibrated. This assumes that CONSTANT_TSC applies to all
1235 * cpus in the socket - this should be a safe assumption.
1237 unsigned long calibrate_delay_is_known(void)
1239 int i
, cpu
= smp_processor_id();
1241 if (!tsc_disabled
&& !cpu_has(&cpu_data(cpu
), X86_FEATURE_CONSTANT_TSC
))
1244 for_each_online_cpu(i
)
1245 if (cpu_data(i
).phys_proc_id
== cpu_data(cpu
).phys_proc_id
)
1246 return cpu_data(i
).loops_per_jiffy
;