2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 #include <linux/sched.h> /* test_thread_flag(), ... */
7 #include <linux/kdebug.h> /* oops_begin/end, ... */
8 #include <linux/module.h> /* search_exception_table */
9 #include <linux/bootmem.h> /* max_low_pfn */
10 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
11 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
12 #include <linux/perf_event.h> /* perf_sw_event */
13 #include <linux/hugetlb.h> /* hstate_index_to_shift */
14 #include <linux/prefetch.h> /* prefetchw */
15 #include <linux/context_tracking.h> /* exception_enter(), ... */
16 #include <linux/uaccess.h> /* faulthandler_disabled() */
18 #include <asm/traps.h> /* dotraplinkage, ... */
19 #include <asm/pgalloc.h> /* pgd_*(), ... */
20 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
21 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
22 #include <asm/vsyscall.h> /* emulate_vsyscall */
24 #define CREATE_TRACE_POINTS
25 #include <asm/trace/exceptions.h>
28 * Page fault error code bits:
30 * bit 0 == 0: no page found 1: protection fault
31 * bit 1 == 0: read access 1: write access
32 * bit 2 == 0: kernel-mode access 1: user-mode access
33 * bit 3 == 1: use of reserved bit detected
34 * bit 4 == 1: fault was an instruction fetch
36 enum x86_pf_error_code
{
46 * Returns 0 if mmiotrace is disabled, or if the fault is not
47 * handled by mmiotrace:
49 static nokprobe_inline
int
50 kmmio_fault(struct pt_regs
*regs
, unsigned long addr
)
52 if (unlikely(is_kmmio_active()))
53 if (kmmio_handler(regs
, addr
) == 1)
58 static nokprobe_inline
int kprobes_fault(struct pt_regs
*regs
)
62 /* kprobe_running() needs smp_processor_id() */
63 if (kprobes_built_in() && !user_mode(regs
)) {
65 if (kprobe_running() && kprobe_fault_handler(regs
, 14))
78 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
79 * Check that here and ignore it.
83 * Sometimes the CPU reports invalid exceptions on prefetch.
84 * Check that here and ignore it.
86 * Opcode checker based on code by Richard Brunner.
89 check_prefetch_opcode(struct pt_regs
*regs
, unsigned char *instr
,
90 unsigned char opcode
, int *prefetch
)
92 unsigned char instr_hi
= opcode
& 0xf0;
93 unsigned char instr_lo
= opcode
& 0x0f;
99 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
100 * In X86_64 long mode, the CPU will signal invalid
101 * opcode if some of these prefixes are present so
102 * X86_64 will never get here anyway
104 return ((instr_lo
& 7) == 0x6);
108 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
109 * Need to figure out under what instruction mode the
110 * instruction was issued. Could check the LDT for lm,
111 * but for now it's good enough to assume that long
112 * mode only uses well known segments or kernel.
114 return (!user_mode(regs
) || user_64bit_mode(regs
));
117 /* 0x64 thru 0x67 are valid prefixes in all modes. */
118 return (instr_lo
& 0xC) == 0x4;
120 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
121 return !instr_lo
|| (instr_lo
>>1) == 1;
123 /* Prefetch instruction is 0x0F0D or 0x0F18 */
124 if (probe_kernel_address(instr
, opcode
))
127 *prefetch
= (instr_lo
== 0xF) &&
128 (opcode
== 0x0D || opcode
== 0x18);
136 is_prefetch(struct pt_regs
*regs
, unsigned long error_code
, unsigned long addr
)
138 unsigned char *max_instr
;
139 unsigned char *instr
;
143 * If it was a exec (instruction fetch) fault on NX page, then
144 * do not ignore the fault:
146 if (error_code
& PF_INSTR
)
149 instr
= (void *)convert_ip_to_linear(current
, regs
);
150 max_instr
= instr
+ 15;
152 if (user_mode(regs
) && instr
>= (unsigned char *)TASK_SIZE_MAX
)
155 while (instr
< max_instr
) {
156 unsigned char opcode
;
158 if (probe_kernel_address(instr
, opcode
))
163 if (!check_prefetch_opcode(regs
, instr
, opcode
, &prefetch
))
170 force_sig_info_fault(int si_signo
, int si_code
, unsigned long address
,
171 struct task_struct
*tsk
, int fault
)
176 info
.si_signo
= si_signo
;
178 info
.si_code
= si_code
;
179 info
.si_addr
= (void __user
*)address
;
180 if (fault
& VM_FAULT_HWPOISON_LARGE
)
181 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
182 if (fault
& VM_FAULT_HWPOISON
)
184 info
.si_addr_lsb
= lsb
;
186 force_sig_info(si_signo
, &info
, tsk
);
189 DEFINE_SPINLOCK(pgd_lock
);
193 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
195 unsigned index
= pgd_index(address
);
201 pgd_k
= init_mm
.pgd
+ index
;
203 if (!pgd_present(*pgd_k
))
207 * set_pgd(pgd, *pgd_k); here would be useless on PAE
208 * and redundant with the set_pmd() on non-PAE. As would
211 pud
= pud_offset(pgd
, address
);
212 pud_k
= pud_offset(pgd_k
, address
);
213 if (!pud_present(*pud_k
))
216 pmd
= pmd_offset(pud
, address
);
217 pmd_k
= pmd_offset(pud_k
, address
);
218 if (!pmd_present(*pmd_k
))
221 if (!pmd_present(*pmd
))
222 set_pmd(pmd
, *pmd_k
);
224 BUG_ON(pmd_page(*pmd
) != pmd_page(*pmd_k
));
229 void vmalloc_sync_all(void)
231 unsigned long address
;
233 if (SHARED_KERNEL_PMD
)
236 for (address
= VMALLOC_START
& PMD_MASK
;
237 address
>= TASK_SIZE
&& address
< FIXADDR_TOP
;
238 address
+= PMD_SIZE
) {
241 spin_lock(&pgd_lock
);
242 list_for_each_entry(page
, &pgd_list
, lru
) {
243 spinlock_t
*pgt_lock
;
246 /* the pgt_lock only for Xen */
247 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
250 ret
= vmalloc_sync_one(page_address(page
), address
);
251 spin_unlock(pgt_lock
);
256 spin_unlock(&pgd_lock
);
263 * Handle a fault on the vmalloc or module mapping area
265 static noinline
int vmalloc_fault(unsigned long address
)
267 unsigned long pgd_paddr
;
271 /* Make sure we are in vmalloc area: */
272 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
275 WARN_ON_ONCE(in_nmi());
278 * Synchronize this task's top level page-table
279 * with the 'reference' page table.
281 * Do _not_ use "current" here. We might be inside
282 * an interrupt in the middle of a task switch..
284 pgd_paddr
= read_cr3();
285 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
289 pte_k
= pte_offset_kernel(pmd_k
, address
);
290 if (!pte_present(*pte_k
))
295 NOKPROBE_SYMBOL(vmalloc_fault
);
298 * Did it hit the DOS screen memory VA from vm86 mode?
301 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
302 struct task_struct
*tsk
)
306 if (!v8086_mode(regs
))
309 bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
311 tsk
->thread
.screen_bitmap
|= 1 << bit
;
314 static bool low_pfn(unsigned long pfn
)
316 return pfn
< max_low_pfn
;
319 static void dump_pagetable(unsigned long address
)
321 pgd_t
*base
= __va(read_cr3());
322 pgd_t
*pgd
= &base
[pgd_index(address
)];
326 #ifdef CONFIG_X86_PAE
327 printk("*pdpt = %016Lx ", pgd_val(*pgd
));
328 if (!low_pfn(pgd_val(*pgd
) >> PAGE_SHIFT
) || !pgd_present(*pgd
))
331 pmd
= pmd_offset(pud_offset(pgd
, address
), address
);
332 printk(KERN_CONT
"*pde = %0*Lx ", sizeof(*pmd
) * 2, (u64
)pmd_val(*pmd
));
335 * We must not directly access the pte in the highpte
336 * case if the page table is located in highmem.
337 * And let's rather not kmap-atomic the pte, just in case
338 * it's allocated already:
340 if (!low_pfn(pmd_pfn(*pmd
)) || !pmd_present(*pmd
) || pmd_large(*pmd
))
343 pte
= pte_offset_kernel(pmd
, address
);
344 printk("*pte = %0*Lx ", sizeof(*pte
) * 2, (u64
)pte_val(*pte
));
349 #else /* CONFIG_X86_64: */
351 void vmalloc_sync_all(void)
353 sync_global_pgds(VMALLOC_START
& PGDIR_MASK
, VMALLOC_END
, 0);
359 * Handle a fault on the vmalloc area
361 * This assumes no large pages in there.
363 static noinline
int vmalloc_fault(unsigned long address
)
365 pgd_t
*pgd
, *pgd_ref
;
366 pud_t
*pud
, *pud_ref
;
367 pmd_t
*pmd
, *pmd_ref
;
368 pte_t
*pte
, *pte_ref
;
370 /* Make sure we are in vmalloc area: */
371 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
374 WARN_ON_ONCE(in_nmi());
377 * Copy kernel mappings over when needed. This can also
378 * happen within a race in page table update. In the later
381 pgd
= pgd_offset(current
->active_mm
, address
);
382 pgd_ref
= pgd_offset_k(address
);
383 if (pgd_none(*pgd_ref
))
386 if (pgd_none(*pgd
)) {
387 set_pgd(pgd
, *pgd_ref
);
388 arch_flush_lazy_mmu_mode();
390 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_ref
));
394 * Below here mismatches are bugs because these lower tables
398 pud
= pud_offset(pgd
, address
);
399 pud_ref
= pud_offset(pgd_ref
, address
);
400 if (pud_none(*pud_ref
))
403 if (pud_none(*pud
) || pud_page_vaddr(*pud
) != pud_page_vaddr(*pud_ref
))
406 pmd
= pmd_offset(pud
, address
);
407 pmd_ref
= pmd_offset(pud_ref
, address
);
408 if (pmd_none(*pmd_ref
))
411 if (pmd_none(*pmd
) || pmd_page(*pmd
) != pmd_page(*pmd_ref
))
414 pte_ref
= pte_offset_kernel(pmd_ref
, address
);
415 if (!pte_present(*pte_ref
))
418 pte
= pte_offset_kernel(pmd
, address
);
421 * Don't use pte_page here, because the mappings can point
422 * outside mem_map, and the NUMA hash lookup cannot handle
425 if (!pte_present(*pte
) || pte_pfn(*pte
) != pte_pfn(*pte_ref
))
430 NOKPROBE_SYMBOL(vmalloc_fault
);
432 #ifdef CONFIG_CPU_SUP_AMD
433 static const char errata93_warning
[] =
435 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
436 "******* Working around it, but it may cause SEGVs or burn power.\n"
437 "******* Please consider a BIOS update.\n"
438 "******* Disabling USB legacy in the BIOS may also help.\n";
442 * No vm86 mode in 64-bit mode:
445 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
446 struct task_struct
*tsk
)
450 static int bad_address(void *p
)
454 return probe_kernel_address((unsigned long *)p
, dummy
);
457 static void dump_pagetable(unsigned long address
)
459 pgd_t
*base
= __va(read_cr3() & PHYSICAL_PAGE_MASK
);
460 pgd_t
*pgd
= base
+ pgd_index(address
);
465 if (bad_address(pgd
))
468 printk("PGD %lx ", pgd_val(*pgd
));
470 if (!pgd_present(*pgd
))
473 pud
= pud_offset(pgd
, address
);
474 if (bad_address(pud
))
477 printk("PUD %lx ", pud_val(*pud
));
478 if (!pud_present(*pud
) || pud_large(*pud
))
481 pmd
= pmd_offset(pud
, address
);
482 if (bad_address(pmd
))
485 printk("PMD %lx ", pmd_val(*pmd
));
486 if (!pmd_present(*pmd
) || pmd_large(*pmd
))
489 pte
= pte_offset_kernel(pmd
, address
);
490 if (bad_address(pte
))
493 printk("PTE %lx", pte_val(*pte
));
501 #endif /* CONFIG_X86_64 */
504 * Workaround for K8 erratum #93 & buggy BIOS.
506 * BIOS SMM functions are required to use a specific workaround
507 * to avoid corruption of the 64bit RIP register on C stepping K8.
509 * A lot of BIOS that didn't get tested properly miss this.
511 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
512 * Try to work around it here.
514 * Note we only handle faults in kernel here.
515 * Does nothing on 32-bit.
517 static int is_errata93(struct pt_regs
*regs
, unsigned long address
)
519 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
520 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_AMD
521 || boot_cpu_data
.x86
!= 0xf)
524 if (address
!= regs
->ip
)
527 if ((address
>> 32) != 0)
530 address
|= 0xffffffffUL
<< 32;
531 if ((address
>= (u64
)_stext
&& address
<= (u64
)_etext
) ||
532 (address
>= MODULES_VADDR
&& address
<= MODULES_END
)) {
533 printk_once(errata93_warning
);
542 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
543 * to illegal addresses >4GB.
545 * We catch this in the page fault handler because these addresses
546 * are not reachable. Just detect this case and return. Any code
547 * segment in LDT is compatibility mode.
549 static int is_errata100(struct pt_regs
*regs
, unsigned long address
)
552 if ((regs
->cs
== __USER32_CS
|| (regs
->cs
& (1<<2))) && (address
>> 32))
558 static int is_f00f_bug(struct pt_regs
*regs
, unsigned long address
)
560 #ifdef CONFIG_X86_F00F_BUG
564 * Pentium F0 0F C7 C8 bug workaround:
566 if (boot_cpu_has_bug(X86_BUG_F00F
)) {
567 nr
= (address
- idt_descr
.address
) >> 3;
570 do_invalid_op(regs
, 0);
578 static const char nx_warning
[] = KERN_CRIT
579 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
580 static const char smep_warning
[] = KERN_CRIT
581 "unable to execute userspace code (SMEP?) (uid: %d)\n";
584 show_fault_oops(struct pt_regs
*regs
, unsigned long error_code
,
585 unsigned long address
)
587 if (!oops_may_print())
590 if (error_code
& PF_INSTR
) {
595 pgd
= __va(read_cr3() & PHYSICAL_PAGE_MASK
);
596 pgd
+= pgd_index(address
);
598 pte
= lookup_address_in_pgd(pgd
, address
, &level
);
600 if (pte
&& pte_present(*pte
) && !pte_exec(*pte
))
601 printk(nx_warning
, from_kuid(&init_user_ns
, current_uid()));
602 if (pte
&& pte_present(*pte
) && pte_exec(*pte
) &&
603 (pgd_flags(*pgd
) & _PAGE_USER
) &&
604 (__read_cr4() & X86_CR4_SMEP
))
605 printk(smep_warning
, from_kuid(&init_user_ns
, current_uid()));
608 printk(KERN_ALERT
"BUG: unable to handle kernel ");
609 if (address
< PAGE_SIZE
)
610 printk(KERN_CONT
"NULL pointer dereference");
612 printk(KERN_CONT
"paging request");
614 printk(KERN_CONT
" at %p\n", (void *) address
);
615 printk(KERN_ALERT
"IP:");
616 printk_address(regs
->ip
);
618 dump_pagetable(address
);
622 pgtable_bad(struct pt_regs
*regs
, unsigned long error_code
,
623 unsigned long address
)
625 struct task_struct
*tsk
;
629 flags
= oops_begin();
633 printk(KERN_ALERT
"%s: Corrupted page table at address %lx\n",
635 dump_pagetable(address
);
637 tsk
->thread
.cr2
= address
;
638 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
639 tsk
->thread
.error_code
= error_code
;
641 if (__die("Bad pagetable", regs
, error_code
))
644 oops_end(flags
, regs
, sig
);
648 no_context(struct pt_regs
*regs
, unsigned long error_code
,
649 unsigned long address
, int signal
, int si_code
)
651 struct task_struct
*tsk
= current
;
655 /* Are we prepared to handle this kernel fault? */
656 if (fixup_exception(regs
)) {
658 * Any interrupt that takes a fault gets the fixup. This makes
659 * the below recursive fault logic only apply to a faults from
666 * Per the above we're !in_interrupt(), aka. task context.
668 * In this case we need to make sure we're not recursively
669 * faulting through the emulate_vsyscall() logic.
671 if (current_thread_info()->sig_on_uaccess_error
&& signal
) {
672 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
673 tsk
->thread
.error_code
= error_code
| PF_USER
;
674 tsk
->thread
.cr2
= address
;
676 /* XXX: hwpoison faults will set the wrong code. */
677 force_sig_info_fault(signal
, si_code
, address
, tsk
, 0);
681 * Barring that, we can do the fixup and be happy.
689 * Valid to do another page fault here, because if this fault
690 * had been triggered by is_prefetch fixup_exception would have
695 * Hall of shame of CPU/BIOS bugs.
697 if (is_prefetch(regs
, error_code
, address
))
700 if (is_errata93(regs
, address
))
704 * Oops. The kernel tried to access some bad page. We'll have to
705 * terminate things with extreme prejudice:
707 flags
= oops_begin();
709 show_fault_oops(regs
, error_code
, address
);
711 if (task_stack_end_corrupted(tsk
))
712 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
714 tsk
->thread
.cr2
= address
;
715 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
716 tsk
->thread
.error_code
= error_code
;
719 if (__die("Oops", regs
, error_code
))
722 /* Executive summary in case the body of the oops scrolled away */
723 printk(KERN_DEFAULT
"CR2: %016lx\n", address
);
725 oops_end(flags
, regs
, sig
);
729 * Print out info about fatal segfaults, if the show_unhandled_signals
733 show_signal_msg(struct pt_regs
*regs
, unsigned long error_code
,
734 unsigned long address
, struct task_struct
*tsk
)
736 if (!unhandled_signal(tsk
, SIGSEGV
))
739 if (!printk_ratelimit())
742 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
743 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
744 tsk
->comm
, task_pid_nr(tsk
), address
,
745 (void *)regs
->ip
, (void *)regs
->sp
, error_code
);
747 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
749 printk(KERN_CONT
"\n");
753 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
754 unsigned long address
, int si_code
)
756 struct task_struct
*tsk
= current
;
758 /* User mode accesses just cause a SIGSEGV */
759 if (error_code
& PF_USER
) {
761 * It's possible to have interrupts off here:
766 * Valid to do another page fault here because this one came
769 if (is_prefetch(regs
, error_code
, address
))
772 if (is_errata100(regs
, address
))
777 * Instruction fetch faults in the vsyscall page might need
780 if (unlikely((error_code
& PF_INSTR
) &&
781 ((address
& ~0xfff) == VSYSCALL_ADDR
))) {
782 if (emulate_vsyscall(regs
, address
))
786 /* Kernel addresses are always protection faults: */
787 if (address
>= TASK_SIZE
)
788 error_code
|= PF_PROT
;
790 if (likely(show_unhandled_signals
))
791 show_signal_msg(regs
, error_code
, address
, tsk
);
793 tsk
->thread
.cr2
= address
;
794 tsk
->thread
.error_code
= error_code
;
795 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
797 force_sig_info_fault(SIGSEGV
, si_code
, address
, tsk
, 0);
802 if (is_f00f_bug(regs
, address
))
805 no_context(regs
, error_code
, address
, SIGSEGV
, si_code
);
809 bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
810 unsigned long address
)
812 __bad_area_nosemaphore(regs
, error_code
, address
, SEGV_MAPERR
);
816 __bad_area(struct pt_regs
*regs
, unsigned long error_code
,
817 unsigned long address
, int si_code
)
819 struct mm_struct
*mm
= current
->mm
;
822 * Something tried to access memory that isn't in our memory map..
823 * Fix it, but check if it's kernel or user first..
825 up_read(&mm
->mmap_sem
);
827 __bad_area_nosemaphore(regs
, error_code
, address
, si_code
);
831 bad_area(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
833 __bad_area(regs
, error_code
, address
, SEGV_MAPERR
);
837 bad_area_access_error(struct pt_regs
*regs
, unsigned long error_code
,
838 unsigned long address
)
840 __bad_area(regs
, error_code
, address
, SEGV_ACCERR
);
844 do_sigbus(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
,
847 struct task_struct
*tsk
= current
;
848 int code
= BUS_ADRERR
;
850 /* Kernel mode? Handle exceptions or die: */
851 if (!(error_code
& PF_USER
)) {
852 no_context(regs
, error_code
, address
, SIGBUS
, BUS_ADRERR
);
856 /* User-space => ok to do another page fault: */
857 if (is_prefetch(regs
, error_code
, address
))
860 tsk
->thread
.cr2
= address
;
861 tsk
->thread
.error_code
= error_code
;
862 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
864 #ifdef CONFIG_MEMORY_FAILURE
865 if (fault
& (VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
)) {
867 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
868 tsk
->comm
, tsk
->pid
, address
);
869 code
= BUS_MCEERR_AR
;
872 force_sig_info_fault(SIGBUS
, code
, address
, tsk
, fault
);
876 mm_fault_error(struct pt_regs
*regs
, unsigned long error_code
,
877 unsigned long address
, unsigned int fault
)
879 if (fatal_signal_pending(current
) && !(error_code
& PF_USER
)) {
880 no_context(regs
, error_code
, address
, 0, 0);
884 if (fault
& VM_FAULT_OOM
) {
885 /* Kernel mode? Handle exceptions or die: */
886 if (!(error_code
& PF_USER
)) {
887 no_context(regs
, error_code
, address
,
888 SIGSEGV
, SEGV_MAPERR
);
893 * We ran out of memory, call the OOM killer, and return the
894 * userspace (which will retry the fault, or kill us if we got
897 pagefault_out_of_memory();
899 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
|
900 VM_FAULT_HWPOISON_LARGE
))
901 do_sigbus(regs
, error_code
, address
, fault
);
902 else if (fault
& VM_FAULT_SIGSEGV
)
903 bad_area_nosemaphore(regs
, error_code
, address
);
909 static int spurious_fault_check(unsigned long error_code
, pte_t
*pte
)
911 if ((error_code
& PF_WRITE
) && !pte_write(*pte
))
914 if ((error_code
& PF_INSTR
) && !pte_exec(*pte
))
921 * Handle a spurious fault caused by a stale TLB entry.
923 * This allows us to lazily refresh the TLB when increasing the
924 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
925 * eagerly is very expensive since that implies doing a full
926 * cross-processor TLB flush, even if no stale TLB entries exist
927 * on other processors.
929 * Spurious faults may only occur if the TLB contains an entry with
930 * fewer permission than the page table entry. Non-present (P = 0)
931 * and reserved bit (R = 1) faults are never spurious.
933 * There are no security implications to leaving a stale TLB when
934 * increasing the permissions on a page.
936 * Returns non-zero if a spurious fault was handled, zero otherwise.
938 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
939 * (Optional Invalidation).
942 spurious_fault(unsigned long error_code
, unsigned long address
)
951 * Only writes to RO or instruction fetches from NX may cause
954 * These could be from user or supervisor accesses but the TLB
955 * is only lazily flushed after a kernel mapping protection
956 * change, so user accesses are not expected to cause spurious
959 if (error_code
!= (PF_WRITE
| PF_PROT
)
960 && error_code
!= (PF_INSTR
| PF_PROT
))
963 pgd
= init_mm
.pgd
+ pgd_index(address
);
964 if (!pgd_present(*pgd
))
967 pud
= pud_offset(pgd
, address
);
968 if (!pud_present(*pud
))
972 return spurious_fault_check(error_code
, (pte_t
*) pud
);
974 pmd
= pmd_offset(pud
, address
);
975 if (!pmd_present(*pmd
))
979 return spurious_fault_check(error_code
, (pte_t
*) pmd
);
981 pte
= pte_offset_kernel(pmd
, address
);
982 if (!pte_present(*pte
))
985 ret
= spurious_fault_check(error_code
, pte
);
990 * Make sure we have permissions in PMD.
991 * If not, then there's a bug in the page tables:
993 ret
= spurious_fault_check(error_code
, (pte_t
*) pmd
);
994 WARN_ONCE(!ret
, "PMD has incorrect permission bits\n");
998 NOKPROBE_SYMBOL(spurious_fault
);
1000 int show_unhandled_signals
= 1;
1003 access_error(unsigned long error_code
, struct vm_area_struct
*vma
)
1005 if (error_code
& PF_WRITE
) {
1006 /* write, present and write, not present: */
1007 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
1012 /* read, present: */
1013 if (unlikely(error_code
& PF_PROT
))
1016 /* read, not present: */
1017 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))))
1023 static int fault_in_kernel_space(unsigned long address
)
1025 return address
>= TASK_SIZE_MAX
;
1028 static inline bool smap_violation(int error_code
, struct pt_regs
*regs
)
1030 if (!IS_ENABLED(CONFIG_X86_SMAP
))
1033 if (!static_cpu_has(X86_FEATURE_SMAP
))
1036 if (error_code
& PF_USER
)
1039 if (!user_mode(regs
) && (regs
->flags
& X86_EFLAGS_AC
))
1046 * This routine handles page faults. It determines the address,
1047 * and the problem, and then passes it off to one of the appropriate
1050 * This function must have noinline because both callers
1051 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1052 * guarantees there's a function trace entry.
1054 static noinline
void
1055 __do_page_fault(struct pt_regs
*regs
, unsigned long error_code
,
1056 unsigned long address
)
1058 struct vm_area_struct
*vma
;
1059 struct task_struct
*tsk
;
1060 struct mm_struct
*mm
;
1061 int fault
, major
= 0;
1062 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1068 * Detect and handle instructions that would cause a page fault for
1069 * both a tracked kernel page and a userspace page.
1071 if (kmemcheck_active(regs
))
1072 kmemcheck_hide(regs
);
1073 prefetchw(&mm
->mmap_sem
);
1075 if (unlikely(kmmio_fault(regs
, address
)))
1079 * We fault-in kernel-space virtual memory on-demand. The
1080 * 'reference' page table is init_mm.pgd.
1082 * NOTE! We MUST NOT take any locks for this case. We may
1083 * be in an interrupt or a critical region, and should
1084 * only copy the information from the master page table,
1087 * This verifies that the fault happens in kernel space
1088 * (error_code & 4) == 0, and that the fault was not a
1089 * protection error (error_code & 9) == 0.
1091 if (unlikely(fault_in_kernel_space(address
))) {
1092 if (!(error_code
& (PF_RSVD
| PF_USER
| PF_PROT
))) {
1093 if (vmalloc_fault(address
) >= 0)
1096 if (kmemcheck_fault(regs
, address
, error_code
))
1100 /* Can handle a stale RO->RW TLB: */
1101 if (spurious_fault(error_code
, address
))
1104 /* kprobes don't want to hook the spurious faults: */
1105 if (kprobes_fault(regs
))
1108 * Don't take the mm semaphore here. If we fixup a prefetch
1109 * fault we could otherwise deadlock:
1111 bad_area_nosemaphore(regs
, error_code
, address
);
1116 /* kprobes don't want to hook the spurious faults: */
1117 if (unlikely(kprobes_fault(regs
)))
1120 if (unlikely(error_code
& PF_RSVD
))
1121 pgtable_bad(regs
, error_code
, address
);
1123 if (unlikely(smap_violation(error_code
, regs
))) {
1124 bad_area_nosemaphore(regs
, error_code
, address
);
1129 * If we're in an interrupt, have no user context or are running
1130 * in a region with pagefaults disabled then we must not take the fault
1132 if (unlikely(faulthandler_disabled() || !mm
)) {
1133 bad_area_nosemaphore(regs
, error_code
, address
);
1138 * It's safe to allow irq's after cr2 has been saved and the
1139 * vmalloc fault has been handled.
1141 * User-mode registers count as a user access even for any
1142 * potential system fault or CPU buglet:
1144 if (user_mode(regs
)) {
1146 error_code
|= PF_USER
;
1147 flags
|= FAULT_FLAG_USER
;
1149 if (regs
->flags
& X86_EFLAGS_IF
)
1153 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
1155 if (error_code
& PF_WRITE
)
1156 flags
|= FAULT_FLAG_WRITE
;
1159 * When running in the kernel we expect faults to occur only to
1160 * addresses in user space. All other faults represent errors in
1161 * the kernel and should generate an OOPS. Unfortunately, in the
1162 * case of an erroneous fault occurring in a code path which already
1163 * holds mmap_sem we will deadlock attempting to validate the fault
1164 * against the address space. Luckily the kernel only validly
1165 * references user space from well defined areas of code, which are
1166 * listed in the exceptions table.
1168 * As the vast majority of faults will be valid we will only perform
1169 * the source reference check when there is a possibility of a
1170 * deadlock. Attempt to lock the address space, if we cannot we then
1171 * validate the source. If this is invalid we can skip the address
1172 * space check, thus avoiding the deadlock:
1174 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
1175 if ((error_code
& PF_USER
) == 0 &&
1176 !search_exception_tables(regs
->ip
)) {
1177 bad_area_nosemaphore(regs
, error_code
, address
);
1181 down_read(&mm
->mmap_sem
);
1184 * The above down_read_trylock() might have succeeded in
1185 * which case we'll have missed the might_sleep() from
1191 vma
= find_vma(mm
, address
);
1192 if (unlikely(!vma
)) {
1193 bad_area(regs
, error_code
, address
);
1196 if (likely(vma
->vm_start
<= address
))
1198 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
))) {
1199 bad_area(regs
, error_code
, address
);
1202 if (error_code
& PF_USER
) {
1204 * Accessing the stack below %sp is always a bug.
1205 * The large cushion allows instructions like enter
1206 * and pusha to work. ("enter $65535, $31" pushes
1207 * 32 pointers and then decrements %sp by 65535.)
1209 if (unlikely(address
+ 65536 + 32 * sizeof(unsigned long) < regs
->sp
)) {
1210 bad_area(regs
, error_code
, address
);
1214 if (unlikely(expand_stack(vma
, address
))) {
1215 bad_area(regs
, error_code
, address
);
1220 * Ok, we have a good vm_area for this memory access, so
1221 * we can handle it..
1224 if (unlikely(access_error(error_code
, vma
))) {
1225 bad_area_access_error(regs
, error_code
, address
);
1230 * If for any reason at all we couldn't handle the fault,
1231 * make sure we exit gracefully rather than endlessly redo
1232 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1233 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1235 fault
= handle_mm_fault(mm
, vma
, address
, flags
);
1236 major
|= fault
& VM_FAULT_MAJOR
;
1239 * If we need to retry the mmap_sem has already been released,
1240 * and if there is a fatal signal pending there is no guarantee
1241 * that we made any progress. Handle this case first.
1243 if (unlikely(fault
& VM_FAULT_RETRY
)) {
1244 /* Retry at most once */
1245 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1246 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
1247 flags
|= FAULT_FLAG_TRIED
;
1248 if (!fatal_signal_pending(tsk
))
1252 /* User mode? Just return to handle the fatal exception */
1253 if (flags
& FAULT_FLAG_USER
)
1256 /* Not returning to user mode? Handle exceptions or die: */
1257 no_context(regs
, error_code
, address
, SIGBUS
, BUS_ADRERR
);
1261 up_read(&mm
->mmap_sem
);
1262 if (unlikely(fault
& VM_FAULT_ERROR
)) {
1263 mm_fault_error(regs
, error_code
, address
, fault
);
1268 * Major/minor page fault accounting. If any of the events
1269 * returned VM_FAULT_MAJOR, we account it as a major fault.
1273 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
, address
);
1276 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
, address
);
1279 check_v8086_mode(regs
, address
, tsk
);
1281 NOKPROBE_SYMBOL(__do_page_fault
);
1283 dotraplinkage
void notrace
1284 do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
1286 unsigned long address
= read_cr2(); /* Get the faulting address */
1287 enum ctx_state prev_state
;
1290 * We must have this function tagged with __kprobes, notrace and call
1291 * read_cr2() before calling anything else. To avoid calling any kind
1292 * of tracing machinery before we've observed the CR2 value.
1294 * exception_{enter,exit}() contain all sorts of tracepoints.
1297 prev_state
= exception_enter();
1298 __do_page_fault(regs
, error_code
, address
);
1299 exception_exit(prev_state
);
1301 NOKPROBE_SYMBOL(do_page_fault
);
1303 #ifdef CONFIG_TRACING
1304 static nokprobe_inline
void
1305 trace_page_fault_entries(unsigned long address
, struct pt_regs
*regs
,
1306 unsigned long error_code
)
1308 if (user_mode(regs
))
1309 trace_page_fault_user(address
, regs
, error_code
);
1311 trace_page_fault_kernel(address
, regs
, error_code
);
1314 dotraplinkage
void notrace
1315 trace_do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
1318 * The exception_enter and tracepoint processing could
1319 * trigger another page faults (user space callchain
1320 * reading) and destroy the original cr2 value, so read
1321 * the faulting address now.
1323 unsigned long address
= read_cr2();
1324 enum ctx_state prev_state
;
1326 prev_state
= exception_enter();
1327 trace_page_fault_entries(address
, regs
, error_code
);
1328 __do_page_fault(regs
, error_code
, address
);
1329 exception_exit(prev_state
);
1331 NOKPROBE_SYMBOL(trace_do_page_fault
);
1332 #endif /* CONFIG_TRACING */