2 * mpx.c - Memory Protection eXtensions
4 * Copyright (c) 2014, Intel Corporation.
5 * Qiaowei Ren <qiaowei.ren@intel.com>
6 * Dave Hansen <dave.hansen@intel.com>
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/syscalls.h>
11 #include <linux/sched/sysctl.h>
15 #include <asm/mmu_context.h>
17 #include <asm/processor.h>
18 #include <asm/fpu/internal.h>
20 #define CREATE_TRACE_POINTS
21 #include <asm/trace/mpx.h>
23 static inline unsigned long mpx_bd_size_bytes(struct mm_struct
*mm
)
26 return MPX_BD_SIZE_BYTES_64
;
28 return MPX_BD_SIZE_BYTES_32
;
31 static inline unsigned long mpx_bt_size_bytes(struct mm_struct
*mm
)
34 return MPX_BT_SIZE_BYTES_64
;
36 return MPX_BT_SIZE_BYTES_32
;
40 * This is really a simplified "vm_mmap". it only handles MPX
41 * bounds tables (the bounds directory is user-allocated).
43 static unsigned long mpx_mmap(unsigned long len
)
46 unsigned long addr
, pgoff
;
47 struct mm_struct
*mm
= current
->mm
;
49 struct vm_area_struct
*vma
;
51 /* Only bounds table can be allocated here */
52 if (len
!= mpx_bt_size_bytes(mm
))
55 down_write(&mm
->mmap_sem
);
57 /* Too many mappings? */
58 if (mm
->map_count
> sysctl_max_map_count
) {
63 /* Obtain the address to map to. we verify (or select) it and ensure
64 * that it represents a valid section of the address space.
66 addr
= get_unmapped_area(NULL
, 0, len
, 0, MAP_ANONYMOUS
| MAP_PRIVATE
);
67 if (addr
& ~PAGE_MASK
) {
72 vm_flags
= VM_READ
| VM_WRITE
| VM_MPX
|
73 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
75 /* Set pgoff according to addr for anon_vma */
76 pgoff
= addr
>> PAGE_SHIFT
;
78 ret
= mmap_region(NULL
, addr
, len
, vm_flags
, pgoff
);
79 if (IS_ERR_VALUE(ret
))
82 vma
= find_vma(mm
, ret
);
88 if (vm_flags
& VM_LOCKED
) {
89 up_write(&mm
->mmap_sem
);
90 mm_populate(ret
, len
);
95 up_write(&mm
->mmap_sem
);
105 static int get_reg_offset(struct insn
*insn
, struct pt_regs
*regs
,
110 static const int regoff
[] = {
111 offsetof(struct pt_regs
, ax
),
112 offsetof(struct pt_regs
, cx
),
113 offsetof(struct pt_regs
, dx
),
114 offsetof(struct pt_regs
, bx
),
115 offsetof(struct pt_regs
, sp
),
116 offsetof(struct pt_regs
, bp
),
117 offsetof(struct pt_regs
, si
),
118 offsetof(struct pt_regs
, di
),
120 offsetof(struct pt_regs
, r8
),
121 offsetof(struct pt_regs
, r9
),
122 offsetof(struct pt_regs
, r10
),
123 offsetof(struct pt_regs
, r11
),
124 offsetof(struct pt_regs
, r12
),
125 offsetof(struct pt_regs
, r13
),
126 offsetof(struct pt_regs
, r14
),
127 offsetof(struct pt_regs
, r15
),
130 int nr_registers
= ARRAY_SIZE(regoff
);
132 * Don't possibly decode a 32-bit instructions as
133 * reading a 64-bit-only register.
135 if (IS_ENABLED(CONFIG_X86_64
) && !insn
->x86_64
)
140 regno
= X86_MODRM_RM(insn
->modrm
.value
);
141 if (X86_REX_B(insn
->rex_prefix
.value
) == 1)
146 regno
= X86_SIB_INDEX(insn
->sib
.value
);
147 if (X86_REX_X(insn
->rex_prefix
.value
) == 1)
152 regno
= X86_SIB_BASE(insn
->sib
.value
);
153 if (X86_REX_B(insn
->rex_prefix
.value
) == 1)
158 pr_err("invalid register type");
163 if (regno
> nr_registers
) {
164 WARN_ONCE(1, "decoded an instruction with an invalid register");
167 return regoff
[regno
];
171 * return the address being referenced be instruction
172 * for rm=3 returning the content of the rm reg
173 * for rm!=3 calculates the address using SIB and Disp
175 static void __user
*mpx_get_addr_ref(struct insn
*insn
, struct pt_regs
*regs
)
177 unsigned long addr
, base
, indx
;
178 int addr_offset
, base_offset
, indx_offset
;
181 insn_get_modrm(insn
);
183 sib
= insn
->sib
.value
;
185 if (X86_MODRM_MOD(insn
->modrm
.value
) == 3) {
186 addr_offset
= get_reg_offset(insn
, regs
, REG_TYPE_RM
);
189 addr
= regs_get_register(regs
, addr_offset
);
191 if (insn
->sib
.nbytes
) {
192 base_offset
= get_reg_offset(insn
, regs
, REG_TYPE_BASE
);
196 indx_offset
= get_reg_offset(insn
, regs
, REG_TYPE_INDEX
);
200 base
= regs_get_register(regs
, base_offset
);
201 indx
= regs_get_register(regs
, indx_offset
);
202 addr
= base
+ indx
* (1 << X86_SIB_SCALE(sib
));
204 addr_offset
= get_reg_offset(insn
, regs
, REG_TYPE_RM
);
207 addr
= regs_get_register(regs
, addr_offset
);
209 addr
+= insn
->displacement
.value
;
211 return (void __user
*)addr
;
213 return (void __user
*)-1;
216 static int mpx_insn_decode(struct insn
*insn
,
217 struct pt_regs
*regs
)
219 unsigned char buf
[MAX_INSN_SIZE
];
220 int x86_64
= !test_thread_flag(TIF_IA32
);
224 not_copied
= copy_from_user(buf
, (void __user
*)regs
->ip
, sizeof(buf
));
225 nr_copied
= sizeof(buf
) - not_copied
;
227 * The decoder _should_ fail nicely if we pass it a short buffer.
228 * But, let's not depend on that implementation detail. If we
229 * did not get anything, just error out now.
233 insn_init(insn
, buf
, nr_copied
, x86_64
);
234 insn_get_length(insn
);
236 * copy_from_user() tries to get as many bytes as we could see in
237 * the largest possible instruction. If the instruction we are
238 * after is shorter than that _and_ we attempt to copy from
239 * something unreadable, we might get a short read. This is OK
240 * as long as the read did not stop in the middle of the
241 * instruction. Check to see if we got a partial instruction.
243 if (nr_copied
< insn
->length
)
246 insn_get_opcode(insn
);
248 * We only _really_ need to decode bndcl/bndcn/bndcu
249 * Error out on anything else.
251 if (insn
->opcode
.bytes
[0] != 0x0f)
253 if ((insn
->opcode
.bytes
[1] != 0x1a) &&
254 (insn
->opcode
.bytes
[1] != 0x1b))
263 * If a bounds overflow occurs then a #BR is generated. This
264 * function decodes MPX instructions to get violation address
265 * and set this address into extended struct siginfo.
267 * Note that this is not a super precise way of doing this.
268 * Userspace could have, by the time we get here, written
269 * anything it wants in to the instructions. We can not
270 * trust anything about it. They might not be valid
271 * instructions or might encode invalid registers, etc...
273 * The caller is expected to kfree() the returned siginfo_t.
275 siginfo_t
*mpx_generate_siginfo(struct pt_regs
*regs
)
277 const struct bndreg
*bndregs
, *bndreg
;
278 siginfo_t
*info
= NULL
;
283 err
= mpx_insn_decode(&insn
, regs
);
288 * We know at this point that we are only dealing with
291 insn_get_modrm(&insn
);
292 bndregno
= X86_MODRM_REG(insn
.modrm
.value
);
297 /* get bndregs field from current task's xsave area */
298 bndregs
= get_xsave_field_ptr(XSTATE_BNDREGS
);
303 /* now go select the individual register in the set of 4 */
304 bndreg
= &bndregs
[bndregno
];
306 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
312 * The registers are always 64-bit, but the upper 32
313 * bits are ignored in 32-bit mode. Also, note that the
314 * upper bounds are architecturally represented in 1's
317 * The 'unsigned long' cast is because the compiler
318 * complains when casting from integers to different-size
321 info
->si_lower
= (void __user
*)(unsigned long)bndreg
->lower_bound
;
322 info
->si_upper
= (void __user
*)(unsigned long)~bndreg
->upper_bound
;
323 info
->si_addr_lsb
= 0;
324 info
->si_signo
= SIGSEGV
;
326 info
->si_code
= SEGV_BNDERR
;
327 info
->si_addr
= mpx_get_addr_ref(&insn
, regs
);
329 * We were not able to extract an address from the instruction,
330 * probably because there was something invalid in it.
332 if (info
->si_addr
== (void *)-1) {
336 trace_mpx_bounds_register_exception(info
->si_addr
, bndreg
);
339 /* info might be NULL, but kfree() handles that */
344 static __user
void *mpx_get_bounds_dir(void)
346 const struct bndcsr
*bndcsr
;
348 if (!cpu_feature_enabled(X86_FEATURE_MPX
))
349 return MPX_INVALID_BOUNDS_DIR
;
352 * The bounds directory pointer is stored in a register
353 * only accessible if we first do an xsave.
355 bndcsr
= get_xsave_field_ptr(XSTATE_BNDCSR
);
357 return MPX_INVALID_BOUNDS_DIR
;
360 * Make sure the register looks valid by checking the
363 if (!(bndcsr
->bndcfgu
& MPX_BNDCFG_ENABLE_FLAG
))
364 return MPX_INVALID_BOUNDS_DIR
;
367 * Lastly, mask off the low bits used for configuration
368 * flags, and return the address of the bounds table.
370 return (void __user
*)(unsigned long)
371 (bndcsr
->bndcfgu
& MPX_BNDCFG_ADDR_MASK
);
374 int mpx_enable_management(void)
376 void __user
*bd_base
= MPX_INVALID_BOUNDS_DIR
;
377 struct mm_struct
*mm
= current
->mm
;
381 * runtime in the userspace will be responsible for allocation of
382 * the bounds directory. Then, it will save the base of the bounds
383 * directory into XSAVE/XRSTOR Save Area and enable MPX through
384 * XRSTOR instruction.
386 * The copy_xregs_to_kernel() beneath get_xsave_field_ptr() is
387 * expected to be relatively expensive. Storing the bounds
388 * directory here means that we do not have to do xsave in the
389 * unmap path; we can just use mm->bd_addr instead.
391 bd_base
= mpx_get_bounds_dir();
392 down_write(&mm
->mmap_sem
);
393 mm
->bd_addr
= bd_base
;
394 if (mm
->bd_addr
== MPX_INVALID_BOUNDS_DIR
)
397 up_write(&mm
->mmap_sem
);
401 int mpx_disable_management(void)
403 struct mm_struct
*mm
= current
->mm
;
405 if (!cpu_feature_enabled(X86_FEATURE_MPX
))
408 down_write(&mm
->mmap_sem
);
409 mm
->bd_addr
= MPX_INVALID_BOUNDS_DIR
;
410 up_write(&mm
->mmap_sem
);
414 static int mpx_cmpxchg_bd_entry(struct mm_struct
*mm
,
415 unsigned long *curval
,
416 unsigned long __user
*addr
,
417 unsigned long old_val
, unsigned long new_val
)
421 * user_atomic_cmpxchg_inatomic() actually uses sizeof()
422 * the pointer that we pass to it to figure out how much
423 * data to cmpxchg. We have to be careful here not to
424 * pass a pointer to a 64-bit data type when we only want
427 if (is_64bit_mm(mm
)) {
428 ret
= user_atomic_cmpxchg_inatomic(curval
,
429 addr
, old_val
, new_val
);
431 u32
uninitialized_var(curval_32
);
432 u32 old_val_32
= old_val
;
433 u32 new_val_32
= new_val
;
434 u32 __user
*addr_32
= (u32 __user
*)addr
;
436 ret
= user_atomic_cmpxchg_inatomic(&curval_32
,
437 addr_32
, old_val_32
, new_val_32
);
444 * With 32-bit mode, a bounds directory is 4MB, and the size of each
445 * bounds table is 16KB. With 64-bit mode, a bounds directory is 2GB,
446 * and the size of each bounds table is 4MB.
448 static int allocate_bt(struct mm_struct
*mm
, long __user
*bd_entry
)
450 unsigned long expected_old_val
= 0;
451 unsigned long actual_old_val
= 0;
452 unsigned long bt_addr
;
453 unsigned long bd_new_entry
;
457 * Carve the virtual space out of userspace for the new
460 bt_addr
= mpx_mmap(mpx_bt_size_bytes(mm
));
461 if (IS_ERR((void *)bt_addr
))
462 return PTR_ERR((void *)bt_addr
);
464 * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
466 bd_new_entry
= bt_addr
| MPX_BD_ENTRY_VALID_FLAG
;
469 * Go poke the address of the new bounds table in to the
470 * bounds directory entry out in userspace memory. Note:
471 * we may race with another CPU instantiating the same table.
472 * In that case the cmpxchg will see an unexpected
475 * This can fault, but that's OK because we do not hold
476 * mmap_sem at this point, unlike some of the other part
477 * of the MPX code that have to pagefault_disable().
479 ret
= mpx_cmpxchg_bd_entry(mm
, &actual_old_val
, bd_entry
,
480 expected_old_val
, bd_new_entry
);
485 * The user_atomic_cmpxchg_inatomic() will only return nonzero
486 * for faults, *not* if the cmpxchg itself fails. Now we must
487 * verify that the cmpxchg itself completed successfully.
490 * We expected an empty 'expected_old_val', but instead found
491 * an apparently valid entry. Assume we raced with another
492 * thread to instantiate this table and desclare succecss.
494 if (actual_old_val
& MPX_BD_ENTRY_VALID_FLAG
) {
499 * We found a non-empty bd_entry but it did not have the
500 * VALID_FLAG set. Return an error which will result in
501 * a SEGV since this probably means that somebody scribbled
502 * some invalid data in to a bounds table.
504 if (expected_old_val
!= actual_old_val
) {
508 trace_mpx_new_bounds_table(bt_addr
);
511 vm_munmap(bt_addr
, mpx_bt_size_bytes(mm
));
516 * When a BNDSTX instruction attempts to save bounds to a bounds
517 * table, it will first attempt to look up the table in the
518 * first-level bounds directory. If it does not find a table in
519 * the directory, a #BR is generated and we get here in order to
520 * allocate a new table.
522 * With 32-bit mode, the size of BD is 4MB, and the size of each
523 * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
524 * and the size of each bound table is 4MB.
526 static int do_mpx_bt_fault(void)
528 unsigned long bd_entry
, bd_base
;
529 const struct bndcsr
*bndcsr
;
530 struct mm_struct
*mm
= current
->mm
;
532 bndcsr
= get_xsave_field_ptr(XSTATE_BNDCSR
);
536 * Mask off the preserve and enable bits
538 bd_base
= bndcsr
->bndcfgu
& MPX_BNDCFG_ADDR_MASK
;
540 * The hardware provides the address of the missing or invalid
541 * entry via BNDSTATUS, so we don't have to go look it up.
543 bd_entry
= bndcsr
->bndstatus
& MPX_BNDSTA_ADDR_MASK
;
545 * Make sure the directory entry is within where we think
548 if ((bd_entry
< bd_base
) ||
549 (bd_entry
>= bd_base
+ mpx_bd_size_bytes(mm
)))
552 return allocate_bt(mm
, (long __user
*)bd_entry
);
555 int mpx_handle_bd_fault(void)
558 * Userspace never asked us to manage the bounds tables,
561 if (!kernel_managing_mpx_tables(current
->mm
))
564 if (do_mpx_bt_fault()) {
565 force_sig(SIGSEGV
, current
);
567 * The force_sig() is essentially "handling" this
568 * exception, so we do not pass up the error
569 * from do_mpx_bt_fault().
576 * A thin wrapper around get_user_pages(). Returns 0 if the
577 * fault was resolved or -errno if not.
579 static int mpx_resolve_fault(long __user
*addr
, int write
)
585 gup_ret
= get_user_pages(current
, current
->mm
, (unsigned long)addr
,
586 nr_pages
, write
, force
, NULL
, NULL
);
588 * get_user_pages() returns number of pages gotten.
589 * 0 means we failed to fault in and get anything,
590 * probably because 'addr' is bad.
594 /* Other error, return it */
597 /* must have gup'd a page and gup_ret>0, success */
601 static unsigned long mpx_bd_entry_to_bt_addr(struct mm_struct
*mm
,
602 unsigned long bd_entry
)
604 unsigned long bt_addr
= bd_entry
;
607 * Bit 0 in a bt_entry is always the valid bit.
609 bt_addr
&= ~MPX_BD_ENTRY_VALID_FLAG
;
611 * Tables are naturally aligned at 8-byte boundaries
612 * on 64-bit and 4-byte boundaries on 32-bit. The
613 * documentation makes it appear that the low bits
614 * are ignored by the hardware, so we do the same.
620 bt_addr
&= ~(align_to_bytes
-1);
625 * Get the base of bounds tables pointed by specific bounds
628 static int get_bt_addr(struct mm_struct
*mm
,
629 long __user
*bd_entry_ptr
,
630 unsigned long *bt_addr_result
)
634 unsigned long bd_entry
;
635 unsigned long bt_addr
;
637 if (!access_ok(VERIFY_READ
, (bd_entry_ptr
), sizeof(*bd_entry_ptr
)))
644 ret
= get_user(bd_entry
, bd_entry_ptr
);
649 ret
= mpx_resolve_fault(bd_entry_ptr
, need_write
);
651 * If we could not resolve the fault, consider it
652 * userspace's fault and error out.
658 valid_bit
= bd_entry
& MPX_BD_ENTRY_VALID_FLAG
;
659 bt_addr
= mpx_bd_entry_to_bt_addr(mm
, bd_entry
);
662 * When the kernel is managing bounds tables, a bounds directory
663 * entry will either have a valid address (plus the valid bit)
664 * *OR* be completely empty. If we see a !valid entry *and* some
665 * data in the address field, we know something is wrong. This
666 * -EINVAL return will cause a SIGSEGV.
668 if (!valid_bit
&& bt_addr
)
671 * Do we have an completely zeroed bt entry? That is OK. It
672 * just means there was no bounds table for this memory. Make
673 * sure to distinguish this from -EINVAL, which will cause
679 *bt_addr_result
= bt_addr
;
683 static inline int bt_entry_size_bytes(struct mm_struct
*mm
)
686 return MPX_BT_ENTRY_BYTES_64
;
688 return MPX_BT_ENTRY_BYTES_32
;
692 * Take a virtual address and turns it in to the offset in bytes
693 * inside of the bounds table where the bounds table entry
694 * controlling 'addr' can be found.
696 static unsigned long mpx_get_bt_entry_offset_bytes(struct mm_struct
*mm
,
699 unsigned long bt_table_nr_entries
;
700 unsigned long offset
= addr
;
702 if (is_64bit_mm(mm
)) {
703 /* Bottom 3 bits are ignored on 64-bit */
705 bt_table_nr_entries
= MPX_BT_NR_ENTRIES_64
;
707 /* Bottom 2 bits are ignored on 32-bit */
709 bt_table_nr_entries
= MPX_BT_NR_ENTRIES_32
;
712 * We know the size of the table in to which we are
713 * indexing, and we have eliminated all the low bits
714 * which are ignored for indexing.
716 * Mask out all the high bits which we do not need
717 * to index in to the table. Note that the tables
718 * are always powers of two so this gives us a proper
721 offset
&= (bt_table_nr_entries
-1);
723 * We now have an entry offset in terms of *entries* in
724 * the table. We need to scale it back up to bytes.
726 offset
*= bt_entry_size_bytes(mm
);
731 * How much virtual address space does a single bounds
732 * directory entry cover?
734 * Note, we need a long long because 4GB doesn't fit in
735 * to a long on 32-bit.
737 static inline unsigned long bd_entry_virt_space(struct mm_struct
*mm
)
739 unsigned long long virt_space
= (1ULL << boot_cpu_data
.x86_virt_bits
);
741 return virt_space
/ MPX_BD_NR_ENTRIES_64
;
743 return virt_space
/ MPX_BD_NR_ENTRIES_32
;
747 * Free the backing physical pages of bounds table 'bt_addr'.
748 * Assume start...end is within that bounds table.
750 static noinline
int zap_bt_entries_mapping(struct mm_struct
*mm
,
751 unsigned long bt_addr
,
752 unsigned long start_mapping
, unsigned long end_mapping
)
754 struct vm_area_struct
*vma
;
755 unsigned long addr
, len
;
760 * if we 'end' on a boundary, the offset will be 0 which
761 * is not what we want. Back it up a byte to get the
762 * last bt entry. Then once we have the entry itself,
763 * move 'end' back up by the table entry size.
765 start
= bt_addr
+ mpx_get_bt_entry_offset_bytes(mm
, start_mapping
);
766 end
= bt_addr
+ mpx_get_bt_entry_offset_bytes(mm
, end_mapping
- 1);
768 * Move end back up by one entry. Among other things
769 * this ensures that it remains page-aligned and does
770 * not screw up zap_page_range()
772 end
+= bt_entry_size_bytes(mm
);
775 * Find the first overlapping vma. If vma->vm_start > start, there
776 * will be a hole in the bounds table. This -EINVAL return will
779 vma
= find_vma(mm
, start
);
780 if (!vma
|| vma
->vm_start
> start
)
784 * A NUMA policy on a VM_MPX VMA could cause this bounds table to
785 * be split. So we need to look across the entire 'start -> end'
786 * range of this bounds table, find all of the VM_MPX VMAs, and
790 while (vma
&& vma
->vm_start
< end
) {
792 * We followed a bounds directory entry down
793 * here. If we find a non-MPX VMA, that's bad,
794 * so stop immediately and return an error. This
795 * probably results in a SIGSEGV.
797 if (!(vma
->vm_flags
& VM_MPX
))
800 len
= min(vma
->vm_end
, end
) - addr
;
801 zap_page_range(vma
, addr
, len
, NULL
);
802 trace_mpx_unmap_zap(addr
, addr
+len
);
805 addr
= vma
->vm_start
;
810 static unsigned long mpx_get_bd_entry_offset(struct mm_struct
*mm
,
814 * There are several ways to derive the bd offsets. We
815 * use the following approach here:
816 * 1. We know the size of the virtual address space
817 * 2. We know the number of entries in a bounds table
818 * 3. We know that each entry covers a fixed amount of
819 * virtual address space.
820 * So, we can just divide the virtual address by the
821 * virtual space used by one entry to determine which
822 * entry "controls" the given virtual address.
824 if (is_64bit_mm(mm
)) {
825 int bd_entry_size
= 8; /* 64-bit pointer */
827 * Take the 64-bit addressing hole in to account.
829 addr
&= ((1UL << boot_cpu_data
.x86_virt_bits
) - 1);
830 return (addr
/ bd_entry_virt_space(mm
)) * bd_entry_size
;
832 int bd_entry_size
= 4; /* 32-bit pointer */
834 * 32-bit has no hole so this case needs no mask
836 return (addr
/ bd_entry_virt_space(mm
)) * bd_entry_size
;
839 * The two return calls above are exact copies. If we
840 * pull out a single copy and put it in here, gcc won't
841 * realize that we're doing a power-of-2 divide and use
842 * shifts. It uses a real divide. If we put them up
843 * there, it manages to figure it out (gcc 4.8.3).
847 static int unmap_entire_bt(struct mm_struct
*mm
,
848 long __user
*bd_entry
, unsigned long bt_addr
)
850 unsigned long expected_old_val
= bt_addr
| MPX_BD_ENTRY_VALID_FLAG
;
851 unsigned long uninitialized_var(actual_old_val
);
856 unsigned long cleared_bd_entry
= 0;
859 ret
= mpx_cmpxchg_bd_entry(mm
, &actual_old_val
,
860 bd_entry
, expected_old_val
, cleared_bd_entry
);
865 ret
= mpx_resolve_fault(bd_entry
, need_write
);
867 * If we could not resolve the fault, consider it
868 * userspace's fault and error out.
874 * The cmpxchg was performed, check the results.
876 if (actual_old_val
!= expected_old_val
) {
878 * Someone else raced with us to unmap the table.
879 * That is OK, since we were both trying to do
880 * the same thing. Declare success.
885 * Something messed with the bounds directory
886 * entry. We hold mmap_sem for read or write
887 * here, so it could not be a _new_ bounds table
888 * that someone just allocated. Something is
889 * wrong, so pass up the error and SIGSEGV.
894 * Note, we are likely being called under do_munmap() already. To
895 * avoid recursion, do_munmap() will check whether it comes
896 * from one bounds table through VM_MPX flag.
898 return do_munmap(mm
, bt_addr
, mpx_bt_size_bytes(mm
));
901 static int try_unmap_single_bt(struct mm_struct
*mm
,
902 unsigned long start
, unsigned long end
)
904 struct vm_area_struct
*next
;
905 struct vm_area_struct
*prev
;
907 * "bta" == Bounds Table Area: the area controlled by the
908 * bounds table that we are unmapping.
910 unsigned long bta_start_vaddr
= start
& ~(bd_entry_virt_space(mm
)-1);
911 unsigned long bta_end_vaddr
= bta_start_vaddr
+ bd_entry_virt_space(mm
);
912 unsigned long uninitialized_var(bt_addr
);
913 void __user
*bde_vaddr
;
916 * We already unlinked the VMAs from the mm's rbtree so 'start'
917 * is guaranteed to be in a hole. This gets us the first VMA
918 * before the hole in to 'prev' and the next VMA after the hole
921 next
= find_vma_prev(mm
, start
, &prev
);
923 * Do not count other MPX bounds table VMAs as neighbors.
924 * Although theoretically possible, we do not allow bounds
925 * tables for bounds tables so our heads do not explode.
926 * If we count them as neighbors here, we may end up with
927 * lots of tables even though we have no actual table
930 while (next
&& (next
->vm_flags
& VM_MPX
))
931 next
= next
->vm_next
;
932 while (prev
&& (prev
->vm_flags
& VM_MPX
))
933 prev
= prev
->vm_prev
;
935 * We know 'start' and 'end' lie within an area controlled
936 * by a single bounds table. See if there are any other
937 * VMAs controlled by that bounds table. If there are not
938 * then we can "expand" the are we are unmapping to possibly
939 * cover the entire table.
941 next
= find_vma_prev(mm
, start
, &prev
);
942 if ((!prev
|| prev
->vm_end
<= bta_start_vaddr
) &&
943 (!next
|| next
->vm_start
>= bta_end_vaddr
)) {
945 * No neighbor VMAs controlled by same bounds
946 * table. Try to unmap the whole thing
948 start
= bta_start_vaddr
;
952 bde_vaddr
= mm
->bd_addr
+ mpx_get_bd_entry_offset(mm
, start
);
953 ret
= get_bt_addr(mm
, bde_vaddr
, &bt_addr
);
955 * No bounds table there, so nothing to unmap.
957 if (ret
== -ENOENT
) {
964 * We are unmapping an entire table. Either because the
965 * unmap that started this whole process was large enough
966 * to cover an entire table, or that the unmap was small
967 * but was the area covered by a bounds table.
969 if ((start
== bta_start_vaddr
) &&
970 (end
== bta_end_vaddr
))
971 return unmap_entire_bt(mm
, bde_vaddr
, bt_addr
);
972 return zap_bt_entries_mapping(mm
, bt_addr
, start
, end
);
975 static int mpx_unmap_tables(struct mm_struct
*mm
,
976 unsigned long start
, unsigned long end
)
978 unsigned long one_unmap_start
;
979 trace_mpx_unmap_search(start
, end
);
981 one_unmap_start
= start
;
982 while (one_unmap_start
< end
) {
984 unsigned long next_unmap_start
= ALIGN(one_unmap_start
+1,
985 bd_entry_virt_space(mm
));
986 unsigned long one_unmap_end
= end
;
988 * if the end is beyond the current bounds table,
989 * move it back so we only deal with a single one
992 if (one_unmap_end
> next_unmap_start
)
993 one_unmap_end
= next_unmap_start
;
994 ret
= try_unmap_single_bt(mm
, one_unmap_start
, one_unmap_end
);
998 one_unmap_start
= next_unmap_start
;
1004 * Free unused bounds tables covered in a virtual address region being
1005 * munmap()ed. Assume end > start.
1007 * This function will be called by do_munmap(), and the VMAs covering
1008 * the virtual address region start...end have already been split if
1009 * necessary, and the 'vma' is the first vma in this range (start -> end).
1011 void mpx_notify_unmap(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1012 unsigned long start
, unsigned long end
)
1017 * Refuse to do anything unless userspace has asked
1018 * the kernel to help manage the bounds tables,
1020 if (!kernel_managing_mpx_tables(current
->mm
))
1023 * This will look across the entire 'start -> end' range,
1024 * and find all of the non-VM_MPX VMAs.
1026 * To avoid recursion, if a VM_MPX vma is found in the range
1027 * (start->end), we will not continue follow-up work. This
1028 * recursion represents having bounds tables for bounds tables,
1029 * which should not occur normally. Being strict about it here
1030 * helps ensure that we do not have an exploitable stack overflow.
1033 if (vma
->vm_flags
& VM_MPX
)
1036 } while (vma
&& vma
->vm_start
< end
);
1038 ret
= mpx_unmap_tables(mm
, start
, end
);
1040 force_sig(SIGSEGV
, current
);