2 * drivers/cpufreq/cpufreq_governor.c
4 * CPUFREQ governors common code
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
23 #include "cpufreq_governor.h"
25 static struct attribute_group
*get_sysfs_attr(struct dbs_data
*dbs_data
)
27 if (have_governor_per_policy())
28 return dbs_data
->cdata
->attr_group_gov_pol
;
30 return dbs_data
->cdata
->attr_group_gov_sys
;
33 void dbs_check_cpu(struct dbs_data
*dbs_data
, int cpu
)
35 struct cpu_dbs_common_info
*cdbs
= dbs_data
->cdata
->get_cpu_cdbs(cpu
);
36 struct od_dbs_tuners
*od_tuners
= dbs_data
->tuners
;
37 struct cs_dbs_tuners
*cs_tuners
= dbs_data
->tuners
;
38 struct cpufreq_policy
*policy
;
39 unsigned int sampling_rate
;
40 unsigned int max_load
= 0;
41 unsigned int ignore_nice
;
44 if (dbs_data
->cdata
->governor
== GOV_ONDEMAND
) {
45 struct od_cpu_dbs_info_s
*od_dbs_info
=
46 dbs_data
->cdata
->get_cpu_dbs_info_s(cpu
);
49 * Sometimes, the ondemand governor uses an additional
50 * multiplier to give long delays. So apply this multiplier to
51 * the 'sampling_rate', so as to keep the wake-up-from-idle
52 * detection logic a bit conservative.
54 sampling_rate
= od_tuners
->sampling_rate
;
55 sampling_rate
*= od_dbs_info
->rate_mult
;
57 ignore_nice
= od_tuners
->ignore_nice_load
;
59 sampling_rate
= cs_tuners
->sampling_rate
;
60 ignore_nice
= cs_tuners
->ignore_nice_load
;
63 policy
= cdbs
->cur_policy
;
65 /* Get Absolute Load */
66 for_each_cpu(j
, policy
->cpus
) {
67 struct cpu_dbs_common_info
*j_cdbs
;
68 u64 cur_wall_time
, cur_idle_time
;
69 unsigned int idle_time
, wall_time
;
73 j_cdbs
= dbs_data
->cdata
->get_cpu_cdbs(j
);
76 * For the purpose of ondemand, waiting for disk IO is
77 * an indication that you're performance critical, and
78 * not that the system is actually idle. So do not add
79 * the iowait time to the cpu idle time.
81 if (dbs_data
->cdata
->governor
== GOV_ONDEMAND
)
82 io_busy
= od_tuners
->io_is_busy
;
83 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
, io_busy
);
85 wall_time
= (unsigned int)
86 (cur_wall_time
- j_cdbs
->prev_cpu_wall
);
87 j_cdbs
->prev_cpu_wall
= cur_wall_time
;
89 idle_time
= (unsigned int)
90 (cur_idle_time
- j_cdbs
->prev_cpu_idle
);
91 j_cdbs
->prev_cpu_idle
= cur_idle_time
;
95 unsigned long cur_nice_jiffies
;
97 cur_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
] -
100 * Assumption: nice time between sampling periods will
101 * be less than 2^32 jiffies for 32 bit sys
103 cur_nice_jiffies
= (unsigned long)
104 cputime64_to_jiffies64(cur_nice
);
106 cdbs
->prev_cpu_nice
=
107 kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
108 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
111 if (unlikely(!wall_time
|| wall_time
< idle_time
))
115 * If the CPU had gone completely idle, and a task just woke up
116 * on this CPU now, it would be unfair to calculate 'load' the
117 * usual way for this elapsed time-window, because it will show
118 * near-zero load, irrespective of how CPU intensive that task
119 * actually is. This is undesirable for latency-sensitive bursty
122 * To avoid this, we reuse the 'load' from the previous
123 * time-window and give this task a chance to start with a
124 * reasonably high CPU frequency. (However, we shouldn't over-do
125 * this copy, lest we get stuck at a high load (high frequency)
126 * for too long, even when the current system load has actually
127 * dropped down. So we perform the copy only once, upon the
128 * first wake-up from idle.)
130 * Detecting this situation is easy: the governor's deferrable
131 * timer would not have fired during CPU-idle periods. Hence
132 * an unusually large 'wall_time' (as compared to the sampling
133 * rate) indicates this scenario.
135 * prev_load can be zero in two cases and we must recalculate it
137 * - during long idle intervals
138 * - explicitly set to zero
140 if (unlikely(wall_time
> (2 * sampling_rate
) &&
141 j_cdbs
->prev_load
)) {
142 load
= j_cdbs
->prev_load
;
145 * Perform a destructive copy, to ensure that we copy
146 * the previous load only once, upon the first wake-up
149 j_cdbs
->prev_load
= 0;
151 load
= 100 * (wall_time
- idle_time
) / wall_time
;
152 j_cdbs
->prev_load
= load
;
159 dbs_data
->cdata
->gov_check_cpu(cpu
, max_load
);
161 EXPORT_SYMBOL_GPL(dbs_check_cpu
);
163 static inline void __gov_queue_work(int cpu
, struct dbs_data
*dbs_data
,
166 struct cpu_dbs_common_info
*cdbs
= dbs_data
->cdata
->get_cpu_cdbs(cpu
);
168 mod_delayed_work_on(cpu
, system_wq
, &cdbs
->work
, delay
);
171 void gov_queue_work(struct dbs_data
*dbs_data
, struct cpufreq_policy
*policy
,
172 unsigned int delay
, bool all_cpus
)
176 mutex_lock(&cpufreq_governor_lock
);
177 if (!policy
->governor_enabled
)
182 * Use raw_smp_processor_id() to avoid preemptible warnings.
183 * We know that this is only called with all_cpus == false from
184 * works that have been queued with *_work_on() functions and
185 * those works are canceled during CPU_DOWN_PREPARE so they
186 * can't possibly run on any other CPU.
188 __gov_queue_work(raw_smp_processor_id(), dbs_data
, delay
);
190 for_each_cpu(i
, policy
->cpus
)
191 __gov_queue_work(i
, dbs_data
, delay
);
195 mutex_unlock(&cpufreq_governor_lock
);
197 EXPORT_SYMBOL_GPL(gov_queue_work
);
199 static inline void gov_cancel_work(struct dbs_data
*dbs_data
,
200 struct cpufreq_policy
*policy
)
202 struct cpu_dbs_common_info
*cdbs
;
205 for_each_cpu(i
, policy
->cpus
) {
206 cdbs
= dbs_data
->cdata
->get_cpu_cdbs(i
);
207 cancel_delayed_work_sync(&cdbs
->work
);
211 /* Will return if we need to evaluate cpu load again or not */
212 bool need_load_eval(struct cpu_dbs_common_info
*cdbs
,
213 unsigned int sampling_rate
)
215 if (policy_is_shared(cdbs
->cur_policy
)) {
216 ktime_t time_now
= ktime_get();
217 s64 delta_us
= ktime_us_delta(time_now
, cdbs
->time_stamp
);
219 /* Do nothing if we recently have sampled */
220 if (delta_us
< (s64
)(sampling_rate
/ 2))
223 cdbs
->time_stamp
= time_now
;
228 EXPORT_SYMBOL_GPL(need_load_eval
);
230 static void set_sampling_rate(struct dbs_data
*dbs_data
,
231 unsigned int sampling_rate
)
233 if (dbs_data
->cdata
->governor
== GOV_CONSERVATIVE
) {
234 struct cs_dbs_tuners
*cs_tuners
= dbs_data
->tuners
;
235 cs_tuners
->sampling_rate
= sampling_rate
;
237 struct od_dbs_tuners
*od_tuners
= dbs_data
->tuners
;
238 od_tuners
->sampling_rate
= sampling_rate
;
242 static int cpufreq_governor_init(struct cpufreq_policy
*policy
,
243 struct dbs_data
*dbs_data
,
244 struct common_dbs_data
*cdata
)
246 unsigned int latency
;
250 if (WARN_ON(have_governor_per_policy()))
252 dbs_data
->usage_count
++;
253 policy
->governor_data
= dbs_data
;
257 dbs_data
= kzalloc(sizeof(*dbs_data
), GFP_KERNEL
);
261 dbs_data
->cdata
= cdata
;
262 dbs_data
->usage_count
= 1;
264 ret
= cdata
->init(dbs_data
, !policy
->governor
->initialized
);
268 /* policy latency is in ns. Convert it to us first */
269 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
273 /* Bring kernel and HW constraints together */
274 dbs_data
->min_sampling_rate
= max(dbs_data
->min_sampling_rate
,
275 MIN_LATENCY_MULTIPLIER
* latency
);
276 set_sampling_rate(dbs_data
, max(dbs_data
->min_sampling_rate
,
277 latency
* LATENCY_MULTIPLIER
));
279 if (!have_governor_per_policy()) {
280 if (WARN_ON(cpufreq_get_global_kobject())) {
284 cdata
->gdbs_data
= dbs_data
;
287 ret
= sysfs_create_group(get_governor_parent_kobj(policy
),
288 get_sysfs_attr(dbs_data
));
292 policy
->governor_data
= dbs_data
;
297 if (!have_governor_per_policy()) {
298 cdata
->gdbs_data
= NULL
;
299 cpufreq_put_global_kobject();
302 cdata
->exit(dbs_data
, !policy
->governor
->initialized
);
308 static void cpufreq_governor_exit(struct cpufreq_policy
*policy
,
309 struct dbs_data
*dbs_data
)
311 struct common_dbs_data
*cdata
= dbs_data
->cdata
;
313 policy
->governor_data
= NULL
;
314 if (!--dbs_data
->usage_count
) {
315 sysfs_remove_group(get_governor_parent_kobj(policy
),
316 get_sysfs_attr(dbs_data
));
318 if (!have_governor_per_policy()) {
319 cdata
->gdbs_data
= NULL
;
320 cpufreq_put_global_kobject();
323 cdata
->exit(dbs_data
, policy
->governor
->initialized
== 1);
328 static int cpufreq_governor_start(struct cpufreq_policy
*policy
,
329 struct dbs_data
*dbs_data
)
331 struct common_dbs_data
*cdata
= dbs_data
->cdata
;
332 unsigned int sampling_rate
, ignore_nice
, j
, cpu
= policy
->cpu
;
333 struct cpu_dbs_common_info
*cpu_cdbs
= cdata
->get_cpu_cdbs(cpu
);
339 if (cdata
->governor
== GOV_CONSERVATIVE
) {
340 struct cs_dbs_tuners
*cs_tuners
= dbs_data
->tuners
;
342 sampling_rate
= cs_tuners
->sampling_rate
;
343 ignore_nice
= cs_tuners
->ignore_nice_load
;
345 struct od_dbs_tuners
*od_tuners
= dbs_data
->tuners
;
347 sampling_rate
= od_tuners
->sampling_rate
;
348 ignore_nice
= od_tuners
->ignore_nice_load
;
349 io_busy
= od_tuners
->io_is_busy
;
352 for_each_cpu(j
, policy
->cpus
) {
353 struct cpu_dbs_common_info
*j_cdbs
= cdata
->get_cpu_cdbs(j
);
354 unsigned int prev_load
;
357 j_cdbs
->cur_policy
= policy
;
358 j_cdbs
->prev_cpu_idle
=
359 get_cpu_idle_time(j
, &j_cdbs
->prev_cpu_wall
, io_busy
);
361 prev_load
= (unsigned int)(j_cdbs
->prev_cpu_wall
-
362 j_cdbs
->prev_cpu_idle
);
363 j_cdbs
->prev_load
= 100 * prev_load
/
364 (unsigned int)j_cdbs
->prev_cpu_wall
;
367 j_cdbs
->prev_cpu_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
369 mutex_init(&j_cdbs
->timer_mutex
);
370 INIT_DEFERRABLE_WORK(&j_cdbs
->work
, cdata
->gov_dbs_timer
);
373 if (cdata
->governor
== GOV_CONSERVATIVE
) {
374 struct cs_cpu_dbs_info_s
*cs_dbs_info
=
375 cdata
->get_cpu_dbs_info_s(cpu
);
377 cs_dbs_info
->down_skip
= 0;
378 cs_dbs_info
->enable
= 1;
379 cs_dbs_info
->requested_freq
= policy
->cur
;
381 struct od_ops
*od_ops
= cdata
->gov_ops
;
382 struct od_cpu_dbs_info_s
*od_dbs_info
= cdata
->get_cpu_dbs_info_s(cpu
);
384 od_dbs_info
->rate_mult
= 1;
385 od_dbs_info
->sample_type
= OD_NORMAL_SAMPLE
;
386 od_ops
->powersave_bias_init_cpu(cpu
);
389 /* Initiate timer time stamp */
390 cpu_cdbs
->time_stamp
= ktime_get();
392 gov_queue_work(dbs_data
, policy
, delay_for_sampling_rate(sampling_rate
),
397 static void cpufreq_governor_stop(struct cpufreq_policy
*policy
,
398 struct dbs_data
*dbs_data
)
400 struct common_dbs_data
*cdata
= dbs_data
->cdata
;
401 unsigned int cpu
= policy
->cpu
;
402 struct cpu_dbs_common_info
*cpu_cdbs
= cdata
->get_cpu_cdbs(cpu
);
404 if (cdata
->governor
== GOV_CONSERVATIVE
) {
405 struct cs_cpu_dbs_info_s
*cs_dbs_info
=
406 cdata
->get_cpu_dbs_info_s(cpu
);
408 cs_dbs_info
->enable
= 0;
411 gov_cancel_work(dbs_data
, policy
);
413 mutex_destroy(&cpu_cdbs
->timer_mutex
);
414 cpu_cdbs
->cur_policy
= NULL
;
417 static void cpufreq_governor_limits(struct cpufreq_policy
*policy
,
418 struct dbs_data
*dbs_data
)
420 struct common_dbs_data
*cdata
= dbs_data
->cdata
;
421 unsigned int cpu
= policy
->cpu
;
422 struct cpu_dbs_common_info
*cpu_cdbs
= cdata
->get_cpu_cdbs(cpu
);
424 if (!cpu_cdbs
->cur_policy
)
427 mutex_lock(&cpu_cdbs
->timer_mutex
);
428 if (policy
->max
< cpu_cdbs
->cur_policy
->cur
)
429 __cpufreq_driver_target(cpu_cdbs
->cur_policy
, policy
->max
,
431 else if (policy
->min
> cpu_cdbs
->cur_policy
->cur
)
432 __cpufreq_driver_target(cpu_cdbs
->cur_policy
, policy
->min
,
434 dbs_check_cpu(dbs_data
, cpu
);
435 mutex_unlock(&cpu_cdbs
->timer_mutex
);
438 int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
439 struct common_dbs_data
*cdata
, unsigned int event
)
441 struct dbs_data
*dbs_data
;
444 /* Lock governor to block concurrent initialization of governor */
445 mutex_lock(&cdata
->mutex
);
447 if (have_governor_per_policy())
448 dbs_data
= policy
->governor_data
;
450 dbs_data
= cdata
->gdbs_data
;
452 if (WARN_ON(!dbs_data
&& (event
!= CPUFREQ_GOV_POLICY_INIT
))) {
458 case CPUFREQ_GOV_POLICY_INIT
:
459 ret
= cpufreq_governor_init(policy
, dbs_data
, cdata
);
461 case CPUFREQ_GOV_POLICY_EXIT
:
462 cpufreq_governor_exit(policy
, dbs_data
);
464 case CPUFREQ_GOV_START
:
465 ret
= cpufreq_governor_start(policy
, dbs_data
);
467 case CPUFREQ_GOV_STOP
:
468 cpufreq_governor_stop(policy
, dbs_data
);
470 case CPUFREQ_GOV_LIMITS
:
471 cpufreq_governor_limits(policy
, dbs_data
);
476 mutex_unlock(&cdata
->mutex
);
480 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs
);