ARM: rockchip: fix broken build
[linux/fpc-iii.git] / drivers / cpufreq / cpufreq_governor.c
blob57a39f8a92b7fd41689ac3083decf3a5db4943d9
1 /*
2 * drivers/cpufreq/cpufreq_governor.c
4 * CPUFREQ governors common code
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
23 #include "cpufreq_governor.h"
25 static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
27 if (have_governor_per_policy())
28 return dbs_data->cdata->attr_group_gov_pol;
29 else
30 return dbs_data->cdata->attr_group_gov_sys;
33 void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
35 struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
37 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38 struct cpufreq_policy *policy;
39 unsigned int sampling_rate;
40 unsigned int max_load = 0;
41 unsigned int ignore_nice;
42 unsigned int j;
44 if (dbs_data->cdata->governor == GOV_ONDEMAND) {
45 struct od_cpu_dbs_info_s *od_dbs_info =
46 dbs_data->cdata->get_cpu_dbs_info_s(cpu);
49 * Sometimes, the ondemand governor uses an additional
50 * multiplier to give long delays. So apply this multiplier to
51 * the 'sampling_rate', so as to keep the wake-up-from-idle
52 * detection logic a bit conservative.
54 sampling_rate = od_tuners->sampling_rate;
55 sampling_rate *= od_dbs_info->rate_mult;
57 ignore_nice = od_tuners->ignore_nice_load;
58 } else {
59 sampling_rate = cs_tuners->sampling_rate;
60 ignore_nice = cs_tuners->ignore_nice_load;
63 policy = cdbs->cur_policy;
65 /* Get Absolute Load */
66 for_each_cpu(j, policy->cpus) {
67 struct cpu_dbs_common_info *j_cdbs;
68 u64 cur_wall_time, cur_idle_time;
69 unsigned int idle_time, wall_time;
70 unsigned int load;
71 int io_busy = 0;
73 j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
76 * For the purpose of ondemand, waiting for disk IO is
77 * an indication that you're performance critical, and
78 * not that the system is actually idle. So do not add
79 * the iowait time to the cpu idle time.
81 if (dbs_data->cdata->governor == GOV_ONDEMAND)
82 io_busy = od_tuners->io_is_busy;
83 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
85 wall_time = (unsigned int)
86 (cur_wall_time - j_cdbs->prev_cpu_wall);
87 j_cdbs->prev_cpu_wall = cur_wall_time;
89 idle_time = (unsigned int)
90 (cur_idle_time - j_cdbs->prev_cpu_idle);
91 j_cdbs->prev_cpu_idle = cur_idle_time;
93 if (ignore_nice) {
94 u64 cur_nice;
95 unsigned long cur_nice_jiffies;
97 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
98 cdbs->prev_cpu_nice;
100 * Assumption: nice time between sampling periods will
101 * be less than 2^32 jiffies for 32 bit sys
103 cur_nice_jiffies = (unsigned long)
104 cputime64_to_jiffies64(cur_nice);
106 cdbs->prev_cpu_nice =
107 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
108 idle_time += jiffies_to_usecs(cur_nice_jiffies);
111 if (unlikely(!wall_time || wall_time < idle_time))
112 continue;
115 * If the CPU had gone completely idle, and a task just woke up
116 * on this CPU now, it would be unfair to calculate 'load' the
117 * usual way for this elapsed time-window, because it will show
118 * near-zero load, irrespective of how CPU intensive that task
119 * actually is. This is undesirable for latency-sensitive bursty
120 * workloads.
122 * To avoid this, we reuse the 'load' from the previous
123 * time-window and give this task a chance to start with a
124 * reasonably high CPU frequency. (However, we shouldn't over-do
125 * this copy, lest we get stuck at a high load (high frequency)
126 * for too long, even when the current system load has actually
127 * dropped down. So we perform the copy only once, upon the
128 * first wake-up from idle.)
130 * Detecting this situation is easy: the governor's deferrable
131 * timer would not have fired during CPU-idle periods. Hence
132 * an unusually large 'wall_time' (as compared to the sampling
133 * rate) indicates this scenario.
135 * prev_load can be zero in two cases and we must recalculate it
136 * for both cases:
137 * - during long idle intervals
138 * - explicitly set to zero
140 if (unlikely(wall_time > (2 * sampling_rate) &&
141 j_cdbs->prev_load)) {
142 load = j_cdbs->prev_load;
145 * Perform a destructive copy, to ensure that we copy
146 * the previous load only once, upon the first wake-up
147 * from idle.
149 j_cdbs->prev_load = 0;
150 } else {
151 load = 100 * (wall_time - idle_time) / wall_time;
152 j_cdbs->prev_load = load;
155 if (load > max_load)
156 max_load = load;
159 dbs_data->cdata->gov_check_cpu(cpu, max_load);
161 EXPORT_SYMBOL_GPL(dbs_check_cpu);
163 static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
164 unsigned int delay)
166 struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
168 mod_delayed_work_on(cpu, system_wq, &cdbs->work, delay);
171 void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
172 unsigned int delay, bool all_cpus)
174 int i;
176 mutex_lock(&cpufreq_governor_lock);
177 if (!policy->governor_enabled)
178 goto out_unlock;
180 if (!all_cpus) {
182 * Use raw_smp_processor_id() to avoid preemptible warnings.
183 * We know that this is only called with all_cpus == false from
184 * works that have been queued with *_work_on() functions and
185 * those works are canceled during CPU_DOWN_PREPARE so they
186 * can't possibly run on any other CPU.
188 __gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
189 } else {
190 for_each_cpu(i, policy->cpus)
191 __gov_queue_work(i, dbs_data, delay);
194 out_unlock:
195 mutex_unlock(&cpufreq_governor_lock);
197 EXPORT_SYMBOL_GPL(gov_queue_work);
199 static inline void gov_cancel_work(struct dbs_data *dbs_data,
200 struct cpufreq_policy *policy)
202 struct cpu_dbs_common_info *cdbs;
203 int i;
205 for_each_cpu(i, policy->cpus) {
206 cdbs = dbs_data->cdata->get_cpu_cdbs(i);
207 cancel_delayed_work_sync(&cdbs->work);
211 /* Will return if we need to evaluate cpu load again or not */
212 bool need_load_eval(struct cpu_dbs_common_info *cdbs,
213 unsigned int sampling_rate)
215 if (policy_is_shared(cdbs->cur_policy)) {
216 ktime_t time_now = ktime_get();
217 s64 delta_us = ktime_us_delta(time_now, cdbs->time_stamp);
219 /* Do nothing if we recently have sampled */
220 if (delta_us < (s64)(sampling_rate / 2))
221 return false;
222 else
223 cdbs->time_stamp = time_now;
226 return true;
228 EXPORT_SYMBOL_GPL(need_load_eval);
230 static void set_sampling_rate(struct dbs_data *dbs_data,
231 unsigned int sampling_rate)
233 if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
234 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
235 cs_tuners->sampling_rate = sampling_rate;
236 } else {
237 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
238 od_tuners->sampling_rate = sampling_rate;
242 static int cpufreq_governor_init(struct cpufreq_policy *policy,
243 struct dbs_data *dbs_data,
244 struct common_dbs_data *cdata)
246 unsigned int latency;
247 int ret;
249 if (dbs_data) {
250 if (WARN_ON(have_governor_per_policy()))
251 return -EINVAL;
252 dbs_data->usage_count++;
253 policy->governor_data = dbs_data;
254 return 0;
257 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
258 if (!dbs_data)
259 return -ENOMEM;
261 dbs_data->cdata = cdata;
262 dbs_data->usage_count = 1;
264 ret = cdata->init(dbs_data, !policy->governor->initialized);
265 if (ret)
266 goto free_dbs_data;
268 /* policy latency is in ns. Convert it to us first */
269 latency = policy->cpuinfo.transition_latency / 1000;
270 if (latency == 0)
271 latency = 1;
273 /* Bring kernel and HW constraints together */
274 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
275 MIN_LATENCY_MULTIPLIER * latency);
276 set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
277 latency * LATENCY_MULTIPLIER));
279 if (!have_governor_per_policy()) {
280 if (WARN_ON(cpufreq_get_global_kobject())) {
281 ret = -EINVAL;
282 goto cdata_exit;
284 cdata->gdbs_data = dbs_data;
287 ret = sysfs_create_group(get_governor_parent_kobj(policy),
288 get_sysfs_attr(dbs_data));
289 if (ret)
290 goto put_kobj;
292 policy->governor_data = dbs_data;
294 return 0;
296 put_kobj:
297 if (!have_governor_per_policy()) {
298 cdata->gdbs_data = NULL;
299 cpufreq_put_global_kobject();
301 cdata_exit:
302 cdata->exit(dbs_data, !policy->governor->initialized);
303 free_dbs_data:
304 kfree(dbs_data);
305 return ret;
308 static void cpufreq_governor_exit(struct cpufreq_policy *policy,
309 struct dbs_data *dbs_data)
311 struct common_dbs_data *cdata = dbs_data->cdata;
313 policy->governor_data = NULL;
314 if (!--dbs_data->usage_count) {
315 sysfs_remove_group(get_governor_parent_kobj(policy),
316 get_sysfs_attr(dbs_data));
318 if (!have_governor_per_policy()) {
319 cdata->gdbs_data = NULL;
320 cpufreq_put_global_kobject();
323 cdata->exit(dbs_data, policy->governor->initialized == 1);
324 kfree(dbs_data);
328 static int cpufreq_governor_start(struct cpufreq_policy *policy,
329 struct dbs_data *dbs_data)
331 struct common_dbs_data *cdata = dbs_data->cdata;
332 unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
333 struct cpu_dbs_common_info *cpu_cdbs = cdata->get_cpu_cdbs(cpu);
334 int io_busy = 0;
336 if (!policy->cur)
337 return -EINVAL;
339 if (cdata->governor == GOV_CONSERVATIVE) {
340 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
342 sampling_rate = cs_tuners->sampling_rate;
343 ignore_nice = cs_tuners->ignore_nice_load;
344 } else {
345 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
347 sampling_rate = od_tuners->sampling_rate;
348 ignore_nice = od_tuners->ignore_nice_load;
349 io_busy = od_tuners->io_is_busy;
352 for_each_cpu(j, policy->cpus) {
353 struct cpu_dbs_common_info *j_cdbs = cdata->get_cpu_cdbs(j);
354 unsigned int prev_load;
356 j_cdbs->cpu = j;
357 j_cdbs->cur_policy = policy;
358 j_cdbs->prev_cpu_idle =
359 get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
361 prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
362 j_cdbs->prev_cpu_idle);
363 j_cdbs->prev_load = 100 * prev_load /
364 (unsigned int)j_cdbs->prev_cpu_wall;
366 if (ignore_nice)
367 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
369 mutex_init(&j_cdbs->timer_mutex);
370 INIT_DEFERRABLE_WORK(&j_cdbs->work, cdata->gov_dbs_timer);
373 if (cdata->governor == GOV_CONSERVATIVE) {
374 struct cs_cpu_dbs_info_s *cs_dbs_info =
375 cdata->get_cpu_dbs_info_s(cpu);
377 cs_dbs_info->down_skip = 0;
378 cs_dbs_info->enable = 1;
379 cs_dbs_info->requested_freq = policy->cur;
380 } else {
381 struct od_ops *od_ops = cdata->gov_ops;
382 struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
384 od_dbs_info->rate_mult = 1;
385 od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
386 od_ops->powersave_bias_init_cpu(cpu);
389 /* Initiate timer time stamp */
390 cpu_cdbs->time_stamp = ktime_get();
392 gov_queue_work(dbs_data, policy, delay_for_sampling_rate(sampling_rate),
393 true);
394 return 0;
397 static void cpufreq_governor_stop(struct cpufreq_policy *policy,
398 struct dbs_data *dbs_data)
400 struct common_dbs_data *cdata = dbs_data->cdata;
401 unsigned int cpu = policy->cpu;
402 struct cpu_dbs_common_info *cpu_cdbs = cdata->get_cpu_cdbs(cpu);
404 if (cdata->governor == GOV_CONSERVATIVE) {
405 struct cs_cpu_dbs_info_s *cs_dbs_info =
406 cdata->get_cpu_dbs_info_s(cpu);
408 cs_dbs_info->enable = 0;
411 gov_cancel_work(dbs_data, policy);
413 mutex_destroy(&cpu_cdbs->timer_mutex);
414 cpu_cdbs->cur_policy = NULL;
417 static void cpufreq_governor_limits(struct cpufreq_policy *policy,
418 struct dbs_data *dbs_data)
420 struct common_dbs_data *cdata = dbs_data->cdata;
421 unsigned int cpu = policy->cpu;
422 struct cpu_dbs_common_info *cpu_cdbs = cdata->get_cpu_cdbs(cpu);
424 if (!cpu_cdbs->cur_policy)
425 return;
427 mutex_lock(&cpu_cdbs->timer_mutex);
428 if (policy->max < cpu_cdbs->cur_policy->cur)
429 __cpufreq_driver_target(cpu_cdbs->cur_policy, policy->max,
430 CPUFREQ_RELATION_H);
431 else if (policy->min > cpu_cdbs->cur_policy->cur)
432 __cpufreq_driver_target(cpu_cdbs->cur_policy, policy->min,
433 CPUFREQ_RELATION_L);
434 dbs_check_cpu(dbs_data, cpu);
435 mutex_unlock(&cpu_cdbs->timer_mutex);
438 int cpufreq_governor_dbs(struct cpufreq_policy *policy,
439 struct common_dbs_data *cdata, unsigned int event)
441 struct dbs_data *dbs_data;
442 int ret = 0;
444 /* Lock governor to block concurrent initialization of governor */
445 mutex_lock(&cdata->mutex);
447 if (have_governor_per_policy())
448 dbs_data = policy->governor_data;
449 else
450 dbs_data = cdata->gdbs_data;
452 if (WARN_ON(!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT))) {
453 ret = -EINVAL;
454 goto unlock;
457 switch (event) {
458 case CPUFREQ_GOV_POLICY_INIT:
459 ret = cpufreq_governor_init(policy, dbs_data, cdata);
460 break;
461 case CPUFREQ_GOV_POLICY_EXIT:
462 cpufreq_governor_exit(policy, dbs_data);
463 break;
464 case CPUFREQ_GOV_START:
465 ret = cpufreq_governor_start(policy, dbs_data);
466 break;
467 case CPUFREQ_GOV_STOP:
468 cpufreq_governor_stop(policy, dbs_data);
469 break;
470 case CPUFREQ_GOV_LIMITS:
471 cpufreq_governor_limits(policy, dbs_data);
472 break;
475 unlock:
476 mutex_unlock(&cdata->mutex);
478 return ret;
480 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);