2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
5 * This code is based on drivers/scsi/mpt2sas/mpt2_base.c
6 * Copyright (C) 2007-2014 LSI Corporation
7 * Copyright (C) 20013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/sort.h>
60 #include <linux/time.h>
61 #include <linux/kthread.h>
62 #include <linux/aer.h>
64 #include "mpt2sas_base.h"
66 static MPT_CALLBACK mpt_callbacks
[MPT_MAX_CALLBACKS
];
68 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
70 #define MAX_HBA_QUEUE_DEPTH 30000
71 #define MAX_CHAIN_DEPTH 100000
72 static int max_queue_depth
= -1;
73 module_param(max_queue_depth
, int, 0);
74 MODULE_PARM_DESC(max_queue_depth
, " max controller queue depth ");
76 static int max_sgl_entries
= -1;
77 module_param(max_sgl_entries
, int, 0);
78 MODULE_PARM_DESC(max_sgl_entries
, " max sg entries ");
80 static int msix_disable
= -1;
81 module_param(msix_disable
, int, 0);
82 MODULE_PARM_DESC(msix_disable
, " disable msix routed interrupts (default=0)");
84 static int max_msix_vectors
= -1;
85 module_param(max_msix_vectors
, int, 0);
86 MODULE_PARM_DESC(max_msix_vectors
, " max msix vectors ");
88 static int mpt2sas_fwfault_debug
;
89 MODULE_PARM_DESC(mpt2sas_fwfault_debug
, " enable detection of firmware fault "
90 "and halt firmware - (default=0)");
92 static int disable_discovery
= -1;
93 module_param(disable_discovery
, int, 0);
94 MODULE_PARM_DESC(disable_discovery
, " disable discovery ");
97 _base_get_ioc_facts(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
);
100 _base_diag_reset(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
);
103 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
107 _scsih_set_fwfault_debug(const char *val
, struct kernel_param
*kp
)
109 int ret
= param_set_int(val
, kp
);
110 struct MPT2SAS_ADAPTER
*ioc
;
115 printk(KERN_INFO
"setting fwfault_debug(%d)\n", mpt2sas_fwfault_debug
);
116 list_for_each_entry(ioc
, &mpt2sas_ioc_list
, list
)
117 ioc
->fwfault_debug
= mpt2sas_fwfault_debug
;
121 module_param_call(mpt2sas_fwfault_debug
, _scsih_set_fwfault_debug
,
122 param_get_int
, &mpt2sas_fwfault_debug
, 0644);
125 * mpt2sas_remove_dead_ioc_func - kthread context to remove dead ioc
126 * @arg: input argument, used to derive ioc
128 * Return 0 if controller is removed from pci subsystem.
129 * Return -1 for other case.
131 static int mpt2sas_remove_dead_ioc_func(void *arg
)
133 struct MPT2SAS_ADAPTER
*ioc
= (struct MPT2SAS_ADAPTER
*)arg
;
134 struct pci_dev
*pdev
;
142 pci_stop_and_remove_bus_device_locked(pdev
);
148 * _base_fault_reset_work - workq handling ioc fault conditions
149 * @work: input argument, used to derive ioc
155 _base_fault_reset_work(struct work_struct
*work
)
157 struct MPT2SAS_ADAPTER
*ioc
=
158 container_of(work
, struct MPT2SAS_ADAPTER
, fault_reset_work
.work
);
162 struct task_struct
*p
;
164 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
165 if (ioc
->shost_recovery
|| ioc
->pci_error_recovery
)
167 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
169 doorbell
= mpt2sas_base_get_iocstate(ioc
, 0);
170 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_MASK
) {
171 printk(MPT2SAS_INFO_FMT
"%s : SAS host is non-operational !!!!\n",
172 ioc
->name
, __func__
);
174 /* It may be possible that EEH recovery can resolve some of
175 * pci bus failure issues rather removing the dead ioc function
176 * by considering controller is in a non-operational state. So
177 * here priority is given to the EEH recovery. If it doesn't
178 * not resolve this issue, mpt2sas driver will consider this
179 * controller to non-operational state and remove the dead ioc
182 if (ioc
->non_operational_loop
++ < 5) {
183 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
,
189 * Call _scsih_flush_pending_cmds callback so that we flush all
190 * pending commands back to OS. This call is required to aovid
191 * deadlock at block layer. Dead IOC will fail to do diag reset,
192 * and this call is safe since dead ioc will never return any
193 * command back from HW.
195 ioc
->schedule_dead_ioc_flush_running_cmds(ioc
);
197 * Set remove_host flag early since kernel thread will
198 * take some time to execute.
200 ioc
->remove_host
= 1;
201 /*Remove the Dead Host */
202 p
= kthread_run(mpt2sas_remove_dead_ioc_func
, ioc
,
203 "mpt2sas_dead_ioc_%d", ioc
->id
);
205 printk(MPT2SAS_ERR_FMT
206 "%s: Running mpt2sas_dead_ioc thread failed !!!!\n",
207 ioc
->name
, __func__
);
209 printk(MPT2SAS_ERR_FMT
210 "%s: Running mpt2sas_dead_ioc thread success !!!!\n",
211 ioc
->name
, __func__
);
214 return; /* don't rearm timer */
217 ioc
->non_operational_loop
= 0;
219 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
) {
220 rc
= mpt2sas_base_hard_reset_handler(ioc
, CAN_SLEEP
,
222 printk(MPT2SAS_WARN_FMT
"%s: hard reset: %s\n", ioc
->name
,
223 __func__
, (rc
== 0) ? "success" : "failed");
224 doorbell
= mpt2sas_base_get_iocstate(ioc
, 0);
225 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
)
226 mpt2sas_base_fault_info(ioc
, doorbell
&
227 MPI2_DOORBELL_DATA_MASK
);
230 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
232 if (ioc
->fault_reset_work_q
)
233 queue_delayed_work(ioc
->fault_reset_work_q
,
234 &ioc
->fault_reset_work
,
235 msecs_to_jiffies(FAULT_POLLING_INTERVAL
));
236 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
240 * mpt2sas_base_start_watchdog - start the fault_reset_work_q
241 * @ioc: per adapter object
247 mpt2sas_base_start_watchdog(struct MPT2SAS_ADAPTER
*ioc
)
251 if (ioc
->fault_reset_work_q
)
254 /* initialize fault polling */
255 INIT_DELAYED_WORK(&ioc
->fault_reset_work
, _base_fault_reset_work
);
256 snprintf(ioc
->fault_reset_work_q_name
,
257 sizeof(ioc
->fault_reset_work_q_name
), "poll_%d_status", ioc
->id
);
258 ioc
->fault_reset_work_q
=
259 create_singlethread_workqueue(ioc
->fault_reset_work_q_name
);
260 if (!ioc
->fault_reset_work_q
) {
261 printk(MPT2SAS_ERR_FMT
"%s: failed (line=%d)\n",
262 ioc
->name
, __func__
, __LINE__
);
265 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
266 if (ioc
->fault_reset_work_q
)
267 queue_delayed_work(ioc
->fault_reset_work_q
,
268 &ioc
->fault_reset_work
,
269 msecs_to_jiffies(FAULT_POLLING_INTERVAL
));
270 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
274 * mpt2sas_base_stop_watchdog - stop the fault_reset_work_q
275 * @ioc: per adapter object
281 mpt2sas_base_stop_watchdog(struct MPT2SAS_ADAPTER
*ioc
)
284 struct workqueue_struct
*wq
;
286 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
287 wq
= ioc
->fault_reset_work_q
;
288 ioc
->fault_reset_work_q
= NULL
;
289 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
291 if (!cancel_delayed_work_sync(&ioc
->fault_reset_work
))
293 destroy_workqueue(wq
);
298 * mpt2sas_base_fault_info - verbose translation of firmware FAULT code
299 * @ioc: per adapter object
300 * @fault_code: fault code
305 mpt2sas_base_fault_info(struct MPT2SAS_ADAPTER
*ioc
, u16 fault_code
)
307 printk(MPT2SAS_ERR_FMT
"fault_state(0x%04x)!\n",
308 ioc
->name
, fault_code
);
312 * mpt2sas_halt_firmware - halt's mpt controller firmware
313 * @ioc: per adapter object
315 * For debugging timeout related issues. Writing 0xCOFFEE00
316 * to the doorbell register will halt controller firmware. With
317 * the purpose to stop both driver and firmware, the enduser can
318 * obtain a ring buffer from controller UART.
321 mpt2sas_halt_firmware(struct MPT2SAS_ADAPTER
*ioc
)
325 if (!ioc
->fwfault_debug
)
330 doorbell
= readl(&ioc
->chip
->Doorbell
);
331 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
)
332 mpt2sas_base_fault_info(ioc
, doorbell
);
334 writel(0xC0FFEE00, &ioc
->chip
->Doorbell
);
335 printk(MPT2SAS_ERR_FMT
"Firmware is halted due to command "
336 "timeout\n", ioc
->name
);
339 panic("panic in %s\n", __func__
);
342 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
344 * _base_sas_ioc_info - verbose translation of the ioc status
345 * @ioc: per adapter object
346 * @mpi_reply: reply mf payload returned from firmware
347 * @request_hdr: request mf
352 _base_sas_ioc_info(struct MPT2SAS_ADAPTER
*ioc
, MPI2DefaultReply_t
*mpi_reply
,
353 MPI2RequestHeader_t
*request_hdr
)
355 u16 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
) &
359 char *func_str
= NULL
;
361 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
362 if (request_hdr
->Function
== MPI2_FUNCTION_SCSI_IO_REQUEST
||
363 request_hdr
->Function
== MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH
||
364 request_hdr
->Function
== MPI2_FUNCTION_EVENT_NOTIFICATION
)
367 if (ioc_status
== MPI2_IOCSTATUS_CONFIG_INVALID_PAGE
)
370 switch (ioc_status
) {
372 /****************************************************************************
373 * Common IOCStatus values for all replies
374 ****************************************************************************/
376 case MPI2_IOCSTATUS_INVALID_FUNCTION
:
377 desc
= "invalid function";
379 case MPI2_IOCSTATUS_BUSY
:
382 case MPI2_IOCSTATUS_INVALID_SGL
:
383 desc
= "invalid sgl";
385 case MPI2_IOCSTATUS_INTERNAL_ERROR
:
386 desc
= "internal error";
388 case MPI2_IOCSTATUS_INVALID_VPID
:
389 desc
= "invalid vpid";
391 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES
:
392 desc
= "insufficient resources";
394 case MPI2_IOCSTATUS_INVALID_FIELD
:
395 desc
= "invalid field";
397 case MPI2_IOCSTATUS_INVALID_STATE
:
398 desc
= "invalid state";
400 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED
:
401 desc
= "op state not supported";
404 /****************************************************************************
405 * Config IOCStatus values
406 ****************************************************************************/
408 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION
:
409 desc
= "config invalid action";
411 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE
:
412 desc
= "config invalid type";
414 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE
:
415 desc
= "config invalid page";
417 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA
:
418 desc
= "config invalid data";
420 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS
:
421 desc
= "config no defaults";
423 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT
:
424 desc
= "config cant commit";
427 /****************************************************************************
429 ****************************************************************************/
431 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR
:
432 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE
:
433 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE
:
434 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN
:
435 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN
:
436 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR
:
437 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR
:
438 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED
:
439 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH
:
440 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED
:
441 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED
:
442 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED
:
445 /****************************************************************************
446 * For use by SCSI Initiator and SCSI Target end-to-end data protection
447 ****************************************************************************/
449 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR
:
450 desc
= "eedp guard error";
452 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR
:
453 desc
= "eedp ref tag error";
455 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR
:
456 desc
= "eedp app tag error";
459 /****************************************************************************
461 ****************************************************************************/
463 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX
:
464 desc
= "target invalid io index";
466 case MPI2_IOCSTATUS_TARGET_ABORTED
:
467 desc
= "target aborted";
469 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE
:
470 desc
= "target no conn retryable";
472 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION
:
473 desc
= "target no connection";
475 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH
:
476 desc
= "target xfer count mismatch";
478 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR
:
479 desc
= "target data offset error";
481 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA
:
482 desc
= "target too much write data";
484 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT
:
485 desc
= "target iu too short";
487 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT
:
488 desc
= "target ack nak timeout";
490 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED
:
491 desc
= "target nak received";
494 /****************************************************************************
495 * Serial Attached SCSI values
496 ****************************************************************************/
498 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED
:
499 desc
= "smp request failed";
501 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN
:
502 desc
= "smp data overrun";
505 /****************************************************************************
506 * Diagnostic Buffer Post / Diagnostic Release values
507 ****************************************************************************/
509 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED
:
510 desc
= "diagnostic released";
519 switch (request_hdr
->Function
) {
520 case MPI2_FUNCTION_CONFIG
:
521 frame_sz
= sizeof(Mpi2ConfigRequest_t
) + ioc
->sge_size
;
522 func_str
= "config_page";
524 case MPI2_FUNCTION_SCSI_TASK_MGMT
:
525 frame_sz
= sizeof(Mpi2SCSITaskManagementRequest_t
);
526 func_str
= "task_mgmt";
528 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL
:
529 frame_sz
= sizeof(Mpi2SasIoUnitControlRequest_t
);
530 func_str
= "sas_iounit_ctl";
532 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR
:
533 frame_sz
= sizeof(Mpi2SepRequest_t
);
534 func_str
= "enclosure";
536 case MPI2_FUNCTION_IOC_INIT
:
537 frame_sz
= sizeof(Mpi2IOCInitRequest_t
);
538 func_str
= "ioc_init";
540 case MPI2_FUNCTION_PORT_ENABLE
:
541 frame_sz
= sizeof(Mpi2PortEnableRequest_t
);
542 func_str
= "port_enable";
544 case MPI2_FUNCTION_SMP_PASSTHROUGH
:
545 frame_sz
= sizeof(Mpi2SmpPassthroughRequest_t
) + ioc
->sge_size
;
546 func_str
= "smp_passthru";
550 func_str
= "unknown";
554 printk(MPT2SAS_WARN_FMT
"ioc_status: %s(0x%04x), request(0x%p),"
555 " (%s)\n", ioc
->name
, desc
, ioc_status
, request_hdr
, func_str
);
557 _debug_dump_mf(request_hdr
, frame_sz
/4);
561 * _base_display_event_data - verbose translation of firmware asyn events
562 * @ioc: per adapter object
563 * @mpi_reply: reply mf payload returned from firmware
568 _base_display_event_data(struct MPT2SAS_ADAPTER
*ioc
,
569 Mpi2EventNotificationReply_t
*mpi_reply
)
574 if (!(ioc
->logging_level
& MPT_DEBUG_EVENTS
))
577 event
= le16_to_cpu(mpi_reply
->Event
);
580 case MPI2_EVENT_LOG_DATA
:
583 case MPI2_EVENT_STATE_CHANGE
:
584 desc
= "Status Change";
586 case MPI2_EVENT_HARD_RESET_RECEIVED
:
587 desc
= "Hard Reset Received";
589 case MPI2_EVENT_EVENT_CHANGE
:
590 desc
= "Event Change";
592 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE
:
593 desc
= "Device Status Change";
595 case MPI2_EVENT_IR_OPERATION_STATUS
:
596 if (!ioc
->hide_ir_msg
)
597 desc
= "IR Operation Status";
599 case MPI2_EVENT_SAS_DISCOVERY
:
601 Mpi2EventDataSasDiscovery_t
*event_data
=
602 (Mpi2EventDataSasDiscovery_t
*)mpi_reply
->EventData
;
603 printk(MPT2SAS_INFO_FMT
"Discovery: (%s)", ioc
->name
,
604 (event_data
->ReasonCode
== MPI2_EVENT_SAS_DISC_RC_STARTED
) ?
606 if (event_data
->DiscoveryStatus
)
607 printk("discovery_status(0x%08x)",
608 le32_to_cpu(event_data
->DiscoveryStatus
));
612 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE
:
613 desc
= "SAS Broadcast Primitive";
615 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE
:
616 desc
= "SAS Init Device Status Change";
618 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW
:
619 desc
= "SAS Init Table Overflow";
621 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST
:
622 desc
= "SAS Topology Change List";
624 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE
:
625 desc
= "SAS Enclosure Device Status Change";
627 case MPI2_EVENT_IR_VOLUME
:
628 if (!ioc
->hide_ir_msg
)
631 case MPI2_EVENT_IR_PHYSICAL_DISK
:
632 if (!ioc
->hide_ir_msg
)
633 desc
= "IR Physical Disk";
635 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST
:
636 if (!ioc
->hide_ir_msg
)
637 desc
= "IR Configuration Change List";
639 case MPI2_EVENT_LOG_ENTRY_ADDED
:
640 if (!ioc
->hide_ir_msg
)
641 desc
= "Log Entry Added";
643 case MPI2_EVENT_TEMP_THRESHOLD
:
644 desc
= "Temperature Threshold";
651 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
, desc
);
656 * _base_sas_log_info - verbose translation of firmware log info
657 * @ioc: per adapter object
658 * @log_info: log info
663 _base_sas_log_info(struct MPT2SAS_ADAPTER
*ioc
, u32 log_info
)
674 union loginfo_type sas_loginfo
;
675 char *originator_str
= NULL
;
677 sas_loginfo
.loginfo
= log_info
;
678 if (sas_loginfo
.dw
.bus_type
!= 3 /*SAS*/)
681 /* each nexus loss loginfo */
682 if (log_info
== 0x31170000)
685 /* eat the loginfos associated with task aborts */
686 if (ioc
->ignore_loginfos
&& (log_info
== 0x30050000 || log_info
==
687 0x31140000 || log_info
== 0x31130000))
690 switch (sas_loginfo
.dw
.originator
) {
692 originator_str
= "IOP";
695 originator_str
= "PL";
698 if (!ioc
->hide_ir_msg
)
699 originator_str
= "IR";
701 originator_str
= "WarpDrive";
705 printk(MPT2SAS_WARN_FMT
"log_info(0x%08x): originator(%s), "
706 "code(0x%02x), sub_code(0x%04x)\n", ioc
->name
, log_info
,
707 originator_str
, sas_loginfo
.dw
.code
,
708 sas_loginfo
.dw
.subcode
);
712 * _base_display_reply_info -
713 * @ioc: per adapter object
714 * @smid: system request message index
715 * @msix_index: MSIX table index supplied by the OS
716 * @reply: reply message frame(lower 32bit addr)
721 _base_display_reply_info(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
724 MPI2DefaultReply_t
*mpi_reply
;
727 mpi_reply
= mpt2sas_base_get_reply_virt_addr(ioc
, reply
);
728 if (unlikely(!mpi_reply
)) {
729 printk(MPT2SAS_ERR_FMT
"mpi_reply not valid at %s:%d/%s()!\n",
730 ioc
->name
, __FILE__
, __LINE__
, __func__
);
733 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
);
734 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
735 if ((ioc_status
& MPI2_IOCSTATUS_MASK
) &&
736 (ioc
->logging_level
& MPT_DEBUG_REPLY
)) {
737 _base_sas_ioc_info(ioc
, mpi_reply
,
738 mpt2sas_base_get_msg_frame(ioc
, smid
));
741 if (ioc_status
& MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE
)
742 _base_sas_log_info(ioc
, le32_to_cpu(mpi_reply
->IOCLogInfo
));
746 * mpt2sas_base_done - base internal command completion routine
747 * @ioc: per adapter object
748 * @smid: system request message index
749 * @msix_index: MSIX table index supplied by the OS
750 * @reply: reply message frame(lower 32bit addr)
752 * Return 1 meaning mf should be freed from _base_interrupt
753 * 0 means the mf is freed from this function.
756 mpt2sas_base_done(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
759 MPI2DefaultReply_t
*mpi_reply
;
761 mpi_reply
= mpt2sas_base_get_reply_virt_addr(ioc
, reply
);
762 if (mpi_reply
&& mpi_reply
->Function
== MPI2_FUNCTION_EVENT_ACK
)
765 if (ioc
->base_cmds
.status
== MPT2_CMD_NOT_USED
)
768 ioc
->base_cmds
.status
|= MPT2_CMD_COMPLETE
;
770 ioc
->base_cmds
.status
|= MPT2_CMD_REPLY_VALID
;
771 memcpy(ioc
->base_cmds
.reply
, mpi_reply
, mpi_reply
->MsgLength
*4);
773 ioc
->base_cmds
.status
&= ~MPT2_CMD_PENDING
;
775 complete(&ioc
->base_cmds
.done
);
780 * _base_async_event - main callback handler for firmware asyn events
781 * @ioc: per adapter object
782 * @msix_index: MSIX table index supplied by the OS
783 * @reply: reply message frame(lower 32bit addr)
788 _base_async_event(struct MPT2SAS_ADAPTER
*ioc
, u8 msix_index
, u32 reply
)
790 Mpi2EventNotificationReply_t
*mpi_reply
;
791 Mpi2EventAckRequest_t
*ack_request
;
794 mpi_reply
= mpt2sas_base_get_reply_virt_addr(ioc
, reply
);
797 if (mpi_reply
->Function
!= MPI2_FUNCTION_EVENT_NOTIFICATION
)
799 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
800 _base_display_event_data(ioc
, mpi_reply
);
802 if (!(mpi_reply
->AckRequired
& MPI2_EVENT_NOTIFICATION_ACK_REQUIRED
))
804 smid
= mpt2sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
806 printk(MPT2SAS_ERR_FMT
"%s: failed obtaining a smid\n",
807 ioc
->name
, __func__
);
811 ack_request
= mpt2sas_base_get_msg_frame(ioc
, smid
);
812 memset(ack_request
, 0, sizeof(Mpi2EventAckRequest_t
));
813 ack_request
->Function
= MPI2_FUNCTION_EVENT_ACK
;
814 ack_request
->Event
= mpi_reply
->Event
;
815 ack_request
->EventContext
= mpi_reply
->EventContext
;
816 ack_request
->VF_ID
= 0; /* TODO */
817 ack_request
->VP_ID
= 0;
818 mpt2sas_base_put_smid_default(ioc
, smid
);
822 /* scsih callback handler */
823 mpt2sas_scsih_event_callback(ioc
, msix_index
, reply
);
825 /* ctl callback handler */
826 mpt2sas_ctl_event_callback(ioc
, msix_index
, reply
);
832 * _base_get_cb_idx - obtain the callback index
833 * @ioc: per adapter object
834 * @smid: system request message index
836 * Return callback index.
839 _base_get_cb_idx(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
)
844 if (smid
< ioc
->hi_priority_smid
) {
846 cb_idx
= ioc
->scsi_lookup
[i
].cb_idx
;
847 } else if (smid
< ioc
->internal_smid
) {
848 i
= smid
- ioc
->hi_priority_smid
;
849 cb_idx
= ioc
->hpr_lookup
[i
].cb_idx
;
850 } else if (smid
<= ioc
->hba_queue_depth
) {
851 i
= smid
- ioc
->internal_smid
;
852 cb_idx
= ioc
->internal_lookup
[i
].cb_idx
;
859 * _base_mask_interrupts - disable interrupts
860 * @ioc: per adapter object
862 * Disabling ResetIRQ, Reply and Doorbell Interrupts
867 _base_mask_interrupts(struct MPT2SAS_ADAPTER
*ioc
)
871 ioc
->mask_interrupts
= 1;
872 him_register
= readl(&ioc
->chip
->HostInterruptMask
);
873 him_register
|= MPI2_HIM_DIM
+ MPI2_HIM_RIM
+ MPI2_HIM_RESET_IRQ_MASK
;
874 writel(him_register
, &ioc
->chip
->HostInterruptMask
);
875 readl(&ioc
->chip
->HostInterruptMask
);
879 * _base_unmask_interrupts - enable interrupts
880 * @ioc: per adapter object
882 * Enabling only Reply Interrupts
887 _base_unmask_interrupts(struct MPT2SAS_ADAPTER
*ioc
)
891 him_register
= readl(&ioc
->chip
->HostInterruptMask
);
892 him_register
&= ~MPI2_HIM_RIM
;
893 writel(him_register
, &ioc
->chip
->HostInterruptMask
);
894 ioc
->mask_interrupts
= 0;
897 union reply_descriptor
{
906 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
907 * @irq: irq number (not used)
908 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
909 * @r: pt_regs pointer (not used)
911 * Return IRQ_HANDLE if processed, else IRQ_NONE.
914 _base_interrupt(int irq
, void *bus_id
)
916 struct adapter_reply_queue
*reply_q
= bus_id
;
917 union reply_descriptor rd
;
919 u8 request_desript_type
;
923 u8 msix_index
= reply_q
->msix_index
;
924 struct MPT2SAS_ADAPTER
*ioc
= reply_q
->ioc
;
925 Mpi2ReplyDescriptorsUnion_t
*rpf
;
928 if (ioc
->mask_interrupts
)
931 if (!atomic_add_unless(&reply_q
->busy
, 1, 1))
934 rpf
= &reply_q
->reply_post_free
[reply_q
->reply_post_host_index
];
935 request_desript_type
= rpf
->Default
.ReplyFlags
936 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK
;
937 if (request_desript_type
== MPI2_RPY_DESCRIPT_FLAGS_UNUSED
) {
938 atomic_dec(&reply_q
->busy
);
945 rd
.word
= le64_to_cpu(rpf
->Words
);
946 if (rd
.u
.low
== UINT_MAX
|| rd
.u
.high
== UINT_MAX
)
949 smid
= le16_to_cpu(rpf
->Default
.DescriptorTypeDependent1
);
950 if (request_desript_type
==
951 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY
) {
953 (rpf
->AddressReply
.ReplyFrameAddress
);
954 if (reply
> ioc
->reply_dma_max_address
||
955 reply
< ioc
->reply_dma_min_address
)
957 } else if (request_desript_type
==
958 MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER
)
960 else if (request_desript_type
==
961 MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS
)
964 cb_idx
= _base_get_cb_idx(ioc
, smid
);
965 if ((likely(cb_idx
< MPT_MAX_CALLBACKS
))
966 && (likely(mpt_callbacks
[cb_idx
] != NULL
))) {
967 rc
= mpt_callbacks
[cb_idx
](ioc
, smid
,
970 _base_display_reply_info(ioc
, smid
,
973 mpt2sas_base_free_smid(ioc
, smid
);
977 _base_async_event(ioc
, msix_index
, reply
);
979 /* reply free queue handling */
981 ioc
->reply_free_host_index
=
982 (ioc
->reply_free_host_index
==
983 (ioc
->reply_free_queue_depth
- 1)) ?
984 0 : ioc
->reply_free_host_index
+ 1;
985 ioc
->reply_free
[ioc
->reply_free_host_index
] =
988 writel(ioc
->reply_free_host_index
,
989 &ioc
->chip
->ReplyFreeHostIndex
);
994 rpf
->Words
= cpu_to_le64(ULLONG_MAX
);
995 reply_q
->reply_post_host_index
=
996 (reply_q
->reply_post_host_index
==
997 (ioc
->reply_post_queue_depth
- 1)) ? 0 :
998 reply_q
->reply_post_host_index
+ 1;
999 request_desript_type
=
1000 reply_q
->reply_post_free
[reply_q
->reply_post_host_index
].
1001 Default
.ReplyFlags
& MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK
;
1003 if (request_desript_type
== MPI2_RPY_DESCRIPT_FLAGS_UNUSED
)
1005 if (!reply_q
->reply_post_host_index
)
1006 rpf
= reply_q
->reply_post_free
;
1013 if (!completed_cmds
) {
1014 atomic_dec(&reply_q
->busy
);
1018 if (ioc
->is_warpdrive
) {
1019 writel(reply_q
->reply_post_host_index
,
1020 ioc
->reply_post_host_index
[msix_index
]);
1021 atomic_dec(&reply_q
->busy
);
1024 writel(reply_q
->reply_post_host_index
| (msix_index
<<
1025 MPI2_RPHI_MSIX_INDEX_SHIFT
), &ioc
->chip
->ReplyPostHostIndex
);
1026 atomic_dec(&reply_q
->busy
);
1031 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1032 * @ioc: per adapter object
1036 _base_is_controller_msix_enabled(struct MPT2SAS_ADAPTER
*ioc
)
1038 return (ioc
->facts
.IOCCapabilities
&
1039 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX
) && ioc
->msix_enable
;
1043 * mpt2sas_base_flush_reply_queues - flushing the MSIX reply queues
1044 * @ioc: per adapter object
1045 * Context: ISR conext
1047 * Called when a Task Management request has completed. We want
1048 * to flush the other reply queues so all the outstanding IO has been
1049 * completed back to OS before we process the TM completetion.
1054 mpt2sas_base_flush_reply_queues(struct MPT2SAS_ADAPTER
*ioc
)
1056 struct adapter_reply_queue
*reply_q
;
1058 /* If MSIX capability is turned off
1059 * then multi-queues are not enabled
1061 if (!_base_is_controller_msix_enabled(ioc
))
1064 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
1065 if (ioc
->shost_recovery
)
1067 /* TMs are on msix_index == 0 */
1068 if (reply_q
->msix_index
== 0)
1070 _base_interrupt(reply_q
->vector
, (void *)reply_q
);
1075 * mpt2sas_base_release_callback_handler - clear interrupt callback handler
1076 * @cb_idx: callback index
1081 mpt2sas_base_release_callback_handler(u8 cb_idx
)
1083 mpt_callbacks
[cb_idx
] = NULL
;
1087 * mpt2sas_base_register_callback_handler - obtain index for the interrupt callback handler
1088 * @cb_func: callback function
1093 mpt2sas_base_register_callback_handler(MPT_CALLBACK cb_func
)
1097 for (cb_idx
= MPT_MAX_CALLBACKS
-1; cb_idx
; cb_idx
--)
1098 if (mpt_callbacks
[cb_idx
] == NULL
)
1101 mpt_callbacks
[cb_idx
] = cb_func
;
1106 * mpt2sas_base_initialize_callback_handler - initialize the interrupt callback handler
1111 mpt2sas_base_initialize_callback_handler(void)
1115 for (cb_idx
= 0; cb_idx
< MPT_MAX_CALLBACKS
; cb_idx
++)
1116 mpt2sas_base_release_callback_handler(cb_idx
);
1120 * mpt2sas_base_build_zero_len_sge - build zero length sg entry
1121 * @ioc: per adapter object
1122 * @paddr: virtual address for SGE
1124 * Create a zero length scatter gather entry to insure the IOCs hardware has
1125 * something to use if the target device goes brain dead and tries
1126 * to send data even when none is asked for.
1131 mpt2sas_base_build_zero_len_sge(struct MPT2SAS_ADAPTER
*ioc
, void *paddr
)
1133 u32 flags_length
= (u32
)((MPI2_SGE_FLAGS_LAST_ELEMENT
|
1134 MPI2_SGE_FLAGS_END_OF_BUFFER
| MPI2_SGE_FLAGS_END_OF_LIST
|
1135 MPI2_SGE_FLAGS_SIMPLE_ELEMENT
) <<
1136 MPI2_SGE_FLAGS_SHIFT
);
1137 ioc
->base_add_sg_single(paddr
, flags_length
, -1);
1141 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1142 * @paddr: virtual address for SGE
1143 * @flags_length: SGE flags and data transfer length
1144 * @dma_addr: Physical address
1149 _base_add_sg_single_32(void *paddr
, u32 flags_length
, dma_addr_t dma_addr
)
1151 Mpi2SGESimple32_t
*sgel
= paddr
;
1153 flags_length
|= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING
|
1154 MPI2_SGE_FLAGS_SYSTEM_ADDRESS
) << MPI2_SGE_FLAGS_SHIFT
;
1155 sgel
->FlagsLength
= cpu_to_le32(flags_length
);
1156 sgel
->Address
= cpu_to_le32(dma_addr
);
1161 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1162 * @paddr: virtual address for SGE
1163 * @flags_length: SGE flags and data transfer length
1164 * @dma_addr: Physical address
1169 _base_add_sg_single_64(void *paddr
, u32 flags_length
, dma_addr_t dma_addr
)
1171 Mpi2SGESimple64_t
*sgel
= paddr
;
1173 flags_length
|= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING
|
1174 MPI2_SGE_FLAGS_SYSTEM_ADDRESS
) << MPI2_SGE_FLAGS_SHIFT
;
1175 sgel
->FlagsLength
= cpu_to_le32(flags_length
);
1176 sgel
->Address
= cpu_to_le64(dma_addr
);
1179 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1182 * _base_config_dma_addressing - set dma addressing
1183 * @ioc: per adapter object
1184 * @pdev: PCI device struct
1186 * Returns 0 for success, non-zero for failure.
1189 _base_config_dma_addressing(struct MPT2SAS_ADAPTER
*ioc
, struct pci_dev
*pdev
)
1192 u64 consistent_dma_mask
;
1195 consistent_dma_mask
= DMA_BIT_MASK(64);
1197 consistent_dma_mask
= DMA_BIT_MASK(32);
1199 if (sizeof(dma_addr_t
) > 4) {
1200 const uint64_t required_mask
=
1201 dma_get_required_mask(&pdev
->dev
);
1202 if ((required_mask
> DMA_BIT_MASK(32)) &&
1203 !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)) &&
1204 !pci_set_consistent_dma_mask(pdev
, consistent_dma_mask
)) {
1205 ioc
->base_add_sg_single
= &_base_add_sg_single_64
;
1206 ioc
->sge_size
= sizeof(Mpi2SGESimple64_t
);
1212 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))
1213 && !pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32))) {
1214 ioc
->base_add_sg_single
= &_base_add_sg_single_32
;
1215 ioc
->sge_size
= sizeof(Mpi2SGESimple32_t
);
1222 printk(MPT2SAS_INFO_FMT
1223 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1224 ioc
->name
, ioc
->dma_mask
, convert_to_kb(s
.totalram
));
1230 _base_change_consistent_dma_mask(struct MPT2SAS_ADAPTER
*ioc
,
1231 struct pci_dev
*pdev
)
1233 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
1234 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32)))
1240 * _base_check_enable_msix - checks MSIX capabable.
1241 * @ioc: per adapter object
1243 * Check to see if card is capable of MSIX, and set number
1244 * of available msix vectors
1247 _base_check_enable_msix(struct MPT2SAS_ADAPTER
*ioc
)
1250 u16 message_control
;
1253 /* Check whether controller SAS2008 B0 controller,
1254 if it is SAS2008 B0 controller use IO-APIC instead of MSIX */
1255 if (ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2008
&&
1256 ioc
->pdev
->revision
== 0x01) {
1260 base
= pci_find_capability(ioc
->pdev
, PCI_CAP_ID_MSIX
);
1262 dfailprintk(ioc
, printk(MPT2SAS_INFO_FMT
"msix not "
1263 "supported\n", ioc
->name
));
1267 /* get msix vector count */
1268 /* NUMA_IO not supported for older controllers */
1269 if (ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2004
||
1270 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2008
||
1271 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2108_1
||
1272 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2108_2
||
1273 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2108_3
||
1274 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2116_1
||
1275 ioc
->pdev
->device
== MPI2_MFGPAGE_DEVID_SAS2116_2
)
1276 ioc
->msix_vector_count
= 1;
1278 pci_read_config_word(ioc
->pdev
, base
+ 2, &message_control
);
1279 ioc
->msix_vector_count
= (message_control
& 0x3FF) + 1;
1281 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"msix is supported, "
1282 "vector_count(%d)\n", ioc
->name
, ioc
->msix_vector_count
));
1288 * _base_free_irq - free irq
1289 * @ioc: per adapter object
1291 * Freeing respective reply_queue from the list.
1294 _base_free_irq(struct MPT2SAS_ADAPTER
*ioc
)
1296 struct adapter_reply_queue
*reply_q
, *next
;
1298 if (list_empty(&ioc
->reply_queue_list
))
1301 list_for_each_entry_safe(reply_q
, next
, &ioc
->reply_queue_list
, list
) {
1302 list_del(&reply_q
->list
);
1303 irq_set_affinity_hint(reply_q
->vector
, NULL
);
1304 free_cpumask_var(reply_q
->affinity_hint
);
1305 synchronize_irq(reply_q
->vector
);
1306 free_irq(reply_q
->vector
, reply_q
);
1312 * _base_request_irq - request irq
1313 * @ioc: per adapter object
1314 * @index: msix index into vector table
1315 * @vector: irq vector
1317 * Inserting respective reply_queue into the list.
1320 _base_request_irq(struct MPT2SAS_ADAPTER
*ioc
, u8 index
, u32 vector
)
1322 struct adapter_reply_queue
*reply_q
;
1325 reply_q
= kzalloc(sizeof(struct adapter_reply_queue
), GFP_KERNEL
);
1327 printk(MPT2SAS_ERR_FMT
"unable to allocate memory %d!\n",
1328 ioc
->name
, (int)sizeof(struct adapter_reply_queue
));
1332 reply_q
->msix_index
= index
;
1333 reply_q
->vector
= vector
;
1335 if (!alloc_cpumask_var(&reply_q
->affinity_hint
, GFP_KERNEL
))
1337 cpumask_clear(reply_q
->affinity_hint
);
1339 atomic_set(&reply_q
->busy
, 0);
1340 if (ioc
->msix_enable
)
1341 snprintf(reply_q
->name
, MPT_NAME_LENGTH
, "%s%d-msix%d",
1342 MPT2SAS_DRIVER_NAME
, ioc
->id
, index
);
1344 snprintf(reply_q
->name
, MPT_NAME_LENGTH
, "%s%d",
1345 MPT2SAS_DRIVER_NAME
, ioc
->id
);
1346 r
= request_irq(vector
, _base_interrupt
, IRQF_SHARED
, reply_q
->name
,
1349 printk(MPT2SAS_ERR_FMT
"unable to allocate interrupt %d!\n",
1350 reply_q
->name
, vector
);
1355 INIT_LIST_HEAD(&reply_q
->list
);
1356 list_add_tail(&reply_q
->list
, &ioc
->reply_queue_list
);
1361 * _base_assign_reply_queues - assigning msix index for each cpu
1362 * @ioc: per adapter object
1364 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1366 * It would nice if we could call irq_set_affinity, however it is not
1367 * an exported symbol
1370 _base_assign_reply_queues(struct MPT2SAS_ADAPTER
*ioc
)
1372 unsigned int cpu
, nr_cpus
, nr_msix
, index
= 0;
1373 struct adapter_reply_queue
*reply_q
;
1375 if (!_base_is_controller_msix_enabled(ioc
))
1378 memset(ioc
->cpu_msix_table
, 0, ioc
->cpu_msix_table_sz
);
1380 nr_cpus
= num_online_cpus();
1381 nr_msix
= ioc
->reply_queue_count
= min(ioc
->reply_queue_count
,
1382 ioc
->facts
.MaxMSIxVectors
);
1386 cpu
= cpumask_first(cpu_online_mask
);
1388 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
1390 unsigned int i
, group
= nr_cpus
/ nr_msix
;
1395 if (index
< nr_cpus
% nr_msix
)
1398 for (i
= 0 ; i
< group
; i
++) {
1399 ioc
->cpu_msix_table
[cpu
] = index
;
1400 cpumask_or(reply_q
->affinity_hint
,
1401 reply_q
->affinity_hint
, get_cpu_mask(cpu
));
1402 cpu
= cpumask_next(cpu
, cpu_online_mask
);
1405 if (irq_set_affinity_hint(reply_q
->vector
,
1406 reply_q
->affinity_hint
))
1407 dinitprintk(ioc
, pr_info(MPT2SAS_FMT
1408 "error setting affinity hint for irq vector %d\n",
1409 ioc
->name
, reply_q
->vector
));
1415 * _base_disable_msix - disables msix
1416 * @ioc: per adapter object
1420 _base_disable_msix(struct MPT2SAS_ADAPTER
*ioc
)
1422 if (ioc
->msix_enable
) {
1423 pci_disable_msix(ioc
->pdev
);
1424 ioc
->msix_enable
= 0;
1429 * _base_enable_msix - enables msix, failback to io_apic
1430 * @ioc: per adapter object
1434 _base_enable_msix(struct MPT2SAS_ADAPTER
*ioc
)
1436 struct msix_entry
*entries
, *a
;
1441 if (msix_disable
== -1 || msix_disable
== 0)
1447 if (_base_check_enable_msix(ioc
) != 0)
1450 ioc
->reply_queue_count
= min_t(int, ioc
->cpu_count
,
1451 ioc
->msix_vector_count
);
1453 if (!ioc
->rdpq_array_enable
&& max_msix_vectors
== -1)
1454 max_msix_vectors
= 8;
1456 if (max_msix_vectors
> 0) {
1457 ioc
->reply_queue_count
= min_t(int, max_msix_vectors
,
1458 ioc
->reply_queue_count
);
1459 ioc
->msix_vector_count
= ioc
->reply_queue_count
;
1460 } else if (max_msix_vectors
== 0)
1463 printk(MPT2SAS_INFO_FMT
1464 "MSI-X vectors supported: %d, no of cores: %d, max_msix_vectors: %d\n",
1465 ioc
->name
, ioc
->msix_vector_count
, ioc
->cpu_count
, max_msix_vectors
);
1467 entries
= kcalloc(ioc
->reply_queue_count
, sizeof(struct msix_entry
),
1470 dfailprintk(ioc
, printk(MPT2SAS_INFO_FMT
"kcalloc "
1471 "failed @ at %s:%d/%s() !!!\n", ioc
->name
, __FILE__
,
1472 __LINE__
, __func__
));
1476 for (i
= 0, a
= entries
; i
< ioc
->reply_queue_count
; i
++, a
++)
1479 r
= pci_enable_msix_exact(ioc
->pdev
, entries
, ioc
->reply_queue_count
);
1481 dfailprintk(ioc
, printk(MPT2SAS_INFO_FMT
1482 "pci_enable_msix_exact failed (r=%d) !!!\n", ioc
->name
, r
));
1487 ioc
->msix_enable
= 1;
1488 for (i
= 0, a
= entries
; i
< ioc
->reply_queue_count
; i
++, a
++) {
1489 r
= _base_request_irq(ioc
, i
, a
->vector
);
1491 _base_free_irq(ioc
);
1492 _base_disable_msix(ioc
);
1501 /* failback to io_apic interrupt routing */
1504 ioc
->reply_queue_count
= 1;
1505 r
= _base_request_irq(ioc
, 0, ioc
->pdev
->irq
);
1511 * mpt2sas_base_map_resources - map in controller resources (io/irq/memap)
1512 * @ioc: per adapter object
1514 * Returns 0 for success, non-zero for failure.
1517 mpt2sas_base_map_resources(struct MPT2SAS_ADAPTER
*ioc
)
1519 struct pci_dev
*pdev
= ioc
->pdev
;
1525 struct adapter_reply_queue
*reply_q
;
1527 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n",
1528 ioc
->name
, __func__
));
1530 ioc
->bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
1531 if (pci_enable_device_mem(pdev
)) {
1532 printk(MPT2SAS_WARN_FMT
"pci_enable_device_mem: "
1533 "failed\n", ioc
->name
);
1539 if (pci_request_selected_regions(pdev
, ioc
->bars
,
1540 MPT2SAS_DRIVER_NAME
)) {
1541 printk(MPT2SAS_WARN_FMT
"pci_request_selected_regions: "
1542 "failed\n", ioc
->name
);
1548 /* AER (Advanced Error Reporting) hooks */
1549 pci_enable_pcie_error_reporting(pdev
);
1551 pci_set_master(pdev
);
1553 if (_base_config_dma_addressing(ioc
, pdev
) != 0) {
1554 printk(MPT2SAS_WARN_FMT
"no suitable DMA mask for %s\n",
1555 ioc
->name
, pci_name(pdev
));
1560 for (i
= 0, memap_sz
= 0, pio_sz
= 0 ; i
< DEVICE_COUNT_RESOURCE
; i
++) {
1561 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
1564 pio_chip
= (u64
)pci_resource_start(pdev
, i
);
1565 pio_sz
= pci_resource_len(pdev
, i
);
1569 /* verify memory resource is valid before using */
1570 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
1571 ioc
->chip_phys
= pci_resource_start(pdev
, i
);
1572 chip_phys
= (u64
)ioc
->chip_phys
;
1573 memap_sz
= pci_resource_len(pdev
, i
);
1574 ioc
->chip
= ioremap(ioc
->chip_phys
, memap_sz
);
1575 if (ioc
->chip
== NULL
) {
1576 printk(MPT2SAS_ERR_FMT
"unable to map "
1577 "adapter memory!\n", ioc
->name
);
1585 _base_mask_interrupts(ioc
);
1587 r
= _base_get_ioc_facts(ioc
, CAN_SLEEP
);
1591 if (!ioc
->rdpq_array_enable_assigned
) {
1592 ioc
->rdpq_array_enable
= ioc
->rdpq_array_capable
;
1593 ioc
->rdpq_array_enable_assigned
= 1;
1596 r
= _base_enable_msix(ioc
);
1600 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
)
1601 printk(MPT2SAS_INFO_FMT
"%s: IRQ %d\n",
1602 reply_q
->name
, ((ioc
->msix_enable
) ? "PCI-MSI-X enabled" :
1603 "IO-APIC enabled"), reply_q
->vector
);
1605 printk(MPT2SAS_INFO_FMT
"iomem(0x%016llx), mapped(0x%p), size(%d)\n",
1606 ioc
->name
, (unsigned long long)chip_phys
, ioc
->chip
, memap_sz
);
1607 printk(MPT2SAS_INFO_FMT
"ioport(0x%016llx), size(%d)\n",
1608 ioc
->name
, (unsigned long long)pio_chip
, pio_sz
);
1610 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
1611 pci_save_state(pdev
);
1619 pci_release_selected_regions(ioc
->pdev
, ioc
->bars
);
1620 pci_disable_pcie_error_reporting(pdev
);
1621 pci_disable_device(pdev
);
1626 * mpt2sas_base_get_msg_frame - obtain request mf pointer
1627 * @ioc: per adapter object
1628 * @smid: system request message index(smid zero is invalid)
1630 * Returns virt pointer to message frame.
1633 mpt2sas_base_get_msg_frame(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
)
1635 return (void *)(ioc
->request
+ (smid
* ioc
->request_sz
));
1639 * mpt2sas_base_get_sense_buffer - obtain a sense buffer assigned to a mf request
1640 * @ioc: per adapter object
1641 * @smid: system request message index
1643 * Returns virt pointer to sense buffer.
1646 mpt2sas_base_get_sense_buffer(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
)
1648 return (void *)(ioc
->sense
+ ((smid
- 1) * SCSI_SENSE_BUFFERSIZE
));
1652 * mpt2sas_base_get_sense_buffer_dma - obtain a sense buffer assigned to a mf request
1653 * @ioc: per adapter object
1654 * @smid: system request message index
1656 * Returns phys pointer to the low 32bit address of the sense buffer.
1659 mpt2sas_base_get_sense_buffer_dma(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
)
1661 return cpu_to_le32(ioc
->sense_dma
+
1662 ((smid
- 1) * SCSI_SENSE_BUFFERSIZE
));
1666 * mpt2sas_base_get_reply_virt_addr - obtain reply frames virt address
1667 * @ioc: per adapter object
1668 * @phys_addr: lower 32 physical addr of the reply
1670 * Converts 32bit lower physical addr into a virt address.
1673 mpt2sas_base_get_reply_virt_addr(struct MPT2SAS_ADAPTER
*ioc
, u32 phys_addr
)
1677 return ioc
->reply
+ (phys_addr
- (u32
)ioc
->reply_dma
);
1681 * mpt2sas_base_get_smid - obtain a free smid from internal queue
1682 * @ioc: per adapter object
1683 * @cb_idx: callback index
1685 * Returns smid (zero is invalid)
1688 mpt2sas_base_get_smid(struct MPT2SAS_ADAPTER
*ioc
, u8 cb_idx
)
1690 unsigned long flags
;
1691 struct request_tracker
*request
;
1694 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
1695 if (list_empty(&ioc
->internal_free_list
)) {
1696 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
1697 printk(MPT2SAS_ERR_FMT
"%s: smid not available\n",
1698 ioc
->name
, __func__
);
1702 request
= list_entry(ioc
->internal_free_list
.next
,
1703 struct request_tracker
, tracker_list
);
1704 request
->cb_idx
= cb_idx
;
1705 smid
= request
->smid
;
1706 list_del(&request
->tracker_list
);
1707 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
1712 * mpt2sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
1713 * @ioc: per adapter object
1714 * @cb_idx: callback index
1715 * @scmd: pointer to scsi command object
1717 * Returns smid (zero is invalid)
1720 mpt2sas_base_get_smid_scsiio(struct MPT2SAS_ADAPTER
*ioc
, u8 cb_idx
,
1721 struct scsi_cmnd
*scmd
)
1723 unsigned long flags
;
1724 struct scsiio_tracker
*request
;
1727 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
1728 if (list_empty(&ioc
->free_list
)) {
1729 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
1730 printk(MPT2SAS_ERR_FMT
"%s: smid not available\n",
1731 ioc
->name
, __func__
);
1735 request
= list_entry(ioc
->free_list
.next
,
1736 struct scsiio_tracker
, tracker_list
);
1737 request
->scmd
= scmd
;
1738 request
->cb_idx
= cb_idx
;
1739 smid
= request
->smid
;
1740 list_del(&request
->tracker_list
);
1741 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
1746 * mpt2sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
1747 * @ioc: per adapter object
1748 * @cb_idx: callback index
1750 * Returns smid (zero is invalid)
1753 mpt2sas_base_get_smid_hpr(struct MPT2SAS_ADAPTER
*ioc
, u8 cb_idx
)
1755 unsigned long flags
;
1756 struct request_tracker
*request
;
1759 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
1760 if (list_empty(&ioc
->hpr_free_list
)) {
1761 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
1765 request
= list_entry(ioc
->hpr_free_list
.next
,
1766 struct request_tracker
, tracker_list
);
1767 request
->cb_idx
= cb_idx
;
1768 smid
= request
->smid
;
1769 list_del(&request
->tracker_list
);
1770 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
1776 * mpt2sas_base_free_smid - put smid back on free_list
1777 * @ioc: per adapter object
1778 * @smid: system request message index
1783 mpt2sas_base_free_smid(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
)
1785 unsigned long flags
;
1787 struct chain_tracker
*chain_req
, *next
;
1789 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
1790 if (smid
< ioc
->hi_priority_smid
) {
1793 if (!list_empty(&ioc
->scsi_lookup
[i
].chain_list
)) {
1794 list_for_each_entry_safe(chain_req
, next
,
1795 &ioc
->scsi_lookup
[i
].chain_list
, tracker_list
) {
1796 list_del_init(&chain_req
->tracker_list
);
1797 list_add(&chain_req
->tracker_list
,
1798 &ioc
->free_chain_list
);
1801 ioc
->scsi_lookup
[i
].cb_idx
= 0xFF;
1802 ioc
->scsi_lookup
[i
].scmd
= NULL
;
1803 ioc
->scsi_lookup
[i
].direct_io
= 0;
1804 list_add(&ioc
->scsi_lookup
[i
].tracker_list
,
1806 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
1809 * See _wait_for_commands_to_complete() call with regards
1812 if (ioc
->shost_recovery
&& ioc
->pending_io_count
) {
1813 if (ioc
->pending_io_count
== 1)
1814 wake_up(&ioc
->reset_wq
);
1815 ioc
->pending_io_count
--;
1818 } else if (smid
< ioc
->internal_smid
) {
1820 i
= smid
- ioc
->hi_priority_smid
;
1821 ioc
->hpr_lookup
[i
].cb_idx
= 0xFF;
1822 list_add(&ioc
->hpr_lookup
[i
].tracker_list
,
1823 &ioc
->hpr_free_list
);
1824 } else if (smid
<= ioc
->hba_queue_depth
) {
1825 /* internal queue */
1826 i
= smid
- ioc
->internal_smid
;
1827 ioc
->internal_lookup
[i
].cb_idx
= 0xFF;
1828 list_add(&ioc
->internal_lookup
[i
].tracker_list
,
1829 &ioc
->internal_free_list
);
1831 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
1835 * _base_writeq - 64 bit write to MMIO
1836 * @ioc: per adapter object
1838 * @addr: address in MMIO space
1839 * @writeq_lock: spin lock
1841 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
1842 * care of 32 bit environment where its not quarenteed to send the entire word
1846 static inline void _base_writeq(__u64 b
, volatile void __iomem
*addr
,
1847 spinlock_t
*writeq_lock
)
1849 unsigned long flags
;
1850 __u64 data_out
= cpu_to_le64(b
);
1852 spin_lock_irqsave(writeq_lock
, flags
);
1853 writel((u32
)(data_out
), addr
);
1854 writel((u32
)(data_out
>> 32), (addr
+ 4));
1855 spin_unlock_irqrestore(writeq_lock
, flags
);
1858 static inline void _base_writeq(__u64 b
, volatile void __iomem
*addr
,
1859 spinlock_t
*writeq_lock
)
1861 writeq(cpu_to_le64(b
), addr
);
1866 _base_get_msix_index(struct MPT2SAS_ADAPTER
*ioc
)
1868 return ioc
->cpu_msix_table
[raw_smp_processor_id()];
1872 * mpt2sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
1873 * @ioc: per adapter object
1874 * @smid: system request message index
1875 * @handle: device handle
1880 mpt2sas_base_put_smid_scsi_io(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
, u16 handle
)
1882 Mpi2RequestDescriptorUnion_t descriptor
;
1883 u64
*request
= (u64
*)&descriptor
;
1886 descriptor
.SCSIIO
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO
;
1887 descriptor
.SCSIIO
.MSIxIndex
= _base_get_msix_index(ioc
);
1888 descriptor
.SCSIIO
.SMID
= cpu_to_le16(smid
);
1889 descriptor
.SCSIIO
.DevHandle
= cpu_to_le16(handle
);
1890 descriptor
.SCSIIO
.LMID
= 0;
1891 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
1892 &ioc
->scsi_lookup_lock
);
1897 * mpt2sas_base_put_smid_hi_priority - send Task Management request to firmware
1898 * @ioc: per adapter object
1899 * @smid: system request message index
1904 mpt2sas_base_put_smid_hi_priority(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
)
1906 Mpi2RequestDescriptorUnion_t descriptor
;
1907 u64
*request
= (u64
*)&descriptor
;
1909 descriptor
.HighPriority
.RequestFlags
=
1910 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY
;
1911 descriptor
.HighPriority
.MSIxIndex
= 0;
1912 descriptor
.HighPriority
.SMID
= cpu_to_le16(smid
);
1913 descriptor
.HighPriority
.LMID
= 0;
1914 descriptor
.HighPriority
.Reserved1
= 0;
1915 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
1916 &ioc
->scsi_lookup_lock
);
1920 * mpt2sas_base_put_smid_default - Default, primarily used for config pages
1921 * @ioc: per adapter object
1922 * @smid: system request message index
1927 mpt2sas_base_put_smid_default(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
)
1929 Mpi2RequestDescriptorUnion_t descriptor
;
1930 u64
*request
= (u64
*)&descriptor
;
1932 descriptor
.Default
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE
;
1933 descriptor
.Default
.MSIxIndex
= _base_get_msix_index(ioc
);
1934 descriptor
.Default
.SMID
= cpu_to_le16(smid
);
1935 descriptor
.Default
.LMID
= 0;
1936 descriptor
.Default
.DescriptorTypeDependent
= 0;
1937 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
1938 &ioc
->scsi_lookup_lock
);
1942 * mpt2sas_base_put_smid_target_assist - send Target Assist/Status to firmware
1943 * @ioc: per adapter object
1944 * @smid: system request message index
1945 * @io_index: value used to track the IO
1950 mpt2sas_base_put_smid_target_assist(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
,
1953 Mpi2RequestDescriptorUnion_t descriptor
;
1954 u64
*request
= (u64
*)&descriptor
;
1956 descriptor
.SCSITarget
.RequestFlags
=
1957 MPI2_REQ_DESCRIPT_FLAGS_SCSI_TARGET
;
1958 descriptor
.SCSITarget
.MSIxIndex
= _base_get_msix_index(ioc
);
1959 descriptor
.SCSITarget
.SMID
= cpu_to_le16(smid
);
1960 descriptor
.SCSITarget
.LMID
= 0;
1961 descriptor
.SCSITarget
.IoIndex
= cpu_to_le16(io_index
);
1962 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
1963 &ioc
->scsi_lookup_lock
);
1967 * _base_display_dell_branding - Disply branding string
1968 * @ioc: per adapter object
1973 _base_display_dell_branding(struct MPT2SAS_ADAPTER
*ioc
)
1975 char dell_branding
[MPT2SAS_DELL_BRANDING_SIZE
];
1977 if (ioc
->pdev
->subsystem_vendor
!= PCI_VENDOR_ID_DELL
)
1980 memset(dell_branding
, 0, MPT2SAS_DELL_BRANDING_SIZE
);
1981 switch (ioc
->pdev
->subsystem_device
) {
1982 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID
:
1983 strncpy(dell_branding
, MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING
,
1984 MPT2SAS_DELL_BRANDING_SIZE
- 1);
1986 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID
:
1987 strncpy(dell_branding
, MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING
,
1988 MPT2SAS_DELL_BRANDING_SIZE
- 1);
1990 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID
:
1991 strncpy(dell_branding
,
1992 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING
,
1993 MPT2SAS_DELL_BRANDING_SIZE
- 1);
1995 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID
:
1996 strncpy(dell_branding
,
1997 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING
,
1998 MPT2SAS_DELL_BRANDING_SIZE
- 1);
2000 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID
:
2001 strncpy(dell_branding
,
2002 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING
,
2003 MPT2SAS_DELL_BRANDING_SIZE
- 1);
2005 case MPT2SAS_DELL_PERC_H200_SSDID
:
2006 strncpy(dell_branding
, MPT2SAS_DELL_PERC_H200_BRANDING
,
2007 MPT2SAS_DELL_BRANDING_SIZE
- 1);
2009 case MPT2SAS_DELL_6GBPS_SAS_SSDID
:
2010 strncpy(dell_branding
, MPT2SAS_DELL_6GBPS_SAS_BRANDING
,
2011 MPT2SAS_DELL_BRANDING_SIZE
- 1);
2014 sprintf(dell_branding
, "0x%4X", ioc
->pdev
->subsystem_device
);
2018 printk(MPT2SAS_INFO_FMT
"%s: Vendor(0x%04X), Device(0x%04X),"
2019 " SSVID(0x%04X), SSDID(0x%04X)\n", ioc
->name
, dell_branding
,
2020 ioc
->pdev
->vendor
, ioc
->pdev
->device
, ioc
->pdev
->subsystem_vendor
,
2021 ioc
->pdev
->subsystem_device
);
2025 * _base_display_intel_branding - Display branding string
2026 * @ioc: per adapter object
2031 _base_display_intel_branding(struct MPT2SAS_ADAPTER
*ioc
)
2033 if (ioc
->pdev
->subsystem_vendor
!= PCI_VENDOR_ID_INTEL
)
2036 switch (ioc
->pdev
->device
) {
2037 case MPI2_MFGPAGE_DEVID_SAS2008
:
2038 switch (ioc
->pdev
->subsystem_device
) {
2039 case MPT2SAS_INTEL_RMS2LL080_SSDID
:
2040 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2041 MPT2SAS_INTEL_RMS2LL080_BRANDING
);
2043 case MPT2SAS_INTEL_RMS2LL040_SSDID
:
2044 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2045 MPT2SAS_INTEL_RMS2LL040_BRANDING
);
2047 case MPT2SAS_INTEL_SSD910_SSDID
:
2048 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2049 MPT2SAS_INTEL_SSD910_BRANDING
);
2054 case MPI2_MFGPAGE_DEVID_SAS2308_2
:
2055 switch (ioc
->pdev
->subsystem_device
) {
2056 case MPT2SAS_INTEL_RS25GB008_SSDID
:
2057 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2058 MPT2SAS_INTEL_RS25GB008_BRANDING
);
2060 case MPT2SAS_INTEL_RMS25JB080_SSDID
:
2061 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2062 MPT2SAS_INTEL_RMS25JB080_BRANDING
);
2064 case MPT2SAS_INTEL_RMS25JB040_SSDID
:
2065 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2066 MPT2SAS_INTEL_RMS25JB040_BRANDING
);
2068 case MPT2SAS_INTEL_RMS25KB080_SSDID
:
2069 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2070 MPT2SAS_INTEL_RMS25KB080_BRANDING
);
2072 case MPT2SAS_INTEL_RMS25KB040_SSDID
:
2073 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2074 MPT2SAS_INTEL_RMS25KB040_BRANDING
);
2076 case MPT2SAS_INTEL_RMS25LB040_SSDID
:
2077 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2078 MPT2SAS_INTEL_RMS25LB040_BRANDING
);
2080 case MPT2SAS_INTEL_RMS25LB080_SSDID
:
2081 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2082 MPT2SAS_INTEL_RMS25LB080_BRANDING
);
2093 * _base_display_hp_branding - Display branding string
2094 * @ioc: per adapter object
2099 _base_display_hp_branding(struct MPT2SAS_ADAPTER
*ioc
)
2101 if (ioc
->pdev
->subsystem_vendor
!= MPT2SAS_HP_3PAR_SSVID
)
2104 switch (ioc
->pdev
->device
) {
2105 case MPI2_MFGPAGE_DEVID_SAS2004
:
2106 switch (ioc
->pdev
->subsystem_device
) {
2107 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID
:
2108 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2109 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING
);
2114 case MPI2_MFGPAGE_DEVID_SAS2308_2
:
2115 switch (ioc
->pdev
->subsystem_device
) {
2116 case MPT2SAS_HP_2_4_INTERNAL_SSDID
:
2117 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2118 MPT2SAS_HP_2_4_INTERNAL_BRANDING
);
2120 case MPT2SAS_HP_2_4_EXTERNAL_SSDID
:
2121 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2122 MPT2SAS_HP_2_4_EXTERNAL_BRANDING
);
2124 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID
:
2125 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2126 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING
);
2128 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID
:
2129 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2130 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING
);
2141 * _base_display_ioc_capabilities - Disply IOC's capabilities.
2142 * @ioc: per adapter object
2147 _base_display_ioc_capabilities(struct MPT2SAS_ADAPTER
*ioc
)
2151 u32 iounit_pg1_flags
;
2154 bios_version
= le32_to_cpu(ioc
->bios_pg3
.BiosVersion
);
2155 strncpy(desc
, ioc
->manu_pg0
.ChipName
, 16);
2156 printk(MPT2SAS_INFO_FMT
"%s: FWVersion(%02d.%02d.%02d.%02d), "
2157 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2159 (ioc
->facts
.FWVersion
.Word
& 0xFF000000) >> 24,
2160 (ioc
->facts
.FWVersion
.Word
& 0x00FF0000) >> 16,
2161 (ioc
->facts
.FWVersion
.Word
& 0x0000FF00) >> 8,
2162 ioc
->facts
.FWVersion
.Word
& 0x000000FF,
2163 ioc
->pdev
->revision
,
2164 (bios_version
& 0xFF000000) >> 24,
2165 (bios_version
& 0x00FF0000) >> 16,
2166 (bios_version
& 0x0000FF00) >> 8,
2167 bios_version
& 0x000000FF);
2169 _base_display_dell_branding(ioc
);
2170 _base_display_intel_branding(ioc
);
2171 _base_display_hp_branding(ioc
);
2173 printk(MPT2SAS_INFO_FMT
"Protocol=(", ioc
->name
);
2175 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR
) {
2176 printk("Initiator");
2180 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET
) {
2181 printk("%sTarget", i
? "," : "");
2187 printk("Capabilities=(");
2189 if (!ioc
->hide_ir_msg
) {
2190 if (ioc
->facts
.IOCCapabilities
&
2191 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID
) {
2197 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_TLR
) {
2198 printk("%sTLR", i
? "," : "");
2202 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_MULTICAST
) {
2203 printk("%sMulticast", i
? "," : "");
2207 if (ioc
->facts
.IOCCapabilities
&
2208 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET
) {
2209 printk("%sBIDI Target", i
? "," : "");
2213 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_EEDP
) {
2214 printk("%sEEDP", i
? "," : "");
2218 if (ioc
->facts
.IOCCapabilities
&
2219 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER
) {
2220 printk("%sSnapshot Buffer", i
? "," : "");
2224 if (ioc
->facts
.IOCCapabilities
&
2225 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER
) {
2226 printk("%sDiag Trace Buffer", i
? "," : "");
2230 if (ioc
->facts
.IOCCapabilities
&
2231 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER
) {
2232 printk(KERN_INFO
"%sDiag Extended Buffer", i
? "," : "");
2236 if (ioc
->facts
.IOCCapabilities
&
2237 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING
) {
2238 printk("%sTask Set Full", i
? "," : "");
2242 iounit_pg1_flags
= le32_to_cpu(ioc
->iounit_pg1
.Flags
);
2243 if (!(iounit_pg1_flags
& MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE
)) {
2244 printk("%sNCQ", i
? "," : "");
2252 * mpt2sas_base_update_missing_delay - change the missing delay timers
2253 * @ioc: per adapter object
2254 * @device_missing_delay: amount of time till device is reported missing
2255 * @io_missing_delay: interval IO is returned when there is a missing device
2259 * Passed on the command line, this function will modify the device missing
2260 * delay, as well as the io missing delay. This should be called at driver
2264 mpt2sas_base_update_missing_delay(struct MPT2SAS_ADAPTER
*ioc
,
2265 u16 device_missing_delay
, u8 io_missing_delay
)
2267 u16 dmd
, dmd_new
, dmd_orignal
;
2268 u8 io_missing_delay_original
;
2270 Mpi2SasIOUnitPage1_t
*sas_iounit_pg1
= NULL
;
2271 Mpi2ConfigReply_t mpi_reply
;
2275 mpt2sas_config_get_number_hba_phys(ioc
, &num_phys
);
2279 sz
= offsetof(Mpi2SasIOUnitPage1_t
, PhyData
) + (num_phys
*
2280 sizeof(Mpi2SasIOUnit1PhyData_t
));
2281 sas_iounit_pg1
= kzalloc(sz
, GFP_KERNEL
);
2282 if (!sas_iounit_pg1
) {
2283 printk(MPT2SAS_ERR_FMT
"failure at %s:%d/%s()!\n",
2284 ioc
->name
, __FILE__
, __LINE__
, __func__
);
2287 if ((mpt2sas_config_get_sas_iounit_pg1(ioc
, &mpi_reply
,
2288 sas_iounit_pg1
, sz
))) {
2289 printk(MPT2SAS_ERR_FMT
"failure at %s:%d/%s()!\n",
2290 ioc
->name
, __FILE__
, __LINE__
, __func__
);
2293 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) &
2294 MPI2_IOCSTATUS_MASK
;
2295 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
) {
2296 printk(MPT2SAS_ERR_FMT
"failure at %s:%d/%s()!\n",
2297 ioc
->name
, __FILE__
, __LINE__
, __func__
);
2301 /* device missing delay */
2302 dmd
= sas_iounit_pg1
->ReportDeviceMissingDelay
;
2303 if (dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16
)
2304 dmd
= (dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
) * 16;
2306 dmd
= dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
;
2308 if (device_missing_delay
> 0x7F) {
2309 dmd
= (device_missing_delay
> 0x7F0) ? 0x7F0 :
2310 device_missing_delay
;
2312 dmd
|= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16
;
2314 dmd
= device_missing_delay
;
2315 sas_iounit_pg1
->ReportDeviceMissingDelay
= dmd
;
2317 /* io missing delay */
2318 io_missing_delay_original
= sas_iounit_pg1
->IODeviceMissingDelay
;
2319 sas_iounit_pg1
->IODeviceMissingDelay
= io_missing_delay
;
2321 if (!mpt2sas_config_set_sas_iounit_pg1(ioc
, &mpi_reply
, sas_iounit_pg1
,
2323 if (dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16
)
2325 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
) * 16;
2328 dmd
& MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK
;
2329 printk(MPT2SAS_INFO_FMT
"device_missing_delay: old(%d), "
2330 "new(%d)\n", ioc
->name
, dmd_orignal
, dmd_new
);
2331 printk(MPT2SAS_INFO_FMT
"ioc_missing_delay: old(%d), "
2332 "new(%d)\n", ioc
->name
, io_missing_delay_original
,
2334 ioc
->device_missing_delay
= dmd_new
;
2335 ioc
->io_missing_delay
= io_missing_delay
;
2339 kfree(sas_iounit_pg1
);
2343 * _base_static_config_pages - static start of day config pages
2344 * @ioc: per adapter object
2349 _base_static_config_pages(struct MPT2SAS_ADAPTER
*ioc
)
2351 Mpi2ConfigReply_t mpi_reply
;
2352 u32 iounit_pg1_flags
;
2354 mpt2sas_config_get_manufacturing_pg0(ioc
, &mpi_reply
, &ioc
->manu_pg0
);
2355 if (ioc
->ir_firmware
)
2356 mpt2sas_config_get_manufacturing_pg10(ioc
, &mpi_reply
,
2358 mpt2sas_config_get_bios_pg2(ioc
, &mpi_reply
, &ioc
->bios_pg2
);
2359 mpt2sas_config_get_bios_pg3(ioc
, &mpi_reply
, &ioc
->bios_pg3
);
2360 mpt2sas_config_get_ioc_pg8(ioc
, &mpi_reply
, &ioc
->ioc_pg8
);
2361 mpt2sas_config_get_iounit_pg0(ioc
, &mpi_reply
, &ioc
->iounit_pg0
);
2362 mpt2sas_config_get_iounit_pg1(ioc
, &mpi_reply
, &ioc
->iounit_pg1
);
2363 mpt2sas_config_get_iounit_pg8(ioc
, &mpi_reply
, &ioc
->iounit_pg8
);
2364 _base_display_ioc_capabilities(ioc
);
2367 * Enable task_set_full handling in iounit_pg1 when the
2368 * facts capabilities indicate that its supported.
2370 iounit_pg1_flags
= le32_to_cpu(ioc
->iounit_pg1
.Flags
);
2371 if ((ioc
->facts
.IOCCapabilities
&
2372 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING
))
2374 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING
;
2377 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING
;
2378 ioc
->iounit_pg1
.Flags
= cpu_to_le32(iounit_pg1_flags
);
2379 mpt2sas_config_set_iounit_pg1(ioc
, &mpi_reply
, &ioc
->iounit_pg1
);
2381 if (ioc
->iounit_pg8
.NumSensors
)
2382 ioc
->temp_sensors_count
= ioc
->iounit_pg8
.NumSensors
;
2386 * _base_release_memory_pools - release memory
2387 * @ioc: per adapter object
2389 * Free memory allocated from _base_allocate_memory_pools.
2394 _base_release_memory_pools(struct MPT2SAS_ADAPTER
*ioc
)
2397 struct reply_post_struct
*rps
;
2399 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2403 pci_free_consistent(ioc
->pdev
, ioc
->request_dma_sz
,
2404 ioc
->request
, ioc
->request_dma
);
2405 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"request_pool(0x%p)"
2406 ": free\n", ioc
->name
, ioc
->request
));
2407 ioc
->request
= NULL
;
2411 pci_pool_free(ioc
->sense_dma_pool
, ioc
->sense
, ioc
->sense_dma
);
2412 if (ioc
->sense_dma_pool
)
2413 pci_pool_destroy(ioc
->sense_dma_pool
);
2414 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"sense_pool(0x%p)"
2415 ": free\n", ioc
->name
, ioc
->sense
));
2420 pci_pool_free(ioc
->reply_dma_pool
, ioc
->reply
, ioc
->reply_dma
);
2421 if (ioc
->reply_dma_pool
)
2422 pci_pool_destroy(ioc
->reply_dma_pool
);
2423 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"reply_pool(0x%p)"
2424 ": free\n", ioc
->name
, ioc
->reply
));
2428 if (ioc
->reply_free
) {
2429 pci_pool_free(ioc
->reply_free_dma_pool
, ioc
->reply_free
,
2430 ioc
->reply_free_dma
);
2431 if (ioc
->reply_free_dma_pool
)
2432 pci_pool_destroy(ioc
->reply_free_dma_pool
);
2433 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"reply_free_pool"
2434 "(0x%p): free\n", ioc
->name
, ioc
->reply_free
));
2435 ioc
->reply_free
= NULL
;
2438 if (ioc
->reply_post
) {
2440 rps
= &ioc
->reply_post
[i
];
2441 if (rps
->reply_post_free
) {
2443 ioc
->reply_post_free_dma_pool
,
2444 rps
->reply_post_free
,
2445 rps
->reply_post_free_dma
);
2446 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
2447 "reply_post_free_pool(0x%p): free\n",
2448 ioc
->name
, rps
->reply_post_free
));
2449 rps
->reply_post_free
= NULL
;
2451 } while (ioc
->rdpq_array_enable
&&
2452 (++i
< ioc
->reply_queue_count
));
2454 if (ioc
->reply_post_free_dma_pool
)
2455 pci_pool_destroy(ioc
->reply_post_free_dma_pool
);
2456 kfree(ioc
->reply_post
);
2459 if (ioc
->config_page
) {
2460 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
2461 "config_page(0x%p): free\n", ioc
->name
,
2463 pci_free_consistent(ioc
->pdev
, ioc
->config_page_sz
,
2464 ioc
->config_page
, ioc
->config_page_dma
);
2467 if (ioc
->scsi_lookup
) {
2468 free_pages((ulong
)ioc
->scsi_lookup
, ioc
->scsi_lookup_pages
);
2469 ioc
->scsi_lookup
= NULL
;
2471 kfree(ioc
->hpr_lookup
);
2472 kfree(ioc
->internal_lookup
);
2473 if (ioc
->chain_lookup
) {
2474 for (i
= 0; i
< ioc
->chain_depth
; i
++) {
2475 if (ioc
->chain_lookup
[i
].chain_buffer
)
2476 pci_pool_free(ioc
->chain_dma_pool
,
2477 ioc
->chain_lookup
[i
].chain_buffer
,
2478 ioc
->chain_lookup
[i
].chain_buffer_dma
);
2480 if (ioc
->chain_dma_pool
)
2481 pci_pool_destroy(ioc
->chain_dma_pool
);
2482 free_pages((ulong
)ioc
->chain_lookup
, ioc
->chain_pages
);
2483 ioc
->chain_lookup
= NULL
;
2489 * _base_allocate_memory_pools - allocate start of day memory pools
2490 * @ioc: per adapter object
2491 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2493 * Returns 0 success, anything else error
2496 _base_allocate_memory_pools(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
)
2498 struct mpt2sas_facts
*facts
;
2499 u16 max_sge_elements
;
2500 u16 chains_needed_per_io
;
2501 u32 sz
, total_sz
, reply_post_free_sz
;
2503 u16 max_request_credit
;
2506 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2510 facts
= &ioc
->facts
;
2512 /* command line tunables for max sgl entries */
2513 if (max_sgl_entries
!= -1) {
2514 ioc
->shost
->sg_tablesize
= min_t(unsigned short,
2515 max_sgl_entries
, SCSI_MAX_SG_CHAIN_SEGMENTS
);
2516 if (ioc
->shost
->sg_tablesize
> MPT2SAS_SG_DEPTH
)
2517 printk(MPT2SAS_WARN_FMT
2518 "sg_tablesize(%u) is bigger than kernel defined"
2519 " SCSI_MAX_SG_SEGMENTS(%u)\n", ioc
->name
,
2520 ioc
->shost
->sg_tablesize
, MPT2SAS_SG_DEPTH
);
2522 ioc
->shost
->sg_tablesize
= MPT2SAS_SG_DEPTH
;
2525 /* command line tunables for max controller queue depth */
2526 if (max_queue_depth
!= -1 && max_queue_depth
!= 0) {
2527 max_request_credit
= min_t(u16
, max_queue_depth
+
2528 ioc
->hi_priority_depth
+ ioc
->internal_depth
,
2529 facts
->RequestCredit
);
2530 if (max_request_credit
> MAX_HBA_QUEUE_DEPTH
)
2531 max_request_credit
= MAX_HBA_QUEUE_DEPTH
;
2533 max_request_credit
= min_t(u16
, facts
->RequestCredit
,
2534 MAX_HBA_QUEUE_DEPTH
);
2536 ioc
->hba_queue_depth
= max_request_credit
;
2537 ioc
->hi_priority_depth
= facts
->HighPriorityCredit
;
2538 ioc
->internal_depth
= ioc
->hi_priority_depth
+ 5;
2540 /* request frame size */
2541 ioc
->request_sz
= facts
->IOCRequestFrameSize
* 4;
2543 /* reply frame size */
2544 ioc
->reply_sz
= facts
->ReplyFrameSize
* 4;
2548 /* calculate number of sg elements left over in the 1st frame */
2549 max_sge_elements
= ioc
->request_sz
- ((sizeof(Mpi2SCSIIORequest_t
) -
2550 sizeof(Mpi2SGEIOUnion_t
)) + ioc
->sge_size
);
2551 ioc
->max_sges_in_main_message
= max_sge_elements
/ioc
->sge_size
;
2553 /* now do the same for a chain buffer */
2554 max_sge_elements
= ioc
->request_sz
- ioc
->sge_size
;
2555 ioc
->max_sges_in_chain_message
= max_sge_elements
/ioc
->sge_size
;
2557 ioc
->chain_offset_value_for_main_message
=
2558 ((sizeof(Mpi2SCSIIORequest_t
) - sizeof(Mpi2SGEIOUnion_t
)) +
2559 (ioc
->max_sges_in_chain_message
* ioc
->sge_size
)) / 4;
2562 * MPT2SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
2564 chains_needed_per_io
= ((ioc
->shost
->sg_tablesize
-
2565 ioc
->max_sges_in_main_message
)/ioc
->max_sges_in_chain_message
)
2567 if (chains_needed_per_io
> facts
->MaxChainDepth
) {
2568 chains_needed_per_io
= facts
->MaxChainDepth
;
2569 ioc
->shost
->sg_tablesize
= min_t(u16
,
2570 ioc
->max_sges_in_main_message
+ (ioc
->max_sges_in_chain_message
2571 * chains_needed_per_io
), ioc
->shost
->sg_tablesize
);
2573 ioc
->chains_needed_per_io
= chains_needed_per_io
;
2575 /* reply free queue sizing - taking into account for 64 FW events */
2576 ioc
->reply_free_queue_depth
= ioc
->hba_queue_depth
+ 64;
2578 /* calculate reply descriptor post queue depth */
2579 ioc
->reply_post_queue_depth
= ioc
->hba_queue_depth
+
2580 ioc
->reply_free_queue_depth
+ 1;
2581 /* align the reply post queue on the next 16 count boundary */
2582 if (ioc
->reply_post_queue_depth
% 16)
2583 ioc
->reply_post_queue_depth
+= 16 -
2584 (ioc
->reply_post_queue_depth
% 16);
2587 if (ioc
->reply_post_queue_depth
>
2588 facts
->MaxReplyDescriptorPostQueueDepth
) {
2589 ioc
->reply_post_queue_depth
=
2590 facts
->MaxReplyDescriptorPostQueueDepth
-
2591 (facts
->MaxReplyDescriptorPostQueueDepth
% 16);
2592 ioc
->hba_queue_depth
=
2593 ((ioc
->reply_post_queue_depth
- 64) / 2) - 1;
2594 ioc
->reply_free_queue_depth
= ioc
->hba_queue_depth
+ 64;
2597 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"scatter gather: "
2598 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
2599 "chains_per_io(%d)\n", ioc
->name
, ioc
->max_sges_in_main_message
,
2600 ioc
->max_sges_in_chain_message
, ioc
->shost
->sg_tablesize
,
2601 ioc
->chains_needed_per_io
));
2603 /* reply post queue, 16 byte align */
2604 reply_post_free_sz
= ioc
->reply_post_queue_depth
*
2605 sizeof(Mpi2DefaultReplyDescriptor_t
);
2607 sz
= reply_post_free_sz
;
2608 if (_base_is_controller_msix_enabled(ioc
) && !ioc
->rdpq_array_enable
)
2609 sz
*= ioc
->reply_queue_count
;
2611 ioc
->reply_post
= kcalloc((ioc
->rdpq_array_enable
) ?
2612 (ioc
->reply_queue_count
):1,
2613 sizeof(struct reply_post_struct
), GFP_KERNEL
);
2615 if (!ioc
->reply_post
) {
2616 printk(MPT2SAS_ERR_FMT
"reply_post_free pool: kcalloc failed\n",
2620 ioc
->reply_post_free_dma_pool
= pci_pool_create("reply_post_free pool",
2621 ioc
->pdev
, sz
, 16, 0);
2622 if (!ioc
->reply_post_free_dma_pool
) {
2623 printk(MPT2SAS_ERR_FMT
2624 "reply_post_free pool: pci_pool_create failed\n",
2630 ioc
->reply_post
[i
].reply_post_free
=
2631 pci_pool_alloc(ioc
->reply_post_free_dma_pool
,
2633 &ioc
->reply_post
[i
].reply_post_free_dma
);
2634 if (!ioc
->reply_post
[i
].reply_post_free
) {
2635 printk(MPT2SAS_ERR_FMT
2636 "reply_post_free pool: pci_pool_alloc failed\n",
2640 memset(ioc
->reply_post
[i
].reply_post_free
, 0, sz
);
2641 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
2642 "reply post free pool (0x%p): depth(%d),"
2643 "element_size(%d), pool_size(%d kB)\n", ioc
->name
,
2644 ioc
->reply_post
[i
].reply_post_free
,
2645 ioc
->reply_post_queue_depth
, 8, sz
/1024));
2646 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
2647 "reply_post_free_dma = (0x%llx)\n", ioc
->name
,
2648 (unsigned long long)
2649 ioc
->reply_post
[i
].reply_post_free_dma
));
2651 } while (ioc
->rdpq_array_enable
&& (++i
< ioc
->reply_queue_count
));
2653 if (ioc
->dma_mask
== 64) {
2654 if (_base_change_consistent_dma_mask(ioc
, ioc
->pdev
) != 0) {
2655 printk(MPT2SAS_WARN_FMT
2656 "no suitable consistent DMA mask for %s\n",
2657 ioc
->name
, pci_name(ioc
->pdev
));
2662 ioc
->scsiio_depth
= ioc
->hba_queue_depth
-
2663 ioc
->hi_priority_depth
- ioc
->internal_depth
;
2665 /* set the scsi host can_queue depth
2666 * with some internal commands that could be outstanding
2668 ioc
->shost
->can_queue
= ioc
->scsiio_depth
;
2669 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"scsi host: "
2670 "can_queue depth (%d)\n", ioc
->name
, ioc
->shost
->can_queue
));
2672 /* contiguous pool for request and chains, 16 byte align, one extra "
2675 ioc
->chain_depth
= ioc
->chains_needed_per_io
* ioc
->scsiio_depth
;
2676 sz
= ((ioc
->scsiio_depth
+ 1) * ioc
->request_sz
);
2678 /* hi-priority queue */
2679 sz
+= (ioc
->hi_priority_depth
* ioc
->request_sz
);
2681 /* internal queue */
2682 sz
+= (ioc
->internal_depth
* ioc
->request_sz
);
2684 ioc
->request_dma_sz
= sz
;
2685 ioc
->request
= pci_alloc_consistent(ioc
->pdev
, sz
, &ioc
->request_dma
);
2686 if (!ioc
->request
) {
2687 printk(MPT2SAS_ERR_FMT
"request pool: pci_alloc_consistent "
2688 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2689 "total(%d kB)\n", ioc
->name
, ioc
->hba_queue_depth
,
2690 ioc
->chains_needed_per_io
, ioc
->request_sz
, sz
/1024);
2691 if (ioc
->scsiio_depth
< MPT2SAS_SAS_QUEUE_DEPTH
)
2694 ioc
->hba_queue_depth
= max_request_credit
- retry_sz
;
2695 goto retry_allocation
;
2699 printk(MPT2SAS_ERR_FMT
"request pool: pci_alloc_consistent "
2700 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2701 "total(%d kb)\n", ioc
->name
, ioc
->hba_queue_depth
,
2702 ioc
->chains_needed_per_io
, ioc
->request_sz
, sz
/1024);
2705 /* hi-priority queue */
2706 ioc
->hi_priority
= ioc
->request
+ ((ioc
->scsiio_depth
+ 1) *
2708 ioc
->hi_priority_dma
= ioc
->request_dma
+ ((ioc
->scsiio_depth
+ 1) *
2711 /* internal queue */
2712 ioc
->internal
= ioc
->hi_priority
+ (ioc
->hi_priority_depth
*
2714 ioc
->internal_dma
= ioc
->hi_priority_dma
+ (ioc
->hi_priority_depth
*
2718 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"request pool(0x%p): "
2719 "depth(%d), frame_size(%d), pool_size(%d kB)\n", ioc
->name
,
2720 ioc
->request
, ioc
->hba_queue_depth
, ioc
->request_sz
,
2721 (ioc
->hba_queue_depth
* ioc
->request_sz
)/1024));
2722 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"request pool: dma(0x%llx)\n",
2723 ioc
->name
, (unsigned long long) ioc
->request_dma
));
2726 sz
= ioc
->scsiio_depth
* sizeof(struct scsiio_tracker
);
2727 ioc
->scsi_lookup_pages
= get_order(sz
);
2728 ioc
->scsi_lookup
= (struct scsiio_tracker
*)__get_free_pages(
2729 GFP_KERNEL
, ioc
->scsi_lookup_pages
);
2730 if (!ioc
->scsi_lookup
) {
2731 printk(MPT2SAS_ERR_FMT
"scsi_lookup: get_free_pages failed, "
2732 "sz(%d)\n", ioc
->name
, (int)sz
);
2736 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"scsiio(0x%p): "
2737 "depth(%d)\n", ioc
->name
, ioc
->request
,
2738 ioc
->scsiio_depth
));
2740 ioc
->chain_depth
= min_t(u32
, ioc
->chain_depth
, MAX_CHAIN_DEPTH
);
2741 sz
= ioc
->chain_depth
* sizeof(struct chain_tracker
);
2742 ioc
->chain_pages
= get_order(sz
);
2744 ioc
->chain_lookup
= (struct chain_tracker
*)__get_free_pages(
2745 GFP_KERNEL
, ioc
->chain_pages
);
2746 if (!ioc
->chain_lookup
) {
2747 printk(MPT2SAS_ERR_FMT
"chain_lookup: get_free_pages failed, "
2748 "sz(%d)\n", ioc
->name
, (int)sz
);
2751 ioc
->chain_dma_pool
= pci_pool_create("chain pool", ioc
->pdev
,
2752 ioc
->request_sz
, 16, 0);
2753 if (!ioc
->chain_dma_pool
) {
2754 printk(MPT2SAS_ERR_FMT
"chain_dma_pool: pci_pool_create "
2755 "failed\n", ioc
->name
);
2758 for (i
= 0; i
< ioc
->chain_depth
; i
++) {
2759 ioc
->chain_lookup
[i
].chain_buffer
= pci_pool_alloc(
2760 ioc
->chain_dma_pool
, GFP_KERNEL
,
2761 &ioc
->chain_lookup
[i
].chain_buffer_dma
);
2762 if (!ioc
->chain_lookup
[i
].chain_buffer
) {
2763 ioc
->chain_depth
= i
;
2766 total_sz
+= ioc
->request_sz
;
2769 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"chain pool depth"
2770 "(%d), frame_size(%d), pool_size(%d kB)\n", ioc
->name
,
2771 ioc
->chain_depth
, ioc
->request_sz
, ((ioc
->chain_depth
*
2772 ioc
->request_sz
))/1024));
2774 /* initialize hi-priority queue smid's */
2775 ioc
->hpr_lookup
= kcalloc(ioc
->hi_priority_depth
,
2776 sizeof(struct request_tracker
), GFP_KERNEL
);
2777 if (!ioc
->hpr_lookup
) {
2778 printk(MPT2SAS_ERR_FMT
"hpr_lookup: kcalloc failed\n",
2782 ioc
->hi_priority_smid
= ioc
->scsiio_depth
+ 1;
2783 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"hi_priority(0x%p): "
2784 "depth(%d), start smid(%d)\n", ioc
->name
, ioc
->hi_priority
,
2785 ioc
->hi_priority_depth
, ioc
->hi_priority_smid
));
2787 /* initialize internal queue smid's */
2788 ioc
->internal_lookup
= kcalloc(ioc
->internal_depth
,
2789 sizeof(struct request_tracker
), GFP_KERNEL
);
2790 if (!ioc
->internal_lookup
) {
2791 printk(MPT2SAS_ERR_FMT
"internal_lookup: kcalloc failed\n",
2795 ioc
->internal_smid
= ioc
->hi_priority_smid
+ ioc
->hi_priority_depth
;
2796 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"internal(0x%p): "
2797 "depth(%d), start smid(%d)\n", ioc
->name
, ioc
->internal
,
2798 ioc
->internal_depth
, ioc
->internal_smid
));
2800 /* sense buffers, 4 byte align */
2801 sz
= ioc
->scsiio_depth
* SCSI_SENSE_BUFFERSIZE
;
2802 ioc
->sense_dma_pool
= pci_pool_create("sense pool", ioc
->pdev
, sz
, 4,
2804 if (!ioc
->sense_dma_pool
) {
2805 printk(MPT2SAS_ERR_FMT
"sense pool: pci_pool_create failed\n",
2809 ioc
->sense
= pci_pool_alloc(ioc
->sense_dma_pool
, GFP_KERNEL
,
2812 printk(MPT2SAS_ERR_FMT
"sense pool: pci_pool_alloc failed\n",
2816 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
2817 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
2818 "(%d kB)\n", ioc
->name
, ioc
->sense
, ioc
->scsiio_depth
,
2819 SCSI_SENSE_BUFFERSIZE
, sz
/1024));
2820 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"sense_dma(0x%llx)\n",
2821 ioc
->name
, (unsigned long long)ioc
->sense_dma
));
2824 /* reply pool, 4 byte align */
2825 sz
= ioc
->reply_free_queue_depth
* ioc
->reply_sz
;
2826 ioc
->reply_dma_pool
= pci_pool_create("reply pool", ioc
->pdev
, sz
, 4,
2828 if (!ioc
->reply_dma_pool
) {
2829 printk(MPT2SAS_ERR_FMT
"reply pool: pci_pool_create failed\n",
2833 ioc
->reply
= pci_pool_alloc(ioc
->reply_dma_pool
, GFP_KERNEL
,
2836 printk(MPT2SAS_ERR_FMT
"reply pool: pci_pool_alloc failed\n",
2840 ioc
->reply_dma_min_address
= (u32
)(ioc
->reply_dma
);
2841 ioc
->reply_dma_max_address
= (u32
)(ioc
->reply_dma
) + sz
;
2842 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"reply pool(0x%p): depth"
2843 "(%d), frame_size(%d), pool_size(%d kB)\n", ioc
->name
, ioc
->reply
,
2844 ioc
->reply_free_queue_depth
, ioc
->reply_sz
, sz
/1024));
2845 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"reply_dma(0x%llx)\n",
2846 ioc
->name
, (unsigned long long)ioc
->reply_dma
));
2849 /* reply free queue, 16 byte align */
2850 sz
= ioc
->reply_free_queue_depth
* 4;
2851 ioc
->reply_free_dma_pool
= pci_pool_create("reply_free pool",
2852 ioc
->pdev
, sz
, 16, 0);
2853 if (!ioc
->reply_free_dma_pool
) {
2854 printk(MPT2SAS_ERR_FMT
"reply_free pool: pci_pool_create "
2855 "failed\n", ioc
->name
);
2858 ioc
->reply_free
= pci_pool_alloc(ioc
->reply_free_dma_pool
, GFP_KERNEL
,
2859 &ioc
->reply_free_dma
);
2860 if (!ioc
->reply_free
) {
2861 printk(MPT2SAS_ERR_FMT
"reply_free pool: pci_pool_alloc "
2862 "failed\n", ioc
->name
);
2865 memset(ioc
->reply_free
, 0, sz
);
2866 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"reply_free pool(0x%p): "
2867 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc
->name
,
2868 ioc
->reply_free
, ioc
->reply_free_queue_depth
, 4, sz
/1024));
2869 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"reply_free_dma"
2870 "(0x%llx)\n", ioc
->name
, (unsigned long long)ioc
->reply_free_dma
));
2873 ioc
->config_page_sz
= 512;
2874 ioc
->config_page
= pci_alloc_consistent(ioc
->pdev
,
2875 ioc
->config_page_sz
, &ioc
->config_page_dma
);
2876 if (!ioc
->config_page
) {
2877 printk(MPT2SAS_ERR_FMT
"config page: pci_pool_alloc "
2878 "failed\n", ioc
->name
);
2881 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"config page(0x%p): size"
2882 "(%d)\n", ioc
->name
, ioc
->config_page
, ioc
->config_page_sz
));
2883 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"config_page_dma"
2884 "(0x%llx)\n", ioc
->name
, (unsigned long long)ioc
->config_page_dma
));
2885 total_sz
+= ioc
->config_page_sz
;
2887 printk(MPT2SAS_INFO_FMT
"Allocated physical memory: size(%d kB)\n",
2888 ioc
->name
, total_sz
/1024);
2889 printk(MPT2SAS_INFO_FMT
"Current Controller Queue Depth(%d), "
2890 "Max Controller Queue Depth(%d)\n",
2891 ioc
->name
, ioc
->shost
->can_queue
, facts
->RequestCredit
);
2892 printk(MPT2SAS_INFO_FMT
"Scatter Gather Elements per IO(%d)\n",
2893 ioc
->name
, ioc
->shost
->sg_tablesize
);
2902 * mpt2sas_base_get_iocstate - Get the current state of a MPT adapter.
2903 * @ioc: Pointer to MPT_ADAPTER structure
2904 * @cooked: Request raw or cooked IOC state
2906 * Returns all IOC Doorbell register bits if cooked==0, else just the
2907 * Doorbell bits in MPI_IOC_STATE_MASK.
2910 mpt2sas_base_get_iocstate(struct MPT2SAS_ADAPTER
*ioc
, int cooked
)
2914 s
= readl(&ioc
->chip
->Doorbell
);
2915 sc
= s
& MPI2_IOC_STATE_MASK
;
2916 return cooked
? sc
: s
;
2920 * _base_wait_on_iocstate - waiting on a particular ioc state
2921 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
2922 * @timeout: timeout in second
2923 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2925 * Returns 0 for success, non-zero for failure.
2928 _base_wait_on_iocstate(struct MPT2SAS_ADAPTER
*ioc
, u32 ioc_state
, int timeout
,
2935 cntdn
= (sleep_flag
== CAN_SLEEP
) ? 1000*timeout
: 2000*timeout
;
2937 current_state
= mpt2sas_base_get_iocstate(ioc
, 1);
2938 if (current_state
== ioc_state
)
2940 if (count
&& current_state
== MPI2_IOC_STATE_FAULT
)
2942 if (sleep_flag
== CAN_SLEEP
)
2949 return current_state
;
2953 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
2954 * a write to the doorbell)
2955 * @ioc: per adapter object
2956 * @timeout: timeout in second
2957 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2959 * Returns 0 for success, non-zero for failure.
2961 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
2964 _base_wait_for_doorbell_int(struct MPT2SAS_ADAPTER
*ioc
, int timeout
,
2971 cntdn
= (sleep_flag
== CAN_SLEEP
) ? 1000*timeout
: 2000*timeout
;
2973 int_status
= readl(&ioc
->chip
->HostInterruptStatus
);
2974 if (int_status
& MPI2_HIS_IOC2SYS_DB_STATUS
) {
2975 dhsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: "
2976 "successful count(%d), timeout(%d)\n", ioc
->name
,
2977 __func__
, count
, timeout
));
2980 if (sleep_flag
== CAN_SLEEP
)
2987 printk(MPT2SAS_ERR_FMT
"%s: failed due to timeout count(%d), "
2988 "int_status(%x)!\n", ioc
->name
, __func__
, count
, int_status
);
2993 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
2994 * @ioc: per adapter object
2995 * @timeout: timeout in second
2996 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2998 * Returns 0 for success, non-zero for failure.
3000 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3004 _base_wait_for_doorbell_ack(struct MPT2SAS_ADAPTER
*ioc
, int timeout
,
3012 cntdn
= (sleep_flag
== CAN_SLEEP
) ? 1000*timeout
: 2000*timeout
;
3014 int_status
= readl(&ioc
->chip
->HostInterruptStatus
);
3015 if (!(int_status
& MPI2_HIS_SYS2IOC_DB_STATUS
)) {
3016 dhsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: "
3017 "successful count(%d), timeout(%d)\n", ioc
->name
,
3018 __func__
, count
, timeout
));
3020 } else if (int_status
& MPI2_HIS_IOC2SYS_DB_STATUS
) {
3021 doorbell
= readl(&ioc
->chip
->Doorbell
);
3022 if ((doorbell
& MPI2_IOC_STATE_MASK
) ==
3023 MPI2_IOC_STATE_FAULT
) {
3024 mpt2sas_base_fault_info(ioc
, doorbell
);
3027 } else if (int_status
== 0xFFFFFFFF)
3030 if (sleep_flag
== CAN_SLEEP
)
3038 printk(MPT2SAS_ERR_FMT
"%s: failed due to timeout count(%d), "
3039 "int_status(%x)!\n", ioc
->name
, __func__
, count
, int_status
);
3044 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3045 * @ioc: per adapter object
3046 * @timeout: timeout in second
3047 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3049 * Returns 0 for success, non-zero for failure.
3053 _base_wait_for_doorbell_not_used(struct MPT2SAS_ADAPTER
*ioc
, int timeout
,
3060 cntdn
= (sleep_flag
== CAN_SLEEP
) ? 1000*timeout
: 2000*timeout
;
3062 doorbell_reg
= readl(&ioc
->chip
->Doorbell
);
3063 if (!(doorbell_reg
& MPI2_DOORBELL_USED
)) {
3064 dhsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: "
3065 "successful count(%d), timeout(%d)\n", ioc
->name
,
3066 __func__
, count
, timeout
));
3069 if (sleep_flag
== CAN_SLEEP
)
3076 printk(MPT2SAS_ERR_FMT
"%s: failed due to timeout count(%d), "
3077 "doorbell_reg(%x)!\n", ioc
->name
, __func__
, count
, doorbell_reg
);
3082 * _base_send_ioc_reset - send doorbell reset
3083 * @ioc: per adapter object
3084 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3085 * @timeout: timeout in second
3086 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3088 * Returns 0 for success, non-zero for failure.
3091 _base_send_ioc_reset(struct MPT2SAS_ADAPTER
*ioc
, u8 reset_type
, int timeout
,
3097 if (reset_type
!= MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
) {
3098 printk(MPT2SAS_ERR_FMT
"%s: unknown reset_type\n",
3099 ioc
->name
, __func__
);
3103 if (!(ioc
->facts
.IOCCapabilities
&
3104 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY
))
3107 printk(MPT2SAS_INFO_FMT
"sending message unit reset !!\n", ioc
->name
);
3109 writel(reset_type
<< MPI2_DOORBELL_FUNCTION_SHIFT
,
3110 &ioc
->chip
->Doorbell
);
3111 if ((_base_wait_for_doorbell_ack(ioc
, 15, sleep_flag
))) {
3115 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
,
3116 timeout
, sleep_flag
);
3118 printk(MPT2SAS_ERR_FMT
"%s: failed going to ready state "
3119 " (ioc_state=0x%x)\n", ioc
->name
, __func__
, ioc_state
);
3124 printk(MPT2SAS_INFO_FMT
"message unit reset: %s\n",
3125 ioc
->name
, ((r
== 0) ? "SUCCESS" : "FAILED"));
3130 * _base_handshake_req_reply_wait - send request thru doorbell interface
3131 * @ioc: per adapter object
3132 * @request_bytes: request length
3133 * @request: pointer having request payload
3134 * @reply_bytes: reply length
3135 * @reply: pointer to reply payload
3136 * @timeout: timeout in second
3137 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3139 * Returns 0 for success, non-zero for failure.
3142 _base_handshake_req_reply_wait(struct MPT2SAS_ADAPTER
*ioc
, int request_bytes
,
3143 u32
*request
, int reply_bytes
, u16
*reply
, int timeout
, int sleep_flag
)
3145 MPI2DefaultReply_t
*default_reply
= (MPI2DefaultReply_t
*)reply
;
3151 /* make sure doorbell is not in use */
3152 if ((readl(&ioc
->chip
->Doorbell
) & MPI2_DOORBELL_USED
)) {
3153 printk(MPT2SAS_ERR_FMT
"doorbell is in use "
3154 " (line=%d)\n", ioc
->name
, __LINE__
);
3158 /* clear pending doorbell interrupts from previous state changes */
3159 if (readl(&ioc
->chip
->HostInterruptStatus
) &
3160 MPI2_HIS_IOC2SYS_DB_STATUS
)
3161 writel(0, &ioc
->chip
->HostInterruptStatus
);
3163 /* send message to ioc */
3164 writel(((MPI2_FUNCTION_HANDSHAKE
<<MPI2_DOORBELL_FUNCTION_SHIFT
) |
3165 ((request_bytes
/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT
)),
3166 &ioc
->chip
->Doorbell
);
3168 if ((_base_wait_for_doorbell_int(ioc
, 5, NO_SLEEP
))) {
3169 printk(MPT2SAS_ERR_FMT
"doorbell handshake "
3170 "int failed (line=%d)\n", ioc
->name
, __LINE__
);
3173 writel(0, &ioc
->chip
->HostInterruptStatus
);
3175 if ((_base_wait_for_doorbell_ack(ioc
, 5, sleep_flag
))) {
3176 printk(MPT2SAS_ERR_FMT
"doorbell handshake "
3177 "ack failed (line=%d)\n", ioc
->name
, __LINE__
);
3181 /* send message 32-bits at a time */
3182 for (i
= 0, failed
= 0; i
< request_bytes
/4 && !failed
; i
++) {
3183 writel(cpu_to_le32(request
[i
]), &ioc
->chip
->Doorbell
);
3184 if ((_base_wait_for_doorbell_ack(ioc
, 5, sleep_flag
)))
3189 printk(MPT2SAS_ERR_FMT
"doorbell handshake "
3190 "sending request failed (line=%d)\n", ioc
->name
, __LINE__
);
3194 /* now wait for the reply */
3195 if ((_base_wait_for_doorbell_int(ioc
, timeout
, sleep_flag
))) {
3196 printk(MPT2SAS_ERR_FMT
"doorbell handshake "
3197 "int failed (line=%d)\n", ioc
->name
, __LINE__
);
3201 /* read the first two 16-bits, it gives the total length of the reply */
3202 reply
[0] = le16_to_cpu(readl(&ioc
->chip
->Doorbell
)
3203 & MPI2_DOORBELL_DATA_MASK
);
3204 writel(0, &ioc
->chip
->HostInterruptStatus
);
3205 if ((_base_wait_for_doorbell_int(ioc
, 5, sleep_flag
))) {
3206 printk(MPT2SAS_ERR_FMT
"doorbell handshake "
3207 "int failed (line=%d)\n", ioc
->name
, __LINE__
);
3210 reply
[1] = le16_to_cpu(readl(&ioc
->chip
->Doorbell
)
3211 & MPI2_DOORBELL_DATA_MASK
);
3212 writel(0, &ioc
->chip
->HostInterruptStatus
);
3214 for (i
= 2; i
< default_reply
->MsgLength
* 2; i
++) {
3215 if ((_base_wait_for_doorbell_int(ioc
, 5, sleep_flag
))) {
3216 printk(MPT2SAS_ERR_FMT
"doorbell "
3217 "handshake int failed (line=%d)\n", ioc
->name
,
3221 if (i
>= reply_bytes
/2) /* overflow case */
3222 dummy
= readl(&ioc
->chip
->Doorbell
);
3224 reply
[i
] = le16_to_cpu(readl(&ioc
->chip
->Doorbell
)
3225 & MPI2_DOORBELL_DATA_MASK
);
3226 writel(0, &ioc
->chip
->HostInterruptStatus
);
3229 _base_wait_for_doorbell_int(ioc
, 5, sleep_flag
);
3230 if (_base_wait_for_doorbell_not_used(ioc
, 5, sleep_flag
) != 0) {
3231 dhsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"doorbell is in use "
3232 " (line=%d)\n", ioc
->name
, __LINE__
));
3234 writel(0, &ioc
->chip
->HostInterruptStatus
);
3236 if (ioc
->logging_level
& MPT_DEBUG_INIT
) {
3237 mfp
= (__le32
*)reply
;
3238 printk(KERN_INFO
"\toffset:data\n");
3239 for (i
= 0; i
< reply_bytes
/4; i
++)
3240 printk(KERN_INFO
"\t[0x%02x]:%08x\n", i
*4,
3241 le32_to_cpu(mfp
[i
]));
3247 * mpt2sas_base_sas_iounit_control - send sas iounit control to FW
3248 * @ioc: per adapter object
3249 * @mpi_reply: the reply payload from FW
3250 * @mpi_request: the request payload sent to FW
3252 * The SAS IO Unit Control Request message allows the host to perform low-level
3253 * operations, such as resets on the PHYs of the IO Unit, also allows the host
3254 * to obtain the IOC assigned device handles for a device if it has other
3255 * identifying information about the device, in addition allows the host to
3256 * remove IOC resources associated with the device.
3258 * Returns 0 for success, non-zero for failure.
3261 mpt2sas_base_sas_iounit_control(struct MPT2SAS_ADAPTER
*ioc
,
3262 Mpi2SasIoUnitControlReply_t
*mpi_reply
,
3263 Mpi2SasIoUnitControlRequest_t
*mpi_request
)
3267 unsigned long timeleft
;
3268 bool issue_reset
= false;
3271 u16 wait_state_count
;
3273 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
3276 mutex_lock(&ioc
->base_cmds
.mutex
);
3278 if (ioc
->base_cmds
.status
!= MPT2_CMD_NOT_USED
) {
3279 printk(MPT2SAS_ERR_FMT
"%s: base_cmd in use\n",
3280 ioc
->name
, __func__
);
3285 wait_state_count
= 0;
3286 ioc_state
= mpt2sas_base_get_iocstate(ioc
, 1);
3287 while (ioc_state
!= MPI2_IOC_STATE_OPERATIONAL
) {
3288 if (wait_state_count
++ == 10) {
3289 printk(MPT2SAS_ERR_FMT
3290 "%s: failed due to ioc not operational\n",
3291 ioc
->name
, __func__
);
3296 ioc_state
= mpt2sas_base_get_iocstate(ioc
, 1);
3297 printk(MPT2SAS_INFO_FMT
"%s: waiting for "
3298 "operational state(count=%d)\n", ioc
->name
,
3299 __func__
, wait_state_count
);
3302 smid
= mpt2sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
3304 printk(MPT2SAS_ERR_FMT
"%s: failed obtaining a smid\n",
3305 ioc
->name
, __func__
);
3311 ioc
->base_cmds
.status
= MPT2_CMD_PENDING
;
3312 request
= mpt2sas_base_get_msg_frame(ioc
, smid
);
3313 ioc
->base_cmds
.smid
= smid
;
3314 memcpy(request
, mpi_request
, sizeof(Mpi2SasIoUnitControlRequest_t
));
3315 if (mpi_request
->Operation
== MPI2_SAS_OP_PHY_HARD_RESET
||
3316 mpi_request
->Operation
== MPI2_SAS_OP_PHY_LINK_RESET
)
3317 ioc
->ioc_link_reset_in_progress
= 1;
3318 init_completion(&ioc
->base_cmds
.done
);
3319 mpt2sas_base_put_smid_default(ioc
, smid
);
3320 timeleft
= wait_for_completion_timeout(&ioc
->base_cmds
.done
,
3321 msecs_to_jiffies(10000));
3322 if ((mpi_request
->Operation
== MPI2_SAS_OP_PHY_HARD_RESET
||
3323 mpi_request
->Operation
== MPI2_SAS_OP_PHY_LINK_RESET
) &&
3324 ioc
->ioc_link_reset_in_progress
)
3325 ioc
->ioc_link_reset_in_progress
= 0;
3326 if (!(ioc
->base_cmds
.status
& MPT2_CMD_COMPLETE
)) {
3327 printk(MPT2SAS_ERR_FMT
"%s: timeout\n",
3328 ioc
->name
, __func__
);
3329 _debug_dump_mf(mpi_request
,
3330 sizeof(Mpi2SasIoUnitControlRequest_t
)/4);
3331 if (!(ioc
->base_cmds
.status
& MPT2_CMD_RESET
))
3333 goto issue_host_reset
;
3335 if (ioc
->base_cmds
.status
& MPT2_CMD_REPLY_VALID
)
3336 memcpy(mpi_reply
, ioc
->base_cmds
.reply
,
3337 sizeof(Mpi2SasIoUnitControlReply_t
));
3339 memset(mpi_reply
, 0, sizeof(Mpi2SasIoUnitControlReply_t
));
3340 ioc
->base_cmds
.status
= MPT2_CMD_NOT_USED
;
3345 mpt2sas_base_hard_reset_handler(ioc
, CAN_SLEEP
,
3347 ioc
->base_cmds
.status
= MPT2_CMD_NOT_USED
;
3350 mutex_unlock(&ioc
->base_cmds
.mutex
);
3356 * mpt2sas_base_scsi_enclosure_processor - sending request to sep device
3357 * @ioc: per adapter object
3358 * @mpi_reply: the reply payload from FW
3359 * @mpi_request: the request payload sent to FW
3361 * The SCSI Enclosure Processor request message causes the IOC to
3362 * communicate with SES devices to control LED status signals.
3364 * Returns 0 for success, non-zero for failure.
3367 mpt2sas_base_scsi_enclosure_processor(struct MPT2SAS_ADAPTER
*ioc
,
3368 Mpi2SepReply_t
*mpi_reply
, Mpi2SepRequest_t
*mpi_request
)
3372 unsigned long timeleft
;
3373 bool issue_reset
= false;
3376 u16 wait_state_count
;
3378 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
3381 mutex_lock(&ioc
->base_cmds
.mutex
);
3383 if (ioc
->base_cmds
.status
!= MPT2_CMD_NOT_USED
) {
3384 printk(MPT2SAS_ERR_FMT
"%s: base_cmd in use\n",
3385 ioc
->name
, __func__
);
3390 wait_state_count
= 0;
3391 ioc_state
= mpt2sas_base_get_iocstate(ioc
, 1);
3392 while (ioc_state
!= MPI2_IOC_STATE_OPERATIONAL
) {
3393 if (wait_state_count
++ == 10) {
3394 printk(MPT2SAS_ERR_FMT
3395 "%s: failed due to ioc not operational\n",
3396 ioc
->name
, __func__
);
3401 ioc_state
= mpt2sas_base_get_iocstate(ioc
, 1);
3402 printk(MPT2SAS_INFO_FMT
"%s: waiting for "
3403 "operational state(count=%d)\n", ioc
->name
,
3404 __func__
, wait_state_count
);
3407 smid
= mpt2sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
3409 printk(MPT2SAS_ERR_FMT
"%s: failed obtaining a smid\n",
3410 ioc
->name
, __func__
);
3416 ioc
->base_cmds
.status
= MPT2_CMD_PENDING
;
3417 request
= mpt2sas_base_get_msg_frame(ioc
, smid
);
3418 ioc
->base_cmds
.smid
= smid
;
3419 memcpy(request
, mpi_request
, sizeof(Mpi2SepReply_t
));
3420 init_completion(&ioc
->base_cmds
.done
);
3421 mpt2sas_base_put_smid_default(ioc
, smid
);
3422 timeleft
= wait_for_completion_timeout(&ioc
->base_cmds
.done
,
3423 msecs_to_jiffies(10000));
3424 if (!(ioc
->base_cmds
.status
& MPT2_CMD_COMPLETE
)) {
3425 printk(MPT2SAS_ERR_FMT
"%s: timeout\n",
3426 ioc
->name
, __func__
);
3427 _debug_dump_mf(mpi_request
,
3428 sizeof(Mpi2SepRequest_t
)/4);
3429 if (!(ioc
->base_cmds
.status
& MPT2_CMD_RESET
))
3431 goto issue_host_reset
;
3433 if (ioc
->base_cmds
.status
& MPT2_CMD_REPLY_VALID
)
3434 memcpy(mpi_reply
, ioc
->base_cmds
.reply
,
3435 sizeof(Mpi2SepReply_t
));
3437 memset(mpi_reply
, 0, sizeof(Mpi2SepReply_t
));
3438 ioc
->base_cmds
.status
= MPT2_CMD_NOT_USED
;
3443 mpt2sas_base_hard_reset_handler(ioc
, CAN_SLEEP
,
3445 ioc
->base_cmds
.status
= MPT2_CMD_NOT_USED
;
3448 mutex_unlock(&ioc
->base_cmds
.mutex
);
3453 * _base_get_port_facts - obtain port facts reply and save in ioc
3454 * @ioc: per adapter object
3455 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3457 * Returns 0 for success, non-zero for failure.
3460 _base_get_port_facts(struct MPT2SAS_ADAPTER
*ioc
, int port
, int sleep_flag
)
3462 Mpi2PortFactsRequest_t mpi_request
;
3463 Mpi2PortFactsReply_t mpi_reply
;
3464 struct mpt2sas_port_facts
*pfacts
;
3465 int mpi_reply_sz
, mpi_request_sz
, r
;
3467 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
3470 mpi_reply_sz
= sizeof(Mpi2PortFactsReply_t
);
3471 mpi_request_sz
= sizeof(Mpi2PortFactsRequest_t
);
3472 memset(&mpi_request
, 0, mpi_request_sz
);
3473 mpi_request
.Function
= MPI2_FUNCTION_PORT_FACTS
;
3474 mpi_request
.PortNumber
= port
;
3475 r
= _base_handshake_req_reply_wait(ioc
, mpi_request_sz
,
3476 (u32
*)&mpi_request
, mpi_reply_sz
, (u16
*)&mpi_reply
, 5, CAN_SLEEP
);
3479 printk(MPT2SAS_ERR_FMT
"%s: handshake failed (r=%d)\n",
3480 ioc
->name
, __func__
, r
);
3484 pfacts
= &ioc
->pfacts
[port
];
3485 memset(pfacts
, 0, sizeof(struct mpt2sas_port_facts
));
3486 pfacts
->PortNumber
= mpi_reply
.PortNumber
;
3487 pfacts
->VP_ID
= mpi_reply
.VP_ID
;
3488 pfacts
->VF_ID
= mpi_reply
.VF_ID
;
3489 pfacts
->MaxPostedCmdBuffers
=
3490 le16_to_cpu(mpi_reply
.MaxPostedCmdBuffers
);
3496 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
3497 * @ioc: per adapter object
3499 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3501 * Returns 0 for success, non-zero for failure.
3504 _base_wait_for_iocstate(struct MPT2SAS_ADAPTER
*ioc
, int timeout
,
3507 u32 ioc_state
, doorbell
;
3510 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
3513 if (ioc
->pci_error_recovery
)
3516 doorbell
= mpt2sas_base_get_iocstate(ioc
, 0);
3517 ioc_state
= doorbell
& MPI2_IOC_STATE_MASK
;
3518 dhsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: ioc_state(0x%08x)\n",
3519 ioc
->name
, __func__
, ioc_state
));
3521 switch (ioc_state
) {
3522 case MPI2_IOC_STATE_READY
:
3523 case MPI2_IOC_STATE_OPERATIONAL
:
3527 if (doorbell
& MPI2_DOORBELL_USED
) {
3528 dhsprintk(ioc
, printk(MPT2SAS_INFO_FMT
3529 "unexpected doorbell activ!e\n", ioc
->name
));
3530 goto issue_diag_reset
;
3533 if (ioc_state
== MPI2_IOC_STATE_FAULT
) {
3534 mpt2sas_base_fault_info(ioc
, doorbell
&
3535 MPI2_DOORBELL_DATA_MASK
);
3536 goto issue_diag_reset
;
3539 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
,
3540 timeout
, sleep_flag
);
3542 printk(MPT2SAS_ERR_FMT
3543 "%s: failed going to ready state (ioc_state=0x%x)\n",
3544 ioc
->name
, __func__
, ioc_state
);
3549 rc
= _base_diag_reset(ioc
, sleep_flag
);
3554 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
3555 * @ioc: per adapter object
3556 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3558 * Returns 0 for success, non-zero for failure.
3561 _base_get_ioc_facts(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
)
3563 Mpi2IOCFactsRequest_t mpi_request
;
3564 Mpi2IOCFactsReply_t mpi_reply
;
3565 struct mpt2sas_facts
*facts
;
3566 int mpi_reply_sz
, mpi_request_sz
, r
;
3568 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
3571 r
= _base_wait_for_iocstate(ioc
, 10, sleep_flag
);
3573 printk(MPT2SAS_ERR_FMT
"%s: failed getting to correct state\n",
3574 ioc
->name
, __func__
);
3578 mpi_reply_sz
= sizeof(Mpi2IOCFactsReply_t
);
3579 mpi_request_sz
= sizeof(Mpi2IOCFactsRequest_t
);
3580 memset(&mpi_request
, 0, mpi_request_sz
);
3581 mpi_request
.Function
= MPI2_FUNCTION_IOC_FACTS
;
3582 r
= _base_handshake_req_reply_wait(ioc
, mpi_request_sz
,
3583 (u32
*)&mpi_request
, mpi_reply_sz
, (u16
*)&mpi_reply
, 5, CAN_SLEEP
);
3586 printk(MPT2SAS_ERR_FMT
"%s: handshake failed (r=%d)\n",
3587 ioc
->name
, __func__
, r
);
3591 facts
= &ioc
->facts
;
3592 memset(facts
, 0, sizeof(struct mpt2sas_facts
));
3593 facts
->MsgVersion
= le16_to_cpu(mpi_reply
.MsgVersion
);
3594 facts
->HeaderVersion
= le16_to_cpu(mpi_reply
.HeaderVersion
);
3595 facts
->VP_ID
= mpi_reply
.VP_ID
;
3596 facts
->VF_ID
= mpi_reply
.VF_ID
;
3597 facts
->IOCExceptions
= le16_to_cpu(mpi_reply
.IOCExceptions
);
3598 facts
->MaxChainDepth
= mpi_reply
.MaxChainDepth
;
3599 facts
->WhoInit
= mpi_reply
.WhoInit
;
3600 facts
->NumberOfPorts
= mpi_reply
.NumberOfPorts
;
3601 facts
->MaxMSIxVectors
= mpi_reply
.MaxMSIxVectors
;
3602 facts
->RequestCredit
= le16_to_cpu(mpi_reply
.RequestCredit
);
3603 facts
->MaxReplyDescriptorPostQueueDepth
=
3604 le16_to_cpu(mpi_reply
.MaxReplyDescriptorPostQueueDepth
);
3605 facts
->ProductID
= le16_to_cpu(mpi_reply
.ProductID
);
3606 facts
->IOCCapabilities
= le32_to_cpu(mpi_reply
.IOCCapabilities
);
3607 if ((facts
->IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID
))
3608 ioc
->ir_firmware
= 1;
3609 if ((facts
->IOCCapabilities
&
3610 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE
))
3611 ioc
->rdpq_array_capable
= 1;
3612 facts
->FWVersion
.Word
= le32_to_cpu(mpi_reply
.FWVersion
.Word
);
3613 facts
->IOCRequestFrameSize
=
3614 le16_to_cpu(mpi_reply
.IOCRequestFrameSize
);
3615 facts
->MaxInitiators
= le16_to_cpu(mpi_reply
.MaxInitiators
);
3616 facts
->MaxTargets
= le16_to_cpu(mpi_reply
.MaxTargets
);
3617 ioc
->shost
->max_id
= -1;
3618 facts
->MaxSasExpanders
= le16_to_cpu(mpi_reply
.MaxSasExpanders
);
3619 facts
->MaxEnclosures
= le16_to_cpu(mpi_reply
.MaxEnclosures
);
3620 facts
->ProtocolFlags
= le16_to_cpu(mpi_reply
.ProtocolFlags
);
3621 facts
->HighPriorityCredit
=
3622 le16_to_cpu(mpi_reply
.HighPriorityCredit
);
3623 facts
->ReplyFrameSize
= mpi_reply
.ReplyFrameSize
;
3624 facts
->MaxDevHandle
= le16_to_cpu(mpi_reply
.MaxDevHandle
);
3626 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"hba queue depth(%d), "
3627 "max chains per io(%d)\n", ioc
->name
, facts
->RequestCredit
,
3628 facts
->MaxChainDepth
));
3629 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"request frame size(%d), "
3630 "reply frame size(%d)\n", ioc
->name
,
3631 facts
->IOCRequestFrameSize
* 4, facts
->ReplyFrameSize
* 4));
3636 * _base_send_ioc_init - send ioc_init to firmware
3637 * @ioc: per adapter object
3638 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3640 * Returns 0 for success, non-zero for failure.
3643 _base_send_ioc_init(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
)
3645 Mpi2IOCInitRequest_t mpi_request
;
3646 Mpi2IOCInitReply_t mpi_reply
;
3648 struct timeval current_time
;
3650 u32 reply_post_free_array_sz
= 0;
3651 Mpi2IOCInitRDPQArrayEntry
*reply_post_free_array
= NULL
;
3652 dma_addr_t reply_post_free_array_dma
;
3654 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
3657 memset(&mpi_request
, 0, sizeof(Mpi2IOCInitRequest_t
));
3658 mpi_request
.Function
= MPI2_FUNCTION_IOC_INIT
;
3659 mpi_request
.WhoInit
= MPI2_WHOINIT_HOST_DRIVER
;
3660 mpi_request
.VF_ID
= 0; /* TODO */
3661 mpi_request
.VP_ID
= 0;
3662 mpi_request
.MsgVersion
= cpu_to_le16(MPI2_VERSION
);
3663 mpi_request
.HeaderVersion
= cpu_to_le16(MPI2_HEADER_VERSION
);
3665 if (_base_is_controller_msix_enabled(ioc
))
3666 mpi_request
.HostMSIxVectors
= ioc
->reply_queue_count
;
3667 mpi_request
.SystemRequestFrameSize
= cpu_to_le16(ioc
->request_sz
/4);
3668 mpi_request
.ReplyDescriptorPostQueueDepth
=
3669 cpu_to_le16(ioc
->reply_post_queue_depth
);
3670 mpi_request
.ReplyFreeQueueDepth
=
3671 cpu_to_le16(ioc
->reply_free_queue_depth
);
3673 mpi_request
.SenseBufferAddressHigh
=
3674 cpu_to_le32((u64
)ioc
->sense_dma
>> 32);
3675 mpi_request
.SystemReplyAddressHigh
=
3676 cpu_to_le32((u64
)ioc
->reply_dma
>> 32);
3677 mpi_request
.SystemRequestFrameBaseAddress
=
3678 cpu_to_le64((u64
)ioc
->request_dma
);
3679 mpi_request
.ReplyFreeQueueAddress
=
3680 cpu_to_le64((u64
)ioc
->reply_free_dma
);
3682 if (ioc
->rdpq_array_enable
) {
3683 reply_post_free_array_sz
= ioc
->reply_queue_count
*
3684 sizeof(Mpi2IOCInitRDPQArrayEntry
);
3685 reply_post_free_array
= pci_alloc_consistent(ioc
->pdev
,
3686 reply_post_free_array_sz
, &reply_post_free_array_dma
);
3687 if (!reply_post_free_array
) {
3688 printk(MPT2SAS_ERR_FMT
3689 "reply_post_free_array: pci_alloc_consistent failed\n",
3694 memset(reply_post_free_array
, 0, reply_post_free_array_sz
);
3695 for (i
= 0; i
< ioc
->reply_queue_count
; i
++)
3696 reply_post_free_array
[i
].RDPQBaseAddress
=
3698 (u64
)ioc
->reply_post
[i
].reply_post_free_dma
);
3699 mpi_request
.MsgFlags
= MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE
;
3700 mpi_request
.ReplyDescriptorPostQueueAddress
=
3701 cpu_to_le64((u64
)reply_post_free_array_dma
);
3703 mpi_request
.ReplyDescriptorPostQueueAddress
=
3704 cpu_to_le64((u64
)ioc
->reply_post
[0].reply_post_free_dma
);
3707 /* This time stamp specifies number of milliseconds
3708 * since epoch ~ midnight January 1, 1970.
3710 do_gettimeofday(¤t_time
);
3711 mpi_request
.TimeStamp
= cpu_to_le64((u64
)current_time
.tv_sec
* 1000 +
3712 (current_time
.tv_usec
/ 1000));
3714 if (ioc
->logging_level
& MPT_DEBUG_INIT
) {
3718 mfp
= (__le32
*)&mpi_request
;
3719 printk(KERN_INFO
"\toffset:data\n");
3720 for (i
= 0; i
< sizeof(Mpi2IOCInitRequest_t
)/4; i
++)
3721 printk(KERN_INFO
"\t[0x%02x]:%08x\n", i
*4,
3722 le32_to_cpu(mfp
[i
]));
3725 r
= _base_handshake_req_reply_wait(ioc
,
3726 sizeof(Mpi2IOCInitRequest_t
), (u32
*)&mpi_request
,
3727 sizeof(Mpi2IOCInitReply_t
), (u16
*)&mpi_reply
, 10,
3731 printk(MPT2SAS_ERR_FMT
"%s: handshake failed (r=%d)\n",
3732 ioc
->name
, __func__
, r
);
3736 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) & MPI2_IOCSTATUS_MASK
;
3737 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
||
3738 mpi_reply
.IOCLogInfo
) {
3739 printk(MPT2SAS_ERR_FMT
"%s: failed\n", ioc
->name
, __func__
);
3744 if (reply_post_free_array
)
3745 pci_free_consistent(ioc
->pdev
, reply_post_free_array_sz
,
3746 reply_post_free_array
,
3747 reply_post_free_array_dma
);
3752 * mpt2sas_port_enable_done - command completion routine for port enable
3753 * @ioc: per adapter object
3754 * @smid: system request message index
3755 * @msix_index: MSIX table index supplied by the OS
3756 * @reply: reply message frame(lower 32bit addr)
3758 * Return 1 meaning mf should be freed from _base_interrupt
3759 * 0 means the mf is freed from this function.
3762 mpt2sas_port_enable_done(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
3765 MPI2DefaultReply_t
*mpi_reply
;
3768 mpi_reply
= mpt2sas_base_get_reply_virt_addr(ioc
, reply
);
3769 if (mpi_reply
&& mpi_reply
->Function
== MPI2_FUNCTION_EVENT_ACK
)
3772 if (ioc
->port_enable_cmds
.status
== MPT2_CMD_NOT_USED
)
3775 ioc
->port_enable_cmds
.status
|= MPT2_CMD_COMPLETE
;
3777 ioc
->port_enable_cmds
.status
|= MPT2_CMD_REPLY_VALID
;
3778 memcpy(ioc
->port_enable_cmds
.reply
, mpi_reply
,
3779 mpi_reply
->MsgLength
*4);
3781 ioc
->port_enable_cmds
.status
&= ~MPT2_CMD_PENDING
;
3783 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
) & MPI2_IOCSTATUS_MASK
;
3785 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
)
3786 ioc
->port_enable_failed
= 1;
3788 if (ioc
->is_driver_loading
) {
3789 if (ioc_status
== MPI2_IOCSTATUS_SUCCESS
) {
3790 mpt2sas_port_enable_complete(ioc
);
3793 ioc
->start_scan_failed
= ioc_status
;
3794 ioc
->start_scan
= 0;
3798 complete(&ioc
->port_enable_cmds
.done
);
3804 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
3805 * @ioc: per adapter object
3806 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3808 * Returns 0 for success, non-zero for failure.
3811 _base_send_port_enable(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
)
3813 Mpi2PortEnableRequest_t
*mpi_request
;
3814 Mpi2PortEnableReply_t
*mpi_reply
;
3815 unsigned long timeleft
;
3820 printk(MPT2SAS_INFO_FMT
"sending port enable !!\n", ioc
->name
);
3822 if (ioc
->port_enable_cmds
.status
& MPT2_CMD_PENDING
) {
3823 printk(MPT2SAS_ERR_FMT
"%s: internal command already in use\n",
3824 ioc
->name
, __func__
);
3828 smid
= mpt2sas_base_get_smid(ioc
, ioc
->port_enable_cb_idx
);
3830 printk(MPT2SAS_ERR_FMT
"%s: failed obtaining a smid\n",
3831 ioc
->name
, __func__
);
3835 ioc
->port_enable_cmds
.status
= MPT2_CMD_PENDING
;
3836 mpi_request
= mpt2sas_base_get_msg_frame(ioc
, smid
);
3837 ioc
->port_enable_cmds
.smid
= smid
;
3838 memset(mpi_request
, 0, sizeof(Mpi2PortEnableRequest_t
));
3839 mpi_request
->Function
= MPI2_FUNCTION_PORT_ENABLE
;
3841 init_completion(&ioc
->port_enable_cmds
.done
);
3842 mpt2sas_base_put_smid_default(ioc
, smid
);
3843 timeleft
= wait_for_completion_timeout(&ioc
->port_enable_cmds
.done
,
3845 if (!(ioc
->port_enable_cmds
.status
& MPT2_CMD_COMPLETE
)) {
3846 printk(MPT2SAS_ERR_FMT
"%s: timeout\n",
3847 ioc
->name
, __func__
);
3848 _debug_dump_mf(mpi_request
,
3849 sizeof(Mpi2PortEnableRequest_t
)/4);
3850 if (ioc
->port_enable_cmds
.status
& MPT2_CMD_RESET
)
3856 mpi_reply
= ioc
->port_enable_cmds
.reply
;
3858 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
) & MPI2_IOCSTATUS_MASK
;
3859 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
) {
3860 printk(MPT2SAS_ERR_FMT
"%s: failed with (ioc_status=0x%08x)\n",
3861 ioc
->name
, __func__
, ioc_status
);
3866 ioc
->port_enable_cmds
.status
= MPT2_CMD_NOT_USED
;
3867 printk(MPT2SAS_INFO_FMT
"port enable: %s\n", ioc
->name
, ((r
== 0) ?
3868 "SUCCESS" : "FAILED"));
3873 * mpt2sas_port_enable - initiate firmware discovery (don't wait for reply)
3874 * @ioc: per adapter object
3876 * Returns 0 for success, non-zero for failure.
3879 mpt2sas_port_enable(struct MPT2SAS_ADAPTER
*ioc
)
3881 Mpi2PortEnableRequest_t
*mpi_request
;
3884 printk(MPT2SAS_INFO_FMT
"sending port enable !!\n", ioc
->name
);
3886 if (ioc
->port_enable_cmds
.status
& MPT2_CMD_PENDING
) {
3887 printk(MPT2SAS_ERR_FMT
"%s: internal command already in use\n",
3888 ioc
->name
, __func__
);
3892 smid
= mpt2sas_base_get_smid(ioc
, ioc
->port_enable_cb_idx
);
3894 printk(MPT2SAS_ERR_FMT
"%s: failed obtaining a smid\n",
3895 ioc
->name
, __func__
);
3899 ioc
->port_enable_cmds
.status
= MPT2_CMD_PENDING
;
3900 mpi_request
= mpt2sas_base_get_msg_frame(ioc
, smid
);
3901 ioc
->port_enable_cmds
.smid
= smid
;
3902 memset(mpi_request
, 0, sizeof(Mpi2PortEnableRequest_t
));
3903 mpi_request
->Function
= MPI2_FUNCTION_PORT_ENABLE
;
3905 mpt2sas_base_put_smid_default(ioc
, smid
);
3910 * _base_determine_wait_on_discovery - desposition
3911 * @ioc: per adapter object
3913 * Decide whether to wait on discovery to complete. Used to either
3914 * locate boot device, or report volumes ahead of physical devices.
3916 * Returns 1 for wait, 0 for don't wait
3919 _base_determine_wait_on_discovery(struct MPT2SAS_ADAPTER
*ioc
)
3921 /* We wait for discovery to complete if IR firmware is loaded.
3922 * The sas topology events arrive before PD events, so we need time to
3923 * turn on the bit in ioc->pd_handles to indicate PD
3924 * Also, it maybe required to report Volumes ahead of physical
3925 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
3927 if (ioc
->ir_firmware
)
3930 /* if no Bios, then we don't need to wait */
3931 if (!ioc
->bios_pg3
.BiosVersion
)
3934 /* Bios is present, then we drop down here.
3936 * If there any entries in the Bios Page 2, then we wait
3937 * for discovery to complete.
3940 /* Current Boot Device */
3941 if ((ioc
->bios_pg2
.CurrentBootDeviceForm
&
3942 MPI2_BIOSPAGE2_FORM_MASK
) ==
3943 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED
&&
3944 /* Request Boot Device */
3945 (ioc
->bios_pg2
.ReqBootDeviceForm
&
3946 MPI2_BIOSPAGE2_FORM_MASK
) ==
3947 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED
&&
3948 /* Alternate Request Boot Device */
3949 (ioc
->bios_pg2
.ReqAltBootDeviceForm
&
3950 MPI2_BIOSPAGE2_FORM_MASK
) ==
3951 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED
)
3959 * _base_unmask_events - turn on notification for this event
3960 * @ioc: per adapter object
3961 * @event: firmware event
3963 * The mask is stored in ioc->event_masks.
3966 _base_unmask_events(struct MPT2SAS_ADAPTER
*ioc
, u16 event
)
3973 desired_event
= (1 << (event
% 32));
3976 ioc
->event_masks
[0] &= ~desired_event
;
3977 else if (event
< 64)
3978 ioc
->event_masks
[1] &= ~desired_event
;
3979 else if (event
< 96)
3980 ioc
->event_masks
[2] &= ~desired_event
;
3981 else if (event
< 128)
3982 ioc
->event_masks
[3] &= ~desired_event
;
3986 * _base_event_notification - send event notification
3987 * @ioc: per adapter object
3988 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3990 * Returns 0 for success, non-zero for failure.
3993 _base_event_notification(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
)
3995 Mpi2EventNotificationRequest_t
*mpi_request
;
3996 unsigned long timeleft
;
4001 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
4004 if (ioc
->base_cmds
.status
& MPT2_CMD_PENDING
) {
4005 printk(MPT2SAS_ERR_FMT
"%s: internal command already in use\n",
4006 ioc
->name
, __func__
);
4010 smid
= mpt2sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
4012 printk(MPT2SAS_ERR_FMT
"%s: failed obtaining a smid\n",
4013 ioc
->name
, __func__
);
4016 ioc
->base_cmds
.status
= MPT2_CMD_PENDING
;
4017 mpi_request
= mpt2sas_base_get_msg_frame(ioc
, smid
);
4018 ioc
->base_cmds
.smid
= smid
;
4019 memset(mpi_request
, 0, sizeof(Mpi2EventNotificationRequest_t
));
4020 mpi_request
->Function
= MPI2_FUNCTION_EVENT_NOTIFICATION
;
4021 mpi_request
->VF_ID
= 0; /* TODO */
4022 mpi_request
->VP_ID
= 0;
4023 for (i
= 0; i
< MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++)
4024 mpi_request
->EventMasks
[i
] =
4025 cpu_to_le32(ioc
->event_masks
[i
]);
4026 init_completion(&ioc
->base_cmds
.done
);
4027 mpt2sas_base_put_smid_default(ioc
, smid
);
4028 timeleft
= wait_for_completion_timeout(&ioc
->base_cmds
.done
, 30*HZ
);
4029 if (!(ioc
->base_cmds
.status
& MPT2_CMD_COMPLETE
)) {
4030 printk(MPT2SAS_ERR_FMT
"%s: timeout\n",
4031 ioc
->name
, __func__
);
4032 _debug_dump_mf(mpi_request
,
4033 sizeof(Mpi2EventNotificationRequest_t
)/4);
4034 if (ioc
->base_cmds
.status
& MPT2_CMD_RESET
)
4039 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: complete\n",
4040 ioc
->name
, __func__
));
4041 ioc
->base_cmds
.status
= MPT2_CMD_NOT_USED
;
4046 * mpt2sas_base_validate_event_type - validating event types
4047 * @ioc: per adapter object
4048 * @event: firmware event
4050 * This will turn on firmware event notification when application
4051 * ask for that event. We don't mask events that are already enabled.
4054 mpt2sas_base_validate_event_type(struct MPT2SAS_ADAPTER
*ioc
, u32
*event_type
)
4057 u32 event_mask
, desired_event
;
4058 u8 send_update_to_fw
;
4060 for (i
= 0, send_update_to_fw
= 0; i
<
4061 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++) {
4062 event_mask
= ~event_type
[i
];
4064 for (j
= 0; j
< 32; j
++) {
4065 if (!(event_mask
& desired_event
) &&
4066 (ioc
->event_masks
[i
] & desired_event
)) {
4067 ioc
->event_masks
[i
] &= ~desired_event
;
4068 send_update_to_fw
= 1;
4070 desired_event
= (desired_event
<< 1);
4074 if (!send_update_to_fw
)
4077 mutex_lock(&ioc
->base_cmds
.mutex
);
4078 _base_event_notification(ioc
, CAN_SLEEP
);
4079 mutex_unlock(&ioc
->base_cmds
.mutex
);
4083 * _base_diag_reset - the "big hammer" start of day reset
4084 * @ioc: per adapter object
4085 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4087 * Returns 0 for success, non-zero for failure.
4090 _base_diag_reset(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
)
4092 u32 host_diagnostic
;
4097 printk(MPT2SAS_INFO_FMT
"sending diag reset !!\n", ioc
->name
);
4098 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"clear interrupts\n",
4103 /* Write magic sequence to WriteSequence register
4104 * Loop until in diagnostic mode
4106 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"write magic "
4107 "sequence\n", ioc
->name
));
4108 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
4109 writel(MPI2_WRSEQ_1ST_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
4110 writel(MPI2_WRSEQ_2ND_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
4111 writel(MPI2_WRSEQ_3RD_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
4112 writel(MPI2_WRSEQ_4TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
4113 writel(MPI2_WRSEQ_5TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
4114 writel(MPI2_WRSEQ_6TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
4117 if (sleep_flag
== CAN_SLEEP
)
4125 host_diagnostic
= readl(&ioc
->chip
->HostDiagnostic
);
4126 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"wrote magic "
4127 "sequence: count(%d), host_diagnostic(0x%08x)\n",
4128 ioc
->name
, count
, host_diagnostic
));
4130 } while ((host_diagnostic
& MPI2_DIAG_DIAG_WRITE_ENABLE
) == 0);
4132 hcb_size
= readl(&ioc
->chip
->HCBSize
);
4134 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"diag reset: issued\n",
4136 writel(host_diagnostic
| MPI2_DIAG_RESET_ADAPTER
,
4137 &ioc
->chip
->HostDiagnostic
);
4139 /* This delay allows the chip PCIe hardware time to finish reset tasks*/
4140 if (sleep_flag
== CAN_SLEEP
)
4141 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC
/1000);
4143 mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC
/1000);
4145 /* Approximately 300 second max wait */
4146 for (count
= 0; count
< (300000000 /
4147 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
); count
++) {
4149 host_diagnostic
= readl(&ioc
->chip
->HostDiagnostic
);
4151 if (host_diagnostic
== 0xFFFFFFFF)
4153 if (!(host_diagnostic
& MPI2_DIAG_RESET_ADAPTER
))
4156 /* Wait to pass the second read delay window */
4157 if (sleep_flag
== CAN_SLEEP
)
4158 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4161 mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4165 if (host_diagnostic
& MPI2_DIAG_HCB_MODE
) {
4167 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"restart the adapter "
4168 "assuming the HCB Address points to good F/W\n",
4170 host_diagnostic
&= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK
;
4171 host_diagnostic
|= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW
;
4172 writel(host_diagnostic
, &ioc
->chip
->HostDiagnostic
);
4174 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
4175 "re-enable the HCDW\n", ioc
->name
));
4176 writel(hcb_size
| MPI2_HCB_SIZE_HCB_ENABLE
,
4177 &ioc
->chip
->HCBSize
);
4180 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"restart the adapter\n",
4182 writel(host_diagnostic
& ~MPI2_DIAG_HOLD_IOC_RESET
,
4183 &ioc
->chip
->HostDiagnostic
);
4185 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"disable writes to the "
4186 "diagnostic register\n", ioc
->name
));
4187 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
4189 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"Wait for FW to go to the "
4190 "READY state\n", ioc
->name
));
4191 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
, 20,
4194 printk(MPT2SAS_ERR_FMT
"%s: failed going to ready state "
4195 " (ioc_state=0x%x)\n", ioc
->name
, __func__
, ioc_state
);
4199 printk(MPT2SAS_INFO_FMT
"diag reset: SUCCESS\n", ioc
->name
);
4203 printk(MPT2SAS_ERR_FMT
"diag reset: FAILED\n", ioc
->name
);
4208 * _base_make_ioc_ready - put controller in READY state
4209 * @ioc: per adapter object
4210 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4211 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4213 * Returns 0 for success, non-zero for failure.
4216 _base_make_ioc_ready(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
,
4217 enum reset_type type
)
4222 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
4225 if (ioc
->pci_error_recovery
)
4228 ioc_state
= mpt2sas_base_get_iocstate(ioc
, 0);
4229 dhsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: ioc_state(0x%08x)\n",
4230 ioc
->name
, __func__
, ioc_state
));
4232 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_READY
)
4235 if (ioc_state
& MPI2_DOORBELL_USED
) {
4236 dhsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"unexpected doorbell "
4237 "active!\n", ioc
->name
));
4238 goto issue_diag_reset
;
4241 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
) {
4242 mpt2sas_base_fault_info(ioc
, ioc_state
&
4243 MPI2_DOORBELL_DATA_MASK
);
4244 goto issue_diag_reset
;
4247 if (type
== FORCE_BIG_HAMMER
)
4248 goto issue_diag_reset
;
4250 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_OPERATIONAL
)
4251 if (!(_base_send_ioc_reset(ioc
,
4252 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
, 15, CAN_SLEEP
))) {
4253 ioc
->ioc_reset_count
++;
4258 rc
= _base_diag_reset(ioc
, CAN_SLEEP
);
4259 ioc
->ioc_reset_count
++;
4264 * _base_make_ioc_operational - put controller in OPERATIONAL state
4265 * @ioc: per adapter object
4266 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4268 * Returns 0 for success, non-zero for failure.
4271 _base_make_ioc_operational(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
)
4274 unsigned long flags
;
4277 struct _tr_list
*delayed_tr
, *delayed_tr_next
;
4279 struct adapter_reply_queue
*reply_q
;
4280 long reply_post_free
;
4281 u32 reply_post_free_sz
, index
= 0;
4283 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
4286 /* clean the delayed target reset list */
4287 list_for_each_entry_safe(delayed_tr
, delayed_tr_next
,
4288 &ioc
->delayed_tr_list
, list
) {
4289 list_del(&delayed_tr
->list
);
4293 list_for_each_entry_safe(delayed_tr
, delayed_tr_next
,
4294 &ioc
->delayed_tr_volume_list
, list
) {
4295 list_del(&delayed_tr
->list
);
4299 /* initialize the scsi lookup free list */
4300 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
4301 INIT_LIST_HEAD(&ioc
->free_list
);
4303 for (i
= 0; i
< ioc
->scsiio_depth
; i
++, smid
++) {
4304 INIT_LIST_HEAD(&ioc
->scsi_lookup
[i
].chain_list
);
4305 ioc
->scsi_lookup
[i
].cb_idx
= 0xFF;
4306 ioc
->scsi_lookup
[i
].smid
= smid
;
4307 ioc
->scsi_lookup
[i
].scmd
= NULL
;
4308 ioc
->scsi_lookup
[i
].direct_io
= 0;
4309 list_add_tail(&ioc
->scsi_lookup
[i
].tracker_list
,
4313 /* hi-priority queue */
4314 INIT_LIST_HEAD(&ioc
->hpr_free_list
);
4315 smid
= ioc
->hi_priority_smid
;
4316 for (i
= 0; i
< ioc
->hi_priority_depth
; i
++, smid
++) {
4317 ioc
->hpr_lookup
[i
].cb_idx
= 0xFF;
4318 ioc
->hpr_lookup
[i
].smid
= smid
;
4319 list_add_tail(&ioc
->hpr_lookup
[i
].tracker_list
,
4320 &ioc
->hpr_free_list
);
4323 /* internal queue */
4324 INIT_LIST_HEAD(&ioc
->internal_free_list
);
4325 smid
= ioc
->internal_smid
;
4326 for (i
= 0; i
< ioc
->internal_depth
; i
++, smid
++) {
4327 ioc
->internal_lookup
[i
].cb_idx
= 0xFF;
4328 ioc
->internal_lookup
[i
].smid
= smid
;
4329 list_add_tail(&ioc
->internal_lookup
[i
].tracker_list
,
4330 &ioc
->internal_free_list
);
4334 INIT_LIST_HEAD(&ioc
->free_chain_list
);
4335 for (i
= 0; i
< ioc
->chain_depth
; i
++)
4336 list_add_tail(&ioc
->chain_lookup
[i
].tracker_list
,
4337 &ioc
->free_chain_list
);
4339 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
4341 /* initialize Reply Free Queue */
4342 for (i
= 0, reply_address
= (u32
)ioc
->reply_dma
;
4343 i
< ioc
->reply_free_queue_depth
; i
++, reply_address
+=
4345 ioc
->reply_free
[i
] = cpu_to_le32(reply_address
);
4347 /* initialize reply queues */
4348 if (ioc
->is_driver_loading
)
4349 _base_assign_reply_queues(ioc
);
4351 /* initialize Reply Post Free Queue */
4352 reply_post_free_sz
= ioc
->reply_post_queue_depth
*
4353 sizeof(Mpi2DefaultReplyDescriptor_t
);
4354 reply_post_free
= (long)ioc
->reply_post
[index
].reply_post_free
;
4355 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
4356 reply_q
->reply_post_host_index
= 0;
4357 reply_q
->reply_post_free
= (Mpi2ReplyDescriptorsUnion_t
*)
4359 for (i
= 0; i
< ioc
->reply_post_queue_depth
; i
++)
4360 reply_q
->reply_post_free
[i
].Words
=
4361 cpu_to_le64(ULLONG_MAX
);
4362 if (!_base_is_controller_msix_enabled(ioc
))
4363 goto skip_init_reply_post_free_queue
;
4365 * If RDPQ is enabled, switch to the next allocation.
4366 * Otherwise advance within the contiguous region.
4368 if (ioc
->rdpq_array_enable
)
4369 reply_post_free
= (long)
4370 ioc
->reply_post
[++index
].reply_post_free
;
4372 reply_post_free
+= reply_post_free_sz
;
4374 skip_init_reply_post_free_queue
:
4376 r
= _base_send_ioc_init(ioc
, sleep_flag
);
4380 /* initialize reply free host index */
4381 ioc
->reply_free_host_index
= ioc
->reply_free_queue_depth
- 1;
4382 writel(ioc
->reply_free_host_index
, &ioc
->chip
->ReplyFreeHostIndex
);
4384 /* initialize reply post host index */
4385 list_for_each_entry(reply_q
, &ioc
->reply_queue_list
, list
) {
4386 writel(reply_q
->msix_index
<< MPI2_RPHI_MSIX_INDEX_SHIFT
,
4387 &ioc
->chip
->ReplyPostHostIndex
);
4388 if (!_base_is_controller_msix_enabled(ioc
))
4389 goto skip_init_reply_post_host_index
;
4392 skip_init_reply_post_host_index
:
4394 _base_unmask_interrupts(ioc
);
4396 r
= _base_event_notification(ioc
, sleep_flag
);
4400 if (sleep_flag
== CAN_SLEEP
)
4401 _base_static_config_pages(ioc
);
4404 if (ioc
->is_driver_loading
) {
4405 if (ioc
->is_warpdrive
&& ioc
->manu_pg10
.OEMIdentifier
4408 le32_to_cpu(ioc
->manu_pg10
.OEMSpecificFlags0
) &
4409 MFG_PAGE10_HIDE_SSDS_MASK
);
4410 if (hide_flag
!= MFG_PAGE10_HIDE_SSDS_MASK
)
4411 ioc
->mfg_pg10_hide_flag
= hide_flag
;
4413 ioc
->wait_for_discovery_to_complete
=
4414 _base_determine_wait_on_discovery(ioc
);
4415 return r
; /* scan_start and scan_finished support */
4417 r
= _base_send_port_enable(ioc
, sleep_flag
);
4425 * mpt2sas_base_free_resources - free resources controller resources (io/irq/memap)
4426 * @ioc: per adapter object
4431 mpt2sas_base_free_resources(struct MPT2SAS_ADAPTER
*ioc
)
4433 struct pci_dev
*pdev
= ioc
->pdev
;
4435 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
4438 if (ioc
->chip_phys
&& ioc
->chip
) {
4439 _base_mask_interrupts(ioc
);
4440 ioc
->shost_recovery
= 1;
4441 _base_make_ioc_ready(ioc
, CAN_SLEEP
, SOFT_RESET
);
4442 ioc
->shost_recovery
= 0;
4445 _base_free_irq(ioc
);
4446 _base_disable_msix(ioc
);
4448 if (ioc
->chip_phys
&& ioc
->chip
)
4452 if (pci_is_enabled(pdev
)) {
4453 pci_release_selected_regions(ioc
->pdev
, ioc
->bars
);
4454 pci_disable_pcie_error_reporting(pdev
);
4455 pci_disable_device(pdev
);
4461 * mpt2sas_base_attach - attach controller instance
4462 * @ioc: per adapter object
4464 * Returns 0 for success, non-zero for failure.
4467 mpt2sas_base_attach(struct MPT2SAS_ADAPTER
*ioc
)
4470 int cpu_id
, last_cpu_id
= 0;
4472 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
4475 /* setup cpu_msix_table */
4476 ioc
->cpu_count
= num_online_cpus();
4477 for_each_online_cpu(cpu_id
)
4478 last_cpu_id
= cpu_id
;
4479 ioc
->cpu_msix_table_sz
= last_cpu_id
+ 1;
4480 ioc
->cpu_msix_table
= kzalloc(ioc
->cpu_msix_table_sz
, GFP_KERNEL
);
4481 ioc
->reply_queue_count
= 1;
4482 if (!ioc
->cpu_msix_table
) {
4483 dfailprintk(ioc
, printk(MPT2SAS_INFO_FMT
"allocation for "
4484 "cpu_msix_table failed!!!\n", ioc
->name
));
4486 goto out_free_resources
;
4489 if (ioc
->is_warpdrive
) {
4490 ioc
->reply_post_host_index
= kcalloc(ioc
->cpu_msix_table_sz
,
4491 sizeof(resource_size_t
*), GFP_KERNEL
);
4492 if (!ioc
->reply_post_host_index
) {
4493 dfailprintk(ioc
, printk(MPT2SAS_INFO_FMT
"allocation "
4494 "for cpu_msix_table failed!!!\n", ioc
->name
));
4496 goto out_free_resources
;
4500 ioc
->rdpq_array_enable_assigned
= 0;
4502 r
= mpt2sas_base_map_resources(ioc
);
4504 goto out_free_resources
;
4506 if (ioc
->is_warpdrive
) {
4507 ioc
->reply_post_host_index
[0] = (resource_size_t __iomem
*)
4508 &ioc
->chip
->ReplyPostHostIndex
;
4510 for (i
= 1; i
< ioc
->cpu_msix_table_sz
; i
++)
4511 ioc
->reply_post_host_index
[i
] =
4512 (resource_size_t __iomem
*)
4513 ((u8 __iomem
*)&ioc
->chip
->Doorbell
+ (0x4000 + ((i
- 1)
4517 pci_set_drvdata(ioc
->pdev
, ioc
->shost
);
4518 r
= _base_get_ioc_facts(ioc
, CAN_SLEEP
);
4520 goto out_free_resources
;
4522 r
= _base_make_ioc_ready(ioc
, CAN_SLEEP
, SOFT_RESET
);
4524 goto out_free_resources
;
4526 ioc
->pfacts
= kcalloc(ioc
->facts
.NumberOfPorts
,
4527 sizeof(struct mpt2sas_port_facts
), GFP_KERNEL
);
4530 goto out_free_resources
;
4533 for (i
= 0 ; i
< ioc
->facts
.NumberOfPorts
; i
++) {
4534 r
= _base_get_port_facts(ioc
, i
, CAN_SLEEP
);
4536 goto out_free_resources
;
4539 r
= _base_allocate_memory_pools(ioc
, CAN_SLEEP
);
4541 goto out_free_resources
;
4543 init_waitqueue_head(&ioc
->reset_wq
);
4544 /* allocate memory pd handle bitmask list */
4545 ioc
->pd_handles_sz
= (ioc
->facts
.MaxDevHandle
/ 8);
4546 if (ioc
->facts
.MaxDevHandle
% 8)
4547 ioc
->pd_handles_sz
++;
4548 ioc
->pd_handles
= kzalloc(ioc
->pd_handles_sz
,
4550 if (!ioc
->pd_handles
) {
4552 goto out_free_resources
;
4554 ioc
->blocking_handles
= kzalloc(ioc
->pd_handles_sz
,
4556 if (!ioc
->blocking_handles
) {
4558 goto out_free_resources
;
4560 ioc
->fwfault_debug
= mpt2sas_fwfault_debug
;
4562 /* base internal command bits */
4563 mutex_init(&ioc
->base_cmds
.mutex
);
4564 ioc
->base_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
4565 ioc
->base_cmds
.status
= MPT2_CMD_NOT_USED
;
4567 /* port_enable command bits */
4568 ioc
->port_enable_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
4569 ioc
->port_enable_cmds
.status
= MPT2_CMD_NOT_USED
;
4571 /* transport internal command bits */
4572 ioc
->transport_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
4573 ioc
->transport_cmds
.status
= MPT2_CMD_NOT_USED
;
4574 mutex_init(&ioc
->transport_cmds
.mutex
);
4576 /* scsih internal command bits */
4577 ioc
->scsih_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
4578 ioc
->scsih_cmds
.status
= MPT2_CMD_NOT_USED
;
4579 mutex_init(&ioc
->scsih_cmds
.mutex
);
4581 /* task management internal command bits */
4582 ioc
->tm_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
4583 ioc
->tm_cmds
.status
= MPT2_CMD_NOT_USED
;
4584 mutex_init(&ioc
->tm_cmds
.mutex
);
4586 /* config page internal command bits */
4587 ioc
->config_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
4588 ioc
->config_cmds
.status
= MPT2_CMD_NOT_USED
;
4589 mutex_init(&ioc
->config_cmds
.mutex
);
4591 /* ctl module internal command bits */
4592 ioc
->ctl_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
4593 ioc
->ctl_cmds
.sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_KERNEL
);
4594 ioc
->ctl_cmds
.status
= MPT2_CMD_NOT_USED
;
4595 mutex_init(&ioc
->ctl_cmds
.mutex
);
4597 if (!ioc
->base_cmds
.reply
|| !ioc
->transport_cmds
.reply
||
4598 !ioc
->scsih_cmds
.reply
|| !ioc
->tm_cmds
.reply
||
4599 !ioc
->config_cmds
.reply
|| !ioc
->ctl_cmds
.reply
||
4600 !ioc
->ctl_cmds
.sense
) {
4602 goto out_free_resources
;
4605 if (!ioc
->base_cmds
.reply
|| !ioc
->transport_cmds
.reply
||
4606 !ioc
->scsih_cmds
.reply
|| !ioc
->tm_cmds
.reply
||
4607 !ioc
->config_cmds
.reply
|| !ioc
->ctl_cmds
.reply
) {
4609 goto out_free_resources
;
4612 for (i
= 0; i
< MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++)
4613 ioc
->event_masks
[i
] = -1;
4615 /* here we enable the events we care about */
4616 _base_unmask_events(ioc
, MPI2_EVENT_SAS_DISCOVERY
);
4617 _base_unmask_events(ioc
, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE
);
4618 _base_unmask_events(ioc
, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST
);
4619 _base_unmask_events(ioc
, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE
);
4620 _base_unmask_events(ioc
, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE
);
4621 _base_unmask_events(ioc
, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST
);
4622 _base_unmask_events(ioc
, MPI2_EVENT_IR_VOLUME
);
4623 _base_unmask_events(ioc
, MPI2_EVENT_IR_PHYSICAL_DISK
);
4624 _base_unmask_events(ioc
, MPI2_EVENT_IR_OPERATION_STATUS
);
4625 _base_unmask_events(ioc
, MPI2_EVENT_LOG_ENTRY_ADDED
);
4626 _base_unmask_events(ioc
, MPI2_EVENT_TEMP_THRESHOLD
);
4627 r
= _base_make_ioc_operational(ioc
, CAN_SLEEP
);
4629 goto out_free_resources
;
4631 ioc
->non_operational_loop
= 0;
4637 ioc
->remove_host
= 1;
4638 mpt2sas_base_free_resources(ioc
);
4639 _base_release_memory_pools(ioc
);
4640 pci_set_drvdata(ioc
->pdev
, NULL
);
4641 kfree(ioc
->cpu_msix_table
);
4642 if (ioc
->is_warpdrive
)
4643 kfree(ioc
->reply_post_host_index
);
4644 kfree(ioc
->pd_handles
);
4645 kfree(ioc
->blocking_handles
);
4646 kfree(ioc
->tm_cmds
.reply
);
4647 kfree(ioc
->transport_cmds
.reply
);
4648 kfree(ioc
->scsih_cmds
.reply
);
4649 kfree(ioc
->config_cmds
.reply
);
4650 kfree(ioc
->base_cmds
.reply
);
4651 kfree(ioc
->port_enable_cmds
.reply
);
4652 kfree(ioc
->ctl_cmds
.reply
);
4653 kfree(ioc
->ctl_cmds
.sense
);
4655 ioc
->ctl_cmds
.reply
= NULL
;
4656 ioc
->base_cmds
.reply
= NULL
;
4657 ioc
->tm_cmds
.reply
= NULL
;
4658 ioc
->scsih_cmds
.reply
= NULL
;
4659 ioc
->transport_cmds
.reply
= NULL
;
4660 ioc
->config_cmds
.reply
= NULL
;
4667 * mpt2sas_base_detach - remove controller instance
4668 * @ioc: per adapter object
4673 mpt2sas_base_detach(struct MPT2SAS_ADAPTER
*ioc
)
4676 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
4679 mpt2sas_base_stop_watchdog(ioc
);
4680 mpt2sas_base_free_resources(ioc
);
4681 _base_release_memory_pools(ioc
);
4682 pci_set_drvdata(ioc
->pdev
, NULL
);
4683 kfree(ioc
->cpu_msix_table
);
4684 if (ioc
->is_warpdrive
)
4685 kfree(ioc
->reply_post_host_index
);
4686 kfree(ioc
->pd_handles
);
4687 kfree(ioc
->blocking_handles
);
4689 kfree(ioc
->ctl_cmds
.reply
);
4690 kfree(ioc
->ctl_cmds
.sense
);
4691 kfree(ioc
->base_cmds
.reply
);
4692 kfree(ioc
->port_enable_cmds
.reply
);
4693 kfree(ioc
->tm_cmds
.reply
);
4694 kfree(ioc
->transport_cmds
.reply
);
4695 kfree(ioc
->scsih_cmds
.reply
);
4696 kfree(ioc
->config_cmds
.reply
);
4700 * _base_reset_handler - reset callback handler (for base)
4701 * @ioc: per adapter object
4702 * @reset_phase: phase
4704 * The handler for doing any required cleanup or initialization.
4706 * The reset phase can be MPT2_IOC_PRE_RESET, MPT2_IOC_AFTER_RESET,
4707 * MPT2_IOC_DONE_RESET
4712 _base_reset_handler(struct MPT2SAS_ADAPTER
*ioc
, int reset_phase
)
4714 mpt2sas_scsih_reset_handler(ioc
, reset_phase
);
4715 mpt2sas_ctl_reset_handler(ioc
, reset_phase
);
4716 switch (reset_phase
) {
4717 case MPT2_IOC_PRE_RESET
:
4718 dtmprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: "
4719 "MPT2_IOC_PRE_RESET\n", ioc
->name
, __func__
));
4721 case MPT2_IOC_AFTER_RESET
:
4722 dtmprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: "
4723 "MPT2_IOC_AFTER_RESET\n", ioc
->name
, __func__
));
4724 if (ioc
->transport_cmds
.status
& MPT2_CMD_PENDING
) {
4725 ioc
->transport_cmds
.status
|= MPT2_CMD_RESET
;
4726 mpt2sas_base_free_smid(ioc
, ioc
->transport_cmds
.smid
);
4727 complete(&ioc
->transport_cmds
.done
);
4729 if (ioc
->base_cmds
.status
& MPT2_CMD_PENDING
) {
4730 ioc
->base_cmds
.status
|= MPT2_CMD_RESET
;
4731 mpt2sas_base_free_smid(ioc
, ioc
->base_cmds
.smid
);
4732 complete(&ioc
->base_cmds
.done
);
4734 if (ioc
->port_enable_cmds
.status
& MPT2_CMD_PENDING
) {
4735 ioc
->port_enable_failed
= 1;
4736 ioc
->port_enable_cmds
.status
|= MPT2_CMD_RESET
;
4737 mpt2sas_base_free_smid(ioc
, ioc
->port_enable_cmds
.smid
);
4738 if (ioc
->is_driver_loading
) {
4739 ioc
->start_scan_failed
=
4740 MPI2_IOCSTATUS_INTERNAL_ERROR
;
4741 ioc
->start_scan
= 0;
4742 ioc
->port_enable_cmds
.status
=
4745 complete(&ioc
->port_enable_cmds
.done
);
4748 if (ioc
->config_cmds
.status
& MPT2_CMD_PENDING
) {
4749 ioc
->config_cmds
.status
|= MPT2_CMD_RESET
;
4750 mpt2sas_base_free_smid(ioc
, ioc
->config_cmds
.smid
);
4751 ioc
->config_cmds
.smid
= USHRT_MAX
;
4752 complete(&ioc
->config_cmds
.done
);
4755 case MPT2_IOC_DONE_RESET
:
4756 dtmprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: "
4757 "MPT2_IOC_DONE_RESET\n", ioc
->name
, __func__
));
4763 * _wait_for_commands_to_complete - reset controller
4764 * @ioc: Pointer to MPT_ADAPTER structure
4765 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4767 * This function waiting(3s) for all pending commands to complete
4768 * prior to putting controller in reset.
4771 _wait_for_commands_to_complete(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
)
4774 unsigned long flags
;
4777 ioc
->pending_io_count
= 0;
4778 if (sleep_flag
!= CAN_SLEEP
)
4781 ioc_state
= mpt2sas_base_get_iocstate(ioc
, 0);
4782 if ((ioc_state
& MPI2_IOC_STATE_MASK
) != MPI2_IOC_STATE_OPERATIONAL
)
4785 /* pending command count */
4786 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
4787 for (i
= 0; i
< ioc
->scsiio_depth
; i
++)
4788 if (ioc
->scsi_lookup
[i
].cb_idx
!= 0xFF)
4789 ioc
->pending_io_count
++;
4790 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
4792 if (!ioc
->pending_io_count
)
4795 /* wait for pending commands to complete */
4796 wait_event_timeout(ioc
->reset_wq
, ioc
->pending_io_count
== 0, 10 * HZ
);
4800 * mpt2sas_base_hard_reset_handler - reset controller
4801 * @ioc: Pointer to MPT_ADAPTER structure
4802 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4803 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4805 * Returns 0 for success, non-zero for failure.
4808 mpt2sas_base_hard_reset_handler(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
,
4809 enum reset_type type
)
4812 unsigned long flags
;
4814 dtmprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: enter\n", ioc
->name
,
4817 if (ioc
->pci_error_recovery
) {
4818 printk(MPT2SAS_ERR_FMT
"%s: pci error recovery reset\n",
4819 ioc
->name
, __func__
);
4824 if (mpt2sas_fwfault_debug
)
4825 mpt2sas_halt_firmware(ioc
);
4827 /* TODO - What we really should be doing is pulling
4828 * out all the code associated with NO_SLEEP; its never used.
4829 * That is legacy code from mpt fusion driver, ported over.
4830 * I will leave this BUG_ON here for now till its been resolved.
4832 BUG_ON(sleep_flag
== NO_SLEEP
);
4834 /* wait for an active reset in progress to complete */
4835 if (!mutex_trylock(&ioc
->reset_in_progress_mutex
)) {
4838 } while (ioc
->shost_recovery
== 1);
4839 dtmprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: exit\n", ioc
->name
,
4841 return ioc
->ioc_reset_in_progress_status
;
4844 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
4845 ioc
->shost_recovery
= 1;
4846 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
4848 _base_reset_handler(ioc
, MPT2_IOC_PRE_RESET
);
4849 _wait_for_commands_to_complete(ioc
, sleep_flag
);
4850 _base_mask_interrupts(ioc
);
4851 r
= _base_make_ioc_ready(ioc
, sleep_flag
, type
);
4854 _base_reset_handler(ioc
, MPT2_IOC_AFTER_RESET
);
4856 /* If this hard reset is called while port enable is active, then
4857 * there is no reason to call make_ioc_operational
4859 if (ioc
->is_driver_loading
&& ioc
->port_enable_failed
) {
4860 ioc
->remove_host
= 1;
4865 r
= _base_get_ioc_facts(ioc
, CAN_SLEEP
);
4869 if (ioc
->rdpq_array_enable
&& !ioc
->rdpq_array_capable
)
4870 panic("%s: Issue occurred with flashing controller firmware."
4871 "Please reboot the system and ensure that the correct"
4872 " firmware version is running\n", ioc
->name
);
4874 r
= _base_make_ioc_operational(ioc
, sleep_flag
);
4876 _base_reset_handler(ioc
, MPT2_IOC_DONE_RESET
);
4878 dtmprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: %s\n",
4879 ioc
->name
, __func__
, ((r
== 0) ? "SUCCESS" : "FAILED")));
4881 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
4882 ioc
->ioc_reset_in_progress_status
= r
;
4883 ioc
->shost_recovery
= 0;
4884 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
4885 mutex_unlock(&ioc
->reset_in_progress_mutex
);
4888 dtmprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: exit\n", ioc
->name
,