2 * A power allocator to manage temperature
4 * Copyright (C) 2014 ARM Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #define pr_fmt(fmt) "Power allocator: " fmt
18 #include <linux/rculist.h>
19 #include <linux/slab.h>
20 #include <linux/thermal.h>
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/thermal_power_allocator.h>
25 #include "thermal_core.h"
28 #define int_to_frac(x) ((x) << FRAC_BITS)
29 #define frac_to_int(x) ((x) >> FRAC_BITS)
32 * mul_frac() - multiply two fixed-point numbers
33 * @x: first multiplicand
34 * @y: second multiplicand
36 * Return: the result of multiplying two fixed-point numbers. The
37 * result is also a fixed-point number.
39 static inline s64
mul_frac(s64 x
, s64 y
)
41 return (x
* y
) >> FRAC_BITS
;
45 * div_frac() - divide two fixed-point numbers
49 * Return: the result of dividing two fixed-point numbers. The
50 * result is also a fixed-point number.
52 static inline s64
div_frac(s64 x
, s64 y
)
54 return div_s64(x
<< FRAC_BITS
, y
);
58 * struct power_allocator_params - parameters for the power allocator governor
59 * @err_integral: accumulated error in the PID controller.
60 * @prev_err: error in the previous iteration of the PID controller.
61 * Used to calculate the derivative term.
62 * @trip_switch_on: first passive trip point of the thermal zone. The
63 * governor switches on when this trip point is crossed.
64 * @trip_max_desired_temperature: last passive trip point of the thermal
65 * zone. The temperature we are
68 struct power_allocator_params
{
72 int trip_max_desired_temperature
;
76 * pid_controller() - PID controller
77 * @tz: thermal zone we are operating in
78 * @current_temp: the current temperature in millicelsius
79 * @control_temp: the target temperature in millicelsius
80 * @max_allocatable_power: maximum allocatable power for this thermal zone
82 * This PID controller increases the available power budget so that the
83 * temperature of the thermal zone gets as close as possible to
84 * @control_temp and limits the power if it exceeds it. k_po is the
85 * proportional term when we are overshooting, k_pu is the
86 * proportional term when we are undershooting. integral_cutoff is a
87 * threshold below which we stop accumulating the error. The
88 * accumulated error is only valid if the requested power will make
89 * the system warmer. If the system is mostly idle, there's no point
90 * in accumulating positive error.
92 * Return: The power budget for the next period.
94 static u32
pid_controller(struct thermal_zone_device
*tz
,
95 unsigned long current_temp
,
96 unsigned long control_temp
,
97 u32 max_allocatable_power
)
99 s64 p
, i
, d
, power_range
;
100 s32 err
, max_power_frac
;
101 struct power_allocator_params
*params
= tz
->governor_data
;
103 max_power_frac
= int_to_frac(max_allocatable_power
);
105 err
= ((s32
)control_temp
- (s32
)current_temp
);
106 err
= int_to_frac(err
);
108 /* Calculate the proportional term */
109 p
= mul_frac(err
< 0 ? tz
->tzp
->k_po
: tz
->tzp
->k_pu
, err
);
112 * Calculate the integral term
114 * if the error is less than cut off allow integration (but
115 * the integral is limited to max power)
117 i
= mul_frac(tz
->tzp
->k_i
, params
->err_integral
);
119 if (err
< int_to_frac(tz
->tzp
->integral_cutoff
)) {
120 s64 i_next
= i
+ mul_frac(tz
->tzp
->k_i
, err
);
122 if (abs64(i_next
) < max_power_frac
) {
124 params
->err_integral
+= err
;
129 * Calculate the derivative term
131 * We do err - prev_err, so with a positive k_d, a decreasing
132 * error (i.e. driving closer to the line) results in less
133 * power being applied, slowing down the controller)
135 d
= mul_frac(tz
->tzp
->k_d
, err
- params
->prev_err
);
136 d
= div_frac(d
, tz
->passive_delay
);
137 params
->prev_err
= err
;
139 power_range
= p
+ i
+ d
;
141 /* feed-forward the known sustainable dissipatable power */
142 power_range
= tz
->tzp
->sustainable_power
+ frac_to_int(power_range
);
144 power_range
= clamp(power_range
, (s64
)0, (s64
)max_allocatable_power
);
146 trace_thermal_power_allocator_pid(tz
, frac_to_int(err
),
147 frac_to_int(params
->err_integral
),
148 frac_to_int(p
), frac_to_int(i
),
149 frac_to_int(d
), power_range
);
155 * divvy_up_power() - divvy the allocated power between the actors
156 * @req_power: each actor's requested power
157 * @max_power: each actor's maximum available power
158 * @num_actors: size of the @req_power, @max_power and @granted_power's array
159 * @total_req_power: sum of @req_power
160 * @power_range: total allocated power
161 * @granted_power: output array: each actor's granted power
162 * @extra_actor_power: an appropriately sized array to be used in the
163 * function as temporary storage of the extra power given
166 * This function divides the total allocated power (@power_range)
167 * fairly between the actors. It first tries to give each actor a
168 * share of the @power_range according to how much power it requested
169 * compared to the rest of the actors. For example, if only one actor
170 * requests power, then it receives all the @power_range. If
171 * three actors each requests 1mW, each receives a third of the
174 * If any actor received more than their maximum power, then that
175 * surplus is re-divvied among the actors based on how far they are
176 * from their respective maximums.
178 * Granted power for each actor is written to @granted_power, which
179 * should've been allocated by the calling function.
181 static void divvy_up_power(u32
*req_power
, u32
*max_power
, int num_actors
,
182 u32 total_req_power
, u32 power_range
,
183 u32
*granted_power
, u32
*extra_actor_power
)
185 u32 extra_power
, capped_extra_power
;
189 * Prevent division by 0 if none of the actors request power.
191 if (!total_req_power
)
194 capped_extra_power
= 0;
196 for (i
= 0; i
< num_actors
; i
++) {
197 u64 req_range
= req_power
[i
] * power_range
;
199 granted_power
[i
] = DIV_ROUND_CLOSEST_ULL(req_range
,
202 if (granted_power
[i
] > max_power
[i
]) {
203 extra_power
+= granted_power
[i
] - max_power
[i
];
204 granted_power
[i
] = max_power
[i
];
207 extra_actor_power
[i
] = max_power
[i
] - granted_power
[i
];
208 capped_extra_power
+= extra_actor_power
[i
];
215 * Re-divvy the reclaimed extra among actors based on
216 * how far they are from the max
218 extra_power
= min(extra_power
, capped_extra_power
);
219 if (capped_extra_power
> 0)
220 for (i
= 0; i
< num_actors
; i
++)
221 granted_power
[i
] += (extra_actor_power
[i
] *
222 extra_power
) / capped_extra_power
;
225 static int allocate_power(struct thermal_zone_device
*tz
,
226 unsigned long current_temp
,
227 unsigned long control_temp
)
229 struct thermal_instance
*instance
;
230 struct power_allocator_params
*params
= tz
->governor_data
;
231 u32
*req_power
, *max_power
, *granted_power
, *extra_actor_power
;
232 u32
*weighted_req_power
;
233 u32 total_req_power
, max_allocatable_power
, total_weighted_req_power
;
234 u32 total_granted_power
, power_range
;
235 int i
, num_actors
, total_weight
, ret
= 0;
236 int trip_max_desired_temperature
= params
->trip_max_desired_temperature
;
238 mutex_lock(&tz
->lock
);
242 list_for_each_entry(instance
, &tz
->thermal_instances
, tz_node
) {
243 if ((instance
->trip
== trip_max_desired_temperature
) &&
244 cdev_is_power_actor(instance
->cdev
)) {
246 total_weight
+= instance
->weight
;
251 * We need to allocate five arrays of the same size:
252 * req_power, max_power, granted_power, extra_actor_power and
253 * weighted_req_power. They are going to be needed until this
254 * function returns. Allocate them all in one go to simplify
255 * the allocation and deallocation logic.
257 BUILD_BUG_ON(sizeof(*req_power
) != sizeof(*max_power
));
258 BUILD_BUG_ON(sizeof(*req_power
) != sizeof(*granted_power
));
259 BUILD_BUG_ON(sizeof(*req_power
) != sizeof(*extra_actor_power
));
260 BUILD_BUG_ON(sizeof(*req_power
) != sizeof(*weighted_req_power
));
261 req_power
= kcalloc(num_actors
* 5, sizeof(*req_power
), GFP_KERNEL
);
267 max_power
= &req_power
[num_actors
];
268 granted_power
= &req_power
[2 * num_actors
];
269 extra_actor_power
= &req_power
[3 * num_actors
];
270 weighted_req_power
= &req_power
[4 * num_actors
];
273 total_weighted_req_power
= 0;
275 max_allocatable_power
= 0;
277 list_for_each_entry(instance
, &tz
->thermal_instances
, tz_node
) {
279 struct thermal_cooling_device
*cdev
= instance
->cdev
;
281 if (instance
->trip
!= trip_max_desired_temperature
)
284 if (!cdev_is_power_actor(cdev
))
287 if (cdev
->ops
->get_requested_power(cdev
, tz
, &req_power
[i
]))
291 weight
= 1 << FRAC_BITS
;
293 weight
= instance
->weight
;
295 weighted_req_power
[i
] = frac_to_int(weight
* req_power
[i
]);
297 if (power_actor_get_max_power(cdev
, tz
, &max_power
[i
]))
300 total_req_power
+= req_power
[i
];
301 max_allocatable_power
+= max_power
[i
];
302 total_weighted_req_power
+= weighted_req_power
[i
];
307 power_range
= pid_controller(tz
, current_temp
, control_temp
,
308 max_allocatable_power
);
310 divvy_up_power(weighted_req_power
, max_power
, num_actors
,
311 total_weighted_req_power
, power_range
, granted_power
,
314 total_granted_power
= 0;
316 list_for_each_entry(instance
, &tz
->thermal_instances
, tz_node
) {
317 if (instance
->trip
!= trip_max_desired_temperature
)
320 if (!cdev_is_power_actor(instance
->cdev
))
323 power_actor_set_power(instance
->cdev
, instance
,
325 total_granted_power
+= granted_power
[i
];
330 trace_thermal_power_allocator(tz
, req_power
, total_req_power
,
331 granted_power
, total_granted_power
,
332 num_actors
, power_range
,
333 max_allocatable_power
, current_temp
,
334 (s32
)control_temp
- (s32
)current_temp
);
338 mutex_unlock(&tz
->lock
);
343 static int get_governor_trips(struct thermal_zone_device
*tz
,
344 struct power_allocator_params
*params
)
346 int i
, ret
, last_passive
;
347 bool found_first_passive
;
349 found_first_passive
= false;
353 for (i
= 0; i
< tz
->trips
; i
++) {
354 enum thermal_trip_type type
;
356 ret
= tz
->ops
->get_trip_type(tz
, i
, &type
);
360 if (!found_first_passive
) {
361 if (type
== THERMAL_TRIP_PASSIVE
) {
362 params
->trip_switch_on
= i
;
363 found_first_passive
= true;
365 } else if (type
== THERMAL_TRIP_PASSIVE
) {
372 if (last_passive
!= -1) {
373 params
->trip_max_desired_temperature
= last_passive
;
382 static void reset_pid_controller(struct power_allocator_params
*params
)
384 params
->err_integral
= 0;
385 params
->prev_err
= 0;
388 static void allow_maximum_power(struct thermal_zone_device
*tz
)
390 struct thermal_instance
*instance
;
391 struct power_allocator_params
*params
= tz
->governor_data
;
393 list_for_each_entry(instance
, &tz
->thermal_instances
, tz_node
) {
394 if ((instance
->trip
!= params
->trip_max_desired_temperature
) ||
395 (!cdev_is_power_actor(instance
->cdev
)))
398 instance
->target
= 0;
399 instance
->cdev
->updated
= false;
400 thermal_cdev_update(instance
->cdev
);
405 * power_allocator_bind() - bind the power_allocator governor to a thermal zone
406 * @tz: thermal zone to bind it to
408 * Check that the thermal zone is valid for this governor, that is, it
409 * has two thermal trips. If so, initialize the PID controller
410 * parameters and bind it to the thermal zone.
412 * Return: 0 on success, -EINVAL if the trips were invalid or -ENOMEM
413 * if we ran out of memory.
415 static int power_allocator_bind(struct thermal_zone_device
*tz
)
418 struct power_allocator_params
*params
;
419 unsigned long switch_on_temp
, control_temp
;
420 u32 temperature_threshold
;
422 if (!tz
->tzp
|| !tz
->tzp
->sustainable_power
) {
424 "power_allocator: missing sustainable_power\n");
428 params
= kzalloc(sizeof(*params
), GFP_KERNEL
);
432 ret
= get_governor_trips(tz
, params
);
435 "thermal zone %s has wrong trip setup for power allocator\n",
440 ret
= tz
->ops
->get_trip_temp(tz
, params
->trip_switch_on
,
445 ret
= tz
->ops
->get_trip_temp(tz
, params
->trip_max_desired_temperature
,
450 temperature_threshold
= control_temp
- switch_on_temp
;
452 tz
->tzp
->k_po
= tz
->tzp
->k_po
?:
453 int_to_frac(tz
->tzp
->sustainable_power
) / temperature_threshold
;
454 tz
->tzp
->k_pu
= tz
->tzp
->k_pu
?:
455 int_to_frac(2 * tz
->tzp
->sustainable_power
) /
456 temperature_threshold
;
457 tz
->tzp
->k_i
= tz
->tzp
->k_i
?: int_to_frac(10) / 1000;
459 * The default for k_d and integral_cutoff is 0, so we can
460 * leave them as they are.
463 reset_pid_controller(params
);
465 tz
->governor_data
= params
;
474 static void power_allocator_unbind(struct thermal_zone_device
*tz
)
476 dev_dbg(&tz
->device
, "Unbinding from thermal zone %d\n", tz
->id
);
477 kfree(tz
->governor_data
);
478 tz
->governor_data
= NULL
;
481 static int power_allocator_throttle(struct thermal_zone_device
*tz
, int trip
)
484 unsigned long switch_on_temp
, control_temp
, current_temp
;
485 struct power_allocator_params
*params
= tz
->governor_data
;
488 * We get called for every trip point but we only need to do
489 * our calculations once
491 if (trip
!= params
->trip_max_desired_temperature
)
494 ret
= thermal_zone_get_temp(tz
, ¤t_temp
);
496 dev_warn(&tz
->device
, "Failed to get temperature: %d\n", ret
);
500 ret
= tz
->ops
->get_trip_temp(tz
, params
->trip_switch_on
,
503 dev_warn(&tz
->device
,
504 "Failed to get switch on temperature: %d\n", ret
);
508 if (current_temp
< switch_on_temp
) {
510 reset_pid_controller(params
);
511 allow_maximum_power(tz
);
517 ret
= tz
->ops
->get_trip_temp(tz
, params
->trip_max_desired_temperature
,
520 dev_warn(&tz
->device
,
521 "Failed to get the maximum desired temperature: %d\n",
526 return allocate_power(tz
, current_temp
, control_temp
);
529 static struct thermal_governor thermal_gov_power_allocator
= {
530 .name
= "power_allocator",
531 .bind_to_tz
= power_allocator_bind
,
532 .unbind_from_tz
= power_allocator_unbind
,
533 .throttle
= power_allocator_throttle
,
536 int thermal_gov_power_allocator_register(void)
538 return thermal_register_governor(&thermal_gov_power_allocator
);
541 void thermal_gov_power_allocator_unregister(void)
543 thermal_unregister_governor(&thermal_gov_power_allocator
);