2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/vmalloc.h>
24 #include "transaction.h"
25 #include "delayed-ref.h"
28 /* Just an arbitrary number so we can be sure this happened */
29 #define BACKREF_FOUND_SHARED 6
31 struct extent_inode_elem
{
34 struct extent_inode_elem
*next
;
37 static int check_extent_in_eb(struct btrfs_key
*key
, struct extent_buffer
*eb
,
38 struct btrfs_file_extent_item
*fi
,
40 struct extent_inode_elem
**eie
)
43 struct extent_inode_elem
*e
;
45 if (!btrfs_file_extent_compression(eb
, fi
) &&
46 !btrfs_file_extent_encryption(eb
, fi
) &&
47 !btrfs_file_extent_other_encoding(eb
, fi
)) {
51 data_offset
= btrfs_file_extent_offset(eb
, fi
);
52 data_len
= btrfs_file_extent_num_bytes(eb
, fi
);
54 if (extent_item_pos
< data_offset
||
55 extent_item_pos
>= data_offset
+ data_len
)
57 offset
= extent_item_pos
- data_offset
;
60 e
= kmalloc(sizeof(*e
), GFP_NOFS
);
65 e
->inum
= key
->objectid
;
66 e
->offset
= key
->offset
+ offset
;
72 static void free_inode_elem_list(struct extent_inode_elem
*eie
)
74 struct extent_inode_elem
*eie_next
;
76 for (; eie
; eie
= eie_next
) {
82 static int find_extent_in_eb(struct extent_buffer
*eb
, u64 wanted_disk_byte
,
84 struct extent_inode_elem
**eie
)
88 struct btrfs_file_extent_item
*fi
;
95 * from the shared data ref, we only have the leaf but we need
96 * the key. thus, we must look into all items and see that we
97 * find one (some) with a reference to our extent item.
99 nritems
= btrfs_header_nritems(eb
);
100 for (slot
= 0; slot
< nritems
; ++slot
) {
101 btrfs_item_key_to_cpu(eb
, &key
, slot
);
102 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
104 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
105 extent_type
= btrfs_file_extent_type(eb
, fi
);
106 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
108 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
109 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
110 if (disk_byte
!= wanted_disk_byte
)
113 ret
= check_extent_in_eb(&key
, eb
, fi
, extent_item_pos
, eie
);
122 * this structure records all encountered refs on the way up to the root
124 struct __prelim_ref
{
125 struct list_head list
;
127 struct btrfs_key key_for_search
;
130 struct extent_inode_elem
*inode_list
;
132 u64 wanted_disk_byte
;
135 static struct kmem_cache
*btrfs_prelim_ref_cache
;
137 int __init
btrfs_prelim_ref_init(void)
139 btrfs_prelim_ref_cache
= kmem_cache_create("btrfs_prelim_ref",
140 sizeof(struct __prelim_ref
),
142 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
144 if (!btrfs_prelim_ref_cache
)
149 void btrfs_prelim_ref_exit(void)
151 if (btrfs_prelim_ref_cache
)
152 kmem_cache_destroy(btrfs_prelim_ref_cache
);
156 * the rules for all callers of this function are:
157 * - obtaining the parent is the goal
158 * - if you add a key, you must know that it is a correct key
159 * - if you cannot add the parent or a correct key, then we will look into the
160 * block later to set a correct key
164 * backref type | shared | indirect | shared | indirect
165 * information | tree | tree | data | data
166 * --------------------+--------+----------+--------+----------
167 * parent logical | y | - | - | -
168 * key to resolve | - | y | y | y
169 * tree block logical | - | - | - | -
170 * root for resolving | y | y | y | y
172 * - column 1: we've the parent -> done
173 * - column 2, 3, 4: we use the key to find the parent
175 * on disk refs (inline or keyed)
176 * ==============================
177 * backref type | shared | indirect | shared | indirect
178 * information | tree | tree | data | data
179 * --------------------+--------+----------+--------+----------
180 * parent logical | y | - | y | -
181 * key to resolve | - | - | - | y
182 * tree block logical | y | y | y | y
183 * root for resolving | - | y | y | y
185 * - column 1, 3: we've the parent -> done
186 * - column 2: we take the first key from the block to find the parent
187 * (see __add_missing_keys)
188 * - column 4: we use the key to find the parent
190 * additional information that's available but not required to find the parent
191 * block might help in merging entries to gain some speed.
194 static int __add_prelim_ref(struct list_head
*head
, u64 root_id
,
195 struct btrfs_key
*key
, int level
,
196 u64 parent
, u64 wanted_disk_byte
, int count
,
199 struct __prelim_ref
*ref
;
201 if (root_id
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
204 ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
, gfp_mask
);
208 ref
->root_id
= root_id
;
210 ref
->key_for_search
= *key
;
212 memset(&ref
->key_for_search
, 0, sizeof(ref
->key_for_search
));
214 ref
->inode_list
= NULL
;
217 ref
->parent
= parent
;
218 ref
->wanted_disk_byte
= wanted_disk_byte
;
219 list_add_tail(&ref
->list
, head
);
224 static int add_all_parents(struct btrfs_root
*root
, struct btrfs_path
*path
,
225 struct ulist
*parents
, struct __prelim_ref
*ref
,
226 int level
, u64 time_seq
, const u64
*extent_item_pos
,
231 struct extent_buffer
*eb
;
232 struct btrfs_key key
;
233 struct btrfs_key
*key_for_search
= &ref
->key_for_search
;
234 struct btrfs_file_extent_item
*fi
;
235 struct extent_inode_elem
*eie
= NULL
, *old
= NULL
;
237 u64 wanted_disk_byte
= ref
->wanted_disk_byte
;
241 eb
= path
->nodes
[level
];
242 ret
= ulist_add(parents
, eb
->start
, 0, GFP_NOFS
);
249 * We normally enter this function with the path already pointing to
250 * the first item to check. But sometimes, we may enter it with
251 * slot==nritems. In that case, go to the next leaf before we continue.
253 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
254 if (time_seq
== (u64
)-1)
255 ret
= btrfs_next_leaf(root
, path
);
257 ret
= btrfs_next_old_leaf(root
, path
, time_seq
);
260 while (!ret
&& count
< total_refs
) {
262 slot
= path
->slots
[0];
264 btrfs_item_key_to_cpu(eb
, &key
, slot
);
266 if (key
.objectid
!= key_for_search
->objectid
||
267 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
270 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
271 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
273 if (disk_byte
== wanted_disk_byte
) {
277 if (extent_item_pos
) {
278 ret
= check_extent_in_eb(&key
, eb
, fi
,
286 ret
= ulist_add_merge_ptr(parents
, eb
->start
,
287 eie
, (void **)&old
, GFP_NOFS
);
290 if (!ret
&& extent_item_pos
) {
298 if (time_seq
== (u64
)-1)
299 ret
= btrfs_next_item(root
, path
);
301 ret
= btrfs_next_old_item(root
, path
, time_seq
);
307 free_inode_elem_list(eie
);
312 * resolve an indirect backref in the form (root_id, key, level)
313 * to a logical address
315 static int __resolve_indirect_ref(struct btrfs_fs_info
*fs_info
,
316 struct btrfs_path
*path
, u64 time_seq
,
317 struct __prelim_ref
*ref
,
318 struct ulist
*parents
,
319 const u64
*extent_item_pos
, u64 total_refs
)
321 struct btrfs_root
*root
;
322 struct btrfs_key root_key
;
323 struct extent_buffer
*eb
;
326 int level
= ref
->level
;
329 root_key
.objectid
= ref
->root_id
;
330 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
331 root_key
.offset
= (u64
)-1;
333 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
335 root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
337 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
342 if (path
->search_commit_root
)
343 root_level
= btrfs_header_level(root
->commit_root
);
344 else if (time_seq
== (u64
)-1)
345 root_level
= btrfs_header_level(root
->node
);
347 root_level
= btrfs_old_root_level(root
, time_seq
);
349 if (root_level
+ 1 == level
) {
350 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
354 path
->lowest_level
= level
;
355 if (time_seq
== (u64
)-1)
356 ret
= btrfs_search_slot(NULL
, root
, &ref
->key_for_search
, path
,
359 ret
= btrfs_search_old_slot(root
, &ref
->key_for_search
, path
,
362 /* root node has been locked, we can release @subvol_srcu safely here */
363 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
365 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
366 "%d for key (%llu %u %llu)\n",
367 ref
->root_id
, level
, ref
->count
, ret
,
368 ref
->key_for_search
.objectid
, ref
->key_for_search
.type
,
369 ref
->key_for_search
.offset
);
373 eb
= path
->nodes
[level
];
375 if (WARN_ON(!level
)) {
380 eb
= path
->nodes
[level
];
383 ret
= add_all_parents(root
, path
, parents
, ref
, level
, time_seq
,
384 extent_item_pos
, total_refs
);
386 path
->lowest_level
= 0;
387 btrfs_release_path(path
);
392 * resolve all indirect backrefs from the list
394 static int __resolve_indirect_refs(struct btrfs_fs_info
*fs_info
,
395 struct btrfs_path
*path
, u64 time_seq
,
396 struct list_head
*head
,
397 const u64
*extent_item_pos
, u64 total_refs
,
402 struct __prelim_ref
*ref
;
403 struct __prelim_ref
*ref_safe
;
404 struct __prelim_ref
*new_ref
;
405 struct ulist
*parents
;
406 struct ulist_node
*node
;
407 struct ulist_iterator uiter
;
409 parents
= ulist_alloc(GFP_NOFS
);
414 * _safe allows us to insert directly after the current item without
415 * iterating over the newly inserted items.
416 * we're also allowed to re-assign ref during iteration.
418 list_for_each_entry_safe(ref
, ref_safe
, head
, list
) {
419 if (ref
->parent
) /* already direct */
423 if (root_objectid
&& ref
->root_id
!= root_objectid
) {
424 ret
= BACKREF_FOUND_SHARED
;
427 err
= __resolve_indirect_ref(fs_info
, path
, time_seq
, ref
,
428 parents
, extent_item_pos
,
431 * we can only tolerate ENOENT,otherwise,we should catch error
432 * and return directly.
434 if (err
== -ENOENT
) {
441 /* we put the first parent into the ref at hand */
442 ULIST_ITER_INIT(&uiter
);
443 node
= ulist_next(parents
, &uiter
);
444 ref
->parent
= node
? node
->val
: 0;
445 ref
->inode_list
= node
?
446 (struct extent_inode_elem
*)(uintptr_t)node
->aux
: NULL
;
448 /* additional parents require new refs being added here */
449 while ((node
= ulist_next(parents
, &uiter
))) {
450 new_ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
,
456 memcpy(new_ref
, ref
, sizeof(*ref
));
457 new_ref
->parent
= node
->val
;
458 new_ref
->inode_list
= (struct extent_inode_elem
*)
459 (uintptr_t)node
->aux
;
460 list_add(&new_ref
->list
, &ref
->list
);
462 ulist_reinit(parents
);
469 static inline int ref_for_same_block(struct __prelim_ref
*ref1
,
470 struct __prelim_ref
*ref2
)
472 if (ref1
->level
!= ref2
->level
)
474 if (ref1
->root_id
!= ref2
->root_id
)
476 if (ref1
->key_for_search
.type
!= ref2
->key_for_search
.type
)
478 if (ref1
->key_for_search
.objectid
!= ref2
->key_for_search
.objectid
)
480 if (ref1
->key_for_search
.offset
!= ref2
->key_for_search
.offset
)
482 if (ref1
->parent
!= ref2
->parent
)
489 * read tree blocks and add keys where required.
491 static int __add_missing_keys(struct btrfs_fs_info
*fs_info
,
492 struct list_head
*head
)
494 struct list_head
*pos
;
495 struct extent_buffer
*eb
;
497 list_for_each(pos
, head
) {
498 struct __prelim_ref
*ref
;
499 ref
= list_entry(pos
, struct __prelim_ref
, list
);
503 if (ref
->key_for_search
.type
)
505 BUG_ON(!ref
->wanted_disk_byte
);
506 eb
= read_tree_block(fs_info
->tree_root
, ref
->wanted_disk_byte
,
510 } else if (!extent_buffer_uptodate(eb
)) {
511 free_extent_buffer(eb
);
514 btrfs_tree_read_lock(eb
);
515 if (btrfs_header_level(eb
) == 0)
516 btrfs_item_key_to_cpu(eb
, &ref
->key_for_search
, 0);
518 btrfs_node_key_to_cpu(eb
, &ref
->key_for_search
, 0);
519 btrfs_tree_read_unlock(eb
);
520 free_extent_buffer(eb
);
526 * merge backrefs and adjust counts accordingly
528 * mode = 1: merge identical keys, if key is set
529 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
530 * additionally, we could even add a key range for the blocks we
531 * looked into to merge even more (-> replace unresolved refs by those
533 * mode = 2: merge identical parents
535 static void __merge_refs(struct list_head
*head
, int mode
)
537 struct list_head
*pos1
;
539 list_for_each(pos1
, head
) {
540 struct list_head
*n2
;
541 struct list_head
*pos2
;
542 struct __prelim_ref
*ref1
;
544 ref1
= list_entry(pos1
, struct __prelim_ref
, list
);
546 for (pos2
= pos1
->next
, n2
= pos2
->next
; pos2
!= head
;
547 pos2
= n2
, n2
= pos2
->next
) {
548 struct __prelim_ref
*ref2
;
549 struct __prelim_ref
*xchg
;
550 struct extent_inode_elem
*eie
;
552 ref2
= list_entry(pos2
, struct __prelim_ref
, list
);
554 if (!ref_for_same_block(ref1
, ref2
))
557 if (!ref1
->parent
&& ref2
->parent
) {
563 if (ref1
->parent
!= ref2
->parent
)
567 eie
= ref1
->inode_list
;
568 while (eie
&& eie
->next
)
571 eie
->next
= ref2
->inode_list
;
573 ref1
->inode_list
= ref2
->inode_list
;
574 ref1
->count
+= ref2
->count
;
576 list_del(&ref2
->list
);
577 kmem_cache_free(btrfs_prelim_ref_cache
, ref2
);
584 * add all currently queued delayed refs from this head whose seq nr is
585 * smaller or equal that seq to the list
587 static int __add_delayed_refs(struct btrfs_delayed_ref_head
*head
, u64 seq
,
588 struct list_head
*prefs
, u64
*total_refs
,
591 struct btrfs_delayed_ref_node
*node
;
592 struct btrfs_delayed_extent_op
*extent_op
= head
->extent_op
;
593 struct btrfs_key key
;
594 struct btrfs_key op_key
= {0};
598 if (extent_op
&& extent_op
->update_key
)
599 btrfs_disk_key_to_cpu(&op_key
, &extent_op
->key
);
601 spin_lock(&head
->lock
);
602 list_for_each_entry(node
, &head
->ref_list
, list
) {
606 switch (node
->action
) {
607 case BTRFS_ADD_DELAYED_EXTENT
:
608 case BTRFS_UPDATE_DELAYED_HEAD
:
611 case BTRFS_ADD_DELAYED_REF
:
614 case BTRFS_DROP_DELAYED_REF
:
620 *total_refs
+= (node
->ref_mod
* sgn
);
621 switch (node
->type
) {
622 case BTRFS_TREE_BLOCK_REF_KEY
: {
623 struct btrfs_delayed_tree_ref
*ref
;
625 ref
= btrfs_delayed_node_to_tree_ref(node
);
626 ret
= __add_prelim_ref(prefs
, ref
->root
, &op_key
,
627 ref
->level
+ 1, 0, node
->bytenr
,
628 node
->ref_mod
* sgn
, GFP_ATOMIC
);
631 case BTRFS_SHARED_BLOCK_REF_KEY
: {
632 struct btrfs_delayed_tree_ref
*ref
;
634 ref
= btrfs_delayed_node_to_tree_ref(node
);
635 ret
= __add_prelim_ref(prefs
, ref
->root
, NULL
,
636 ref
->level
+ 1, ref
->parent
,
638 node
->ref_mod
* sgn
, GFP_ATOMIC
);
641 case BTRFS_EXTENT_DATA_REF_KEY
: {
642 struct btrfs_delayed_data_ref
*ref
;
643 ref
= btrfs_delayed_node_to_data_ref(node
);
645 key
.objectid
= ref
->objectid
;
646 key
.type
= BTRFS_EXTENT_DATA_KEY
;
647 key
.offset
= ref
->offset
;
650 * Found a inum that doesn't match our known inum, we
653 if (inum
&& ref
->objectid
!= inum
) {
654 ret
= BACKREF_FOUND_SHARED
;
658 ret
= __add_prelim_ref(prefs
, ref
->root
, &key
, 0, 0,
660 node
->ref_mod
* sgn
, GFP_ATOMIC
);
663 case BTRFS_SHARED_DATA_REF_KEY
: {
664 struct btrfs_delayed_data_ref
*ref
;
666 ref
= btrfs_delayed_node_to_data_ref(node
);
668 key
.objectid
= ref
->objectid
;
669 key
.type
= BTRFS_EXTENT_DATA_KEY
;
670 key
.offset
= ref
->offset
;
671 ret
= __add_prelim_ref(prefs
, ref
->root
, &key
, 0,
672 ref
->parent
, node
->bytenr
,
673 node
->ref_mod
* sgn
, GFP_ATOMIC
);
682 spin_unlock(&head
->lock
);
687 * add all inline backrefs for bytenr to the list
689 static int __add_inline_refs(struct btrfs_fs_info
*fs_info
,
690 struct btrfs_path
*path
, u64 bytenr
,
691 int *info_level
, struct list_head
*prefs
,
692 u64
*total_refs
, u64 inum
)
696 struct extent_buffer
*leaf
;
697 struct btrfs_key key
;
698 struct btrfs_key found_key
;
701 struct btrfs_extent_item
*ei
;
706 * enumerate all inline refs
708 leaf
= path
->nodes
[0];
709 slot
= path
->slots
[0];
711 item_size
= btrfs_item_size_nr(leaf
, slot
);
712 BUG_ON(item_size
< sizeof(*ei
));
714 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_extent_item
);
715 flags
= btrfs_extent_flags(leaf
, ei
);
716 *total_refs
+= btrfs_extent_refs(leaf
, ei
);
717 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
719 ptr
= (unsigned long)(ei
+ 1);
720 end
= (unsigned long)ei
+ item_size
;
722 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
723 flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
724 struct btrfs_tree_block_info
*info
;
726 info
= (struct btrfs_tree_block_info
*)ptr
;
727 *info_level
= btrfs_tree_block_level(leaf
, info
);
728 ptr
+= sizeof(struct btrfs_tree_block_info
);
730 } else if (found_key
.type
== BTRFS_METADATA_ITEM_KEY
) {
731 *info_level
= found_key
.offset
;
733 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
737 struct btrfs_extent_inline_ref
*iref
;
741 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
742 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
743 offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
746 case BTRFS_SHARED_BLOCK_REF_KEY
:
747 ret
= __add_prelim_ref(prefs
, 0, NULL
,
748 *info_level
+ 1, offset
,
749 bytenr
, 1, GFP_NOFS
);
751 case BTRFS_SHARED_DATA_REF_KEY
: {
752 struct btrfs_shared_data_ref
*sdref
;
755 sdref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
756 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
757 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, offset
,
758 bytenr
, count
, GFP_NOFS
);
761 case BTRFS_TREE_BLOCK_REF_KEY
:
762 ret
= __add_prelim_ref(prefs
, offset
, NULL
,
764 bytenr
, 1, GFP_NOFS
);
766 case BTRFS_EXTENT_DATA_REF_KEY
: {
767 struct btrfs_extent_data_ref
*dref
;
771 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
772 count
= btrfs_extent_data_ref_count(leaf
, dref
);
773 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
775 key
.type
= BTRFS_EXTENT_DATA_KEY
;
776 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
778 if (inum
&& key
.objectid
!= inum
) {
779 ret
= BACKREF_FOUND_SHARED
;
783 root
= btrfs_extent_data_ref_root(leaf
, dref
);
784 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
785 bytenr
, count
, GFP_NOFS
);
793 ptr
+= btrfs_extent_inline_ref_size(type
);
800 * add all non-inline backrefs for bytenr to the list
802 static int __add_keyed_refs(struct btrfs_fs_info
*fs_info
,
803 struct btrfs_path
*path
, u64 bytenr
,
804 int info_level
, struct list_head
*prefs
, u64 inum
)
806 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
809 struct extent_buffer
*leaf
;
810 struct btrfs_key key
;
813 ret
= btrfs_next_item(extent_root
, path
);
821 slot
= path
->slots
[0];
822 leaf
= path
->nodes
[0];
823 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
825 if (key
.objectid
!= bytenr
)
827 if (key
.type
< BTRFS_TREE_BLOCK_REF_KEY
)
829 if (key
.type
> BTRFS_SHARED_DATA_REF_KEY
)
833 case BTRFS_SHARED_BLOCK_REF_KEY
:
834 ret
= __add_prelim_ref(prefs
, 0, NULL
,
835 info_level
+ 1, key
.offset
,
836 bytenr
, 1, GFP_NOFS
);
838 case BTRFS_SHARED_DATA_REF_KEY
: {
839 struct btrfs_shared_data_ref
*sdref
;
842 sdref
= btrfs_item_ptr(leaf
, slot
,
843 struct btrfs_shared_data_ref
);
844 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
845 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, key
.offset
,
846 bytenr
, count
, GFP_NOFS
);
849 case BTRFS_TREE_BLOCK_REF_KEY
:
850 ret
= __add_prelim_ref(prefs
, key
.offset
, NULL
,
852 bytenr
, 1, GFP_NOFS
);
854 case BTRFS_EXTENT_DATA_REF_KEY
: {
855 struct btrfs_extent_data_ref
*dref
;
859 dref
= btrfs_item_ptr(leaf
, slot
,
860 struct btrfs_extent_data_ref
);
861 count
= btrfs_extent_data_ref_count(leaf
, dref
);
862 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
864 key
.type
= BTRFS_EXTENT_DATA_KEY
;
865 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
867 if (inum
&& key
.objectid
!= inum
) {
868 ret
= BACKREF_FOUND_SHARED
;
872 root
= btrfs_extent_data_ref_root(leaf
, dref
);
873 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
874 bytenr
, count
, GFP_NOFS
);
889 * this adds all existing backrefs (inline backrefs, backrefs and delayed
890 * refs) for the given bytenr to the refs list, merges duplicates and resolves
891 * indirect refs to their parent bytenr.
892 * When roots are found, they're added to the roots list
894 * NOTE: This can return values > 0
896 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
897 * much like trans == NULL case, the difference only lies in it will not
899 * The special case is for qgroup to search roots in commit_transaction().
901 * FIXME some caching might speed things up
903 static int find_parent_nodes(struct btrfs_trans_handle
*trans
,
904 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
905 u64 time_seq
, struct ulist
*refs
,
906 struct ulist
*roots
, const u64
*extent_item_pos
,
907 u64 root_objectid
, u64 inum
)
909 struct btrfs_key key
;
910 struct btrfs_path
*path
;
911 struct btrfs_delayed_ref_root
*delayed_refs
= NULL
;
912 struct btrfs_delayed_ref_head
*head
;
915 struct list_head prefs_delayed
;
916 struct list_head prefs
;
917 struct __prelim_ref
*ref
;
918 struct extent_inode_elem
*eie
= NULL
;
921 INIT_LIST_HEAD(&prefs
);
922 INIT_LIST_HEAD(&prefs_delayed
);
924 key
.objectid
= bytenr
;
925 key
.offset
= (u64
)-1;
926 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
927 key
.type
= BTRFS_METADATA_ITEM_KEY
;
929 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
931 path
= btrfs_alloc_path();
935 path
->search_commit_root
= 1;
936 path
->skip_locking
= 1;
939 if (time_seq
== (u64
)-1)
940 path
->skip_locking
= 1;
943 * grab both a lock on the path and a lock on the delayed ref head.
944 * We need both to get a consistent picture of how the refs look
945 * at a specified point in time
950 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
955 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
956 if (trans
&& likely(trans
->type
!= __TRANS_DUMMY
) &&
957 time_seq
!= (u64
)-1) {
959 if (trans
&& time_seq
!= (u64
)-1) {
962 * look if there are updates for this ref queued and lock the
965 delayed_refs
= &trans
->transaction
->delayed_refs
;
966 spin_lock(&delayed_refs
->lock
);
967 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
969 if (!mutex_trylock(&head
->mutex
)) {
970 atomic_inc(&head
->node
.refs
);
971 spin_unlock(&delayed_refs
->lock
);
973 btrfs_release_path(path
);
976 * Mutex was contended, block until it's
977 * released and try again
979 mutex_lock(&head
->mutex
);
980 mutex_unlock(&head
->mutex
);
981 btrfs_put_delayed_ref(&head
->node
);
984 spin_unlock(&delayed_refs
->lock
);
985 ret
= __add_delayed_refs(head
, time_seq
,
986 &prefs_delayed
, &total_refs
,
988 mutex_unlock(&head
->mutex
);
992 spin_unlock(&delayed_refs
->lock
);
996 if (path
->slots
[0]) {
997 struct extent_buffer
*leaf
;
1001 leaf
= path
->nodes
[0];
1002 slot
= path
->slots
[0];
1003 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1004 if (key
.objectid
== bytenr
&&
1005 (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
1006 key
.type
== BTRFS_METADATA_ITEM_KEY
)) {
1007 ret
= __add_inline_refs(fs_info
, path
, bytenr
,
1008 &info_level
, &prefs
,
1012 ret
= __add_keyed_refs(fs_info
, path
, bytenr
,
1013 info_level
, &prefs
, inum
);
1018 btrfs_release_path(path
);
1020 list_splice_init(&prefs_delayed
, &prefs
);
1022 ret
= __add_missing_keys(fs_info
, &prefs
);
1026 __merge_refs(&prefs
, 1);
1028 ret
= __resolve_indirect_refs(fs_info
, path
, time_seq
, &prefs
,
1029 extent_item_pos
, total_refs
,
1034 __merge_refs(&prefs
, 2);
1036 while (!list_empty(&prefs
)) {
1037 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
1038 WARN_ON(ref
->count
< 0);
1039 if (roots
&& ref
->count
&& ref
->root_id
&& ref
->parent
== 0) {
1040 if (root_objectid
&& ref
->root_id
!= root_objectid
) {
1041 ret
= BACKREF_FOUND_SHARED
;
1045 /* no parent == root of tree */
1046 ret
= ulist_add(roots
, ref
->root_id
, 0, GFP_NOFS
);
1050 if (ref
->count
&& ref
->parent
) {
1051 if (extent_item_pos
&& !ref
->inode_list
&&
1053 struct extent_buffer
*eb
;
1055 eb
= read_tree_block(fs_info
->extent_root
,
1060 } else if (!extent_buffer_uptodate(eb
)) {
1061 free_extent_buffer(eb
);
1065 btrfs_tree_read_lock(eb
);
1066 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1067 ret
= find_extent_in_eb(eb
, bytenr
,
1068 *extent_item_pos
, &eie
);
1069 btrfs_tree_read_unlock_blocking(eb
);
1070 free_extent_buffer(eb
);
1073 ref
->inode_list
= eie
;
1075 ret
= ulist_add_merge_ptr(refs
, ref
->parent
,
1077 (void **)&eie
, GFP_NOFS
);
1080 if (!ret
&& extent_item_pos
) {
1082 * we've recorded that parent, so we must extend
1083 * its inode list here
1088 eie
->next
= ref
->inode_list
;
1092 list_del(&ref
->list
);
1093 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1097 btrfs_free_path(path
);
1098 while (!list_empty(&prefs
)) {
1099 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
1100 list_del(&ref
->list
);
1101 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1103 while (!list_empty(&prefs_delayed
)) {
1104 ref
= list_first_entry(&prefs_delayed
, struct __prelim_ref
,
1106 list_del(&ref
->list
);
1107 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1110 free_inode_elem_list(eie
);
1114 static void free_leaf_list(struct ulist
*blocks
)
1116 struct ulist_node
*node
= NULL
;
1117 struct extent_inode_elem
*eie
;
1118 struct ulist_iterator uiter
;
1120 ULIST_ITER_INIT(&uiter
);
1121 while ((node
= ulist_next(blocks
, &uiter
))) {
1124 eie
= (struct extent_inode_elem
*)(uintptr_t)node
->aux
;
1125 free_inode_elem_list(eie
);
1133 * Finds all leafs with a reference to the specified combination of bytenr and
1134 * offset. key_list_head will point to a list of corresponding keys (caller must
1135 * free each list element). The leafs will be stored in the leafs ulist, which
1136 * must be freed with ulist_free.
1138 * returns 0 on success, <0 on error
1140 static int btrfs_find_all_leafs(struct btrfs_trans_handle
*trans
,
1141 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1142 u64 time_seq
, struct ulist
**leafs
,
1143 const u64
*extent_item_pos
)
1147 *leafs
= ulist_alloc(GFP_NOFS
);
1151 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
1152 time_seq
, *leafs
, NULL
, extent_item_pos
, 0, 0);
1153 if (ret
< 0 && ret
!= -ENOENT
) {
1154 free_leaf_list(*leafs
);
1162 * walk all backrefs for a given extent to find all roots that reference this
1163 * extent. Walking a backref means finding all extents that reference this
1164 * extent and in turn walk the backrefs of those, too. Naturally this is a
1165 * recursive process, but here it is implemented in an iterative fashion: We
1166 * find all referencing extents for the extent in question and put them on a
1167 * list. In turn, we find all referencing extents for those, further appending
1168 * to the list. The way we iterate the list allows adding more elements after
1169 * the current while iterating. The process stops when we reach the end of the
1170 * list. Found roots are added to the roots list.
1172 * returns 0 on success, < 0 on error.
1174 static int __btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
1175 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1176 u64 time_seq
, struct ulist
**roots
)
1179 struct ulist_node
*node
= NULL
;
1180 struct ulist_iterator uiter
;
1183 tmp
= ulist_alloc(GFP_NOFS
);
1186 *roots
= ulist_alloc(GFP_NOFS
);
1192 ULIST_ITER_INIT(&uiter
);
1194 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
1195 time_seq
, tmp
, *roots
, NULL
, 0, 0);
1196 if (ret
< 0 && ret
!= -ENOENT
) {
1201 node
= ulist_next(tmp
, &uiter
);
1212 int btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
1213 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1214 u64 time_seq
, struct ulist
**roots
)
1219 down_read(&fs_info
->commit_root_sem
);
1220 ret
= __btrfs_find_all_roots(trans
, fs_info
, bytenr
, time_seq
, roots
);
1222 up_read(&fs_info
->commit_root_sem
);
1227 * btrfs_check_shared - tell us whether an extent is shared
1229 * @trans: optional trans handle
1231 * btrfs_check_shared uses the backref walking code but will short
1232 * circuit as soon as it finds a root or inode that doesn't match the
1233 * one passed in. This provides a significant performance benefit for
1234 * callers (such as fiemap) which want to know whether the extent is
1235 * shared but do not need a ref count.
1237 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1239 int btrfs_check_shared(struct btrfs_trans_handle
*trans
,
1240 struct btrfs_fs_info
*fs_info
, u64 root_objectid
,
1241 u64 inum
, u64 bytenr
)
1243 struct ulist
*tmp
= NULL
;
1244 struct ulist
*roots
= NULL
;
1245 struct ulist_iterator uiter
;
1246 struct ulist_node
*node
;
1247 struct seq_list elem
= SEQ_LIST_INIT(elem
);
1250 tmp
= ulist_alloc(GFP_NOFS
);
1251 roots
= ulist_alloc(GFP_NOFS
);
1252 if (!tmp
|| !roots
) {
1259 btrfs_get_tree_mod_seq(fs_info
, &elem
);
1261 down_read(&fs_info
->commit_root_sem
);
1262 ULIST_ITER_INIT(&uiter
);
1264 ret
= find_parent_nodes(trans
, fs_info
, bytenr
, elem
.seq
, tmp
,
1265 roots
, NULL
, root_objectid
, inum
);
1266 if (ret
== BACKREF_FOUND_SHARED
) {
1267 /* this is the only condition under which we return 1 */
1271 if (ret
< 0 && ret
!= -ENOENT
)
1274 node
= ulist_next(tmp
, &uiter
);
1281 btrfs_put_tree_mod_seq(fs_info
, &elem
);
1283 up_read(&fs_info
->commit_root_sem
);
1289 int btrfs_find_one_extref(struct btrfs_root
*root
, u64 inode_objectid
,
1290 u64 start_off
, struct btrfs_path
*path
,
1291 struct btrfs_inode_extref
**ret_extref
,
1295 struct btrfs_key key
;
1296 struct btrfs_key found_key
;
1297 struct btrfs_inode_extref
*extref
;
1298 struct extent_buffer
*leaf
;
1301 key
.objectid
= inode_objectid
;
1302 key
.type
= BTRFS_INODE_EXTREF_KEY
;
1303 key
.offset
= start_off
;
1305 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1310 leaf
= path
->nodes
[0];
1311 slot
= path
->slots
[0];
1312 if (slot
>= btrfs_header_nritems(leaf
)) {
1314 * If the item at offset is not found,
1315 * btrfs_search_slot will point us to the slot
1316 * where it should be inserted. In our case
1317 * that will be the slot directly before the
1318 * next INODE_REF_KEY_V2 item. In the case
1319 * that we're pointing to the last slot in a
1320 * leaf, we must move one leaf over.
1322 ret
= btrfs_next_leaf(root
, path
);
1331 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
1334 * Check that we're still looking at an extended ref key for
1335 * this particular objectid. If we have different
1336 * objectid or type then there are no more to be found
1337 * in the tree and we can exit.
1340 if (found_key
.objectid
!= inode_objectid
)
1342 if (found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)
1346 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1347 extref
= (struct btrfs_inode_extref
*)ptr
;
1348 *ret_extref
= extref
;
1350 *found_off
= found_key
.offset
;
1358 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1359 * Elements of the path are separated by '/' and the path is guaranteed to be
1360 * 0-terminated. the path is only given within the current file system.
1361 * Therefore, it never starts with a '/'. the caller is responsible to provide
1362 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1363 * the start point of the resulting string is returned. this pointer is within
1365 * in case the path buffer would overflow, the pointer is decremented further
1366 * as if output was written to the buffer, though no more output is actually
1367 * generated. that way, the caller can determine how much space would be
1368 * required for the path to fit into the buffer. in that case, the returned
1369 * value will be smaller than dest. callers must check this!
1371 char *btrfs_ref_to_path(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
1372 u32 name_len
, unsigned long name_off
,
1373 struct extent_buffer
*eb_in
, u64 parent
,
1374 char *dest
, u32 size
)
1379 s64 bytes_left
= ((s64
)size
) - 1;
1380 struct extent_buffer
*eb
= eb_in
;
1381 struct btrfs_key found_key
;
1382 int leave_spinning
= path
->leave_spinning
;
1383 struct btrfs_inode_ref
*iref
;
1385 if (bytes_left
>= 0)
1386 dest
[bytes_left
] = '\0';
1388 path
->leave_spinning
= 1;
1390 bytes_left
-= name_len
;
1391 if (bytes_left
>= 0)
1392 read_extent_buffer(eb
, dest
+ bytes_left
,
1393 name_off
, name_len
);
1395 btrfs_tree_read_unlock_blocking(eb
);
1396 free_extent_buffer(eb
);
1398 ret
= btrfs_find_item(fs_root
, path
, parent
, 0,
1399 BTRFS_INODE_REF_KEY
, &found_key
);
1405 next_inum
= found_key
.offset
;
1407 /* regular exit ahead */
1408 if (parent
== next_inum
)
1411 slot
= path
->slots
[0];
1412 eb
= path
->nodes
[0];
1413 /* make sure we can use eb after releasing the path */
1415 atomic_inc(&eb
->refs
);
1416 btrfs_tree_read_lock(eb
);
1417 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1419 btrfs_release_path(path
);
1420 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1422 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1423 name_off
= (unsigned long)(iref
+ 1);
1427 if (bytes_left
>= 0)
1428 dest
[bytes_left
] = '/';
1431 btrfs_release_path(path
);
1432 path
->leave_spinning
= leave_spinning
;
1435 return ERR_PTR(ret
);
1437 return dest
+ bytes_left
;
1441 * this makes the path point to (logical EXTENT_ITEM *)
1442 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1443 * tree blocks and <0 on error.
1445 int extent_from_logical(struct btrfs_fs_info
*fs_info
, u64 logical
,
1446 struct btrfs_path
*path
, struct btrfs_key
*found_key
,
1453 struct extent_buffer
*eb
;
1454 struct btrfs_extent_item
*ei
;
1455 struct btrfs_key key
;
1457 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1458 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1460 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1461 key
.objectid
= logical
;
1462 key
.offset
= (u64
)-1;
1464 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
1468 ret
= btrfs_previous_extent_item(fs_info
->extent_root
, path
, 0);
1474 btrfs_item_key_to_cpu(path
->nodes
[0], found_key
, path
->slots
[0]);
1475 if (found_key
->type
== BTRFS_METADATA_ITEM_KEY
)
1476 size
= fs_info
->extent_root
->nodesize
;
1477 else if (found_key
->type
== BTRFS_EXTENT_ITEM_KEY
)
1478 size
= found_key
->offset
;
1480 if (found_key
->objectid
> logical
||
1481 found_key
->objectid
+ size
<= logical
) {
1482 pr_debug("logical %llu is not within any extent\n", logical
);
1486 eb
= path
->nodes
[0];
1487 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
1488 BUG_ON(item_size
< sizeof(*ei
));
1490 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
1491 flags
= btrfs_extent_flags(eb
, ei
);
1493 pr_debug("logical %llu is at position %llu within the extent (%llu "
1494 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1495 logical
, logical
- found_key
->objectid
, found_key
->objectid
,
1496 found_key
->offset
, flags
, item_size
);
1498 WARN_ON(!flags_ret
);
1500 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1501 *flags_ret
= BTRFS_EXTENT_FLAG_TREE_BLOCK
;
1502 else if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1503 *flags_ret
= BTRFS_EXTENT_FLAG_DATA
;
1513 * helper function to iterate extent inline refs. ptr must point to a 0 value
1514 * for the first call and may be modified. it is used to track state.
1515 * if more refs exist, 0 is returned and the next call to
1516 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1517 * next ref. after the last ref was processed, 1 is returned.
1518 * returns <0 on error
1520 static int __get_extent_inline_ref(unsigned long *ptr
, struct extent_buffer
*eb
,
1521 struct btrfs_key
*key
,
1522 struct btrfs_extent_item
*ei
, u32 item_size
,
1523 struct btrfs_extent_inline_ref
**out_eiref
,
1528 struct btrfs_tree_block_info
*info
;
1532 flags
= btrfs_extent_flags(eb
, ei
);
1533 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1534 if (key
->type
== BTRFS_METADATA_ITEM_KEY
) {
1535 /* a skinny metadata extent */
1537 (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1539 WARN_ON(key
->type
!= BTRFS_EXTENT_ITEM_KEY
);
1540 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1542 (struct btrfs_extent_inline_ref
*)(info
+ 1);
1545 *out_eiref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1547 *ptr
= (unsigned long)*out_eiref
;
1548 if ((unsigned long)(*ptr
) >= (unsigned long)ei
+ item_size
)
1552 end
= (unsigned long)ei
+ item_size
;
1553 *out_eiref
= (struct btrfs_extent_inline_ref
*)(*ptr
);
1554 *out_type
= btrfs_extent_inline_ref_type(eb
, *out_eiref
);
1556 *ptr
+= btrfs_extent_inline_ref_size(*out_type
);
1557 WARN_ON(*ptr
> end
);
1559 return 1; /* last */
1565 * reads the tree block backref for an extent. tree level and root are returned
1566 * through out_level and out_root. ptr must point to a 0 value for the first
1567 * call and may be modified (see __get_extent_inline_ref comment).
1568 * returns 0 if data was provided, 1 if there was no more data to provide or
1571 int tree_backref_for_extent(unsigned long *ptr
, struct extent_buffer
*eb
,
1572 struct btrfs_key
*key
, struct btrfs_extent_item
*ei
,
1573 u32 item_size
, u64
*out_root
, u8
*out_level
)
1577 struct btrfs_extent_inline_ref
*eiref
;
1579 if (*ptr
== (unsigned long)-1)
1583 ret
= __get_extent_inline_ref(ptr
, eb
, key
, ei
, item_size
,
1588 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
1589 type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1596 /* we can treat both ref types equally here */
1597 *out_root
= btrfs_extent_inline_ref_offset(eb
, eiref
);
1599 if (key
->type
== BTRFS_EXTENT_ITEM_KEY
) {
1600 struct btrfs_tree_block_info
*info
;
1602 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1603 *out_level
= btrfs_tree_block_level(eb
, info
);
1605 ASSERT(key
->type
== BTRFS_METADATA_ITEM_KEY
);
1606 *out_level
= (u8
)key
->offset
;
1610 *ptr
= (unsigned long)-1;
1615 static int iterate_leaf_refs(struct extent_inode_elem
*inode_list
,
1616 u64 root
, u64 extent_item_objectid
,
1617 iterate_extent_inodes_t
*iterate
, void *ctx
)
1619 struct extent_inode_elem
*eie
;
1622 for (eie
= inode_list
; eie
; eie
= eie
->next
) {
1623 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1624 "root %llu\n", extent_item_objectid
,
1625 eie
->inum
, eie
->offset
, root
);
1626 ret
= iterate(eie
->inum
, eie
->offset
, root
, ctx
);
1628 pr_debug("stopping iteration for %llu due to ret=%d\n",
1629 extent_item_objectid
, ret
);
1638 * calls iterate() for every inode that references the extent identified by
1639 * the given parameters.
1640 * when the iterator function returns a non-zero value, iteration stops.
1642 int iterate_extent_inodes(struct btrfs_fs_info
*fs_info
,
1643 u64 extent_item_objectid
, u64 extent_item_pos
,
1644 int search_commit_root
,
1645 iterate_extent_inodes_t
*iterate
, void *ctx
)
1648 struct btrfs_trans_handle
*trans
= NULL
;
1649 struct ulist
*refs
= NULL
;
1650 struct ulist
*roots
= NULL
;
1651 struct ulist_node
*ref_node
= NULL
;
1652 struct ulist_node
*root_node
= NULL
;
1653 struct seq_list tree_mod_seq_elem
= SEQ_LIST_INIT(tree_mod_seq_elem
);
1654 struct ulist_iterator ref_uiter
;
1655 struct ulist_iterator root_uiter
;
1657 pr_debug("resolving all inodes for extent %llu\n",
1658 extent_item_objectid
);
1660 if (!search_commit_root
) {
1661 trans
= btrfs_join_transaction(fs_info
->extent_root
);
1663 return PTR_ERR(trans
);
1664 btrfs_get_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1666 down_read(&fs_info
->commit_root_sem
);
1669 ret
= btrfs_find_all_leafs(trans
, fs_info
, extent_item_objectid
,
1670 tree_mod_seq_elem
.seq
, &refs
,
1675 ULIST_ITER_INIT(&ref_uiter
);
1676 while (!ret
&& (ref_node
= ulist_next(refs
, &ref_uiter
))) {
1677 ret
= __btrfs_find_all_roots(trans
, fs_info
, ref_node
->val
,
1678 tree_mod_seq_elem
.seq
, &roots
);
1681 ULIST_ITER_INIT(&root_uiter
);
1682 while (!ret
&& (root_node
= ulist_next(roots
, &root_uiter
))) {
1683 pr_debug("root %llu references leaf %llu, data list "
1684 "%#llx\n", root_node
->val
, ref_node
->val
,
1686 ret
= iterate_leaf_refs((struct extent_inode_elem
*)
1687 (uintptr_t)ref_node
->aux
,
1689 extent_item_objectid
,
1695 free_leaf_list(refs
);
1697 if (!search_commit_root
) {
1698 btrfs_put_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1699 btrfs_end_transaction(trans
, fs_info
->extent_root
);
1701 up_read(&fs_info
->commit_root_sem
);
1707 int iterate_inodes_from_logical(u64 logical
, struct btrfs_fs_info
*fs_info
,
1708 struct btrfs_path
*path
,
1709 iterate_extent_inodes_t
*iterate
, void *ctx
)
1712 u64 extent_item_pos
;
1714 struct btrfs_key found_key
;
1715 int search_commit_root
= path
->search_commit_root
;
1717 ret
= extent_from_logical(fs_info
, logical
, path
, &found_key
, &flags
);
1718 btrfs_release_path(path
);
1721 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1724 extent_item_pos
= logical
- found_key
.objectid
;
1725 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1726 extent_item_pos
, search_commit_root
,
1732 typedef int (iterate_irefs_t
)(u64 parent
, u32 name_len
, unsigned long name_off
,
1733 struct extent_buffer
*eb
, void *ctx
);
1735 static int iterate_inode_refs(u64 inum
, struct btrfs_root
*fs_root
,
1736 struct btrfs_path
*path
,
1737 iterate_irefs_t
*iterate
, void *ctx
)
1746 struct extent_buffer
*eb
;
1747 struct btrfs_item
*item
;
1748 struct btrfs_inode_ref
*iref
;
1749 struct btrfs_key found_key
;
1752 ret
= btrfs_find_item(fs_root
, path
, inum
,
1753 parent
? parent
+ 1 : 0, BTRFS_INODE_REF_KEY
,
1759 ret
= found
? 0 : -ENOENT
;
1764 parent
= found_key
.offset
;
1765 slot
= path
->slots
[0];
1766 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
1771 extent_buffer_get(eb
);
1772 btrfs_tree_read_lock(eb
);
1773 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1774 btrfs_release_path(path
);
1776 item
= btrfs_item_nr(slot
);
1777 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1779 for (cur
= 0; cur
< btrfs_item_size(eb
, item
); cur
+= len
) {
1780 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1781 /* path must be released before calling iterate()! */
1782 pr_debug("following ref at offset %u for inode %llu in "
1783 "tree %llu\n", cur
, found_key
.objectid
,
1785 ret
= iterate(parent
, name_len
,
1786 (unsigned long)(iref
+ 1), eb
, ctx
);
1789 len
= sizeof(*iref
) + name_len
;
1790 iref
= (struct btrfs_inode_ref
*)((char *)iref
+ len
);
1792 btrfs_tree_read_unlock_blocking(eb
);
1793 free_extent_buffer(eb
);
1796 btrfs_release_path(path
);
1801 static int iterate_inode_extrefs(u64 inum
, struct btrfs_root
*fs_root
,
1802 struct btrfs_path
*path
,
1803 iterate_irefs_t
*iterate
, void *ctx
)
1810 struct extent_buffer
*eb
;
1811 struct btrfs_inode_extref
*extref
;
1812 struct extent_buffer
*leaf
;
1818 ret
= btrfs_find_one_extref(fs_root
, inum
, offset
, path
, &extref
,
1823 ret
= found
? 0 : -ENOENT
;
1828 slot
= path
->slots
[0];
1829 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
1834 extent_buffer_get(eb
);
1836 btrfs_tree_read_lock(eb
);
1837 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1838 btrfs_release_path(path
);
1840 leaf
= path
->nodes
[0];
1841 item_size
= btrfs_item_size_nr(leaf
, slot
);
1842 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
1845 while (cur_offset
< item_size
) {
1848 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur_offset
);
1849 parent
= btrfs_inode_extref_parent(eb
, extref
);
1850 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
1851 ret
= iterate(parent
, name_len
,
1852 (unsigned long)&extref
->name
, eb
, ctx
);
1856 cur_offset
+= btrfs_inode_extref_name_len(leaf
, extref
);
1857 cur_offset
+= sizeof(*extref
);
1859 btrfs_tree_read_unlock_blocking(eb
);
1860 free_extent_buffer(eb
);
1865 btrfs_release_path(path
);
1870 static int iterate_irefs(u64 inum
, struct btrfs_root
*fs_root
,
1871 struct btrfs_path
*path
, iterate_irefs_t
*iterate
,
1877 ret
= iterate_inode_refs(inum
, fs_root
, path
, iterate
, ctx
);
1880 else if (ret
!= -ENOENT
)
1883 ret
= iterate_inode_extrefs(inum
, fs_root
, path
, iterate
, ctx
);
1884 if (ret
== -ENOENT
&& found_refs
)
1891 * returns 0 if the path could be dumped (probably truncated)
1892 * returns <0 in case of an error
1894 static int inode_to_path(u64 inum
, u32 name_len
, unsigned long name_off
,
1895 struct extent_buffer
*eb
, void *ctx
)
1897 struct inode_fs_paths
*ipath
= ctx
;
1900 int i
= ipath
->fspath
->elem_cnt
;
1901 const int s_ptr
= sizeof(char *);
1904 bytes_left
= ipath
->fspath
->bytes_left
> s_ptr
?
1905 ipath
->fspath
->bytes_left
- s_ptr
: 0;
1907 fspath_min
= (char *)ipath
->fspath
->val
+ (i
+ 1) * s_ptr
;
1908 fspath
= btrfs_ref_to_path(ipath
->fs_root
, ipath
->btrfs_path
, name_len
,
1909 name_off
, eb
, inum
, fspath_min
, bytes_left
);
1911 return PTR_ERR(fspath
);
1913 if (fspath
> fspath_min
) {
1914 ipath
->fspath
->val
[i
] = (u64
)(unsigned long)fspath
;
1915 ++ipath
->fspath
->elem_cnt
;
1916 ipath
->fspath
->bytes_left
= fspath
- fspath_min
;
1918 ++ipath
->fspath
->elem_missed
;
1919 ipath
->fspath
->bytes_missing
+= fspath_min
- fspath
;
1920 ipath
->fspath
->bytes_left
= 0;
1927 * this dumps all file system paths to the inode into the ipath struct, provided
1928 * is has been created large enough. each path is zero-terminated and accessed
1929 * from ipath->fspath->val[i].
1930 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1931 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1932 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1933 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1934 * have been needed to return all paths.
1936 int paths_from_inode(u64 inum
, struct inode_fs_paths
*ipath
)
1938 return iterate_irefs(inum
, ipath
->fs_root
, ipath
->btrfs_path
,
1939 inode_to_path
, ipath
);
1942 struct btrfs_data_container
*init_data_container(u32 total_bytes
)
1944 struct btrfs_data_container
*data
;
1947 alloc_bytes
= max_t(size_t, total_bytes
, sizeof(*data
));
1948 data
= vmalloc(alloc_bytes
);
1950 return ERR_PTR(-ENOMEM
);
1952 if (total_bytes
>= sizeof(*data
)) {
1953 data
->bytes_left
= total_bytes
- sizeof(*data
);
1954 data
->bytes_missing
= 0;
1956 data
->bytes_missing
= sizeof(*data
) - total_bytes
;
1957 data
->bytes_left
= 0;
1961 data
->elem_missed
= 0;
1967 * allocates space to return multiple file system paths for an inode.
1968 * total_bytes to allocate are passed, note that space usable for actual path
1969 * information will be total_bytes - sizeof(struct inode_fs_paths).
1970 * the returned pointer must be freed with free_ipath() in the end.
1972 struct inode_fs_paths
*init_ipath(s32 total_bytes
, struct btrfs_root
*fs_root
,
1973 struct btrfs_path
*path
)
1975 struct inode_fs_paths
*ifp
;
1976 struct btrfs_data_container
*fspath
;
1978 fspath
= init_data_container(total_bytes
);
1980 return (void *)fspath
;
1982 ifp
= kmalloc(sizeof(*ifp
), GFP_NOFS
);
1985 return ERR_PTR(-ENOMEM
);
1988 ifp
->btrfs_path
= path
;
1989 ifp
->fspath
= fspath
;
1990 ifp
->fs_root
= fs_root
;
1995 void free_ipath(struct inode_fs_paths
*ipath
)
1999 vfree(ipath
->fspath
);