2 * Copyright (C) 2008 Red Hat. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
25 #include "free-space-cache.h"
26 #include "transaction.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
32 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
33 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
35 struct btrfs_trim_range
{
38 struct list_head list
;
41 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
42 struct btrfs_free_space
*info
);
43 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
44 struct btrfs_free_space
*info
);
46 static struct inode
*__lookup_free_space_inode(struct btrfs_root
*root
,
47 struct btrfs_path
*path
,
51 struct btrfs_key location
;
52 struct btrfs_disk_key disk_key
;
53 struct btrfs_free_space_header
*header
;
54 struct extent_buffer
*leaf
;
55 struct inode
*inode
= NULL
;
58 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
62 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
66 btrfs_release_path(path
);
67 return ERR_PTR(-ENOENT
);
70 leaf
= path
->nodes
[0];
71 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
72 struct btrfs_free_space_header
);
73 btrfs_free_space_key(leaf
, header
, &disk_key
);
74 btrfs_disk_key_to_cpu(&location
, &disk_key
);
75 btrfs_release_path(path
);
77 inode
= btrfs_iget(root
->fs_info
->sb
, &location
, root
, NULL
);
79 return ERR_PTR(-ENOENT
);
82 if (is_bad_inode(inode
)) {
84 return ERR_PTR(-ENOENT
);
87 mapping_set_gfp_mask(inode
->i_mapping
,
88 mapping_gfp_mask(inode
->i_mapping
) &
89 ~(__GFP_FS
| __GFP_HIGHMEM
));
94 struct inode
*lookup_free_space_inode(struct btrfs_root
*root
,
95 struct btrfs_block_group_cache
96 *block_group
, struct btrfs_path
*path
)
98 struct inode
*inode
= NULL
;
99 u32 flags
= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
101 spin_lock(&block_group
->lock
);
102 if (block_group
->inode
)
103 inode
= igrab(block_group
->inode
);
104 spin_unlock(&block_group
->lock
);
108 inode
= __lookup_free_space_inode(root
, path
,
109 block_group
->key
.objectid
);
113 spin_lock(&block_group
->lock
);
114 if (!((BTRFS_I(inode
)->flags
& flags
) == flags
)) {
115 btrfs_info(root
->fs_info
,
116 "Old style space inode found, converting.");
117 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
|
118 BTRFS_INODE_NODATACOW
;
119 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
122 if (!block_group
->iref
) {
123 block_group
->inode
= igrab(inode
);
124 block_group
->iref
= 1;
126 spin_unlock(&block_group
->lock
);
131 static int __create_free_space_inode(struct btrfs_root
*root
,
132 struct btrfs_trans_handle
*trans
,
133 struct btrfs_path
*path
,
136 struct btrfs_key key
;
137 struct btrfs_disk_key disk_key
;
138 struct btrfs_free_space_header
*header
;
139 struct btrfs_inode_item
*inode_item
;
140 struct extent_buffer
*leaf
;
141 u64 flags
= BTRFS_INODE_NOCOMPRESS
| BTRFS_INODE_PREALLOC
;
144 ret
= btrfs_insert_empty_inode(trans
, root
, path
, ino
);
148 /* We inline crc's for the free disk space cache */
149 if (ino
!= BTRFS_FREE_INO_OBJECTID
)
150 flags
|= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
152 leaf
= path
->nodes
[0];
153 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
154 struct btrfs_inode_item
);
155 btrfs_item_key(leaf
, &disk_key
, path
->slots
[0]);
156 memset_extent_buffer(leaf
, 0, (unsigned long)inode_item
,
157 sizeof(*inode_item
));
158 btrfs_set_inode_generation(leaf
, inode_item
, trans
->transid
);
159 btrfs_set_inode_size(leaf
, inode_item
, 0);
160 btrfs_set_inode_nbytes(leaf
, inode_item
, 0);
161 btrfs_set_inode_uid(leaf
, inode_item
, 0);
162 btrfs_set_inode_gid(leaf
, inode_item
, 0);
163 btrfs_set_inode_mode(leaf
, inode_item
, S_IFREG
| 0600);
164 btrfs_set_inode_flags(leaf
, inode_item
, flags
);
165 btrfs_set_inode_nlink(leaf
, inode_item
, 1);
166 btrfs_set_inode_transid(leaf
, inode_item
, trans
->transid
);
167 btrfs_set_inode_block_group(leaf
, inode_item
, offset
);
168 btrfs_mark_buffer_dirty(leaf
);
169 btrfs_release_path(path
);
171 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
174 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
175 sizeof(struct btrfs_free_space_header
));
177 btrfs_release_path(path
);
181 leaf
= path
->nodes
[0];
182 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
183 struct btrfs_free_space_header
);
184 memset_extent_buffer(leaf
, 0, (unsigned long)header
, sizeof(*header
));
185 btrfs_set_free_space_key(leaf
, header
, &disk_key
);
186 btrfs_mark_buffer_dirty(leaf
);
187 btrfs_release_path(path
);
192 int create_free_space_inode(struct btrfs_root
*root
,
193 struct btrfs_trans_handle
*trans
,
194 struct btrfs_block_group_cache
*block_group
,
195 struct btrfs_path
*path
)
200 ret
= btrfs_find_free_objectid(root
, &ino
);
204 return __create_free_space_inode(root
, trans
, path
, ino
,
205 block_group
->key
.objectid
);
208 int btrfs_check_trunc_cache_free_space(struct btrfs_root
*root
,
209 struct btrfs_block_rsv
*rsv
)
214 /* 1 for slack space, 1 for updating the inode */
215 needed_bytes
= btrfs_calc_trunc_metadata_size(root
, 1) +
216 btrfs_calc_trans_metadata_size(root
, 1);
218 spin_lock(&rsv
->lock
);
219 if (rsv
->reserved
< needed_bytes
)
223 spin_unlock(&rsv
->lock
);
227 int btrfs_truncate_free_space_cache(struct btrfs_root
*root
,
228 struct btrfs_trans_handle
*trans
,
229 struct btrfs_block_group_cache
*block_group
,
233 struct btrfs_path
*path
= btrfs_alloc_path();
243 mutex_lock(&trans
->transaction
->cache_write_mutex
);
244 if (!list_empty(&block_group
->io_list
)) {
245 list_del_init(&block_group
->io_list
);
247 btrfs_wait_cache_io(root
, trans
, block_group
,
248 &block_group
->io_ctl
, path
,
249 block_group
->key
.objectid
);
250 btrfs_put_block_group(block_group
);
254 * now that we've truncated the cache away, its no longer
257 spin_lock(&block_group
->lock
);
258 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
259 spin_unlock(&block_group
->lock
);
261 btrfs_free_path(path
);
263 btrfs_i_size_write(inode
, 0);
264 truncate_pagecache(inode
, 0);
267 * We don't need an orphan item because truncating the free space cache
268 * will never be split across transactions.
269 * We don't need to check for -EAGAIN because we're a free space
272 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
273 0, BTRFS_EXTENT_DATA_KEY
);
277 ret
= btrfs_update_inode(trans
, root
, inode
);
281 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
283 btrfs_abort_transaction(trans
, root
, ret
);
288 static int readahead_cache(struct inode
*inode
)
290 struct file_ra_state
*ra
;
291 unsigned long last_index
;
293 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
297 file_ra_state_init(ra
, inode
->i_mapping
);
298 last_index
= (i_size_read(inode
) - 1) >> PAGE_CACHE_SHIFT
;
300 page_cache_sync_readahead(inode
->i_mapping
, ra
, NULL
, 0, last_index
);
307 static int io_ctl_init(struct btrfs_io_ctl
*io_ctl
, struct inode
*inode
,
308 struct btrfs_root
*root
, int write
)
313 num_pages
= DIV_ROUND_UP(i_size_read(inode
), PAGE_CACHE_SIZE
);
315 if (btrfs_ino(inode
) != BTRFS_FREE_INO_OBJECTID
)
318 /* Make sure we can fit our crcs into the first page */
319 if (write
&& check_crcs
&&
320 (num_pages
* sizeof(u32
)) >= PAGE_CACHE_SIZE
)
323 memset(io_ctl
, 0, sizeof(struct btrfs_io_ctl
));
325 io_ctl
->pages
= kcalloc(num_pages
, sizeof(struct page
*), GFP_NOFS
);
329 io_ctl
->num_pages
= num_pages
;
331 io_ctl
->check_crcs
= check_crcs
;
332 io_ctl
->inode
= inode
;
337 static void io_ctl_free(struct btrfs_io_ctl
*io_ctl
)
339 kfree(io_ctl
->pages
);
340 io_ctl
->pages
= NULL
;
343 static void io_ctl_unmap_page(struct btrfs_io_ctl
*io_ctl
)
351 static void io_ctl_map_page(struct btrfs_io_ctl
*io_ctl
, int clear
)
353 ASSERT(io_ctl
->index
< io_ctl
->num_pages
);
354 io_ctl
->page
= io_ctl
->pages
[io_ctl
->index
++];
355 io_ctl
->cur
= page_address(io_ctl
->page
);
356 io_ctl
->orig
= io_ctl
->cur
;
357 io_ctl
->size
= PAGE_CACHE_SIZE
;
359 memset(io_ctl
->cur
, 0, PAGE_CACHE_SIZE
);
362 static void io_ctl_drop_pages(struct btrfs_io_ctl
*io_ctl
)
366 io_ctl_unmap_page(io_ctl
);
368 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
369 if (io_ctl
->pages
[i
]) {
370 ClearPageChecked(io_ctl
->pages
[i
]);
371 unlock_page(io_ctl
->pages
[i
]);
372 page_cache_release(io_ctl
->pages
[i
]);
377 static int io_ctl_prepare_pages(struct btrfs_io_ctl
*io_ctl
, struct inode
*inode
,
381 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
384 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
385 page
= find_or_create_page(inode
->i_mapping
, i
, mask
);
387 io_ctl_drop_pages(io_ctl
);
390 io_ctl
->pages
[i
] = page
;
391 if (uptodate
&& !PageUptodate(page
)) {
392 btrfs_readpage(NULL
, page
);
394 if (!PageUptodate(page
)) {
395 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
396 "error reading free space cache");
397 io_ctl_drop_pages(io_ctl
);
403 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
404 clear_page_dirty_for_io(io_ctl
->pages
[i
]);
405 set_page_extent_mapped(io_ctl
->pages
[i
]);
411 static void io_ctl_set_generation(struct btrfs_io_ctl
*io_ctl
, u64 generation
)
415 io_ctl_map_page(io_ctl
, 1);
418 * Skip the csum areas. If we don't check crcs then we just have a
419 * 64bit chunk at the front of the first page.
421 if (io_ctl
->check_crcs
) {
422 io_ctl
->cur
+= (sizeof(u32
) * io_ctl
->num_pages
);
423 io_ctl
->size
-= sizeof(u64
) + (sizeof(u32
) * io_ctl
->num_pages
);
425 io_ctl
->cur
+= sizeof(u64
);
426 io_ctl
->size
-= sizeof(u64
) * 2;
430 *val
= cpu_to_le64(generation
);
431 io_ctl
->cur
+= sizeof(u64
);
434 static int io_ctl_check_generation(struct btrfs_io_ctl
*io_ctl
, u64 generation
)
439 * Skip the crc area. If we don't check crcs then we just have a 64bit
440 * chunk at the front of the first page.
442 if (io_ctl
->check_crcs
) {
443 io_ctl
->cur
+= sizeof(u32
) * io_ctl
->num_pages
;
444 io_ctl
->size
-= sizeof(u64
) +
445 (sizeof(u32
) * io_ctl
->num_pages
);
447 io_ctl
->cur
+= sizeof(u64
);
448 io_ctl
->size
-= sizeof(u64
) * 2;
452 if (le64_to_cpu(*gen
) != generation
) {
453 printk_ratelimited(KERN_ERR
"BTRFS: space cache generation "
454 "(%Lu) does not match inode (%Lu)\n", *gen
,
456 io_ctl_unmap_page(io_ctl
);
459 io_ctl
->cur
+= sizeof(u64
);
463 static void io_ctl_set_crc(struct btrfs_io_ctl
*io_ctl
, int index
)
469 if (!io_ctl
->check_crcs
) {
470 io_ctl_unmap_page(io_ctl
);
475 offset
= sizeof(u32
) * io_ctl
->num_pages
;
477 crc
= btrfs_csum_data(io_ctl
->orig
+ offset
, crc
,
478 PAGE_CACHE_SIZE
- offset
);
479 btrfs_csum_final(crc
, (char *)&crc
);
480 io_ctl_unmap_page(io_ctl
);
481 tmp
= page_address(io_ctl
->pages
[0]);
486 static int io_ctl_check_crc(struct btrfs_io_ctl
*io_ctl
, int index
)
492 if (!io_ctl
->check_crcs
) {
493 io_ctl_map_page(io_ctl
, 0);
498 offset
= sizeof(u32
) * io_ctl
->num_pages
;
500 tmp
= page_address(io_ctl
->pages
[0]);
504 io_ctl_map_page(io_ctl
, 0);
505 crc
= btrfs_csum_data(io_ctl
->orig
+ offset
, crc
,
506 PAGE_CACHE_SIZE
- offset
);
507 btrfs_csum_final(crc
, (char *)&crc
);
509 printk_ratelimited(KERN_ERR
"BTRFS: csum mismatch on free "
511 io_ctl_unmap_page(io_ctl
);
518 static int io_ctl_add_entry(struct btrfs_io_ctl
*io_ctl
, u64 offset
, u64 bytes
,
521 struct btrfs_free_space_entry
*entry
;
527 entry
->offset
= cpu_to_le64(offset
);
528 entry
->bytes
= cpu_to_le64(bytes
);
529 entry
->type
= (bitmap
) ? BTRFS_FREE_SPACE_BITMAP
:
530 BTRFS_FREE_SPACE_EXTENT
;
531 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
532 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
534 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
537 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
539 /* No more pages to map */
540 if (io_ctl
->index
>= io_ctl
->num_pages
)
543 /* map the next page */
544 io_ctl_map_page(io_ctl
, 1);
548 static int io_ctl_add_bitmap(struct btrfs_io_ctl
*io_ctl
, void *bitmap
)
554 * If we aren't at the start of the current page, unmap this one and
555 * map the next one if there is any left.
557 if (io_ctl
->cur
!= io_ctl
->orig
) {
558 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
559 if (io_ctl
->index
>= io_ctl
->num_pages
)
561 io_ctl_map_page(io_ctl
, 0);
564 memcpy(io_ctl
->cur
, bitmap
, PAGE_CACHE_SIZE
);
565 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
566 if (io_ctl
->index
< io_ctl
->num_pages
)
567 io_ctl_map_page(io_ctl
, 0);
571 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl
*io_ctl
)
574 * If we're not on the boundary we know we've modified the page and we
575 * need to crc the page.
577 if (io_ctl
->cur
!= io_ctl
->orig
)
578 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
580 io_ctl_unmap_page(io_ctl
);
582 while (io_ctl
->index
< io_ctl
->num_pages
) {
583 io_ctl_map_page(io_ctl
, 1);
584 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
588 static int io_ctl_read_entry(struct btrfs_io_ctl
*io_ctl
,
589 struct btrfs_free_space
*entry
, u8
*type
)
591 struct btrfs_free_space_entry
*e
;
595 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
601 entry
->offset
= le64_to_cpu(e
->offset
);
602 entry
->bytes
= le64_to_cpu(e
->bytes
);
604 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
605 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
607 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
610 io_ctl_unmap_page(io_ctl
);
615 static int io_ctl_read_bitmap(struct btrfs_io_ctl
*io_ctl
,
616 struct btrfs_free_space
*entry
)
620 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
624 memcpy(entry
->bitmap
, io_ctl
->cur
, PAGE_CACHE_SIZE
);
625 io_ctl_unmap_page(io_ctl
);
631 * Since we attach pinned extents after the fact we can have contiguous sections
632 * of free space that are split up in entries. This poses a problem with the
633 * tree logging stuff since it could have allocated across what appears to be 2
634 * entries since we would have merged the entries when adding the pinned extents
635 * back to the free space cache. So run through the space cache that we just
636 * loaded and merge contiguous entries. This will make the log replay stuff not
637 * blow up and it will make for nicer allocator behavior.
639 static void merge_space_tree(struct btrfs_free_space_ctl
*ctl
)
641 struct btrfs_free_space
*e
, *prev
= NULL
;
645 spin_lock(&ctl
->tree_lock
);
646 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
647 e
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
650 if (e
->bitmap
|| prev
->bitmap
)
652 if (prev
->offset
+ prev
->bytes
== e
->offset
) {
653 unlink_free_space(ctl
, prev
);
654 unlink_free_space(ctl
, e
);
655 prev
->bytes
+= e
->bytes
;
656 kmem_cache_free(btrfs_free_space_cachep
, e
);
657 link_free_space(ctl
, prev
);
659 spin_unlock(&ctl
->tree_lock
);
665 spin_unlock(&ctl
->tree_lock
);
668 static int __load_free_space_cache(struct btrfs_root
*root
, struct inode
*inode
,
669 struct btrfs_free_space_ctl
*ctl
,
670 struct btrfs_path
*path
, u64 offset
)
672 struct btrfs_free_space_header
*header
;
673 struct extent_buffer
*leaf
;
674 struct btrfs_io_ctl io_ctl
;
675 struct btrfs_key key
;
676 struct btrfs_free_space
*e
, *n
;
684 /* Nothing in the space cache, goodbye */
685 if (!i_size_read(inode
))
688 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
692 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
696 btrfs_release_path(path
);
702 leaf
= path
->nodes
[0];
703 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
704 struct btrfs_free_space_header
);
705 num_entries
= btrfs_free_space_entries(leaf
, header
);
706 num_bitmaps
= btrfs_free_space_bitmaps(leaf
, header
);
707 generation
= btrfs_free_space_generation(leaf
, header
);
708 btrfs_release_path(path
);
710 if (!BTRFS_I(inode
)->generation
) {
711 btrfs_info(root
->fs_info
,
712 "The free space cache file (%llu) is invalid. skip it\n",
717 if (BTRFS_I(inode
)->generation
!= generation
) {
718 btrfs_err(root
->fs_info
,
719 "free space inode generation (%llu) "
720 "did not match free space cache generation (%llu)",
721 BTRFS_I(inode
)->generation
, generation
);
728 ret
= io_ctl_init(&io_ctl
, inode
, root
, 0);
732 ret
= readahead_cache(inode
);
736 ret
= io_ctl_prepare_pages(&io_ctl
, inode
, 1);
740 ret
= io_ctl_check_crc(&io_ctl
, 0);
744 ret
= io_ctl_check_generation(&io_ctl
, generation
);
748 while (num_entries
) {
749 e
= kmem_cache_zalloc(btrfs_free_space_cachep
,
754 ret
= io_ctl_read_entry(&io_ctl
, e
, &type
);
756 kmem_cache_free(btrfs_free_space_cachep
, e
);
761 kmem_cache_free(btrfs_free_space_cachep
, e
);
765 if (type
== BTRFS_FREE_SPACE_EXTENT
) {
766 spin_lock(&ctl
->tree_lock
);
767 ret
= link_free_space(ctl
, e
);
768 spin_unlock(&ctl
->tree_lock
);
770 btrfs_err(root
->fs_info
,
771 "Duplicate entries in free space cache, dumping");
772 kmem_cache_free(btrfs_free_space_cachep
, e
);
778 e
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
781 btrfs_free_space_cachep
, e
);
784 spin_lock(&ctl
->tree_lock
);
785 ret
= link_free_space(ctl
, e
);
786 ctl
->total_bitmaps
++;
787 ctl
->op
->recalc_thresholds(ctl
);
788 spin_unlock(&ctl
->tree_lock
);
790 btrfs_err(root
->fs_info
,
791 "Duplicate entries in free space cache, dumping");
792 kmem_cache_free(btrfs_free_space_cachep
, e
);
795 list_add_tail(&e
->list
, &bitmaps
);
801 io_ctl_unmap_page(&io_ctl
);
804 * We add the bitmaps at the end of the entries in order that
805 * the bitmap entries are added to the cache.
807 list_for_each_entry_safe(e
, n
, &bitmaps
, list
) {
808 list_del_init(&e
->list
);
809 ret
= io_ctl_read_bitmap(&io_ctl
, e
);
814 io_ctl_drop_pages(&io_ctl
);
815 merge_space_tree(ctl
);
818 io_ctl_free(&io_ctl
);
821 io_ctl_drop_pages(&io_ctl
);
822 __btrfs_remove_free_space_cache(ctl
);
826 int load_free_space_cache(struct btrfs_fs_info
*fs_info
,
827 struct btrfs_block_group_cache
*block_group
)
829 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
830 struct btrfs_root
*root
= fs_info
->tree_root
;
832 struct btrfs_path
*path
;
835 u64 used
= btrfs_block_group_used(&block_group
->item
);
838 * If this block group has been marked to be cleared for one reason or
839 * another then we can't trust the on disk cache, so just return.
841 spin_lock(&block_group
->lock
);
842 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
843 spin_unlock(&block_group
->lock
);
846 spin_unlock(&block_group
->lock
);
848 path
= btrfs_alloc_path();
851 path
->search_commit_root
= 1;
852 path
->skip_locking
= 1;
854 inode
= lookup_free_space_inode(root
, block_group
, path
);
856 btrfs_free_path(path
);
860 /* We may have converted the inode and made the cache invalid. */
861 spin_lock(&block_group
->lock
);
862 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
863 spin_unlock(&block_group
->lock
);
864 btrfs_free_path(path
);
867 spin_unlock(&block_group
->lock
);
869 ret
= __load_free_space_cache(fs_info
->tree_root
, inode
, ctl
,
870 path
, block_group
->key
.objectid
);
871 btrfs_free_path(path
);
875 spin_lock(&ctl
->tree_lock
);
876 matched
= (ctl
->free_space
== (block_group
->key
.offset
- used
-
877 block_group
->bytes_super
));
878 spin_unlock(&ctl
->tree_lock
);
881 __btrfs_remove_free_space_cache(ctl
);
882 btrfs_warn(fs_info
, "block group %llu has wrong amount of free space",
883 block_group
->key
.objectid
);
888 /* This cache is bogus, make sure it gets cleared */
889 spin_lock(&block_group
->lock
);
890 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
891 spin_unlock(&block_group
->lock
);
894 btrfs_warn(fs_info
, "failed to load free space cache for block group %llu, rebuild it now",
895 block_group
->key
.objectid
);
902 static noinline_for_stack
903 int write_cache_extent_entries(struct btrfs_io_ctl
*io_ctl
,
904 struct btrfs_free_space_ctl
*ctl
,
905 struct btrfs_block_group_cache
*block_group
,
906 int *entries
, int *bitmaps
,
907 struct list_head
*bitmap_list
)
910 struct btrfs_free_cluster
*cluster
= NULL
;
911 struct btrfs_free_cluster
*cluster_locked
= NULL
;
912 struct rb_node
*node
= rb_first(&ctl
->free_space_offset
);
913 struct btrfs_trim_range
*trim_entry
;
915 /* Get the cluster for this block_group if it exists */
916 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
917 cluster
= list_entry(block_group
->cluster_list
.next
,
918 struct btrfs_free_cluster
,
922 if (!node
&& cluster
) {
923 cluster_locked
= cluster
;
924 spin_lock(&cluster_locked
->lock
);
925 node
= rb_first(&cluster
->root
);
929 /* Write out the extent entries */
931 struct btrfs_free_space
*e
;
933 e
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
936 ret
= io_ctl_add_entry(io_ctl
, e
->offset
, e
->bytes
,
942 list_add_tail(&e
->list
, bitmap_list
);
945 node
= rb_next(node
);
946 if (!node
&& cluster
) {
947 node
= rb_first(&cluster
->root
);
948 cluster_locked
= cluster
;
949 spin_lock(&cluster_locked
->lock
);
953 if (cluster_locked
) {
954 spin_unlock(&cluster_locked
->lock
);
955 cluster_locked
= NULL
;
959 * Make sure we don't miss any range that was removed from our rbtree
960 * because trimming is running. Otherwise after a umount+mount (or crash
961 * after committing the transaction) we would leak free space and get
962 * an inconsistent free space cache report from fsck.
964 list_for_each_entry(trim_entry
, &ctl
->trimming_ranges
, list
) {
965 ret
= io_ctl_add_entry(io_ctl
, trim_entry
->start
,
966 trim_entry
->bytes
, NULL
);
975 spin_unlock(&cluster_locked
->lock
);
979 static noinline_for_stack
int
980 update_cache_item(struct btrfs_trans_handle
*trans
,
981 struct btrfs_root
*root
,
983 struct btrfs_path
*path
, u64 offset
,
984 int entries
, int bitmaps
)
986 struct btrfs_key key
;
987 struct btrfs_free_space_header
*header
;
988 struct extent_buffer
*leaf
;
991 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
995 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
997 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
998 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0, NULL
,
1002 leaf
= path
->nodes
[0];
1004 struct btrfs_key found_key
;
1005 ASSERT(path
->slots
[0]);
1007 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1008 if (found_key
.objectid
!= BTRFS_FREE_SPACE_OBJECTID
||
1009 found_key
.offset
!= offset
) {
1010 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0,
1012 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0,
1014 btrfs_release_path(path
);
1019 BTRFS_I(inode
)->generation
= trans
->transid
;
1020 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
1021 struct btrfs_free_space_header
);
1022 btrfs_set_free_space_entries(leaf
, header
, entries
);
1023 btrfs_set_free_space_bitmaps(leaf
, header
, bitmaps
);
1024 btrfs_set_free_space_generation(leaf
, header
, trans
->transid
);
1025 btrfs_mark_buffer_dirty(leaf
);
1026 btrfs_release_path(path
);
1034 static noinline_for_stack
int
1035 write_pinned_extent_entries(struct btrfs_root
*root
,
1036 struct btrfs_block_group_cache
*block_group
,
1037 struct btrfs_io_ctl
*io_ctl
,
1040 u64 start
, extent_start
, extent_end
, len
;
1041 struct extent_io_tree
*unpin
= NULL
;
1048 * We want to add any pinned extents to our free space cache
1049 * so we don't leak the space
1051 * We shouldn't have switched the pinned extents yet so this is the
1054 unpin
= root
->fs_info
->pinned_extents
;
1056 start
= block_group
->key
.objectid
;
1058 while (start
< block_group
->key
.objectid
+ block_group
->key
.offset
) {
1059 ret
= find_first_extent_bit(unpin
, start
,
1060 &extent_start
, &extent_end
,
1061 EXTENT_DIRTY
, NULL
);
1065 /* This pinned extent is out of our range */
1066 if (extent_start
>= block_group
->key
.objectid
+
1067 block_group
->key
.offset
)
1070 extent_start
= max(extent_start
, start
);
1071 extent_end
= min(block_group
->key
.objectid
+
1072 block_group
->key
.offset
, extent_end
+ 1);
1073 len
= extent_end
- extent_start
;
1076 ret
= io_ctl_add_entry(io_ctl
, extent_start
, len
, NULL
);
1086 static noinline_for_stack
int
1087 write_bitmap_entries(struct btrfs_io_ctl
*io_ctl
, struct list_head
*bitmap_list
)
1089 struct list_head
*pos
, *n
;
1092 /* Write out the bitmaps */
1093 list_for_each_safe(pos
, n
, bitmap_list
) {
1094 struct btrfs_free_space
*entry
=
1095 list_entry(pos
, struct btrfs_free_space
, list
);
1097 ret
= io_ctl_add_bitmap(io_ctl
, entry
->bitmap
);
1100 list_del_init(&entry
->list
);
1106 static int flush_dirty_cache(struct inode
*inode
)
1110 ret
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
1112 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
1113 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0, NULL
,
1119 static void noinline_for_stack
1120 cleanup_bitmap_list(struct list_head
*bitmap_list
)
1122 struct list_head
*pos
, *n
;
1124 list_for_each_safe(pos
, n
, bitmap_list
) {
1125 struct btrfs_free_space
*entry
=
1126 list_entry(pos
, struct btrfs_free_space
, list
);
1127 list_del_init(&entry
->list
);
1131 static void noinline_for_stack
1132 cleanup_write_cache_enospc(struct inode
*inode
,
1133 struct btrfs_io_ctl
*io_ctl
,
1134 struct extent_state
**cached_state
,
1135 struct list_head
*bitmap_list
)
1137 io_ctl_drop_pages(io_ctl
);
1138 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1139 i_size_read(inode
) - 1, cached_state
,
1143 int btrfs_wait_cache_io(struct btrfs_root
*root
,
1144 struct btrfs_trans_handle
*trans
,
1145 struct btrfs_block_group_cache
*block_group
,
1146 struct btrfs_io_ctl
*io_ctl
,
1147 struct btrfs_path
*path
, u64 offset
)
1150 struct inode
*inode
= io_ctl
->inode
;
1156 root
= root
->fs_info
->tree_root
;
1158 /* Flush the dirty pages in the cache file. */
1159 ret
= flush_dirty_cache(inode
);
1163 /* Update the cache item to tell everyone this cache file is valid. */
1164 ret
= update_cache_item(trans
, root
, inode
, path
, offset
,
1165 io_ctl
->entries
, io_ctl
->bitmaps
);
1167 io_ctl_free(io_ctl
);
1169 invalidate_inode_pages2(inode
->i_mapping
);
1170 BTRFS_I(inode
)->generation
= 0;
1173 btrfs_err(root
->fs_info
,
1174 "failed to write free space cache for block group %llu",
1175 block_group
->key
.objectid
);
1179 btrfs_update_inode(trans
, root
, inode
);
1182 /* the dirty list is protected by the dirty_bgs_lock */
1183 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
1185 /* the disk_cache_state is protected by the block group lock */
1186 spin_lock(&block_group
->lock
);
1189 * only mark this as written if we didn't get put back on
1190 * the dirty list while waiting for IO. Otherwise our
1191 * cache state won't be right, and we won't get written again
1193 if (!ret
&& list_empty(&block_group
->dirty_list
))
1194 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
1196 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1198 spin_unlock(&block_group
->lock
);
1199 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
1200 io_ctl
->inode
= NULL
;
1209 * __btrfs_write_out_cache - write out cached info to an inode
1210 * @root - the root the inode belongs to
1211 * @ctl - the free space cache we are going to write out
1212 * @block_group - the block_group for this cache if it belongs to a block_group
1213 * @trans - the trans handle
1214 * @path - the path to use
1215 * @offset - the offset for the key we'll insert
1217 * This function writes out a free space cache struct to disk for quick recovery
1218 * on mount. This will return 0 if it was successfull in writing the cache out,
1219 * or an errno if it was not.
1221 static int __btrfs_write_out_cache(struct btrfs_root
*root
, struct inode
*inode
,
1222 struct btrfs_free_space_ctl
*ctl
,
1223 struct btrfs_block_group_cache
*block_group
,
1224 struct btrfs_io_ctl
*io_ctl
,
1225 struct btrfs_trans_handle
*trans
,
1226 struct btrfs_path
*path
, u64 offset
)
1228 struct extent_state
*cached_state
= NULL
;
1229 LIST_HEAD(bitmap_list
);
1235 if (!i_size_read(inode
))
1238 WARN_ON(io_ctl
->pages
);
1239 ret
= io_ctl_init(io_ctl
, inode
, root
, 1);
1243 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
)) {
1244 down_write(&block_group
->data_rwsem
);
1245 spin_lock(&block_group
->lock
);
1246 if (block_group
->delalloc_bytes
) {
1247 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
1248 spin_unlock(&block_group
->lock
);
1249 up_write(&block_group
->data_rwsem
);
1250 BTRFS_I(inode
)->generation
= 0;
1255 spin_unlock(&block_group
->lock
);
1258 /* Lock all pages first so we can lock the extent safely. */
1259 ret
= io_ctl_prepare_pages(io_ctl
, inode
, 0);
1263 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, 0, i_size_read(inode
) - 1,
1266 io_ctl_set_generation(io_ctl
, trans
->transid
);
1268 mutex_lock(&ctl
->cache_writeout_mutex
);
1269 /* Write out the extent entries in the free space cache */
1270 spin_lock(&ctl
->tree_lock
);
1271 ret
= write_cache_extent_entries(io_ctl
, ctl
,
1272 block_group
, &entries
, &bitmaps
,
1275 goto out_nospc_locked
;
1278 * Some spaces that are freed in the current transaction are pinned,
1279 * they will be added into free space cache after the transaction is
1280 * committed, we shouldn't lose them.
1282 * If this changes while we are working we'll get added back to
1283 * the dirty list and redo it. No locking needed
1285 ret
= write_pinned_extent_entries(root
, block_group
, io_ctl
, &entries
);
1287 goto out_nospc_locked
;
1290 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1291 * locked while doing it because a concurrent trim can be manipulating
1292 * or freeing the bitmap.
1294 ret
= write_bitmap_entries(io_ctl
, &bitmap_list
);
1295 spin_unlock(&ctl
->tree_lock
);
1296 mutex_unlock(&ctl
->cache_writeout_mutex
);
1300 /* Zero out the rest of the pages just to make sure */
1301 io_ctl_zero_remaining_pages(io_ctl
);
1303 /* Everything is written out, now we dirty the pages in the file. */
1304 ret
= btrfs_dirty_pages(root
, inode
, io_ctl
->pages
, io_ctl
->num_pages
,
1305 0, i_size_read(inode
), &cached_state
);
1309 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
))
1310 up_write(&block_group
->data_rwsem
);
1312 * Release the pages and unlock the extent, we will flush
1315 io_ctl_drop_pages(io_ctl
);
1317 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1318 i_size_read(inode
) - 1, &cached_state
, GFP_NOFS
);
1321 * at this point the pages are under IO and we're happy,
1322 * The caller is responsible for waiting on them and updating the
1323 * the cache and the inode
1325 io_ctl
->entries
= entries
;
1326 io_ctl
->bitmaps
= bitmaps
;
1328 ret
= btrfs_fdatawrite_range(inode
, 0, (u64
)-1);
1335 io_ctl
->inode
= NULL
;
1336 io_ctl_free(io_ctl
);
1338 invalidate_inode_pages2(inode
->i_mapping
);
1339 BTRFS_I(inode
)->generation
= 0;
1341 btrfs_update_inode(trans
, root
, inode
);
1347 cleanup_bitmap_list(&bitmap_list
);
1348 spin_unlock(&ctl
->tree_lock
);
1349 mutex_unlock(&ctl
->cache_writeout_mutex
);
1352 cleanup_write_cache_enospc(inode
, io_ctl
, &cached_state
, &bitmap_list
);
1354 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
))
1355 up_write(&block_group
->data_rwsem
);
1360 int btrfs_write_out_cache(struct btrfs_root
*root
,
1361 struct btrfs_trans_handle
*trans
,
1362 struct btrfs_block_group_cache
*block_group
,
1363 struct btrfs_path
*path
)
1365 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1366 struct inode
*inode
;
1369 root
= root
->fs_info
->tree_root
;
1371 spin_lock(&block_group
->lock
);
1372 if (block_group
->disk_cache_state
< BTRFS_DC_SETUP
) {
1373 spin_unlock(&block_group
->lock
);
1376 spin_unlock(&block_group
->lock
);
1378 inode
= lookup_free_space_inode(root
, block_group
, path
);
1382 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, block_group
,
1383 &block_group
->io_ctl
, trans
,
1384 path
, block_group
->key
.objectid
);
1387 btrfs_err(root
->fs_info
,
1388 "failed to write free space cache for block group %llu",
1389 block_group
->key
.objectid
);
1391 spin_lock(&block_group
->lock
);
1392 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1393 spin_unlock(&block_group
->lock
);
1395 block_group
->io_ctl
.inode
= NULL
;
1400 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1401 * to wait for IO and put the inode
1407 static inline unsigned long offset_to_bit(u64 bitmap_start
, u32 unit
,
1410 ASSERT(offset
>= bitmap_start
);
1411 offset
-= bitmap_start
;
1412 return (unsigned long)(div_u64(offset
, unit
));
1415 static inline unsigned long bytes_to_bits(u64 bytes
, u32 unit
)
1417 return (unsigned long)(div_u64(bytes
, unit
));
1420 static inline u64
offset_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1424 u32 bytes_per_bitmap
;
1426 bytes_per_bitmap
= BITS_PER_BITMAP
* ctl
->unit
;
1427 bitmap_start
= offset
- ctl
->start
;
1428 bitmap_start
= div_u64(bitmap_start
, bytes_per_bitmap
);
1429 bitmap_start
*= bytes_per_bitmap
;
1430 bitmap_start
+= ctl
->start
;
1432 return bitmap_start
;
1435 static int tree_insert_offset(struct rb_root
*root
, u64 offset
,
1436 struct rb_node
*node
, int bitmap
)
1438 struct rb_node
**p
= &root
->rb_node
;
1439 struct rb_node
*parent
= NULL
;
1440 struct btrfs_free_space
*info
;
1444 info
= rb_entry(parent
, struct btrfs_free_space
, offset_index
);
1446 if (offset
< info
->offset
) {
1448 } else if (offset
> info
->offset
) {
1449 p
= &(*p
)->rb_right
;
1452 * we could have a bitmap entry and an extent entry
1453 * share the same offset. If this is the case, we want
1454 * the extent entry to always be found first if we do a
1455 * linear search through the tree, since we want to have
1456 * the quickest allocation time, and allocating from an
1457 * extent is faster than allocating from a bitmap. So
1458 * if we're inserting a bitmap and we find an entry at
1459 * this offset, we want to go right, or after this entry
1460 * logically. If we are inserting an extent and we've
1461 * found a bitmap, we want to go left, or before
1469 p
= &(*p
)->rb_right
;
1471 if (!info
->bitmap
) {
1480 rb_link_node(node
, parent
, p
);
1481 rb_insert_color(node
, root
);
1487 * searches the tree for the given offset.
1489 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1490 * want a section that has at least bytes size and comes at or after the given
1493 static struct btrfs_free_space
*
1494 tree_search_offset(struct btrfs_free_space_ctl
*ctl
,
1495 u64 offset
, int bitmap_only
, int fuzzy
)
1497 struct rb_node
*n
= ctl
->free_space_offset
.rb_node
;
1498 struct btrfs_free_space
*entry
, *prev
= NULL
;
1500 /* find entry that is closest to the 'offset' */
1507 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1510 if (offset
< entry
->offset
)
1512 else if (offset
> entry
->offset
)
1525 * bitmap entry and extent entry may share same offset,
1526 * in that case, bitmap entry comes after extent entry.
1531 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1532 if (entry
->offset
!= offset
)
1535 WARN_ON(!entry
->bitmap
);
1538 if (entry
->bitmap
) {
1540 * if previous extent entry covers the offset,
1541 * we should return it instead of the bitmap entry
1543 n
= rb_prev(&entry
->offset_index
);
1545 prev
= rb_entry(n
, struct btrfs_free_space
,
1547 if (!prev
->bitmap
&&
1548 prev
->offset
+ prev
->bytes
> offset
)
1558 /* find last entry before the 'offset' */
1560 if (entry
->offset
> offset
) {
1561 n
= rb_prev(&entry
->offset_index
);
1563 entry
= rb_entry(n
, struct btrfs_free_space
,
1565 ASSERT(entry
->offset
<= offset
);
1574 if (entry
->bitmap
) {
1575 n
= rb_prev(&entry
->offset_index
);
1577 prev
= rb_entry(n
, struct btrfs_free_space
,
1579 if (!prev
->bitmap
&&
1580 prev
->offset
+ prev
->bytes
> offset
)
1583 if (entry
->offset
+ BITS_PER_BITMAP
* ctl
->unit
> offset
)
1585 } else if (entry
->offset
+ entry
->bytes
> offset
)
1592 if (entry
->bitmap
) {
1593 if (entry
->offset
+ BITS_PER_BITMAP
*
1597 if (entry
->offset
+ entry
->bytes
> offset
)
1601 n
= rb_next(&entry
->offset_index
);
1604 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1610 __unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1611 struct btrfs_free_space
*info
)
1613 rb_erase(&info
->offset_index
, &ctl
->free_space_offset
);
1614 ctl
->free_extents
--;
1617 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1618 struct btrfs_free_space
*info
)
1620 __unlink_free_space(ctl
, info
);
1621 ctl
->free_space
-= info
->bytes
;
1624 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
1625 struct btrfs_free_space
*info
)
1629 ASSERT(info
->bytes
|| info
->bitmap
);
1630 ret
= tree_insert_offset(&ctl
->free_space_offset
, info
->offset
,
1631 &info
->offset_index
, (info
->bitmap
!= NULL
));
1635 ctl
->free_space
+= info
->bytes
;
1636 ctl
->free_extents
++;
1640 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
1642 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1646 u64 size
= block_group
->key
.offset
;
1647 u32 bytes_per_bg
= BITS_PER_BITMAP
* ctl
->unit
;
1648 u32 max_bitmaps
= div_u64(size
+ bytes_per_bg
- 1, bytes_per_bg
);
1650 max_bitmaps
= max_t(u32
, max_bitmaps
, 1);
1652 ASSERT(ctl
->total_bitmaps
<= max_bitmaps
);
1655 * The goal is to keep the total amount of memory used per 1gb of space
1656 * at or below 32k, so we need to adjust how much memory we allow to be
1657 * used by extent based free space tracking
1659 if (size
< 1024 * 1024 * 1024)
1660 max_bytes
= MAX_CACHE_BYTES_PER_GIG
;
1662 max_bytes
= MAX_CACHE_BYTES_PER_GIG
*
1663 div_u64(size
, 1024 * 1024 * 1024);
1666 * we want to account for 1 more bitmap than what we have so we can make
1667 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1668 * we add more bitmaps.
1670 bitmap_bytes
= (ctl
->total_bitmaps
+ 1) * PAGE_CACHE_SIZE
;
1672 if (bitmap_bytes
>= max_bytes
) {
1673 ctl
->extents_thresh
= 0;
1678 * we want the extent entry threshold to always be at most 1/2 the max
1679 * bytes we can have, or whatever is less than that.
1681 extent_bytes
= max_bytes
- bitmap_bytes
;
1682 extent_bytes
= min_t(u64
, extent_bytes
, max_bytes
>> 1);
1684 ctl
->extents_thresh
=
1685 div_u64(extent_bytes
, sizeof(struct btrfs_free_space
));
1688 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1689 struct btrfs_free_space
*info
,
1690 u64 offset
, u64 bytes
)
1692 unsigned long start
, count
;
1694 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1695 count
= bytes_to_bits(bytes
, ctl
->unit
);
1696 ASSERT(start
+ count
<= BITS_PER_BITMAP
);
1698 bitmap_clear(info
->bitmap
, start
, count
);
1700 info
->bytes
-= bytes
;
1703 static void bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1704 struct btrfs_free_space
*info
, u64 offset
,
1707 __bitmap_clear_bits(ctl
, info
, offset
, bytes
);
1708 ctl
->free_space
-= bytes
;
1711 static void bitmap_set_bits(struct btrfs_free_space_ctl
*ctl
,
1712 struct btrfs_free_space
*info
, u64 offset
,
1715 unsigned long start
, count
;
1717 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1718 count
= bytes_to_bits(bytes
, ctl
->unit
);
1719 ASSERT(start
+ count
<= BITS_PER_BITMAP
);
1721 bitmap_set(info
->bitmap
, start
, count
);
1723 info
->bytes
+= bytes
;
1724 ctl
->free_space
+= bytes
;
1728 * If we can not find suitable extent, we will use bytes to record
1729 * the size of the max extent.
1731 static int search_bitmap(struct btrfs_free_space_ctl
*ctl
,
1732 struct btrfs_free_space
*bitmap_info
, u64
*offset
,
1735 unsigned long found_bits
= 0;
1736 unsigned long max_bits
= 0;
1737 unsigned long bits
, i
;
1738 unsigned long next_zero
;
1739 unsigned long extent_bits
;
1741 i
= offset_to_bit(bitmap_info
->offset
, ctl
->unit
,
1742 max_t(u64
, *offset
, bitmap_info
->offset
));
1743 bits
= bytes_to_bits(*bytes
, ctl
->unit
);
1745 for_each_set_bit_from(i
, bitmap_info
->bitmap
, BITS_PER_BITMAP
) {
1746 next_zero
= find_next_zero_bit(bitmap_info
->bitmap
,
1747 BITS_PER_BITMAP
, i
);
1748 extent_bits
= next_zero
- i
;
1749 if (extent_bits
>= bits
) {
1750 found_bits
= extent_bits
;
1752 } else if (extent_bits
> max_bits
) {
1753 max_bits
= extent_bits
;
1759 *offset
= (u64
)(i
* ctl
->unit
) + bitmap_info
->offset
;
1760 *bytes
= (u64
)(found_bits
) * ctl
->unit
;
1764 *bytes
= (u64
)(max_bits
) * ctl
->unit
;
1768 /* Cache the size of the max extent in bytes */
1769 static struct btrfs_free_space
*
1770 find_free_space(struct btrfs_free_space_ctl
*ctl
, u64
*offset
, u64
*bytes
,
1771 unsigned long align
, u64
*max_extent_size
)
1773 struct btrfs_free_space
*entry
;
1774 struct rb_node
*node
;
1779 if (!ctl
->free_space_offset
.rb_node
)
1782 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, *offset
), 0, 1);
1786 for (node
= &entry
->offset_index
; node
; node
= rb_next(node
)) {
1787 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1788 if (entry
->bytes
< *bytes
) {
1789 if (entry
->bytes
> *max_extent_size
)
1790 *max_extent_size
= entry
->bytes
;
1794 /* make sure the space returned is big enough
1795 * to match our requested alignment
1797 if (*bytes
>= align
) {
1798 tmp
= entry
->offset
- ctl
->start
+ align
- 1;
1799 tmp
= div64_u64(tmp
, align
);
1800 tmp
= tmp
* align
+ ctl
->start
;
1801 align_off
= tmp
- entry
->offset
;
1804 tmp
= entry
->offset
;
1807 if (entry
->bytes
< *bytes
+ align_off
) {
1808 if (entry
->bytes
> *max_extent_size
)
1809 *max_extent_size
= entry
->bytes
;
1813 if (entry
->bitmap
) {
1816 ret
= search_bitmap(ctl
, entry
, &tmp
, &size
);
1821 } else if (size
> *max_extent_size
) {
1822 *max_extent_size
= size
;
1828 *bytes
= entry
->bytes
- align_off
;
1835 static void add_new_bitmap(struct btrfs_free_space_ctl
*ctl
,
1836 struct btrfs_free_space
*info
, u64 offset
)
1838 info
->offset
= offset_to_bitmap(ctl
, offset
);
1840 INIT_LIST_HEAD(&info
->list
);
1841 link_free_space(ctl
, info
);
1842 ctl
->total_bitmaps
++;
1844 ctl
->op
->recalc_thresholds(ctl
);
1847 static void free_bitmap(struct btrfs_free_space_ctl
*ctl
,
1848 struct btrfs_free_space
*bitmap_info
)
1850 unlink_free_space(ctl
, bitmap_info
);
1851 kfree(bitmap_info
->bitmap
);
1852 kmem_cache_free(btrfs_free_space_cachep
, bitmap_info
);
1853 ctl
->total_bitmaps
--;
1854 ctl
->op
->recalc_thresholds(ctl
);
1857 static noinline
int remove_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
1858 struct btrfs_free_space
*bitmap_info
,
1859 u64
*offset
, u64
*bytes
)
1862 u64 search_start
, search_bytes
;
1866 end
= bitmap_info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
) - 1;
1869 * We need to search for bits in this bitmap. We could only cover some
1870 * of the extent in this bitmap thanks to how we add space, so we need
1871 * to search for as much as it as we can and clear that amount, and then
1872 * go searching for the next bit.
1874 search_start
= *offset
;
1875 search_bytes
= ctl
->unit
;
1876 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1877 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
, &search_bytes
);
1878 if (ret
< 0 || search_start
!= *offset
)
1881 /* We may have found more bits than what we need */
1882 search_bytes
= min(search_bytes
, *bytes
);
1884 /* Cannot clear past the end of the bitmap */
1885 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1887 bitmap_clear_bits(ctl
, bitmap_info
, search_start
, search_bytes
);
1888 *offset
+= search_bytes
;
1889 *bytes
-= search_bytes
;
1892 struct rb_node
*next
= rb_next(&bitmap_info
->offset_index
);
1893 if (!bitmap_info
->bytes
)
1894 free_bitmap(ctl
, bitmap_info
);
1897 * no entry after this bitmap, but we still have bytes to
1898 * remove, so something has gone wrong.
1903 bitmap_info
= rb_entry(next
, struct btrfs_free_space
,
1907 * if the next entry isn't a bitmap we need to return to let the
1908 * extent stuff do its work.
1910 if (!bitmap_info
->bitmap
)
1914 * Ok the next item is a bitmap, but it may not actually hold
1915 * the information for the rest of this free space stuff, so
1916 * look for it, and if we don't find it return so we can try
1917 * everything over again.
1919 search_start
= *offset
;
1920 search_bytes
= ctl
->unit
;
1921 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
,
1923 if (ret
< 0 || search_start
!= *offset
)
1927 } else if (!bitmap_info
->bytes
)
1928 free_bitmap(ctl
, bitmap_info
);
1933 static u64
add_bytes_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1934 struct btrfs_free_space
*info
, u64 offset
,
1937 u64 bytes_to_set
= 0;
1940 end
= info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
);
1942 bytes_to_set
= min(end
- offset
, bytes
);
1944 bitmap_set_bits(ctl
, info
, offset
, bytes_to_set
);
1946 return bytes_to_set
;
1950 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
1951 struct btrfs_free_space
*info
)
1953 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1956 * If we are below the extents threshold then we can add this as an
1957 * extent, and don't have to deal with the bitmap
1959 if (ctl
->free_extents
< ctl
->extents_thresh
) {
1961 * If this block group has some small extents we don't want to
1962 * use up all of our free slots in the cache with them, we want
1963 * to reserve them to larger extents, however if we have plent
1964 * of cache left then go ahead an dadd them, no sense in adding
1965 * the overhead of a bitmap if we don't have to.
1967 if (info
->bytes
<= block_group
->sectorsize
* 4) {
1968 if (ctl
->free_extents
* 2 <= ctl
->extents_thresh
)
1976 * The original block groups from mkfs can be really small, like 8
1977 * megabytes, so don't bother with a bitmap for those entries. However
1978 * some block groups can be smaller than what a bitmap would cover but
1979 * are still large enough that they could overflow the 32k memory limit,
1980 * so allow those block groups to still be allowed to have a bitmap
1983 if (((BITS_PER_BITMAP
* ctl
->unit
) >> 1) > block_group
->key
.offset
)
1989 static struct btrfs_free_space_op free_space_op
= {
1990 .recalc_thresholds
= recalculate_thresholds
,
1991 .use_bitmap
= use_bitmap
,
1994 static int insert_into_bitmap(struct btrfs_free_space_ctl
*ctl
,
1995 struct btrfs_free_space
*info
)
1997 struct btrfs_free_space
*bitmap_info
;
1998 struct btrfs_block_group_cache
*block_group
= NULL
;
2000 u64 bytes
, offset
, bytes_added
;
2003 bytes
= info
->bytes
;
2004 offset
= info
->offset
;
2006 if (!ctl
->op
->use_bitmap(ctl
, info
))
2009 if (ctl
->op
== &free_space_op
)
2010 block_group
= ctl
->private;
2013 * Since we link bitmaps right into the cluster we need to see if we
2014 * have a cluster here, and if so and it has our bitmap we need to add
2015 * the free space to that bitmap.
2017 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
2018 struct btrfs_free_cluster
*cluster
;
2019 struct rb_node
*node
;
2020 struct btrfs_free_space
*entry
;
2022 cluster
= list_entry(block_group
->cluster_list
.next
,
2023 struct btrfs_free_cluster
,
2025 spin_lock(&cluster
->lock
);
2026 node
= rb_first(&cluster
->root
);
2028 spin_unlock(&cluster
->lock
);
2029 goto no_cluster_bitmap
;
2032 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2033 if (!entry
->bitmap
) {
2034 spin_unlock(&cluster
->lock
);
2035 goto no_cluster_bitmap
;
2038 if (entry
->offset
== offset_to_bitmap(ctl
, offset
)) {
2039 bytes_added
= add_bytes_to_bitmap(ctl
, entry
,
2041 bytes
-= bytes_added
;
2042 offset
+= bytes_added
;
2044 spin_unlock(&cluster
->lock
);
2052 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
2059 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
2060 bytes
-= bytes_added
;
2061 offset
+= bytes_added
;
2071 if (info
&& info
->bitmap
) {
2072 add_new_bitmap(ctl
, info
, offset
);
2077 spin_unlock(&ctl
->tree_lock
);
2079 /* no pre-allocated info, allocate a new one */
2081 info
= kmem_cache_zalloc(btrfs_free_space_cachep
,
2084 spin_lock(&ctl
->tree_lock
);
2090 /* allocate the bitmap */
2091 info
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
2092 spin_lock(&ctl
->tree_lock
);
2093 if (!info
->bitmap
) {
2103 kfree(info
->bitmap
);
2104 kmem_cache_free(btrfs_free_space_cachep
, info
);
2110 static bool try_merge_free_space(struct btrfs_free_space_ctl
*ctl
,
2111 struct btrfs_free_space
*info
, bool update_stat
)
2113 struct btrfs_free_space
*left_info
;
2114 struct btrfs_free_space
*right_info
;
2115 bool merged
= false;
2116 u64 offset
= info
->offset
;
2117 u64 bytes
= info
->bytes
;
2120 * first we want to see if there is free space adjacent to the range we
2121 * are adding, if there is remove that struct and add a new one to
2122 * cover the entire range
2124 right_info
= tree_search_offset(ctl
, offset
+ bytes
, 0, 0);
2125 if (right_info
&& rb_prev(&right_info
->offset_index
))
2126 left_info
= rb_entry(rb_prev(&right_info
->offset_index
),
2127 struct btrfs_free_space
, offset_index
);
2129 left_info
= tree_search_offset(ctl
, offset
- 1, 0, 0);
2131 if (right_info
&& !right_info
->bitmap
) {
2133 unlink_free_space(ctl
, right_info
);
2135 __unlink_free_space(ctl
, right_info
);
2136 info
->bytes
+= right_info
->bytes
;
2137 kmem_cache_free(btrfs_free_space_cachep
, right_info
);
2141 if (left_info
&& !left_info
->bitmap
&&
2142 left_info
->offset
+ left_info
->bytes
== offset
) {
2144 unlink_free_space(ctl
, left_info
);
2146 __unlink_free_space(ctl
, left_info
);
2147 info
->offset
= left_info
->offset
;
2148 info
->bytes
+= left_info
->bytes
;
2149 kmem_cache_free(btrfs_free_space_cachep
, left_info
);
2156 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl
*ctl
,
2157 struct btrfs_free_space
*info
,
2160 struct btrfs_free_space
*bitmap
;
2163 const u64 end
= info
->offset
+ info
->bytes
;
2164 const u64 bitmap_offset
= offset_to_bitmap(ctl
, end
);
2167 bitmap
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2171 i
= offset_to_bit(bitmap
->offset
, ctl
->unit
, end
);
2172 j
= find_next_zero_bit(bitmap
->bitmap
, BITS_PER_BITMAP
, i
);
2175 bytes
= (j
- i
) * ctl
->unit
;
2176 info
->bytes
+= bytes
;
2179 bitmap_clear_bits(ctl
, bitmap
, end
, bytes
);
2181 __bitmap_clear_bits(ctl
, bitmap
, end
, bytes
);
2184 free_bitmap(ctl
, bitmap
);
2189 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl
*ctl
,
2190 struct btrfs_free_space
*info
,
2193 struct btrfs_free_space
*bitmap
;
2197 unsigned long prev_j
;
2200 bitmap_offset
= offset_to_bitmap(ctl
, info
->offset
);
2201 /* If we're on a boundary, try the previous logical bitmap. */
2202 if (bitmap_offset
== info
->offset
) {
2203 if (info
->offset
== 0)
2205 bitmap_offset
= offset_to_bitmap(ctl
, info
->offset
- 1);
2208 bitmap
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2212 i
= offset_to_bit(bitmap
->offset
, ctl
->unit
, info
->offset
) - 1;
2214 prev_j
= (unsigned long)-1;
2215 for_each_clear_bit_from(j
, bitmap
->bitmap
, BITS_PER_BITMAP
) {
2223 if (prev_j
== (unsigned long)-1)
2224 bytes
= (i
+ 1) * ctl
->unit
;
2226 bytes
= (i
- prev_j
) * ctl
->unit
;
2228 info
->offset
-= bytes
;
2229 info
->bytes
+= bytes
;
2232 bitmap_clear_bits(ctl
, bitmap
, info
->offset
, bytes
);
2234 __bitmap_clear_bits(ctl
, bitmap
, info
->offset
, bytes
);
2237 free_bitmap(ctl
, bitmap
);
2243 * We prefer always to allocate from extent entries, both for clustered and
2244 * non-clustered allocation requests. So when attempting to add a new extent
2245 * entry, try to see if there's adjacent free space in bitmap entries, and if
2246 * there is, migrate that space from the bitmaps to the extent.
2247 * Like this we get better chances of satisfying space allocation requests
2248 * because we attempt to satisfy them based on a single cache entry, and never
2249 * on 2 or more entries - even if the entries represent a contiguous free space
2250 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2253 static void steal_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
2254 struct btrfs_free_space
*info
,
2258 * Only work with disconnected entries, as we can change their offset,
2259 * and must be extent entries.
2261 ASSERT(!info
->bitmap
);
2262 ASSERT(RB_EMPTY_NODE(&info
->offset_index
));
2264 if (ctl
->total_bitmaps
> 0) {
2266 bool stole_front
= false;
2268 stole_end
= steal_from_bitmap_to_end(ctl
, info
, update_stat
);
2269 if (ctl
->total_bitmaps
> 0)
2270 stole_front
= steal_from_bitmap_to_front(ctl
, info
,
2273 if (stole_end
|| stole_front
)
2274 try_merge_free_space(ctl
, info
, update_stat
);
2278 int __btrfs_add_free_space(struct btrfs_free_space_ctl
*ctl
,
2279 u64 offset
, u64 bytes
)
2281 struct btrfs_free_space
*info
;
2284 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
2288 info
->offset
= offset
;
2289 info
->bytes
= bytes
;
2290 RB_CLEAR_NODE(&info
->offset_index
);
2292 spin_lock(&ctl
->tree_lock
);
2294 if (try_merge_free_space(ctl
, info
, true))
2298 * There was no extent directly to the left or right of this new
2299 * extent then we know we're going to have to allocate a new extent, so
2300 * before we do that see if we need to drop this into a bitmap
2302 ret
= insert_into_bitmap(ctl
, info
);
2311 * Only steal free space from adjacent bitmaps if we're sure we're not
2312 * going to add the new free space to existing bitmap entries - because
2313 * that would mean unnecessary work that would be reverted. Therefore
2314 * attempt to steal space from bitmaps if we're adding an extent entry.
2316 steal_from_bitmap(ctl
, info
, true);
2318 ret
= link_free_space(ctl
, info
);
2320 kmem_cache_free(btrfs_free_space_cachep
, info
);
2322 spin_unlock(&ctl
->tree_lock
);
2325 printk(KERN_CRIT
"BTRFS: unable to add free space :%d\n", ret
);
2326 ASSERT(ret
!= -EEXIST
);
2332 int btrfs_remove_free_space(struct btrfs_block_group_cache
*block_group
,
2333 u64 offset
, u64 bytes
)
2335 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2336 struct btrfs_free_space
*info
;
2338 bool re_search
= false;
2340 spin_lock(&ctl
->tree_lock
);
2347 info
= tree_search_offset(ctl
, offset
, 0, 0);
2350 * oops didn't find an extent that matched the space we wanted
2351 * to remove, look for a bitmap instead
2353 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
2357 * If we found a partial bit of our free space in a
2358 * bitmap but then couldn't find the other part this may
2359 * be a problem, so WARN about it.
2367 if (!info
->bitmap
) {
2368 unlink_free_space(ctl
, info
);
2369 if (offset
== info
->offset
) {
2370 u64 to_free
= min(bytes
, info
->bytes
);
2372 info
->bytes
-= to_free
;
2373 info
->offset
+= to_free
;
2375 ret
= link_free_space(ctl
, info
);
2378 kmem_cache_free(btrfs_free_space_cachep
, info
);
2385 u64 old_end
= info
->bytes
+ info
->offset
;
2387 info
->bytes
= offset
- info
->offset
;
2388 ret
= link_free_space(ctl
, info
);
2393 /* Not enough bytes in this entry to satisfy us */
2394 if (old_end
< offset
+ bytes
) {
2395 bytes
-= old_end
- offset
;
2398 } else if (old_end
== offset
+ bytes
) {
2402 spin_unlock(&ctl
->tree_lock
);
2404 ret
= btrfs_add_free_space(block_group
, offset
+ bytes
,
2405 old_end
- (offset
+ bytes
));
2411 ret
= remove_from_bitmap(ctl
, info
, &offset
, &bytes
);
2412 if (ret
== -EAGAIN
) {
2417 spin_unlock(&ctl
->tree_lock
);
2422 void btrfs_dump_free_space(struct btrfs_block_group_cache
*block_group
,
2425 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2426 struct btrfs_free_space
*info
;
2430 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
2431 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
2432 if (info
->bytes
>= bytes
&& !block_group
->ro
)
2434 btrfs_crit(block_group
->fs_info
,
2435 "entry offset %llu, bytes %llu, bitmap %s",
2436 info
->offset
, info
->bytes
,
2437 (info
->bitmap
) ? "yes" : "no");
2439 btrfs_info(block_group
->fs_info
, "block group has cluster?: %s",
2440 list_empty(&block_group
->cluster_list
) ? "no" : "yes");
2441 btrfs_info(block_group
->fs_info
,
2442 "%d blocks of free space at or bigger than bytes is", count
);
2445 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache
*block_group
)
2447 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2449 spin_lock_init(&ctl
->tree_lock
);
2450 ctl
->unit
= block_group
->sectorsize
;
2451 ctl
->start
= block_group
->key
.objectid
;
2452 ctl
->private = block_group
;
2453 ctl
->op
= &free_space_op
;
2454 INIT_LIST_HEAD(&ctl
->trimming_ranges
);
2455 mutex_init(&ctl
->cache_writeout_mutex
);
2458 * we only want to have 32k of ram per block group for keeping
2459 * track of free space, and if we pass 1/2 of that we want to
2460 * start converting things over to using bitmaps
2462 ctl
->extents_thresh
= ((1024 * 32) / 2) /
2463 sizeof(struct btrfs_free_space
);
2467 * for a given cluster, put all of its extents back into the free
2468 * space cache. If the block group passed doesn't match the block group
2469 * pointed to by the cluster, someone else raced in and freed the
2470 * cluster already. In that case, we just return without changing anything
2473 __btrfs_return_cluster_to_free_space(
2474 struct btrfs_block_group_cache
*block_group
,
2475 struct btrfs_free_cluster
*cluster
)
2477 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2478 struct btrfs_free_space
*entry
;
2479 struct rb_node
*node
;
2481 spin_lock(&cluster
->lock
);
2482 if (cluster
->block_group
!= block_group
)
2485 cluster
->block_group
= NULL
;
2486 cluster
->window_start
= 0;
2487 list_del_init(&cluster
->block_group_list
);
2489 node
= rb_first(&cluster
->root
);
2493 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2494 node
= rb_next(&entry
->offset_index
);
2495 rb_erase(&entry
->offset_index
, &cluster
->root
);
2496 RB_CLEAR_NODE(&entry
->offset_index
);
2498 bitmap
= (entry
->bitmap
!= NULL
);
2500 try_merge_free_space(ctl
, entry
, false);
2501 steal_from_bitmap(ctl
, entry
, false);
2503 tree_insert_offset(&ctl
->free_space_offset
,
2504 entry
->offset
, &entry
->offset_index
, bitmap
);
2506 cluster
->root
= RB_ROOT
;
2509 spin_unlock(&cluster
->lock
);
2510 btrfs_put_block_group(block_group
);
2514 static void __btrfs_remove_free_space_cache_locked(
2515 struct btrfs_free_space_ctl
*ctl
)
2517 struct btrfs_free_space
*info
;
2518 struct rb_node
*node
;
2520 while ((node
= rb_last(&ctl
->free_space_offset
)) != NULL
) {
2521 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2522 if (!info
->bitmap
) {
2523 unlink_free_space(ctl
, info
);
2524 kmem_cache_free(btrfs_free_space_cachep
, info
);
2526 free_bitmap(ctl
, info
);
2529 cond_resched_lock(&ctl
->tree_lock
);
2533 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl
*ctl
)
2535 spin_lock(&ctl
->tree_lock
);
2536 __btrfs_remove_free_space_cache_locked(ctl
);
2537 spin_unlock(&ctl
->tree_lock
);
2540 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache
*block_group
)
2542 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2543 struct btrfs_free_cluster
*cluster
;
2544 struct list_head
*head
;
2546 spin_lock(&ctl
->tree_lock
);
2547 while ((head
= block_group
->cluster_list
.next
) !=
2548 &block_group
->cluster_list
) {
2549 cluster
= list_entry(head
, struct btrfs_free_cluster
,
2552 WARN_ON(cluster
->block_group
!= block_group
);
2553 __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2555 cond_resched_lock(&ctl
->tree_lock
);
2557 __btrfs_remove_free_space_cache_locked(ctl
);
2558 spin_unlock(&ctl
->tree_lock
);
2562 u64
btrfs_find_space_for_alloc(struct btrfs_block_group_cache
*block_group
,
2563 u64 offset
, u64 bytes
, u64 empty_size
,
2564 u64
*max_extent_size
)
2566 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2567 struct btrfs_free_space
*entry
= NULL
;
2568 u64 bytes_search
= bytes
+ empty_size
;
2571 u64 align_gap_len
= 0;
2573 spin_lock(&ctl
->tree_lock
);
2574 entry
= find_free_space(ctl
, &offset
, &bytes_search
,
2575 block_group
->full_stripe_len
, max_extent_size
);
2580 if (entry
->bitmap
) {
2581 bitmap_clear_bits(ctl
, entry
, offset
, bytes
);
2583 free_bitmap(ctl
, entry
);
2585 unlink_free_space(ctl
, entry
);
2586 align_gap_len
= offset
- entry
->offset
;
2587 align_gap
= entry
->offset
;
2589 entry
->offset
= offset
+ bytes
;
2590 WARN_ON(entry
->bytes
< bytes
+ align_gap_len
);
2592 entry
->bytes
-= bytes
+ align_gap_len
;
2594 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2596 link_free_space(ctl
, entry
);
2599 spin_unlock(&ctl
->tree_lock
);
2602 __btrfs_add_free_space(ctl
, align_gap
, align_gap_len
);
2607 * given a cluster, put all of its extents back into the free space
2608 * cache. If a block group is passed, this function will only free
2609 * a cluster that belongs to the passed block group.
2611 * Otherwise, it'll get a reference on the block group pointed to by the
2612 * cluster and remove the cluster from it.
2614 int btrfs_return_cluster_to_free_space(
2615 struct btrfs_block_group_cache
*block_group
,
2616 struct btrfs_free_cluster
*cluster
)
2618 struct btrfs_free_space_ctl
*ctl
;
2621 /* first, get a safe pointer to the block group */
2622 spin_lock(&cluster
->lock
);
2624 block_group
= cluster
->block_group
;
2626 spin_unlock(&cluster
->lock
);
2629 } else if (cluster
->block_group
!= block_group
) {
2630 /* someone else has already freed it don't redo their work */
2631 spin_unlock(&cluster
->lock
);
2634 atomic_inc(&block_group
->count
);
2635 spin_unlock(&cluster
->lock
);
2637 ctl
= block_group
->free_space_ctl
;
2639 /* now return any extents the cluster had on it */
2640 spin_lock(&ctl
->tree_lock
);
2641 ret
= __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2642 spin_unlock(&ctl
->tree_lock
);
2644 /* finally drop our ref */
2645 btrfs_put_block_group(block_group
);
2649 static u64
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache
*block_group
,
2650 struct btrfs_free_cluster
*cluster
,
2651 struct btrfs_free_space
*entry
,
2652 u64 bytes
, u64 min_start
,
2653 u64
*max_extent_size
)
2655 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2657 u64 search_start
= cluster
->window_start
;
2658 u64 search_bytes
= bytes
;
2661 search_start
= min_start
;
2662 search_bytes
= bytes
;
2664 err
= search_bitmap(ctl
, entry
, &search_start
, &search_bytes
);
2666 if (search_bytes
> *max_extent_size
)
2667 *max_extent_size
= search_bytes
;
2672 __bitmap_clear_bits(ctl
, entry
, ret
, bytes
);
2678 * given a cluster, try to allocate 'bytes' from it, returns 0
2679 * if it couldn't find anything suitably large, or a logical disk offset
2680 * if things worked out
2682 u64
btrfs_alloc_from_cluster(struct btrfs_block_group_cache
*block_group
,
2683 struct btrfs_free_cluster
*cluster
, u64 bytes
,
2684 u64 min_start
, u64
*max_extent_size
)
2686 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2687 struct btrfs_free_space
*entry
= NULL
;
2688 struct rb_node
*node
;
2691 spin_lock(&cluster
->lock
);
2692 if (bytes
> cluster
->max_size
)
2695 if (cluster
->block_group
!= block_group
)
2698 node
= rb_first(&cluster
->root
);
2702 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2704 if (entry
->bytes
< bytes
&& entry
->bytes
> *max_extent_size
)
2705 *max_extent_size
= entry
->bytes
;
2707 if (entry
->bytes
< bytes
||
2708 (!entry
->bitmap
&& entry
->offset
< min_start
)) {
2709 node
= rb_next(&entry
->offset_index
);
2712 entry
= rb_entry(node
, struct btrfs_free_space
,
2717 if (entry
->bitmap
) {
2718 ret
= btrfs_alloc_from_bitmap(block_group
,
2719 cluster
, entry
, bytes
,
2720 cluster
->window_start
,
2723 node
= rb_next(&entry
->offset_index
);
2726 entry
= rb_entry(node
, struct btrfs_free_space
,
2730 cluster
->window_start
+= bytes
;
2732 ret
= entry
->offset
;
2734 entry
->offset
+= bytes
;
2735 entry
->bytes
-= bytes
;
2738 if (entry
->bytes
== 0)
2739 rb_erase(&entry
->offset_index
, &cluster
->root
);
2743 spin_unlock(&cluster
->lock
);
2748 spin_lock(&ctl
->tree_lock
);
2750 ctl
->free_space
-= bytes
;
2751 if (entry
->bytes
== 0) {
2752 ctl
->free_extents
--;
2753 if (entry
->bitmap
) {
2754 kfree(entry
->bitmap
);
2755 ctl
->total_bitmaps
--;
2756 ctl
->op
->recalc_thresholds(ctl
);
2758 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2761 spin_unlock(&ctl
->tree_lock
);
2766 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache
*block_group
,
2767 struct btrfs_free_space
*entry
,
2768 struct btrfs_free_cluster
*cluster
,
2769 u64 offset
, u64 bytes
,
2770 u64 cont1_bytes
, u64 min_bytes
)
2772 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2773 unsigned long next_zero
;
2775 unsigned long want_bits
;
2776 unsigned long min_bits
;
2777 unsigned long found_bits
;
2778 unsigned long start
= 0;
2779 unsigned long total_found
= 0;
2782 i
= offset_to_bit(entry
->offset
, ctl
->unit
,
2783 max_t(u64
, offset
, entry
->offset
));
2784 want_bits
= bytes_to_bits(bytes
, ctl
->unit
);
2785 min_bits
= bytes_to_bits(min_bytes
, ctl
->unit
);
2789 for_each_set_bit_from(i
, entry
->bitmap
, BITS_PER_BITMAP
) {
2790 next_zero
= find_next_zero_bit(entry
->bitmap
,
2791 BITS_PER_BITMAP
, i
);
2792 if (next_zero
- i
>= min_bits
) {
2793 found_bits
= next_zero
- i
;
2804 cluster
->max_size
= 0;
2807 total_found
+= found_bits
;
2809 if (cluster
->max_size
< found_bits
* ctl
->unit
)
2810 cluster
->max_size
= found_bits
* ctl
->unit
;
2812 if (total_found
< want_bits
|| cluster
->max_size
< cont1_bytes
) {
2817 cluster
->window_start
= start
* ctl
->unit
+ entry
->offset
;
2818 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2819 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2820 &entry
->offset_index
, 1);
2821 ASSERT(!ret
); /* -EEXIST; Logic error */
2823 trace_btrfs_setup_cluster(block_group
, cluster
,
2824 total_found
* ctl
->unit
, 1);
2829 * This searches the block group for just extents to fill the cluster with.
2830 * Try to find a cluster with at least bytes total bytes, at least one
2831 * extent of cont1_bytes, and other clusters of at least min_bytes.
2834 setup_cluster_no_bitmap(struct btrfs_block_group_cache
*block_group
,
2835 struct btrfs_free_cluster
*cluster
,
2836 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2837 u64 cont1_bytes
, u64 min_bytes
)
2839 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2840 struct btrfs_free_space
*first
= NULL
;
2841 struct btrfs_free_space
*entry
= NULL
;
2842 struct btrfs_free_space
*last
;
2843 struct rb_node
*node
;
2848 entry
= tree_search_offset(ctl
, offset
, 0, 1);
2853 * We don't want bitmaps, so just move along until we find a normal
2856 while (entry
->bitmap
|| entry
->bytes
< min_bytes
) {
2857 if (entry
->bitmap
&& list_empty(&entry
->list
))
2858 list_add_tail(&entry
->list
, bitmaps
);
2859 node
= rb_next(&entry
->offset_index
);
2862 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2865 window_free
= entry
->bytes
;
2866 max_extent
= entry
->bytes
;
2870 for (node
= rb_next(&entry
->offset_index
); node
;
2871 node
= rb_next(&entry
->offset_index
)) {
2872 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2874 if (entry
->bitmap
) {
2875 if (list_empty(&entry
->list
))
2876 list_add_tail(&entry
->list
, bitmaps
);
2880 if (entry
->bytes
< min_bytes
)
2884 window_free
+= entry
->bytes
;
2885 if (entry
->bytes
> max_extent
)
2886 max_extent
= entry
->bytes
;
2889 if (window_free
< bytes
|| max_extent
< cont1_bytes
)
2892 cluster
->window_start
= first
->offset
;
2894 node
= &first
->offset_index
;
2897 * now we've found our entries, pull them out of the free space
2898 * cache and put them into the cluster rbtree
2903 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2904 node
= rb_next(&entry
->offset_index
);
2905 if (entry
->bitmap
|| entry
->bytes
< min_bytes
)
2908 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2909 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2910 &entry
->offset_index
, 0);
2911 total_size
+= entry
->bytes
;
2912 ASSERT(!ret
); /* -EEXIST; Logic error */
2913 } while (node
&& entry
!= last
);
2915 cluster
->max_size
= max_extent
;
2916 trace_btrfs_setup_cluster(block_group
, cluster
, total_size
, 0);
2921 * This specifically looks for bitmaps that may work in the cluster, we assume
2922 * that we have already failed to find extents that will work.
2925 setup_cluster_bitmap(struct btrfs_block_group_cache
*block_group
,
2926 struct btrfs_free_cluster
*cluster
,
2927 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2928 u64 cont1_bytes
, u64 min_bytes
)
2930 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2931 struct btrfs_free_space
*entry
;
2933 u64 bitmap_offset
= offset_to_bitmap(ctl
, offset
);
2935 if (ctl
->total_bitmaps
== 0)
2939 * The bitmap that covers offset won't be in the list unless offset
2940 * is just its start offset.
2942 entry
= list_first_entry(bitmaps
, struct btrfs_free_space
, list
);
2943 if (entry
->offset
!= bitmap_offset
) {
2944 entry
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2945 if (entry
&& list_empty(&entry
->list
))
2946 list_add(&entry
->list
, bitmaps
);
2949 list_for_each_entry(entry
, bitmaps
, list
) {
2950 if (entry
->bytes
< bytes
)
2952 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
2953 bytes
, cont1_bytes
, min_bytes
);
2959 * The bitmaps list has all the bitmaps that record free space
2960 * starting after offset, so no more search is required.
2966 * here we try to find a cluster of blocks in a block group. The goal
2967 * is to find at least bytes+empty_size.
2968 * We might not find them all in one contiguous area.
2970 * returns zero and sets up cluster if things worked out, otherwise
2971 * it returns -enospc
2973 int btrfs_find_space_cluster(struct btrfs_root
*root
,
2974 struct btrfs_block_group_cache
*block_group
,
2975 struct btrfs_free_cluster
*cluster
,
2976 u64 offset
, u64 bytes
, u64 empty_size
)
2978 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2979 struct btrfs_free_space
*entry
, *tmp
;
2986 * Choose the minimum extent size we'll require for this
2987 * cluster. For SSD_SPREAD, don't allow any fragmentation.
2988 * For metadata, allow allocates with smaller extents. For
2989 * data, keep it dense.
2991 if (btrfs_test_opt(root
, SSD_SPREAD
)) {
2992 cont1_bytes
= min_bytes
= bytes
+ empty_size
;
2993 } else if (block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2994 cont1_bytes
= bytes
;
2995 min_bytes
= block_group
->sectorsize
;
2997 cont1_bytes
= max(bytes
, (bytes
+ empty_size
) >> 2);
2998 min_bytes
= block_group
->sectorsize
;
3001 spin_lock(&ctl
->tree_lock
);
3004 * If we know we don't have enough space to make a cluster don't even
3005 * bother doing all the work to try and find one.
3007 if (ctl
->free_space
< bytes
) {
3008 spin_unlock(&ctl
->tree_lock
);
3012 spin_lock(&cluster
->lock
);
3014 /* someone already found a cluster, hooray */
3015 if (cluster
->block_group
) {
3020 trace_btrfs_find_cluster(block_group
, offset
, bytes
, empty_size
,
3023 ret
= setup_cluster_no_bitmap(block_group
, cluster
, &bitmaps
, offset
,
3025 cont1_bytes
, min_bytes
);
3027 ret
= setup_cluster_bitmap(block_group
, cluster
, &bitmaps
,
3028 offset
, bytes
+ empty_size
,
3029 cont1_bytes
, min_bytes
);
3031 /* Clear our temporary list */
3032 list_for_each_entry_safe(entry
, tmp
, &bitmaps
, list
)
3033 list_del_init(&entry
->list
);
3036 atomic_inc(&block_group
->count
);
3037 list_add_tail(&cluster
->block_group_list
,
3038 &block_group
->cluster_list
);
3039 cluster
->block_group
= block_group
;
3041 trace_btrfs_failed_cluster_setup(block_group
);
3044 spin_unlock(&cluster
->lock
);
3045 spin_unlock(&ctl
->tree_lock
);
3051 * simple code to zero out a cluster
3053 void btrfs_init_free_cluster(struct btrfs_free_cluster
*cluster
)
3055 spin_lock_init(&cluster
->lock
);
3056 spin_lock_init(&cluster
->refill_lock
);
3057 cluster
->root
= RB_ROOT
;
3058 cluster
->max_size
= 0;
3059 INIT_LIST_HEAD(&cluster
->block_group_list
);
3060 cluster
->block_group
= NULL
;
3063 static int do_trimming(struct btrfs_block_group_cache
*block_group
,
3064 u64
*total_trimmed
, u64 start
, u64 bytes
,
3065 u64 reserved_start
, u64 reserved_bytes
,
3066 struct btrfs_trim_range
*trim_entry
)
3068 struct btrfs_space_info
*space_info
= block_group
->space_info
;
3069 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3070 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3075 spin_lock(&space_info
->lock
);
3076 spin_lock(&block_group
->lock
);
3077 if (!block_group
->ro
) {
3078 block_group
->reserved
+= reserved_bytes
;
3079 space_info
->bytes_reserved
+= reserved_bytes
;
3082 spin_unlock(&block_group
->lock
);
3083 spin_unlock(&space_info
->lock
);
3085 ret
= btrfs_discard_extent(fs_info
->extent_root
,
3086 start
, bytes
, &trimmed
);
3088 *total_trimmed
+= trimmed
;
3090 mutex_lock(&ctl
->cache_writeout_mutex
);
3091 btrfs_add_free_space(block_group
, reserved_start
, reserved_bytes
);
3092 list_del(&trim_entry
->list
);
3093 mutex_unlock(&ctl
->cache_writeout_mutex
);
3096 spin_lock(&space_info
->lock
);
3097 spin_lock(&block_group
->lock
);
3098 if (block_group
->ro
)
3099 space_info
->bytes_readonly
+= reserved_bytes
;
3100 block_group
->reserved
-= reserved_bytes
;
3101 space_info
->bytes_reserved
-= reserved_bytes
;
3102 spin_unlock(&space_info
->lock
);
3103 spin_unlock(&block_group
->lock
);
3109 static int trim_no_bitmap(struct btrfs_block_group_cache
*block_group
,
3110 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
)
3112 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3113 struct btrfs_free_space
*entry
;
3114 struct rb_node
*node
;
3120 while (start
< end
) {
3121 struct btrfs_trim_range trim_entry
;
3123 mutex_lock(&ctl
->cache_writeout_mutex
);
3124 spin_lock(&ctl
->tree_lock
);
3126 if (ctl
->free_space
< minlen
) {
3127 spin_unlock(&ctl
->tree_lock
);
3128 mutex_unlock(&ctl
->cache_writeout_mutex
);
3132 entry
= tree_search_offset(ctl
, start
, 0, 1);
3134 spin_unlock(&ctl
->tree_lock
);
3135 mutex_unlock(&ctl
->cache_writeout_mutex
);
3140 while (entry
->bitmap
) {
3141 node
= rb_next(&entry
->offset_index
);
3143 spin_unlock(&ctl
->tree_lock
);
3144 mutex_unlock(&ctl
->cache_writeout_mutex
);
3147 entry
= rb_entry(node
, struct btrfs_free_space
,
3151 if (entry
->offset
>= end
) {
3152 spin_unlock(&ctl
->tree_lock
);
3153 mutex_unlock(&ctl
->cache_writeout_mutex
);
3157 extent_start
= entry
->offset
;
3158 extent_bytes
= entry
->bytes
;
3159 start
= max(start
, extent_start
);
3160 bytes
= min(extent_start
+ extent_bytes
, end
) - start
;
3161 if (bytes
< minlen
) {
3162 spin_unlock(&ctl
->tree_lock
);
3163 mutex_unlock(&ctl
->cache_writeout_mutex
);
3167 unlink_free_space(ctl
, entry
);
3168 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3170 spin_unlock(&ctl
->tree_lock
);
3171 trim_entry
.start
= extent_start
;
3172 trim_entry
.bytes
= extent_bytes
;
3173 list_add_tail(&trim_entry
.list
, &ctl
->trimming_ranges
);
3174 mutex_unlock(&ctl
->cache_writeout_mutex
);
3176 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
3177 extent_start
, extent_bytes
, &trim_entry
);
3183 if (fatal_signal_pending(current
)) {
3194 static int trim_bitmaps(struct btrfs_block_group_cache
*block_group
,
3195 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
)
3197 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3198 struct btrfs_free_space
*entry
;
3202 u64 offset
= offset_to_bitmap(ctl
, start
);
3204 while (offset
< end
) {
3205 bool next_bitmap
= false;
3206 struct btrfs_trim_range trim_entry
;
3208 mutex_lock(&ctl
->cache_writeout_mutex
);
3209 spin_lock(&ctl
->tree_lock
);
3211 if (ctl
->free_space
< minlen
) {
3212 spin_unlock(&ctl
->tree_lock
);
3213 mutex_unlock(&ctl
->cache_writeout_mutex
);
3217 entry
= tree_search_offset(ctl
, offset
, 1, 0);
3219 spin_unlock(&ctl
->tree_lock
);
3220 mutex_unlock(&ctl
->cache_writeout_mutex
);
3226 ret2
= search_bitmap(ctl
, entry
, &start
, &bytes
);
3227 if (ret2
|| start
>= end
) {
3228 spin_unlock(&ctl
->tree_lock
);
3229 mutex_unlock(&ctl
->cache_writeout_mutex
);
3234 bytes
= min(bytes
, end
- start
);
3235 if (bytes
< minlen
) {
3236 spin_unlock(&ctl
->tree_lock
);
3237 mutex_unlock(&ctl
->cache_writeout_mutex
);
3241 bitmap_clear_bits(ctl
, entry
, start
, bytes
);
3242 if (entry
->bytes
== 0)
3243 free_bitmap(ctl
, entry
);
3245 spin_unlock(&ctl
->tree_lock
);
3246 trim_entry
.start
= start
;
3247 trim_entry
.bytes
= bytes
;
3248 list_add_tail(&trim_entry
.list
, &ctl
->trimming_ranges
);
3249 mutex_unlock(&ctl
->cache_writeout_mutex
);
3251 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
3252 start
, bytes
, &trim_entry
);
3257 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
3260 if (start
>= offset
+ BITS_PER_BITMAP
* ctl
->unit
)
3261 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
3264 if (fatal_signal_pending(current
)) {
3275 int btrfs_trim_block_group(struct btrfs_block_group_cache
*block_group
,
3276 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
)
3282 spin_lock(&block_group
->lock
);
3283 if (block_group
->removed
) {
3284 spin_unlock(&block_group
->lock
);
3287 atomic_inc(&block_group
->trimming
);
3288 spin_unlock(&block_group
->lock
);
3290 ret
= trim_no_bitmap(block_group
, trimmed
, start
, end
, minlen
);
3294 ret
= trim_bitmaps(block_group
, trimmed
, start
, end
, minlen
);
3296 spin_lock(&block_group
->lock
);
3297 if (atomic_dec_and_test(&block_group
->trimming
) &&
3298 block_group
->removed
) {
3299 struct extent_map_tree
*em_tree
;
3300 struct extent_map
*em
;
3302 spin_unlock(&block_group
->lock
);
3304 lock_chunks(block_group
->fs_info
->chunk_root
);
3305 em_tree
= &block_group
->fs_info
->mapping_tree
.map_tree
;
3306 write_lock(&em_tree
->lock
);
3307 em
= lookup_extent_mapping(em_tree
, block_group
->key
.objectid
,
3309 BUG_ON(!em
); /* logic error, can't happen */
3311 * remove_extent_mapping() will delete us from the pinned_chunks
3312 * list, which is protected by the chunk mutex.
3314 remove_extent_mapping(em_tree
, em
);
3315 write_unlock(&em_tree
->lock
);
3316 unlock_chunks(block_group
->fs_info
->chunk_root
);
3318 /* once for us and once for the tree */
3319 free_extent_map(em
);
3320 free_extent_map(em
);
3323 * We've left one free space entry and other tasks trimming
3324 * this block group have left 1 entry each one. Free them.
3326 __btrfs_remove_free_space_cache(block_group
->free_space_ctl
);
3328 spin_unlock(&block_group
->lock
);
3335 * Find the left-most item in the cache tree, and then return the
3336 * smallest inode number in the item.
3338 * Note: the returned inode number may not be the smallest one in
3339 * the tree, if the left-most item is a bitmap.
3341 u64
btrfs_find_ino_for_alloc(struct btrfs_root
*fs_root
)
3343 struct btrfs_free_space_ctl
*ctl
= fs_root
->free_ino_ctl
;
3344 struct btrfs_free_space
*entry
= NULL
;
3347 spin_lock(&ctl
->tree_lock
);
3349 if (RB_EMPTY_ROOT(&ctl
->free_space_offset
))
3352 entry
= rb_entry(rb_first(&ctl
->free_space_offset
),
3353 struct btrfs_free_space
, offset_index
);
3355 if (!entry
->bitmap
) {
3356 ino
= entry
->offset
;
3358 unlink_free_space(ctl
, entry
);
3362 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3364 link_free_space(ctl
, entry
);
3370 ret
= search_bitmap(ctl
, entry
, &offset
, &count
);
3371 /* Logic error; Should be empty if it can't find anything */
3375 bitmap_clear_bits(ctl
, entry
, offset
, 1);
3376 if (entry
->bytes
== 0)
3377 free_bitmap(ctl
, entry
);
3380 spin_unlock(&ctl
->tree_lock
);
3385 struct inode
*lookup_free_ino_inode(struct btrfs_root
*root
,
3386 struct btrfs_path
*path
)
3388 struct inode
*inode
= NULL
;
3390 spin_lock(&root
->ino_cache_lock
);
3391 if (root
->ino_cache_inode
)
3392 inode
= igrab(root
->ino_cache_inode
);
3393 spin_unlock(&root
->ino_cache_lock
);
3397 inode
= __lookup_free_space_inode(root
, path
, 0);
3401 spin_lock(&root
->ino_cache_lock
);
3402 if (!btrfs_fs_closing(root
->fs_info
))
3403 root
->ino_cache_inode
= igrab(inode
);
3404 spin_unlock(&root
->ino_cache_lock
);
3409 int create_free_ino_inode(struct btrfs_root
*root
,
3410 struct btrfs_trans_handle
*trans
,
3411 struct btrfs_path
*path
)
3413 return __create_free_space_inode(root
, trans
, path
,
3414 BTRFS_FREE_INO_OBJECTID
, 0);
3417 int load_free_ino_cache(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
3419 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
3420 struct btrfs_path
*path
;
3421 struct inode
*inode
;
3423 u64 root_gen
= btrfs_root_generation(&root
->root_item
);
3425 if (!btrfs_test_opt(root
, INODE_MAP_CACHE
))
3429 * If we're unmounting then just return, since this does a search on the
3430 * normal root and not the commit root and we could deadlock.
3432 if (btrfs_fs_closing(fs_info
))
3435 path
= btrfs_alloc_path();
3439 inode
= lookup_free_ino_inode(root
, path
);
3443 if (root_gen
!= BTRFS_I(inode
)->generation
)
3446 ret
= __load_free_space_cache(root
, inode
, ctl
, path
, 0);
3450 "failed to load free ino cache for root %llu",
3451 root
->root_key
.objectid
);
3455 btrfs_free_path(path
);
3459 int btrfs_write_out_ino_cache(struct btrfs_root
*root
,
3460 struct btrfs_trans_handle
*trans
,
3461 struct btrfs_path
*path
,
3462 struct inode
*inode
)
3464 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
3466 struct btrfs_io_ctl io_ctl
;
3467 bool release_metadata
= true;
3469 if (!btrfs_test_opt(root
, INODE_MAP_CACHE
))
3472 memset(&io_ctl
, 0, sizeof(io_ctl
));
3473 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, NULL
, &io_ctl
,
3477 * At this point writepages() didn't error out, so our metadata
3478 * reservation is released when the writeback finishes, at
3479 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3480 * with or without an error.
3482 release_metadata
= false;
3483 ret
= btrfs_wait_cache_io(root
, trans
, NULL
, &io_ctl
, path
, 0);
3487 if (release_metadata
)
3488 btrfs_delalloc_release_metadata(inode
, inode
->i_size
);
3490 btrfs_err(root
->fs_info
,
3491 "failed to write free ino cache for root %llu",
3492 root
->root_key
.objectid
);
3499 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3501 * Use this if you need to make a bitmap or extent entry specifically, it
3502 * doesn't do any of the merging that add_free_space does, this acts a lot like
3503 * how the free space cache loading stuff works, so you can get really weird
3506 int test_add_free_space_entry(struct btrfs_block_group_cache
*cache
,
3507 u64 offset
, u64 bytes
, bool bitmap
)
3509 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
3510 struct btrfs_free_space
*info
= NULL
, *bitmap_info
;
3517 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
3523 spin_lock(&ctl
->tree_lock
);
3524 info
->offset
= offset
;
3525 info
->bytes
= bytes
;
3526 ret
= link_free_space(ctl
, info
);
3527 spin_unlock(&ctl
->tree_lock
);
3529 kmem_cache_free(btrfs_free_space_cachep
, info
);
3534 map
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
3536 kmem_cache_free(btrfs_free_space_cachep
, info
);
3541 spin_lock(&ctl
->tree_lock
);
3542 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
3547 add_new_bitmap(ctl
, info
, offset
);
3552 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
3553 bytes
-= bytes_added
;
3554 offset
+= bytes_added
;
3555 spin_unlock(&ctl
->tree_lock
);
3561 kmem_cache_free(btrfs_free_space_cachep
, info
);
3568 * Checks to see if the given range is in the free space cache. This is really
3569 * just used to check the absence of space, so if there is free space in the
3570 * range at all we will return 1.
3572 int test_check_exists(struct btrfs_block_group_cache
*cache
,
3573 u64 offset
, u64 bytes
)
3575 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
3576 struct btrfs_free_space
*info
;
3579 spin_lock(&ctl
->tree_lock
);
3580 info
= tree_search_offset(ctl
, offset
, 0, 0);
3582 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
3590 u64 bit_off
, bit_bytes
;
3592 struct btrfs_free_space
*tmp
;
3595 bit_bytes
= ctl
->unit
;
3596 ret
= search_bitmap(ctl
, info
, &bit_off
, &bit_bytes
);
3598 if (bit_off
== offset
) {
3601 } else if (bit_off
> offset
&&
3602 offset
+ bytes
> bit_off
) {
3608 n
= rb_prev(&info
->offset_index
);
3610 tmp
= rb_entry(n
, struct btrfs_free_space
,
3612 if (tmp
->offset
+ tmp
->bytes
< offset
)
3614 if (offset
+ bytes
< tmp
->offset
) {
3615 n
= rb_prev(&info
->offset_index
);
3622 n
= rb_next(&info
->offset_index
);
3624 tmp
= rb_entry(n
, struct btrfs_free_space
,
3626 if (offset
+ bytes
< tmp
->offset
)
3628 if (tmp
->offset
+ tmp
->bytes
< offset
) {
3629 n
= rb_next(&info
->offset_index
);
3640 if (info
->offset
== offset
) {
3645 if (offset
> info
->offset
&& offset
< info
->offset
+ info
->bytes
)
3648 spin_unlock(&ctl
->tree_lock
);
3651 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */