ARM: rockchip: fix broken build
[linux/fpc-iii.git] / fs / btrfs / ioctl.c
blob0770c91586ca694e1f9c142fb653cf02c02dd686
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
63 #ifdef CONFIG_64BIT
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65 * structures are incorrect, as the timespec structure from userspace
66 * is 4 bytes too small. We define these alternatives here to teach
67 * the kernel about the 32-bit struct packing.
69 struct btrfs_ioctl_timespec_32 {
70 __u64 sec;
71 __u32 nsec;
72 } __attribute__ ((__packed__));
74 struct btrfs_ioctl_received_subvol_args_32 {
75 char uuid[BTRFS_UUID_SIZE]; /* in */
76 __u64 stransid; /* in */
77 __u64 rtransid; /* out */
78 struct btrfs_ioctl_timespec_32 stime; /* in */
79 struct btrfs_ioctl_timespec_32 rtime; /* out */
80 __u64 flags; /* in */
81 __u64 reserved[16]; /* in */
82 } __attribute__ ((__packed__));
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 struct btrfs_ioctl_received_subvol_args_32)
86 #endif
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
91 int no_time_update);
93 /* Mask out flags that are inappropriate for the given type of inode. */
94 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
96 if (S_ISDIR(mode))
97 return flags;
98 else if (S_ISREG(mode))
99 return flags & ~FS_DIRSYNC_FL;
100 else
101 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
105 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
107 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
109 unsigned int iflags = 0;
111 if (flags & BTRFS_INODE_SYNC)
112 iflags |= FS_SYNC_FL;
113 if (flags & BTRFS_INODE_IMMUTABLE)
114 iflags |= FS_IMMUTABLE_FL;
115 if (flags & BTRFS_INODE_APPEND)
116 iflags |= FS_APPEND_FL;
117 if (flags & BTRFS_INODE_NODUMP)
118 iflags |= FS_NODUMP_FL;
119 if (flags & BTRFS_INODE_NOATIME)
120 iflags |= FS_NOATIME_FL;
121 if (flags & BTRFS_INODE_DIRSYNC)
122 iflags |= FS_DIRSYNC_FL;
123 if (flags & BTRFS_INODE_NODATACOW)
124 iflags |= FS_NOCOW_FL;
126 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
127 iflags |= FS_COMPR_FL;
128 else if (flags & BTRFS_INODE_NOCOMPRESS)
129 iflags |= FS_NOCOMP_FL;
131 return iflags;
135 * Update inode->i_flags based on the btrfs internal flags.
137 void btrfs_update_iflags(struct inode *inode)
139 struct btrfs_inode *ip = BTRFS_I(inode);
140 unsigned int new_fl = 0;
142 if (ip->flags & BTRFS_INODE_SYNC)
143 new_fl |= S_SYNC;
144 if (ip->flags & BTRFS_INODE_IMMUTABLE)
145 new_fl |= S_IMMUTABLE;
146 if (ip->flags & BTRFS_INODE_APPEND)
147 new_fl |= S_APPEND;
148 if (ip->flags & BTRFS_INODE_NOATIME)
149 new_fl |= S_NOATIME;
150 if (ip->flags & BTRFS_INODE_DIRSYNC)
151 new_fl |= S_DIRSYNC;
153 set_mask_bits(&inode->i_flags,
154 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
155 new_fl);
159 * Inherit flags from the parent inode.
161 * Currently only the compression flags and the cow flags are inherited.
163 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
165 unsigned int flags;
167 if (!dir)
168 return;
170 flags = BTRFS_I(dir)->flags;
172 if (flags & BTRFS_INODE_NOCOMPRESS) {
173 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
174 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
175 } else if (flags & BTRFS_INODE_COMPRESS) {
176 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
177 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
180 if (flags & BTRFS_INODE_NODATACOW) {
181 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
182 if (S_ISREG(inode->i_mode))
183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
186 btrfs_update_iflags(inode);
189 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
191 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
192 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
194 if (copy_to_user(arg, &flags, sizeof(flags)))
195 return -EFAULT;
196 return 0;
199 static int check_flags(unsigned int flags)
201 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
202 FS_NOATIME_FL | FS_NODUMP_FL | \
203 FS_SYNC_FL | FS_DIRSYNC_FL | \
204 FS_NOCOMP_FL | FS_COMPR_FL |
205 FS_NOCOW_FL))
206 return -EOPNOTSUPP;
208 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
209 return -EINVAL;
211 return 0;
214 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
216 struct inode *inode = file_inode(file);
217 struct btrfs_inode *ip = BTRFS_I(inode);
218 struct btrfs_root *root = ip->root;
219 struct btrfs_trans_handle *trans;
220 unsigned int flags, oldflags;
221 int ret;
222 u64 ip_oldflags;
223 unsigned int i_oldflags;
224 umode_t mode;
226 if (!inode_owner_or_capable(inode))
227 return -EPERM;
229 if (btrfs_root_readonly(root))
230 return -EROFS;
232 if (copy_from_user(&flags, arg, sizeof(flags)))
233 return -EFAULT;
235 ret = check_flags(flags);
236 if (ret)
237 return ret;
239 ret = mnt_want_write_file(file);
240 if (ret)
241 return ret;
243 mutex_lock(&inode->i_mutex);
245 ip_oldflags = ip->flags;
246 i_oldflags = inode->i_flags;
247 mode = inode->i_mode;
249 flags = btrfs_mask_flags(inode->i_mode, flags);
250 oldflags = btrfs_flags_to_ioctl(ip->flags);
251 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
252 if (!capable(CAP_LINUX_IMMUTABLE)) {
253 ret = -EPERM;
254 goto out_unlock;
258 if (flags & FS_SYNC_FL)
259 ip->flags |= BTRFS_INODE_SYNC;
260 else
261 ip->flags &= ~BTRFS_INODE_SYNC;
262 if (flags & FS_IMMUTABLE_FL)
263 ip->flags |= BTRFS_INODE_IMMUTABLE;
264 else
265 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
266 if (flags & FS_APPEND_FL)
267 ip->flags |= BTRFS_INODE_APPEND;
268 else
269 ip->flags &= ~BTRFS_INODE_APPEND;
270 if (flags & FS_NODUMP_FL)
271 ip->flags |= BTRFS_INODE_NODUMP;
272 else
273 ip->flags &= ~BTRFS_INODE_NODUMP;
274 if (flags & FS_NOATIME_FL)
275 ip->flags |= BTRFS_INODE_NOATIME;
276 else
277 ip->flags &= ~BTRFS_INODE_NOATIME;
278 if (flags & FS_DIRSYNC_FL)
279 ip->flags |= BTRFS_INODE_DIRSYNC;
280 else
281 ip->flags &= ~BTRFS_INODE_DIRSYNC;
282 if (flags & FS_NOCOW_FL) {
283 if (S_ISREG(mode)) {
285 * It's safe to turn csums off here, no extents exist.
286 * Otherwise we want the flag to reflect the real COW
287 * status of the file and will not set it.
289 if (inode->i_size == 0)
290 ip->flags |= BTRFS_INODE_NODATACOW
291 | BTRFS_INODE_NODATASUM;
292 } else {
293 ip->flags |= BTRFS_INODE_NODATACOW;
295 } else {
297 * Revert back under same assuptions as above
299 if (S_ISREG(mode)) {
300 if (inode->i_size == 0)
301 ip->flags &= ~(BTRFS_INODE_NODATACOW
302 | BTRFS_INODE_NODATASUM);
303 } else {
304 ip->flags &= ~BTRFS_INODE_NODATACOW;
309 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
310 * flag may be changed automatically if compression code won't make
311 * things smaller.
313 if (flags & FS_NOCOMP_FL) {
314 ip->flags &= ~BTRFS_INODE_COMPRESS;
315 ip->flags |= BTRFS_INODE_NOCOMPRESS;
317 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
318 if (ret && ret != -ENODATA)
319 goto out_drop;
320 } else if (flags & FS_COMPR_FL) {
321 const char *comp;
323 ip->flags |= BTRFS_INODE_COMPRESS;
324 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
326 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
327 comp = "lzo";
328 else
329 comp = "zlib";
330 ret = btrfs_set_prop(inode, "btrfs.compression",
331 comp, strlen(comp), 0);
332 if (ret)
333 goto out_drop;
335 } else {
336 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
337 if (ret && ret != -ENODATA)
338 goto out_drop;
339 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
342 trans = btrfs_start_transaction(root, 1);
343 if (IS_ERR(trans)) {
344 ret = PTR_ERR(trans);
345 goto out_drop;
348 btrfs_update_iflags(inode);
349 inode_inc_iversion(inode);
350 inode->i_ctime = CURRENT_TIME;
351 ret = btrfs_update_inode(trans, root, inode);
353 btrfs_end_transaction(trans, root);
354 out_drop:
355 if (ret) {
356 ip->flags = ip_oldflags;
357 inode->i_flags = i_oldflags;
360 out_unlock:
361 mutex_unlock(&inode->i_mutex);
362 mnt_drop_write_file(file);
363 return ret;
366 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
368 struct inode *inode = file_inode(file);
370 return put_user(inode->i_generation, arg);
373 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
375 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
376 struct btrfs_device *device;
377 struct request_queue *q;
378 struct fstrim_range range;
379 u64 minlen = ULLONG_MAX;
380 u64 num_devices = 0;
381 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
382 int ret;
384 if (!capable(CAP_SYS_ADMIN))
385 return -EPERM;
387 rcu_read_lock();
388 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
389 dev_list) {
390 if (!device->bdev)
391 continue;
392 q = bdev_get_queue(device->bdev);
393 if (blk_queue_discard(q)) {
394 num_devices++;
395 minlen = min((u64)q->limits.discard_granularity,
396 minlen);
399 rcu_read_unlock();
401 if (!num_devices)
402 return -EOPNOTSUPP;
403 if (copy_from_user(&range, arg, sizeof(range)))
404 return -EFAULT;
405 if (range.start > total_bytes ||
406 range.len < fs_info->sb->s_blocksize)
407 return -EINVAL;
409 range.len = min(range.len, total_bytes - range.start);
410 range.minlen = max(range.minlen, minlen);
411 ret = btrfs_trim_fs(fs_info->tree_root, &range);
412 if (ret < 0)
413 return ret;
415 if (copy_to_user(arg, &range, sizeof(range)))
416 return -EFAULT;
418 return 0;
421 int btrfs_is_empty_uuid(u8 *uuid)
423 int i;
425 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
426 if (uuid[i])
427 return 0;
429 return 1;
432 static noinline int create_subvol(struct inode *dir,
433 struct dentry *dentry,
434 char *name, int namelen,
435 u64 *async_transid,
436 struct btrfs_qgroup_inherit *inherit)
438 struct btrfs_trans_handle *trans;
439 struct btrfs_key key;
440 struct btrfs_root_item root_item;
441 struct btrfs_inode_item *inode_item;
442 struct extent_buffer *leaf;
443 struct btrfs_root *root = BTRFS_I(dir)->root;
444 struct btrfs_root *new_root;
445 struct btrfs_block_rsv block_rsv;
446 struct timespec cur_time = CURRENT_TIME;
447 struct inode *inode;
448 int ret;
449 int err;
450 u64 objectid;
451 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
452 u64 index = 0;
453 u64 qgroup_reserved;
454 uuid_le new_uuid;
456 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
457 if (ret)
458 return ret;
461 * Don't create subvolume whose level is not zero. Or qgroup will be
462 * screwed up since it assume subvolme qgroup's level to be 0.
464 if (btrfs_qgroup_level(objectid))
465 return -ENOSPC;
467 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
469 * The same as the snapshot creation, please see the comment
470 * of create_snapshot().
472 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
473 8, &qgroup_reserved, false);
474 if (ret)
475 return ret;
477 trans = btrfs_start_transaction(root, 0);
478 if (IS_ERR(trans)) {
479 ret = PTR_ERR(trans);
480 btrfs_subvolume_release_metadata(root, &block_rsv,
481 qgroup_reserved);
482 return ret;
484 trans->block_rsv = &block_rsv;
485 trans->bytes_reserved = block_rsv.size;
487 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
488 if (ret)
489 goto fail;
491 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
492 if (IS_ERR(leaf)) {
493 ret = PTR_ERR(leaf);
494 goto fail;
497 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
498 btrfs_set_header_bytenr(leaf, leaf->start);
499 btrfs_set_header_generation(leaf, trans->transid);
500 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
501 btrfs_set_header_owner(leaf, objectid);
503 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
504 BTRFS_FSID_SIZE);
505 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
506 btrfs_header_chunk_tree_uuid(leaf),
507 BTRFS_UUID_SIZE);
508 btrfs_mark_buffer_dirty(leaf);
510 memset(&root_item, 0, sizeof(root_item));
512 inode_item = &root_item.inode;
513 btrfs_set_stack_inode_generation(inode_item, 1);
514 btrfs_set_stack_inode_size(inode_item, 3);
515 btrfs_set_stack_inode_nlink(inode_item, 1);
516 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
517 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
519 btrfs_set_root_flags(&root_item, 0);
520 btrfs_set_root_limit(&root_item, 0);
521 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
523 btrfs_set_root_bytenr(&root_item, leaf->start);
524 btrfs_set_root_generation(&root_item, trans->transid);
525 btrfs_set_root_level(&root_item, 0);
526 btrfs_set_root_refs(&root_item, 1);
527 btrfs_set_root_used(&root_item, leaf->len);
528 btrfs_set_root_last_snapshot(&root_item, 0);
530 btrfs_set_root_generation_v2(&root_item,
531 btrfs_root_generation(&root_item));
532 uuid_le_gen(&new_uuid);
533 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
534 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
535 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
536 root_item.ctime = root_item.otime;
537 btrfs_set_root_ctransid(&root_item, trans->transid);
538 btrfs_set_root_otransid(&root_item, trans->transid);
540 btrfs_tree_unlock(leaf);
541 free_extent_buffer(leaf);
542 leaf = NULL;
544 btrfs_set_root_dirid(&root_item, new_dirid);
546 key.objectid = objectid;
547 key.offset = 0;
548 key.type = BTRFS_ROOT_ITEM_KEY;
549 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
550 &root_item);
551 if (ret)
552 goto fail;
554 key.offset = (u64)-1;
555 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
556 if (IS_ERR(new_root)) {
557 ret = PTR_ERR(new_root);
558 btrfs_abort_transaction(trans, root, ret);
559 goto fail;
562 btrfs_record_root_in_trans(trans, new_root);
564 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
565 if (ret) {
566 /* We potentially lose an unused inode item here */
567 btrfs_abort_transaction(trans, root, ret);
568 goto fail;
572 * insert the directory item
574 ret = btrfs_set_inode_index(dir, &index);
575 if (ret) {
576 btrfs_abort_transaction(trans, root, ret);
577 goto fail;
580 ret = btrfs_insert_dir_item(trans, root,
581 name, namelen, dir, &key,
582 BTRFS_FT_DIR, index);
583 if (ret) {
584 btrfs_abort_transaction(trans, root, ret);
585 goto fail;
588 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
589 ret = btrfs_update_inode(trans, root, dir);
590 BUG_ON(ret);
592 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
593 objectid, root->root_key.objectid,
594 btrfs_ino(dir), index, name, namelen);
595 BUG_ON(ret);
597 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
598 root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
599 objectid);
600 if (ret)
601 btrfs_abort_transaction(trans, root, ret);
603 fail:
604 trans->block_rsv = NULL;
605 trans->bytes_reserved = 0;
606 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
608 if (async_transid) {
609 *async_transid = trans->transid;
610 err = btrfs_commit_transaction_async(trans, root, 1);
611 if (err)
612 err = btrfs_commit_transaction(trans, root);
613 } else {
614 err = btrfs_commit_transaction(trans, root);
616 if (err && !ret)
617 ret = err;
619 if (!ret) {
620 inode = btrfs_lookup_dentry(dir, dentry);
621 if (IS_ERR(inode))
622 return PTR_ERR(inode);
623 d_instantiate(dentry, inode);
625 return ret;
628 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
630 s64 writers;
631 DEFINE_WAIT(wait);
633 do {
634 prepare_to_wait(&root->subv_writers->wait, &wait,
635 TASK_UNINTERRUPTIBLE);
637 writers = percpu_counter_sum(&root->subv_writers->counter);
638 if (writers)
639 schedule();
641 finish_wait(&root->subv_writers->wait, &wait);
642 } while (writers);
645 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
646 struct dentry *dentry, char *name, int namelen,
647 u64 *async_transid, bool readonly,
648 struct btrfs_qgroup_inherit *inherit)
650 struct inode *inode;
651 struct btrfs_pending_snapshot *pending_snapshot;
652 struct btrfs_trans_handle *trans;
653 int ret;
655 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
656 return -EINVAL;
658 atomic_inc(&root->will_be_snapshoted);
659 smp_mb__after_atomic();
660 btrfs_wait_for_no_snapshoting_writes(root);
662 ret = btrfs_start_delalloc_inodes(root, 0);
663 if (ret)
664 goto out;
666 btrfs_wait_ordered_extents(root, -1);
668 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
669 if (!pending_snapshot) {
670 ret = -ENOMEM;
671 goto out;
674 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
675 BTRFS_BLOCK_RSV_TEMP);
677 * 1 - parent dir inode
678 * 2 - dir entries
679 * 1 - root item
680 * 2 - root ref/backref
681 * 1 - root of snapshot
682 * 1 - UUID item
684 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
685 &pending_snapshot->block_rsv, 8,
686 &pending_snapshot->qgroup_reserved,
687 false);
688 if (ret)
689 goto free;
691 pending_snapshot->dentry = dentry;
692 pending_snapshot->root = root;
693 pending_snapshot->readonly = readonly;
694 pending_snapshot->dir = dir;
695 pending_snapshot->inherit = inherit;
697 trans = btrfs_start_transaction(root, 0);
698 if (IS_ERR(trans)) {
699 ret = PTR_ERR(trans);
700 goto fail;
703 spin_lock(&root->fs_info->trans_lock);
704 list_add(&pending_snapshot->list,
705 &trans->transaction->pending_snapshots);
706 spin_unlock(&root->fs_info->trans_lock);
707 if (async_transid) {
708 *async_transid = trans->transid;
709 ret = btrfs_commit_transaction_async(trans,
710 root->fs_info->extent_root, 1);
711 if (ret)
712 ret = btrfs_commit_transaction(trans, root);
713 } else {
714 ret = btrfs_commit_transaction(trans,
715 root->fs_info->extent_root);
717 if (ret)
718 goto fail;
720 ret = pending_snapshot->error;
721 if (ret)
722 goto fail;
724 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
725 if (ret)
726 goto fail;
728 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
729 if (IS_ERR(inode)) {
730 ret = PTR_ERR(inode);
731 goto fail;
734 d_instantiate(dentry, inode);
735 ret = 0;
736 fail:
737 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
738 &pending_snapshot->block_rsv,
739 pending_snapshot->qgroup_reserved);
740 free:
741 kfree(pending_snapshot);
742 out:
743 if (atomic_dec_and_test(&root->will_be_snapshoted))
744 wake_up_atomic_t(&root->will_be_snapshoted);
745 return ret;
748 /* copy of may_delete in fs/namei.c()
749 * Check whether we can remove a link victim from directory dir, check
750 * whether the type of victim is right.
751 * 1. We can't do it if dir is read-only (done in permission())
752 * 2. We should have write and exec permissions on dir
753 * 3. We can't remove anything from append-only dir
754 * 4. We can't do anything with immutable dir (done in permission())
755 * 5. If the sticky bit on dir is set we should either
756 * a. be owner of dir, or
757 * b. be owner of victim, or
758 * c. have CAP_FOWNER capability
759 * 6. If the victim is append-only or immutable we can't do antyhing with
760 * links pointing to it.
761 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
762 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
763 * 9. We can't remove a root or mountpoint.
764 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
765 * nfs_async_unlink().
768 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
770 int error;
772 if (d_really_is_negative(victim))
773 return -ENOENT;
775 BUG_ON(d_inode(victim->d_parent) != dir);
776 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
778 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
779 if (error)
780 return error;
781 if (IS_APPEND(dir))
782 return -EPERM;
783 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
784 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
785 return -EPERM;
786 if (isdir) {
787 if (!d_is_dir(victim))
788 return -ENOTDIR;
789 if (IS_ROOT(victim))
790 return -EBUSY;
791 } else if (d_is_dir(victim))
792 return -EISDIR;
793 if (IS_DEADDIR(dir))
794 return -ENOENT;
795 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
796 return -EBUSY;
797 return 0;
800 /* copy of may_create in fs/namei.c() */
801 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
803 if (d_really_is_positive(child))
804 return -EEXIST;
805 if (IS_DEADDIR(dir))
806 return -ENOENT;
807 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
811 * Create a new subvolume below @parent. This is largely modeled after
812 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
813 * inside this filesystem so it's quite a bit simpler.
815 static noinline int btrfs_mksubvol(struct path *parent,
816 char *name, int namelen,
817 struct btrfs_root *snap_src,
818 u64 *async_transid, bool readonly,
819 struct btrfs_qgroup_inherit *inherit)
821 struct inode *dir = d_inode(parent->dentry);
822 struct dentry *dentry;
823 int error;
825 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
826 if (error == -EINTR)
827 return error;
829 dentry = lookup_one_len(name, parent->dentry, namelen);
830 error = PTR_ERR(dentry);
831 if (IS_ERR(dentry))
832 goto out_unlock;
834 error = -EEXIST;
835 if (d_really_is_positive(dentry))
836 goto out_dput;
838 error = btrfs_may_create(dir, dentry);
839 if (error)
840 goto out_dput;
843 * even if this name doesn't exist, we may get hash collisions.
844 * check for them now when we can safely fail
846 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
847 dir->i_ino, name,
848 namelen);
849 if (error)
850 goto out_dput;
852 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
854 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
855 goto out_up_read;
857 if (snap_src) {
858 error = create_snapshot(snap_src, dir, dentry, name, namelen,
859 async_transid, readonly, inherit);
860 } else {
861 error = create_subvol(dir, dentry, name, namelen,
862 async_transid, inherit);
864 if (!error)
865 fsnotify_mkdir(dir, dentry);
866 out_up_read:
867 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
868 out_dput:
869 dput(dentry);
870 out_unlock:
871 mutex_unlock(&dir->i_mutex);
872 return error;
876 * When we're defragging a range, we don't want to kick it off again
877 * if it is really just waiting for delalloc to send it down.
878 * If we find a nice big extent or delalloc range for the bytes in the
879 * file you want to defrag, we return 0 to let you know to skip this
880 * part of the file
882 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
884 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
885 struct extent_map *em = NULL;
886 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
887 u64 end;
889 read_lock(&em_tree->lock);
890 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
891 read_unlock(&em_tree->lock);
893 if (em) {
894 end = extent_map_end(em);
895 free_extent_map(em);
896 if (end - offset > thresh)
897 return 0;
899 /* if we already have a nice delalloc here, just stop */
900 thresh /= 2;
901 end = count_range_bits(io_tree, &offset, offset + thresh,
902 thresh, EXTENT_DELALLOC, 1);
903 if (end >= thresh)
904 return 0;
905 return 1;
909 * helper function to walk through a file and find extents
910 * newer than a specific transid, and smaller than thresh.
912 * This is used by the defragging code to find new and small
913 * extents
915 static int find_new_extents(struct btrfs_root *root,
916 struct inode *inode, u64 newer_than,
917 u64 *off, u32 thresh)
919 struct btrfs_path *path;
920 struct btrfs_key min_key;
921 struct extent_buffer *leaf;
922 struct btrfs_file_extent_item *extent;
923 int type;
924 int ret;
925 u64 ino = btrfs_ino(inode);
927 path = btrfs_alloc_path();
928 if (!path)
929 return -ENOMEM;
931 min_key.objectid = ino;
932 min_key.type = BTRFS_EXTENT_DATA_KEY;
933 min_key.offset = *off;
935 while (1) {
936 ret = btrfs_search_forward(root, &min_key, path, newer_than);
937 if (ret != 0)
938 goto none;
939 process_slot:
940 if (min_key.objectid != ino)
941 goto none;
942 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
943 goto none;
945 leaf = path->nodes[0];
946 extent = btrfs_item_ptr(leaf, path->slots[0],
947 struct btrfs_file_extent_item);
949 type = btrfs_file_extent_type(leaf, extent);
950 if (type == BTRFS_FILE_EXTENT_REG &&
951 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
952 check_defrag_in_cache(inode, min_key.offset, thresh)) {
953 *off = min_key.offset;
954 btrfs_free_path(path);
955 return 0;
958 path->slots[0]++;
959 if (path->slots[0] < btrfs_header_nritems(leaf)) {
960 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
961 goto process_slot;
964 if (min_key.offset == (u64)-1)
965 goto none;
967 min_key.offset++;
968 btrfs_release_path(path);
970 none:
971 btrfs_free_path(path);
972 return -ENOENT;
975 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
977 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
978 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
979 struct extent_map *em;
980 u64 len = PAGE_CACHE_SIZE;
983 * hopefully we have this extent in the tree already, try without
984 * the full extent lock
986 read_lock(&em_tree->lock);
987 em = lookup_extent_mapping(em_tree, start, len);
988 read_unlock(&em_tree->lock);
990 if (!em) {
991 struct extent_state *cached = NULL;
992 u64 end = start + len - 1;
994 /* get the big lock and read metadata off disk */
995 lock_extent_bits(io_tree, start, end, 0, &cached);
996 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
997 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
999 if (IS_ERR(em))
1000 return NULL;
1003 return em;
1006 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1008 struct extent_map *next;
1009 bool ret = true;
1011 /* this is the last extent */
1012 if (em->start + em->len >= i_size_read(inode))
1013 return false;
1015 next = defrag_lookup_extent(inode, em->start + em->len);
1016 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1017 ret = false;
1018 else if ((em->block_start + em->block_len == next->block_start) &&
1019 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024))
1020 ret = false;
1022 free_extent_map(next);
1023 return ret;
1026 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1027 u64 *last_len, u64 *skip, u64 *defrag_end,
1028 int compress)
1030 struct extent_map *em;
1031 int ret = 1;
1032 bool next_mergeable = true;
1035 * make sure that once we start defragging an extent, we keep on
1036 * defragging it
1038 if (start < *defrag_end)
1039 return 1;
1041 *skip = 0;
1043 em = defrag_lookup_extent(inode, start);
1044 if (!em)
1045 return 0;
1047 /* this will cover holes, and inline extents */
1048 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1049 ret = 0;
1050 goto out;
1053 next_mergeable = defrag_check_next_extent(inode, em);
1055 * we hit a real extent, if it is big or the next extent is not a
1056 * real extent, don't bother defragging it
1058 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1059 (em->len >= thresh || !next_mergeable))
1060 ret = 0;
1061 out:
1063 * last_len ends up being a counter of how many bytes we've defragged.
1064 * every time we choose not to defrag an extent, we reset *last_len
1065 * so that the next tiny extent will force a defrag.
1067 * The end result of this is that tiny extents before a single big
1068 * extent will force at least part of that big extent to be defragged.
1070 if (ret) {
1071 *defrag_end = extent_map_end(em);
1072 } else {
1073 *last_len = 0;
1074 *skip = extent_map_end(em);
1075 *defrag_end = 0;
1078 free_extent_map(em);
1079 return ret;
1083 * it doesn't do much good to defrag one or two pages
1084 * at a time. This pulls in a nice chunk of pages
1085 * to COW and defrag.
1087 * It also makes sure the delalloc code has enough
1088 * dirty data to avoid making new small extents as part
1089 * of the defrag
1091 * It's a good idea to start RA on this range
1092 * before calling this.
1094 static int cluster_pages_for_defrag(struct inode *inode,
1095 struct page **pages,
1096 unsigned long start_index,
1097 unsigned long num_pages)
1099 unsigned long file_end;
1100 u64 isize = i_size_read(inode);
1101 u64 page_start;
1102 u64 page_end;
1103 u64 page_cnt;
1104 int ret;
1105 int i;
1106 int i_done;
1107 struct btrfs_ordered_extent *ordered;
1108 struct extent_state *cached_state = NULL;
1109 struct extent_io_tree *tree;
1110 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1112 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1113 if (!isize || start_index > file_end)
1114 return 0;
1116 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1118 ret = btrfs_delalloc_reserve_space(inode,
1119 page_cnt << PAGE_CACHE_SHIFT);
1120 if (ret)
1121 return ret;
1122 i_done = 0;
1123 tree = &BTRFS_I(inode)->io_tree;
1125 /* step one, lock all the pages */
1126 for (i = 0; i < page_cnt; i++) {
1127 struct page *page;
1128 again:
1129 page = find_or_create_page(inode->i_mapping,
1130 start_index + i, mask);
1131 if (!page)
1132 break;
1134 page_start = page_offset(page);
1135 page_end = page_start + PAGE_CACHE_SIZE - 1;
1136 while (1) {
1137 lock_extent_bits(tree, page_start, page_end,
1138 0, &cached_state);
1139 ordered = btrfs_lookup_ordered_extent(inode,
1140 page_start);
1141 unlock_extent_cached(tree, page_start, page_end,
1142 &cached_state, GFP_NOFS);
1143 if (!ordered)
1144 break;
1146 unlock_page(page);
1147 btrfs_start_ordered_extent(inode, ordered, 1);
1148 btrfs_put_ordered_extent(ordered);
1149 lock_page(page);
1151 * we unlocked the page above, so we need check if
1152 * it was released or not.
1154 if (page->mapping != inode->i_mapping) {
1155 unlock_page(page);
1156 page_cache_release(page);
1157 goto again;
1161 if (!PageUptodate(page)) {
1162 btrfs_readpage(NULL, page);
1163 lock_page(page);
1164 if (!PageUptodate(page)) {
1165 unlock_page(page);
1166 page_cache_release(page);
1167 ret = -EIO;
1168 break;
1172 if (page->mapping != inode->i_mapping) {
1173 unlock_page(page);
1174 page_cache_release(page);
1175 goto again;
1178 pages[i] = page;
1179 i_done++;
1181 if (!i_done || ret)
1182 goto out;
1184 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1185 goto out;
1188 * so now we have a nice long stream of locked
1189 * and up to date pages, lets wait on them
1191 for (i = 0; i < i_done; i++)
1192 wait_on_page_writeback(pages[i]);
1194 page_start = page_offset(pages[0]);
1195 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1197 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1198 page_start, page_end - 1, 0, &cached_state);
1199 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1200 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1201 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1202 &cached_state, GFP_NOFS);
1204 if (i_done != page_cnt) {
1205 spin_lock(&BTRFS_I(inode)->lock);
1206 BTRFS_I(inode)->outstanding_extents++;
1207 spin_unlock(&BTRFS_I(inode)->lock);
1208 btrfs_delalloc_release_space(inode,
1209 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1213 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1214 &cached_state, GFP_NOFS);
1216 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1217 page_start, page_end - 1, &cached_state,
1218 GFP_NOFS);
1220 for (i = 0; i < i_done; i++) {
1221 clear_page_dirty_for_io(pages[i]);
1222 ClearPageChecked(pages[i]);
1223 set_page_extent_mapped(pages[i]);
1224 set_page_dirty(pages[i]);
1225 unlock_page(pages[i]);
1226 page_cache_release(pages[i]);
1228 return i_done;
1229 out:
1230 for (i = 0; i < i_done; i++) {
1231 unlock_page(pages[i]);
1232 page_cache_release(pages[i]);
1234 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1235 return ret;
1239 int btrfs_defrag_file(struct inode *inode, struct file *file,
1240 struct btrfs_ioctl_defrag_range_args *range,
1241 u64 newer_than, unsigned long max_to_defrag)
1243 struct btrfs_root *root = BTRFS_I(inode)->root;
1244 struct file_ra_state *ra = NULL;
1245 unsigned long last_index;
1246 u64 isize = i_size_read(inode);
1247 u64 last_len = 0;
1248 u64 skip = 0;
1249 u64 defrag_end = 0;
1250 u64 newer_off = range->start;
1251 unsigned long i;
1252 unsigned long ra_index = 0;
1253 int ret;
1254 int defrag_count = 0;
1255 int compress_type = BTRFS_COMPRESS_ZLIB;
1256 u32 extent_thresh = range->extent_thresh;
1257 unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1258 unsigned long cluster = max_cluster;
1259 u64 new_align = ~((u64)128 * 1024 - 1);
1260 struct page **pages = NULL;
1262 if (isize == 0)
1263 return 0;
1265 if (range->start >= isize)
1266 return -EINVAL;
1268 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1269 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1270 return -EINVAL;
1271 if (range->compress_type)
1272 compress_type = range->compress_type;
1275 if (extent_thresh == 0)
1276 extent_thresh = 256 * 1024;
1279 * if we were not given a file, allocate a readahead
1280 * context
1282 if (!file) {
1283 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1284 if (!ra)
1285 return -ENOMEM;
1286 file_ra_state_init(ra, inode->i_mapping);
1287 } else {
1288 ra = &file->f_ra;
1291 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1292 GFP_NOFS);
1293 if (!pages) {
1294 ret = -ENOMEM;
1295 goto out_ra;
1298 /* find the last page to defrag */
1299 if (range->start + range->len > range->start) {
1300 last_index = min_t(u64, isize - 1,
1301 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1302 } else {
1303 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1306 if (newer_than) {
1307 ret = find_new_extents(root, inode, newer_than,
1308 &newer_off, 64 * 1024);
1309 if (!ret) {
1310 range->start = newer_off;
1312 * we always align our defrag to help keep
1313 * the extents in the file evenly spaced
1315 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1316 } else
1317 goto out_ra;
1318 } else {
1319 i = range->start >> PAGE_CACHE_SHIFT;
1321 if (!max_to_defrag)
1322 max_to_defrag = last_index - i + 1;
1325 * make writeback starts from i, so the defrag range can be
1326 * written sequentially.
1328 if (i < inode->i_mapping->writeback_index)
1329 inode->i_mapping->writeback_index = i;
1331 while (i <= last_index && defrag_count < max_to_defrag &&
1332 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) {
1334 * make sure we stop running if someone unmounts
1335 * the FS
1337 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1338 break;
1340 if (btrfs_defrag_cancelled(root->fs_info)) {
1341 printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1342 ret = -EAGAIN;
1343 break;
1346 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1347 extent_thresh, &last_len, &skip,
1348 &defrag_end, range->flags &
1349 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1350 unsigned long next;
1352 * the should_defrag function tells us how much to skip
1353 * bump our counter by the suggested amount
1355 next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE);
1356 i = max(i + 1, next);
1357 continue;
1360 if (!newer_than) {
1361 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1362 PAGE_CACHE_SHIFT) - i;
1363 cluster = min(cluster, max_cluster);
1364 } else {
1365 cluster = max_cluster;
1368 if (i + cluster > ra_index) {
1369 ra_index = max(i, ra_index);
1370 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1371 cluster);
1372 ra_index += cluster;
1375 mutex_lock(&inode->i_mutex);
1376 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1377 BTRFS_I(inode)->force_compress = compress_type;
1378 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1379 if (ret < 0) {
1380 mutex_unlock(&inode->i_mutex);
1381 goto out_ra;
1384 defrag_count += ret;
1385 balance_dirty_pages_ratelimited(inode->i_mapping);
1386 mutex_unlock(&inode->i_mutex);
1388 if (newer_than) {
1389 if (newer_off == (u64)-1)
1390 break;
1392 if (ret > 0)
1393 i += ret;
1395 newer_off = max(newer_off + 1,
1396 (u64)i << PAGE_CACHE_SHIFT);
1398 ret = find_new_extents(root, inode,
1399 newer_than, &newer_off,
1400 64 * 1024);
1401 if (!ret) {
1402 range->start = newer_off;
1403 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1404 } else {
1405 break;
1407 } else {
1408 if (ret > 0) {
1409 i += ret;
1410 last_len += ret << PAGE_CACHE_SHIFT;
1411 } else {
1412 i++;
1413 last_len = 0;
1418 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1419 filemap_flush(inode->i_mapping);
1420 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1421 &BTRFS_I(inode)->runtime_flags))
1422 filemap_flush(inode->i_mapping);
1425 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1426 /* the filemap_flush will queue IO into the worker threads, but
1427 * we have to make sure the IO is actually started and that
1428 * ordered extents get created before we return
1430 atomic_inc(&root->fs_info->async_submit_draining);
1431 while (atomic_read(&root->fs_info->nr_async_submits) ||
1432 atomic_read(&root->fs_info->async_delalloc_pages)) {
1433 wait_event(root->fs_info->async_submit_wait,
1434 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1435 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1437 atomic_dec(&root->fs_info->async_submit_draining);
1440 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1441 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1444 ret = defrag_count;
1446 out_ra:
1447 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1448 mutex_lock(&inode->i_mutex);
1449 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1450 mutex_unlock(&inode->i_mutex);
1452 if (!file)
1453 kfree(ra);
1454 kfree(pages);
1455 return ret;
1458 static noinline int btrfs_ioctl_resize(struct file *file,
1459 void __user *arg)
1461 u64 new_size;
1462 u64 old_size;
1463 u64 devid = 1;
1464 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1465 struct btrfs_ioctl_vol_args *vol_args;
1466 struct btrfs_trans_handle *trans;
1467 struct btrfs_device *device = NULL;
1468 char *sizestr;
1469 char *retptr;
1470 char *devstr = NULL;
1471 int ret = 0;
1472 int mod = 0;
1474 if (!capable(CAP_SYS_ADMIN))
1475 return -EPERM;
1477 ret = mnt_want_write_file(file);
1478 if (ret)
1479 return ret;
1481 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1482 1)) {
1483 mnt_drop_write_file(file);
1484 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1487 mutex_lock(&root->fs_info->volume_mutex);
1488 vol_args = memdup_user(arg, sizeof(*vol_args));
1489 if (IS_ERR(vol_args)) {
1490 ret = PTR_ERR(vol_args);
1491 goto out;
1494 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1496 sizestr = vol_args->name;
1497 devstr = strchr(sizestr, ':');
1498 if (devstr) {
1499 sizestr = devstr + 1;
1500 *devstr = '\0';
1501 devstr = vol_args->name;
1502 ret = kstrtoull(devstr, 10, &devid);
1503 if (ret)
1504 goto out_free;
1505 if (!devid) {
1506 ret = -EINVAL;
1507 goto out_free;
1509 btrfs_info(root->fs_info, "resizing devid %llu", devid);
1512 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1513 if (!device) {
1514 btrfs_info(root->fs_info, "resizer unable to find device %llu",
1515 devid);
1516 ret = -ENODEV;
1517 goto out_free;
1520 if (!device->writeable) {
1521 btrfs_info(root->fs_info,
1522 "resizer unable to apply on readonly device %llu",
1523 devid);
1524 ret = -EPERM;
1525 goto out_free;
1528 if (!strcmp(sizestr, "max"))
1529 new_size = device->bdev->bd_inode->i_size;
1530 else {
1531 if (sizestr[0] == '-') {
1532 mod = -1;
1533 sizestr++;
1534 } else if (sizestr[0] == '+') {
1535 mod = 1;
1536 sizestr++;
1538 new_size = memparse(sizestr, &retptr);
1539 if (*retptr != '\0' || new_size == 0) {
1540 ret = -EINVAL;
1541 goto out_free;
1545 if (device->is_tgtdev_for_dev_replace) {
1546 ret = -EPERM;
1547 goto out_free;
1550 old_size = btrfs_device_get_total_bytes(device);
1552 if (mod < 0) {
1553 if (new_size > old_size) {
1554 ret = -EINVAL;
1555 goto out_free;
1557 new_size = old_size - new_size;
1558 } else if (mod > 0) {
1559 if (new_size > ULLONG_MAX - old_size) {
1560 ret = -ERANGE;
1561 goto out_free;
1563 new_size = old_size + new_size;
1566 if (new_size < 256 * 1024 * 1024) {
1567 ret = -EINVAL;
1568 goto out_free;
1570 if (new_size > device->bdev->bd_inode->i_size) {
1571 ret = -EFBIG;
1572 goto out_free;
1575 new_size = div_u64(new_size, root->sectorsize);
1576 new_size *= root->sectorsize;
1578 printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1579 rcu_str_deref(device->name), new_size);
1581 if (new_size > old_size) {
1582 trans = btrfs_start_transaction(root, 0);
1583 if (IS_ERR(trans)) {
1584 ret = PTR_ERR(trans);
1585 goto out_free;
1587 ret = btrfs_grow_device(trans, device, new_size);
1588 btrfs_commit_transaction(trans, root);
1589 } else if (new_size < old_size) {
1590 ret = btrfs_shrink_device(device, new_size);
1591 } /* equal, nothing need to do */
1593 out_free:
1594 kfree(vol_args);
1595 out:
1596 mutex_unlock(&root->fs_info->volume_mutex);
1597 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1598 mnt_drop_write_file(file);
1599 return ret;
1602 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1603 char *name, unsigned long fd, int subvol,
1604 u64 *transid, bool readonly,
1605 struct btrfs_qgroup_inherit *inherit)
1607 int namelen;
1608 int ret = 0;
1610 ret = mnt_want_write_file(file);
1611 if (ret)
1612 goto out;
1614 namelen = strlen(name);
1615 if (strchr(name, '/')) {
1616 ret = -EINVAL;
1617 goto out_drop_write;
1620 if (name[0] == '.' &&
1621 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1622 ret = -EEXIST;
1623 goto out_drop_write;
1626 if (subvol) {
1627 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1628 NULL, transid, readonly, inherit);
1629 } else {
1630 struct fd src = fdget(fd);
1631 struct inode *src_inode;
1632 if (!src.file) {
1633 ret = -EINVAL;
1634 goto out_drop_write;
1637 src_inode = file_inode(src.file);
1638 if (src_inode->i_sb != file_inode(file)->i_sb) {
1639 btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1640 "Snapshot src from another FS");
1641 ret = -EXDEV;
1642 } else if (!inode_owner_or_capable(src_inode)) {
1644 * Subvolume creation is not restricted, but snapshots
1645 * are limited to own subvolumes only
1647 ret = -EPERM;
1648 } else {
1649 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1650 BTRFS_I(src_inode)->root,
1651 transid, readonly, inherit);
1653 fdput(src);
1655 out_drop_write:
1656 mnt_drop_write_file(file);
1657 out:
1658 return ret;
1661 static noinline int btrfs_ioctl_snap_create(struct file *file,
1662 void __user *arg, int subvol)
1664 struct btrfs_ioctl_vol_args *vol_args;
1665 int ret;
1667 vol_args = memdup_user(arg, sizeof(*vol_args));
1668 if (IS_ERR(vol_args))
1669 return PTR_ERR(vol_args);
1670 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1672 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1673 vol_args->fd, subvol,
1674 NULL, false, NULL);
1676 kfree(vol_args);
1677 return ret;
1680 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1681 void __user *arg, int subvol)
1683 struct btrfs_ioctl_vol_args_v2 *vol_args;
1684 int ret;
1685 u64 transid = 0;
1686 u64 *ptr = NULL;
1687 bool readonly = false;
1688 struct btrfs_qgroup_inherit *inherit = NULL;
1690 vol_args = memdup_user(arg, sizeof(*vol_args));
1691 if (IS_ERR(vol_args))
1692 return PTR_ERR(vol_args);
1693 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1695 if (vol_args->flags &
1696 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1697 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1698 ret = -EOPNOTSUPP;
1699 goto free_args;
1702 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1703 ptr = &transid;
1704 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1705 readonly = true;
1706 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1707 if (vol_args->size > PAGE_CACHE_SIZE) {
1708 ret = -EINVAL;
1709 goto free_args;
1711 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1712 if (IS_ERR(inherit)) {
1713 ret = PTR_ERR(inherit);
1714 goto free_args;
1718 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1719 vol_args->fd, subvol, ptr,
1720 readonly, inherit);
1721 if (ret)
1722 goto free_inherit;
1724 if (ptr && copy_to_user(arg +
1725 offsetof(struct btrfs_ioctl_vol_args_v2,
1726 transid),
1727 ptr, sizeof(*ptr)))
1728 ret = -EFAULT;
1730 free_inherit:
1731 kfree(inherit);
1732 free_args:
1733 kfree(vol_args);
1734 return ret;
1737 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1738 void __user *arg)
1740 struct inode *inode = file_inode(file);
1741 struct btrfs_root *root = BTRFS_I(inode)->root;
1742 int ret = 0;
1743 u64 flags = 0;
1745 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1746 return -EINVAL;
1748 down_read(&root->fs_info->subvol_sem);
1749 if (btrfs_root_readonly(root))
1750 flags |= BTRFS_SUBVOL_RDONLY;
1751 up_read(&root->fs_info->subvol_sem);
1753 if (copy_to_user(arg, &flags, sizeof(flags)))
1754 ret = -EFAULT;
1756 return ret;
1759 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1760 void __user *arg)
1762 struct inode *inode = file_inode(file);
1763 struct btrfs_root *root = BTRFS_I(inode)->root;
1764 struct btrfs_trans_handle *trans;
1765 u64 root_flags;
1766 u64 flags;
1767 int ret = 0;
1769 if (!inode_owner_or_capable(inode))
1770 return -EPERM;
1772 ret = mnt_want_write_file(file);
1773 if (ret)
1774 goto out;
1776 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1777 ret = -EINVAL;
1778 goto out_drop_write;
1781 if (copy_from_user(&flags, arg, sizeof(flags))) {
1782 ret = -EFAULT;
1783 goto out_drop_write;
1786 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1787 ret = -EINVAL;
1788 goto out_drop_write;
1791 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1792 ret = -EOPNOTSUPP;
1793 goto out_drop_write;
1796 down_write(&root->fs_info->subvol_sem);
1798 /* nothing to do */
1799 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1800 goto out_drop_sem;
1802 root_flags = btrfs_root_flags(&root->root_item);
1803 if (flags & BTRFS_SUBVOL_RDONLY) {
1804 btrfs_set_root_flags(&root->root_item,
1805 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1806 } else {
1808 * Block RO -> RW transition if this subvolume is involved in
1809 * send
1811 spin_lock(&root->root_item_lock);
1812 if (root->send_in_progress == 0) {
1813 btrfs_set_root_flags(&root->root_item,
1814 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1815 spin_unlock(&root->root_item_lock);
1816 } else {
1817 spin_unlock(&root->root_item_lock);
1818 btrfs_warn(root->fs_info,
1819 "Attempt to set subvolume %llu read-write during send",
1820 root->root_key.objectid);
1821 ret = -EPERM;
1822 goto out_drop_sem;
1826 trans = btrfs_start_transaction(root, 1);
1827 if (IS_ERR(trans)) {
1828 ret = PTR_ERR(trans);
1829 goto out_reset;
1832 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1833 &root->root_key, &root->root_item);
1835 btrfs_commit_transaction(trans, root);
1836 out_reset:
1837 if (ret)
1838 btrfs_set_root_flags(&root->root_item, root_flags);
1839 out_drop_sem:
1840 up_write(&root->fs_info->subvol_sem);
1841 out_drop_write:
1842 mnt_drop_write_file(file);
1843 out:
1844 return ret;
1848 * helper to check if the subvolume references other subvolumes
1850 static noinline int may_destroy_subvol(struct btrfs_root *root)
1852 struct btrfs_path *path;
1853 struct btrfs_dir_item *di;
1854 struct btrfs_key key;
1855 u64 dir_id;
1856 int ret;
1858 path = btrfs_alloc_path();
1859 if (!path)
1860 return -ENOMEM;
1862 /* Make sure this root isn't set as the default subvol */
1863 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1864 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1865 dir_id, "default", 7, 0);
1866 if (di && !IS_ERR(di)) {
1867 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1868 if (key.objectid == root->root_key.objectid) {
1869 ret = -EPERM;
1870 btrfs_err(root->fs_info, "deleting default subvolume "
1871 "%llu is not allowed", key.objectid);
1872 goto out;
1874 btrfs_release_path(path);
1877 key.objectid = root->root_key.objectid;
1878 key.type = BTRFS_ROOT_REF_KEY;
1879 key.offset = (u64)-1;
1881 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1882 &key, path, 0, 0);
1883 if (ret < 0)
1884 goto out;
1885 BUG_ON(ret == 0);
1887 ret = 0;
1888 if (path->slots[0] > 0) {
1889 path->slots[0]--;
1890 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1891 if (key.objectid == root->root_key.objectid &&
1892 key.type == BTRFS_ROOT_REF_KEY)
1893 ret = -ENOTEMPTY;
1895 out:
1896 btrfs_free_path(path);
1897 return ret;
1900 static noinline int key_in_sk(struct btrfs_key *key,
1901 struct btrfs_ioctl_search_key *sk)
1903 struct btrfs_key test;
1904 int ret;
1906 test.objectid = sk->min_objectid;
1907 test.type = sk->min_type;
1908 test.offset = sk->min_offset;
1910 ret = btrfs_comp_cpu_keys(key, &test);
1911 if (ret < 0)
1912 return 0;
1914 test.objectid = sk->max_objectid;
1915 test.type = sk->max_type;
1916 test.offset = sk->max_offset;
1918 ret = btrfs_comp_cpu_keys(key, &test);
1919 if (ret > 0)
1920 return 0;
1921 return 1;
1924 static noinline int copy_to_sk(struct btrfs_root *root,
1925 struct btrfs_path *path,
1926 struct btrfs_key *key,
1927 struct btrfs_ioctl_search_key *sk,
1928 size_t *buf_size,
1929 char __user *ubuf,
1930 unsigned long *sk_offset,
1931 int *num_found)
1933 u64 found_transid;
1934 struct extent_buffer *leaf;
1935 struct btrfs_ioctl_search_header sh;
1936 unsigned long item_off;
1937 unsigned long item_len;
1938 int nritems;
1939 int i;
1940 int slot;
1941 int ret = 0;
1943 leaf = path->nodes[0];
1944 slot = path->slots[0];
1945 nritems = btrfs_header_nritems(leaf);
1947 if (btrfs_header_generation(leaf) > sk->max_transid) {
1948 i = nritems;
1949 goto advance_key;
1951 found_transid = btrfs_header_generation(leaf);
1953 for (i = slot; i < nritems; i++) {
1954 item_off = btrfs_item_ptr_offset(leaf, i);
1955 item_len = btrfs_item_size_nr(leaf, i);
1957 btrfs_item_key_to_cpu(leaf, key, i);
1958 if (!key_in_sk(key, sk))
1959 continue;
1961 if (sizeof(sh) + item_len > *buf_size) {
1962 if (*num_found) {
1963 ret = 1;
1964 goto out;
1968 * return one empty item back for v1, which does not
1969 * handle -EOVERFLOW
1972 *buf_size = sizeof(sh) + item_len;
1973 item_len = 0;
1974 ret = -EOVERFLOW;
1977 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1978 ret = 1;
1979 goto out;
1982 sh.objectid = key->objectid;
1983 sh.offset = key->offset;
1984 sh.type = key->type;
1985 sh.len = item_len;
1986 sh.transid = found_transid;
1988 /* copy search result header */
1989 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1990 ret = -EFAULT;
1991 goto out;
1994 *sk_offset += sizeof(sh);
1996 if (item_len) {
1997 char __user *up = ubuf + *sk_offset;
1998 /* copy the item */
1999 if (read_extent_buffer_to_user(leaf, up,
2000 item_off, item_len)) {
2001 ret = -EFAULT;
2002 goto out;
2005 *sk_offset += item_len;
2007 (*num_found)++;
2009 if (ret) /* -EOVERFLOW from above */
2010 goto out;
2012 if (*num_found >= sk->nr_items) {
2013 ret = 1;
2014 goto out;
2017 advance_key:
2018 ret = 0;
2019 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
2020 key->offset++;
2021 else if (key->type < (u8)-1 && key->type < sk->max_type) {
2022 key->offset = 0;
2023 key->type++;
2024 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
2025 key->offset = 0;
2026 key->type = 0;
2027 key->objectid++;
2028 } else
2029 ret = 1;
2030 out:
2032 * 0: all items from this leaf copied, continue with next
2033 * 1: * more items can be copied, but unused buffer is too small
2034 * * all items were found
2035 * Either way, it will stops the loop which iterates to the next
2036 * leaf
2037 * -EOVERFLOW: item was to large for buffer
2038 * -EFAULT: could not copy extent buffer back to userspace
2040 return ret;
2043 static noinline int search_ioctl(struct inode *inode,
2044 struct btrfs_ioctl_search_key *sk,
2045 size_t *buf_size,
2046 char __user *ubuf)
2048 struct btrfs_root *root;
2049 struct btrfs_key key;
2050 struct btrfs_path *path;
2051 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2052 int ret;
2053 int num_found = 0;
2054 unsigned long sk_offset = 0;
2056 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2057 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2058 return -EOVERFLOW;
2061 path = btrfs_alloc_path();
2062 if (!path)
2063 return -ENOMEM;
2065 if (sk->tree_id == 0) {
2066 /* search the root of the inode that was passed */
2067 root = BTRFS_I(inode)->root;
2068 } else {
2069 key.objectid = sk->tree_id;
2070 key.type = BTRFS_ROOT_ITEM_KEY;
2071 key.offset = (u64)-1;
2072 root = btrfs_read_fs_root_no_name(info, &key);
2073 if (IS_ERR(root)) {
2074 printk(KERN_ERR "BTRFS: could not find root %llu\n",
2075 sk->tree_id);
2076 btrfs_free_path(path);
2077 return -ENOENT;
2081 key.objectid = sk->min_objectid;
2082 key.type = sk->min_type;
2083 key.offset = sk->min_offset;
2085 while (1) {
2086 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2087 if (ret != 0) {
2088 if (ret > 0)
2089 ret = 0;
2090 goto err;
2092 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2093 &sk_offset, &num_found);
2094 btrfs_release_path(path);
2095 if (ret)
2096 break;
2099 if (ret > 0)
2100 ret = 0;
2101 err:
2102 sk->nr_items = num_found;
2103 btrfs_free_path(path);
2104 return ret;
2107 static noinline int btrfs_ioctl_tree_search(struct file *file,
2108 void __user *argp)
2110 struct btrfs_ioctl_search_args __user *uargs;
2111 struct btrfs_ioctl_search_key sk;
2112 struct inode *inode;
2113 int ret;
2114 size_t buf_size;
2116 if (!capable(CAP_SYS_ADMIN))
2117 return -EPERM;
2119 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2121 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2122 return -EFAULT;
2124 buf_size = sizeof(uargs->buf);
2126 inode = file_inode(file);
2127 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2130 * In the origin implementation an overflow is handled by returning a
2131 * search header with a len of zero, so reset ret.
2133 if (ret == -EOVERFLOW)
2134 ret = 0;
2136 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2137 ret = -EFAULT;
2138 return ret;
2141 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2142 void __user *argp)
2144 struct btrfs_ioctl_search_args_v2 __user *uarg;
2145 struct btrfs_ioctl_search_args_v2 args;
2146 struct inode *inode;
2147 int ret;
2148 size_t buf_size;
2149 const size_t buf_limit = 16 * 1024 * 1024;
2151 if (!capable(CAP_SYS_ADMIN))
2152 return -EPERM;
2154 /* copy search header and buffer size */
2155 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2156 if (copy_from_user(&args, uarg, sizeof(args)))
2157 return -EFAULT;
2159 buf_size = args.buf_size;
2161 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2162 return -EOVERFLOW;
2164 /* limit result size to 16MB */
2165 if (buf_size > buf_limit)
2166 buf_size = buf_limit;
2168 inode = file_inode(file);
2169 ret = search_ioctl(inode, &args.key, &buf_size,
2170 (char *)(&uarg->buf[0]));
2171 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2172 ret = -EFAULT;
2173 else if (ret == -EOVERFLOW &&
2174 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2175 ret = -EFAULT;
2177 return ret;
2181 * Search INODE_REFs to identify path name of 'dirid' directory
2182 * in a 'tree_id' tree. and sets path name to 'name'.
2184 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2185 u64 tree_id, u64 dirid, char *name)
2187 struct btrfs_root *root;
2188 struct btrfs_key key;
2189 char *ptr;
2190 int ret = -1;
2191 int slot;
2192 int len;
2193 int total_len = 0;
2194 struct btrfs_inode_ref *iref;
2195 struct extent_buffer *l;
2196 struct btrfs_path *path;
2198 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2199 name[0]='\0';
2200 return 0;
2203 path = btrfs_alloc_path();
2204 if (!path)
2205 return -ENOMEM;
2207 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2209 key.objectid = tree_id;
2210 key.type = BTRFS_ROOT_ITEM_KEY;
2211 key.offset = (u64)-1;
2212 root = btrfs_read_fs_root_no_name(info, &key);
2213 if (IS_ERR(root)) {
2214 printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2215 ret = -ENOENT;
2216 goto out;
2219 key.objectid = dirid;
2220 key.type = BTRFS_INODE_REF_KEY;
2221 key.offset = (u64)-1;
2223 while (1) {
2224 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2225 if (ret < 0)
2226 goto out;
2227 else if (ret > 0) {
2228 ret = btrfs_previous_item(root, path, dirid,
2229 BTRFS_INODE_REF_KEY);
2230 if (ret < 0)
2231 goto out;
2232 else if (ret > 0) {
2233 ret = -ENOENT;
2234 goto out;
2238 l = path->nodes[0];
2239 slot = path->slots[0];
2240 btrfs_item_key_to_cpu(l, &key, slot);
2242 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2243 len = btrfs_inode_ref_name_len(l, iref);
2244 ptr -= len + 1;
2245 total_len += len + 1;
2246 if (ptr < name) {
2247 ret = -ENAMETOOLONG;
2248 goto out;
2251 *(ptr + len) = '/';
2252 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2254 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2255 break;
2257 btrfs_release_path(path);
2258 key.objectid = key.offset;
2259 key.offset = (u64)-1;
2260 dirid = key.objectid;
2262 memmove(name, ptr, total_len);
2263 name[total_len] = '\0';
2264 ret = 0;
2265 out:
2266 btrfs_free_path(path);
2267 return ret;
2270 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2271 void __user *argp)
2273 struct btrfs_ioctl_ino_lookup_args *args;
2274 struct inode *inode;
2275 int ret = 0;
2277 args = memdup_user(argp, sizeof(*args));
2278 if (IS_ERR(args))
2279 return PTR_ERR(args);
2281 inode = file_inode(file);
2284 * Unprivileged query to obtain the containing subvolume root id. The
2285 * path is reset so it's consistent with btrfs_search_path_in_tree.
2287 if (args->treeid == 0)
2288 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2290 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2291 args->name[0] = 0;
2292 goto out;
2295 if (!capable(CAP_SYS_ADMIN)) {
2296 ret = -EPERM;
2297 goto out;
2300 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2301 args->treeid, args->objectid,
2302 args->name);
2304 out:
2305 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2306 ret = -EFAULT;
2308 kfree(args);
2309 return ret;
2312 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2313 void __user *arg)
2315 struct dentry *parent = file->f_path.dentry;
2316 struct dentry *dentry;
2317 struct inode *dir = d_inode(parent);
2318 struct inode *inode;
2319 struct btrfs_root *root = BTRFS_I(dir)->root;
2320 struct btrfs_root *dest = NULL;
2321 struct btrfs_ioctl_vol_args *vol_args;
2322 struct btrfs_trans_handle *trans;
2323 struct btrfs_block_rsv block_rsv;
2324 u64 root_flags;
2325 u64 qgroup_reserved;
2326 int namelen;
2327 int ret;
2328 int err = 0;
2330 vol_args = memdup_user(arg, sizeof(*vol_args));
2331 if (IS_ERR(vol_args))
2332 return PTR_ERR(vol_args);
2334 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2335 namelen = strlen(vol_args->name);
2336 if (strchr(vol_args->name, '/') ||
2337 strncmp(vol_args->name, "..", namelen) == 0) {
2338 err = -EINVAL;
2339 goto out;
2342 err = mnt_want_write_file(file);
2343 if (err)
2344 goto out;
2347 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2348 if (err == -EINTR)
2349 goto out_drop_write;
2350 dentry = lookup_one_len(vol_args->name, parent, namelen);
2351 if (IS_ERR(dentry)) {
2352 err = PTR_ERR(dentry);
2353 goto out_unlock_dir;
2356 if (d_really_is_negative(dentry)) {
2357 err = -ENOENT;
2358 goto out_dput;
2361 inode = d_inode(dentry);
2362 dest = BTRFS_I(inode)->root;
2363 if (!capable(CAP_SYS_ADMIN)) {
2365 * Regular user. Only allow this with a special mount
2366 * option, when the user has write+exec access to the
2367 * subvol root, and when rmdir(2) would have been
2368 * allowed.
2370 * Note that this is _not_ check that the subvol is
2371 * empty or doesn't contain data that we wouldn't
2372 * otherwise be able to delete.
2374 * Users who want to delete empty subvols should try
2375 * rmdir(2).
2377 err = -EPERM;
2378 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2379 goto out_dput;
2382 * Do not allow deletion if the parent dir is the same
2383 * as the dir to be deleted. That means the ioctl
2384 * must be called on the dentry referencing the root
2385 * of the subvol, not a random directory contained
2386 * within it.
2388 err = -EINVAL;
2389 if (root == dest)
2390 goto out_dput;
2392 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2393 if (err)
2394 goto out_dput;
2397 /* check if subvolume may be deleted by a user */
2398 err = btrfs_may_delete(dir, dentry, 1);
2399 if (err)
2400 goto out_dput;
2402 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2403 err = -EINVAL;
2404 goto out_dput;
2407 mutex_lock(&inode->i_mutex);
2410 * Don't allow to delete a subvolume with send in progress. This is
2411 * inside the i_mutex so the error handling that has to drop the bit
2412 * again is not run concurrently.
2414 spin_lock(&dest->root_item_lock);
2415 root_flags = btrfs_root_flags(&dest->root_item);
2416 if (dest->send_in_progress == 0) {
2417 btrfs_set_root_flags(&dest->root_item,
2418 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2419 spin_unlock(&dest->root_item_lock);
2420 } else {
2421 spin_unlock(&dest->root_item_lock);
2422 btrfs_warn(root->fs_info,
2423 "Attempt to delete subvolume %llu during send",
2424 dest->root_key.objectid);
2425 err = -EPERM;
2426 goto out_unlock_inode;
2429 down_write(&root->fs_info->subvol_sem);
2431 err = may_destroy_subvol(dest);
2432 if (err)
2433 goto out_up_write;
2435 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2437 * One for dir inode, two for dir entries, two for root
2438 * ref/backref.
2440 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2441 5, &qgroup_reserved, true);
2442 if (err)
2443 goto out_up_write;
2445 trans = btrfs_start_transaction(root, 0);
2446 if (IS_ERR(trans)) {
2447 err = PTR_ERR(trans);
2448 goto out_release;
2450 trans->block_rsv = &block_rsv;
2451 trans->bytes_reserved = block_rsv.size;
2453 ret = btrfs_unlink_subvol(trans, root, dir,
2454 dest->root_key.objectid,
2455 dentry->d_name.name,
2456 dentry->d_name.len);
2457 if (ret) {
2458 err = ret;
2459 btrfs_abort_transaction(trans, root, ret);
2460 goto out_end_trans;
2463 btrfs_record_root_in_trans(trans, dest);
2465 memset(&dest->root_item.drop_progress, 0,
2466 sizeof(dest->root_item.drop_progress));
2467 dest->root_item.drop_level = 0;
2468 btrfs_set_root_refs(&dest->root_item, 0);
2470 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2471 ret = btrfs_insert_orphan_item(trans,
2472 root->fs_info->tree_root,
2473 dest->root_key.objectid);
2474 if (ret) {
2475 btrfs_abort_transaction(trans, root, ret);
2476 err = ret;
2477 goto out_end_trans;
2481 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2482 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2483 dest->root_key.objectid);
2484 if (ret && ret != -ENOENT) {
2485 btrfs_abort_transaction(trans, root, ret);
2486 err = ret;
2487 goto out_end_trans;
2489 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2490 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2491 dest->root_item.received_uuid,
2492 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2493 dest->root_key.objectid);
2494 if (ret && ret != -ENOENT) {
2495 btrfs_abort_transaction(trans, root, ret);
2496 err = ret;
2497 goto out_end_trans;
2501 out_end_trans:
2502 trans->block_rsv = NULL;
2503 trans->bytes_reserved = 0;
2504 ret = btrfs_end_transaction(trans, root);
2505 if (ret && !err)
2506 err = ret;
2507 inode->i_flags |= S_DEAD;
2508 out_release:
2509 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2510 out_up_write:
2511 up_write(&root->fs_info->subvol_sem);
2512 if (err) {
2513 spin_lock(&dest->root_item_lock);
2514 root_flags = btrfs_root_flags(&dest->root_item);
2515 btrfs_set_root_flags(&dest->root_item,
2516 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2517 spin_unlock(&dest->root_item_lock);
2519 out_unlock_inode:
2520 mutex_unlock(&inode->i_mutex);
2521 if (!err) {
2522 d_invalidate(dentry);
2523 btrfs_invalidate_inodes(dest);
2524 d_delete(dentry);
2525 ASSERT(dest->send_in_progress == 0);
2527 /* the last ref */
2528 if (dest->ino_cache_inode) {
2529 iput(dest->ino_cache_inode);
2530 dest->ino_cache_inode = NULL;
2533 out_dput:
2534 dput(dentry);
2535 out_unlock_dir:
2536 mutex_unlock(&dir->i_mutex);
2537 out_drop_write:
2538 mnt_drop_write_file(file);
2539 out:
2540 kfree(vol_args);
2541 return err;
2544 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2546 struct inode *inode = file_inode(file);
2547 struct btrfs_root *root = BTRFS_I(inode)->root;
2548 struct btrfs_ioctl_defrag_range_args *range;
2549 int ret;
2551 ret = mnt_want_write_file(file);
2552 if (ret)
2553 return ret;
2555 if (btrfs_root_readonly(root)) {
2556 ret = -EROFS;
2557 goto out;
2560 switch (inode->i_mode & S_IFMT) {
2561 case S_IFDIR:
2562 if (!capable(CAP_SYS_ADMIN)) {
2563 ret = -EPERM;
2564 goto out;
2566 ret = btrfs_defrag_root(root);
2567 if (ret)
2568 goto out;
2569 ret = btrfs_defrag_root(root->fs_info->extent_root);
2570 break;
2571 case S_IFREG:
2572 if (!(file->f_mode & FMODE_WRITE)) {
2573 ret = -EINVAL;
2574 goto out;
2577 range = kzalloc(sizeof(*range), GFP_KERNEL);
2578 if (!range) {
2579 ret = -ENOMEM;
2580 goto out;
2583 if (argp) {
2584 if (copy_from_user(range, argp,
2585 sizeof(*range))) {
2586 ret = -EFAULT;
2587 kfree(range);
2588 goto out;
2590 /* compression requires us to start the IO */
2591 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2592 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2593 range->extent_thresh = (u32)-1;
2595 } else {
2596 /* the rest are all set to zero by kzalloc */
2597 range->len = (u64)-1;
2599 ret = btrfs_defrag_file(file_inode(file), file,
2600 range, 0, 0);
2601 if (ret > 0)
2602 ret = 0;
2603 kfree(range);
2604 break;
2605 default:
2606 ret = -EINVAL;
2608 out:
2609 mnt_drop_write_file(file);
2610 return ret;
2613 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2615 struct btrfs_ioctl_vol_args *vol_args;
2616 int ret;
2618 if (!capable(CAP_SYS_ADMIN))
2619 return -EPERM;
2621 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2622 1)) {
2623 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2626 mutex_lock(&root->fs_info->volume_mutex);
2627 vol_args = memdup_user(arg, sizeof(*vol_args));
2628 if (IS_ERR(vol_args)) {
2629 ret = PTR_ERR(vol_args);
2630 goto out;
2633 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2634 ret = btrfs_init_new_device(root, vol_args->name);
2636 if (!ret)
2637 btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2639 kfree(vol_args);
2640 out:
2641 mutex_unlock(&root->fs_info->volume_mutex);
2642 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2643 return ret;
2646 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2648 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2649 struct btrfs_ioctl_vol_args *vol_args;
2650 int ret;
2652 if (!capable(CAP_SYS_ADMIN))
2653 return -EPERM;
2655 ret = mnt_want_write_file(file);
2656 if (ret)
2657 return ret;
2659 vol_args = memdup_user(arg, sizeof(*vol_args));
2660 if (IS_ERR(vol_args)) {
2661 ret = PTR_ERR(vol_args);
2662 goto err_drop;
2665 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2667 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2668 1)) {
2669 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2670 goto out;
2673 mutex_lock(&root->fs_info->volume_mutex);
2674 ret = btrfs_rm_device(root, vol_args->name);
2675 mutex_unlock(&root->fs_info->volume_mutex);
2676 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2678 if (!ret)
2679 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2681 out:
2682 kfree(vol_args);
2683 err_drop:
2684 mnt_drop_write_file(file);
2685 return ret;
2688 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2690 struct btrfs_ioctl_fs_info_args *fi_args;
2691 struct btrfs_device *device;
2692 struct btrfs_device *next;
2693 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2694 int ret = 0;
2696 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2697 if (!fi_args)
2698 return -ENOMEM;
2700 mutex_lock(&fs_devices->device_list_mutex);
2701 fi_args->num_devices = fs_devices->num_devices;
2702 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2704 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2705 if (device->devid > fi_args->max_id)
2706 fi_args->max_id = device->devid;
2708 mutex_unlock(&fs_devices->device_list_mutex);
2710 fi_args->nodesize = root->fs_info->super_copy->nodesize;
2711 fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2712 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2714 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2715 ret = -EFAULT;
2717 kfree(fi_args);
2718 return ret;
2721 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2723 struct btrfs_ioctl_dev_info_args *di_args;
2724 struct btrfs_device *dev;
2725 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2726 int ret = 0;
2727 char *s_uuid = NULL;
2729 di_args = memdup_user(arg, sizeof(*di_args));
2730 if (IS_ERR(di_args))
2731 return PTR_ERR(di_args);
2733 if (!btrfs_is_empty_uuid(di_args->uuid))
2734 s_uuid = di_args->uuid;
2736 mutex_lock(&fs_devices->device_list_mutex);
2737 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2739 if (!dev) {
2740 ret = -ENODEV;
2741 goto out;
2744 di_args->devid = dev->devid;
2745 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2746 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2747 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2748 if (dev->name) {
2749 struct rcu_string *name;
2751 rcu_read_lock();
2752 name = rcu_dereference(dev->name);
2753 strncpy(di_args->path, name->str, sizeof(di_args->path));
2754 rcu_read_unlock();
2755 di_args->path[sizeof(di_args->path) - 1] = 0;
2756 } else {
2757 di_args->path[0] = '\0';
2760 out:
2761 mutex_unlock(&fs_devices->device_list_mutex);
2762 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2763 ret = -EFAULT;
2765 kfree(di_args);
2766 return ret;
2769 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2771 struct page *page;
2772 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2774 page = grab_cache_page(inode->i_mapping, index);
2775 if (!page)
2776 return NULL;
2778 if (!PageUptodate(page)) {
2779 if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2781 return NULL;
2782 lock_page(page);
2783 if (!PageUptodate(page)) {
2784 unlock_page(page);
2785 page_cache_release(page);
2786 return NULL;
2789 unlock_page(page);
2791 return page;
2794 static int gather_extent_pages(struct inode *inode, struct page **pages,
2795 int num_pages, u64 off)
2797 int i;
2798 pgoff_t index = off >> PAGE_CACHE_SHIFT;
2800 for (i = 0; i < num_pages; i++) {
2801 pages[i] = extent_same_get_page(inode, index + i);
2802 if (!pages[i])
2803 return -ENOMEM;
2805 return 0;
2808 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2810 /* do any pending delalloc/csum calc on src, one way or
2811 another, and lock file content */
2812 while (1) {
2813 struct btrfs_ordered_extent *ordered;
2814 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2815 ordered = btrfs_lookup_first_ordered_extent(inode,
2816 off + len - 1);
2817 if ((!ordered ||
2818 ordered->file_offset + ordered->len <= off ||
2819 ordered->file_offset >= off + len) &&
2820 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2821 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2822 if (ordered)
2823 btrfs_put_ordered_extent(ordered);
2824 break;
2826 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2827 if (ordered)
2828 btrfs_put_ordered_extent(ordered);
2829 btrfs_wait_ordered_range(inode, off, len);
2833 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2835 mutex_unlock(&inode1->i_mutex);
2836 mutex_unlock(&inode2->i_mutex);
2839 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2841 if (inode1 < inode2)
2842 swap(inode1, inode2);
2844 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2845 if (inode1 != inode2)
2846 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2849 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2850 struct inode *inode2, u64 loff2, u64 len)
2852 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2853 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2856 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2857 struct inode *inode2, u64 loff2, u64 len)
2859 if (inode1 < inode2) {
2860 swap(inode1, inode2);
2861 swap(loff1, loff2);
2863 lock_extent_range(inode1, loff1, len);
2864 if (inode1 != inode2)
2865 lock_extent_range(inode2, loff2, len);
2868 struct cmp_pages {
2869 int num_pages;
2870 struct page **src_pages;
2871 struct page **dst_pages;
2874 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2876 int i;
2877 struct page *pg;
2879 for (i = 0; i < cmp->num_pages; i++) {
2880 pg = cmp->src_pages[i];
2881 if (pg)
2882 page_cache_release(pg);
2883 pg = cmp->dst_pages[i];
2884 if (pg)
2885 page_cache_release(pg);
2887 kfree(cmp->src_pages);
2888 kfree(cmp->dst_pages);
2891 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2892 struct inode *dst, u64 dst_loff,
2893 u64 len, struct cmp_pages *cmp)
2895 int ret;
2896 int num_pages = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
2897 struct page **src_pgarr, **dst_pgarr;
2900 * We must gather up all the pages before we initiate our
2901 * extent locking. We use an array for the page pointers. Size
2902 * of the array is bounded by len, which is in turn bounded by
2903 * BTRFS_MAX_DEDUPE_LEN.
2905 src_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS);
2906 dst_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS);
2907 if (!src_pgarr || !dst_pgarr) {
2908 kfree(src_pgarr);
2909 kfree(dst_pgarr);
2910 return -ENOMEM;
2912 cmp->num_pages = num_pages;
2913 cmp->src_pages = src_pgarr;
2914 cmp->dst_pages = dst_pgarr;
2916 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
2917 if (ret)
2918 goto out;
2920 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
2922 out:
2923 if (ret)
2924 btrfs_cmp_data_free(cmp);
2925 return 0;
2928 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2929 u64 dst_loff, u64 len, struct cmp_pages *cmp)
2931 int ret = 0;
2932 int i;
2933 struct page *src_page, *dst_page;
2934 unsigned int cmp_len = PAGE_CACHE_SIZE;
2935 void *addr, *dst_addr;
2937 i = 0;
2938 while (len) {
2939 if (len < PAGE_CACHE_SIZE)
2940 cmp_len = len;
2942 BUG_ON(i >= cmp->num_pages);
2944 src_page = cmp->src_pages[i];
2945 dst_page = cmp->dst_pages[i];
2947 addr = kmap_atomic(src_page);
2948 dst_addr = kmap_atomic(dst_page);
2950 flush_dcache_page(src_page);
2951 flush_dcache_page(dst_page);
2953 if (memcmp(addr, dst_addr, cmp_len))
2954 ret = BTRFS_SAME_DATA_DIFFERS;
2956 kunmap_atomic(addr);
2957 kunmap_atomic(dst_addr);
2959 if (ret)
2960 break;
2962 len -= cmp_len;
2963 i++;
2966 return ret;
2969 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
2970 u64 olen)
2972 u64 len = *plen;
2973 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2975 if (off + olen > inode->i_size || off + olen < off)
2976 return -EINVAL;
2978 /* if we extend to eof, continue to block boundary */
2979 if (off + len == inode->i_size)
2980 *plen = len = ALIGN(inode->i_size, bs) - off;
2982 /* Check that we are block aligned - btrfs_clone() requires this */
2983 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2984 return -EINVAL;
2986 return 0;
2989 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
2990 struct inode *dst, u64 dst_loff)
2992 int ret;
2993 u64 len = olen;
2994 struct cmp_pages cmp;
2995 int same_inode = 0;
2996 u64 same_lock_start = 0;
2997 u64 same_lock_len = 0;
2999 if (src == dst)
3000 same_inode = 1;
3002 if (len == 0)
3003 return 0;
3005 if (same_inode) {
3006 mutex_lock(&src->i_mutex);
3008 ret = extent_same_check_offsets(src, loff, &len, olen);
3009 if (ret)
3010 goto out_unlock;
3013 * Single inode case wants the same checks, except we
3014 * don't want our length pushed out past i_size as
3015 * comparing that data range makes no sense.
3017 * extent_same_check_offsets() will do this for an
3018 * unaligned length at i_size, so catch it here and
3019 * reject the request.
3021 * This effectively means we require aligned extents
3022 * for the single-inode case, whereas the other cases
3023 * allow an unaligned length so long as it ends at
3024 * i_size.
3026 if (len != olen) {
3027 ret = -EINVAL;
3028 goto out_unlock;
3031 /* Check for overlapping ranges */
3032 if (dst_loff + len > loff && dst_loff < loff + len) {
3033 ret = -EINVAL;
3034 goto out_unlock;
3037 same_lock_start = min_t(u64, loff, dst_loff);
3038 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3039 } else {
3040 btrfs_double_inode_lock(src, dst);
3042 ret = extent_same_check_offsets(src, loff, &len, olen);
3043 if (ret)
3044 goto out_unlock;
3046 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3047 if (ret)
3048 goto out_unlock;
3051 /* don't make the dst file partly checksummed */
3052 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3053 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3054 ret = -EINVAL;
3055 goto out_unlock;
3058 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3059 if (ret)
3060 goto out_unlock;
3062 if (same_inode)
3063 lock_extent_range(src, same_lock_start, same_lock_len);
3064 else
3065 btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
3067 /* pass original length for comparison so we stay within i_size */
3068 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3069 if (ret == 0)
3070 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3072 if (same_inode)
3073 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3074 same_lock_start + same_lock_len - 1);
3075 else
3076 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3078 btrfs_cmp_data_free(&cmp);
3079 out_unlock:
3080 if (same_inode)
3081 mutex_unlock(&src->i_mutex);
3082 else
3083 btrfs_double_inode_unlock(src, dst);
3085 return ret;
3088 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024)
3090 static long btrfs_ioctl_file_extent_same(struct file *file,
3091 struct btrfs_ioctl_same_args __user *argp)
3093 struct btrfs_ioctl_same_args *same = NULL;
3094 struct btrfs_ioctl_same_extent_info *info;
3095 struct inode *src = file_inode(file);
3096 u64 off;
3097 u64 len;
3098 int i;
3099 int ret;
3100 unsigned long size;
3101 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3102 bool is_admin = capable(CAP_SYS_ADMIN);
3103 u16 count;
3105 if (!(file->f_mode & FMODE_READ))
3106 return -EINVAL;
3108 ret = mnt_want_write_file(file);
3109 if (ret)
3110 return ret;
3112 if (get_user(count, &argp->dest_count)) {
3113 ret = -EFAULT;
3114 goto out;
3117 size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
3119 same = memdup_user(argp, size);
3121 if (IS_ERR(same)) {
3122 ret = PTR_ERR(same);
3123 same = NULL;
3124 goto out;
3127 off = same->logical_offset;
3128 len = same->length;
3131 * Limit the total length we will dedupe for each operation.
3132 * This is intended to bound the total time spent in this
3133 * ioctl to something sane.
3135 if (len > BTRFS_MAX_DEDUPE_LEN)
3136 len = BTRFS_MAX_DEDUPE_LEN;
3138 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
3140 * Btrfs does not support blocksize < page_size. As a
3141 * result, btrfs_cmp_data() won't correctly handle
3142 * this situation without an update.
3144 ret = -EINVAL;
3145 goto out;
3148 ret = -EISDIR;
3149 if (S_ISDIR(src->i_mode))
3150 goto out;
3152 ret = -EACCES;
3153 if (!S_ISREG(src->i_mode))
3154 goto out;
3156 /* pre-format output fields to sane values */
3157 for (i = 0; i < count; i++) {
3158 same->info[i].bytes_deduped = 0ULL;
3159 same->info[i].status = 0;
3162 for (i = 0, info = same->info; i < count; i++, info++) {
3163 struct inode *dst;
3164 struct fd dst_file = fdget(info->fd);
3165 if (!dst_file.file) {
3166 info->status = -EBADF;
3167 continue;
3169 dst = file_inode(dst_file.file);
3171 if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
3172 info->status = -EINVAL;
3173 } else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
3174 info->status = -EXDEV;
3175 } else if (S_ISDIR(dst->i_mode)) {
3176 info->status = -EISDIR;
3177 } else if (!S_ISREG(dst->i_mode)) {
3178 info->status = -EACCES;
3179 } else {
3180 info->status = btrfs_extent_same(src, off, len, dst,
3181 info->logical_offset);
3182 if (info->status == 0)
3183 info->bytes_deduped += len;
3185 fdput(dst_file);
3188 ret = copy_to_user(argp, same, size);
3189 if (ret)
3190 ret = -EFAULT;
3192 out:
3193 mnt_drop_write_file(file);
3194 kfree(same);
3195 return ret;
3198 /* Helper to check and see if this root currently has a ref on the given disk
3199 * bytenr. If it does then we need to update the quota for this root. This
3200 * doesn't do anything if quotas aren't enabled.
3202 static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3203 u64 disko)
3205 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
3206 struct ulist *roots;
3207 struct ulist_iterator uiter;
3208 struct ulist_node *root_node = NULL;
3209 int ret;
3211 if (!root->fs_info->quota_enabled)
3212 return 1;
3214 btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3215 ret = btrfs_find_all_roots(trans, root->fs_info, disko,
3216 tree_mod_seq_elem.seq, &roots);
3217 if (ret < 0)
3218 goto out;
3219 ret = 0;
3220 ULIST_ITER_INIT(&uiter);
3221 while ((root_node = ulist_next(roots, &uiter))) {
3222 if (root_node->val == root->objectid) {
3223 ret = 1;
3224 break;
3227 ulist_free(roots);
3228 out:
3229 btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3230 return ret;
3233 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3234 struct inode *inode,
3235 u64 endoff,
3236 const u64 destoff,
3237 const u64 olen,
3238 int no_time_update)
3240 struct btrfs_root *root = BTRFS_I(inode)->root;
3241 int ret;
3243 inode_inc_iversion(inode);
3244 if (!no_time_update)
3245 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3247 * We round up to the block size at eof when determining which
3248 * extents to clone above, but shouldn't round up the file size.
3250 if (endoff > destoff + olen)
3251 endoff = destoff + olen;
3252 if (endoff > inode->i_size)
3253 btrfs_i_size_write(inode, endoff);
3255 ret = btrfs_update_inode(trans, root, inode);
3256 if (ret) {
3257 btrfs_abort_transaction(trans, root, ret);
3258 btrfs_end_transaction(trans, root);
3259 goto out;
3261 ret = btrfs_end_transaction(trans, root);
3262 out:
3263 return ret;
3266 static void clone_update_extent_map(struct inode *inode,
3267 const struct btrfs_trans_handle *trans,
3268 const struct btrfs_path *path,
3269 const u64 hole_offset,
3270 const u64 hole_len)
3272 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3273 struct extent_map *em;
3274 int ret;
3276 em = alloc_extent_map();
3277 if (!em) {
3278 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3279 &BTRFS_I(inode)->runtime_flags);
3280 return;
3283 if (path) {
3284 struct btrfs_file_extent_item *fi;
3286 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3287 struct btrfs_file_extent_item);
3288 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3289 em->generation = -1;
3290 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3291 BTRFS_FILE_EXTENT_INLINE)
3292 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3293 &BTRFS_I(inode)->runtime_flags);
3294 } else {
3295 em->start = hole_offset;
3296 em->len = hole_len;
3297 em->ram_bytes = em->len;
3298 em->orig_start = hole_offset;
3299 em->block_start = EXTENT_MAP_HOLE;
3300 em->block_len = 0;
3301 em->orig_block_len = 0;
3302 em->compress_type = BTRFS_COMPRESS_NONE;
3303 em->generation = trans->transid;
3306 while (1) {
3307 write_lock(&em_tree->lock);
3308 ret = add_extent_mapping(em_tree, em, 1);
3309 write_unlock(&em_tree->lock);
3310 if (ret != -EEXIST) {
3311 free_extent_map(em);
3312 break;
3314 btrfs_drop_extent_cache(inode, em->start,
3315 em->start + em->len - 1, 0);
3318 if (ret)
3319 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3320 &BTRFS_I(inode)->runtime_flags);
3324 * btrfs_clone() - clone a range from inode file to another
3326 * @src: Inode to clone from
3327 * @inode: Inode to clone to
3328 * @off: Offset within source to start clone from
3329 * @olen: Original length, passed by user, of range to clone
3330 * @olen_aligned: Block-aligned value of olen
3331 * @destoff: Offset within @inode to start clone
3332 * @no_time_update: Whether to update mtime/ctime on the target inode
3334 static int btrfs_clone(struct inode *src, struct inode *inode,
3335 const u64 off, const u64 olen, const u64 olen_aligned,
3336 const u64 destoff, int no_time_update)
3338 struct btrfs_root *root = BTRFS_I(inode)->root;
3339 struct btrfs_path *path = NULL;
3340 struct extent_buffer *leaf;
3341 struct btrfs_trans_handle *trans;
3342 char *buf = NULL;
3343 struct btrfs_key key;
3344 u32 nritems;
3345 int slot;
3346 int ret;
3347 int no_quota;
3348 const u64 len = olen_aligned;
3349 u64 last_disko = 0;
3350 u64 last_dest_end = destoff;
3352 ret = -ENOMEM;
3353 buf = vmalloc(root->nodesize);
3354 if (!buf)
3355 return ret;
3357 path = btrfs_alloc_path();
3358 if (!path) {
3359 vfree(buf);
3360 return ret;
3363 path->reada = 2;
3364 /* clone data */
3365 key.objectid = btrfs_ino(src);
3366 key.type = BTRFS_EXTENT_DATA_KEY;
3367 key.offset = off;
3369 while (1) {
3370 u64 next_key_min_offset = key.offset + 1;
3373 * note the key will change type as we walk through the
3374 * tree.
3376 path->leave_spinning = 1;
3377 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3378 0, 0);
3379 if (ret < 0)
3380 goto out;
3382 * First search, if no extent item that starts at offset off was
3383 * found but the previous item is an extent item, it's possible
3384 * it might overlap our target range, therefore process it.
3386 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3387 btrfs_item_key_to_cpu(path->nodes[0], &key,
3388 path->slots[0] - 1);
3389 if (key.type == BTRFS_EXTENT_DATA_KEY)
3390 path->slots[0]--;
3393 nritems = btrfs_header_nritems(path->nodes[0]);
3394 process_slot:
3395 no_quota = 1;
3396 if (path->slots[0] >= nritems) {
3397 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3398 if (ret < 0)
3399 goto out;
3400 if (ret > 0)
3401 break;
3402 nritems = btrfs_header_nritems(path->nodes[0]);
3404 leaf = path->nodes[0];
3405 slot = path->slots[0];
3407 btrfs_item_key_to_cpu(leaf, &key, slot);
3408 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3409 key.objectid != btrfs_ino(src))
3410 break;
3412 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3413 struct btrfs_file_extent_item *extent;
3414 int type;
3415 u32 size;
3416 struct btrfs_key new_key;
3417 u64 disko = 0, diskl = 0;
3418 u64 datao = 0, datal = 0;
3419 u8 comp;
3420 u64 drop_start;
3422 extent = btrfs_item_ptr(leaf, slot,
3423 struct btrfs_file_extent_item);
3424 comp = btrfs_file_extent_compression(leaf, extent);
3425 type = btrfs_file_extent_type(leaf, extent);
3426 if (type == BTRFS_FILE_EXTENT_REG ||
3427 type == BTRFS_FILE_EXTENT_PREALLOC) {
3428 disko = btrfs_file_extent_disk_bytenr(leaf,
3429 extent);
3430 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3431 extent);
3432 datao = btrfs_file_extent_offset(leaf, extent);
3433 datal = btrfs_file_extent_num_bytes(leaf,
3434 extent);
3435 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3436 /* take upper bound, may be compressed */
3437 datal = btrfs_file_extent_ram_bytes(leaf,
3438 extent);
3442 * The first search might have left us at an extent
3443 * item that ends before our target range's start, can
3444 * happen if we have holes and NO_HOLES feature enabled.
3446 if (key.offset + datal <= off) {
3447 path->slots[0]++;
3448 goto process_slot;
3449 } else if (key.offset >= off + len) {
3450 break;
3452 next_key_min_offset = key.offset + datal;
3453 size = btrfs_item_size_nr(leaf, slot);
3454 read_extent_buffer(leaf, buf,
3455 btrfs_item_ptr_offset(leaf, slot),
3456 size);
3458 btrfs_release_path(path);
3459 path->leave_spinning = 0;
3461 memcpy(&new_key, &key, sizeof(new_key));
3462 new_key.objectid = btrfs_ino(inode);
3463 if (off <= key.offset)
3464 new_key.offset = key.offset + destoff - off;
3465 else
3466 new_key.offset = destoff;
3469 * Deal with a hole that doesn't have an extent item
3470 * that represents it (NO_HOLES feature enabled).
3471 * This hole is either in the middle of the cloning
3472 * range or at the beginning (fully overlaps it or
3473 * partially overlaps it).
3475 if (new_key.offset != last_dest_end)
3476 drop_start = last_dest_end;
3477 else
3478 drop_start = new_key.offset;
3481 * 1 - adjusting old extent (we may have to split it)
3482 * 1 - add new extent
3483 * 1 - inode update
3485 trans = btrfs_start_transaction(root, 3);
3486 if (IS_ERR(trans)) {
3487 ret = PTR_ERR(trans);
3488 goto out;
3491 if (type == BTRFS_FILE_EXTENT_REG ||
3492 type == BTRFS_FILE_EXTENT_PREALLOC) {
3494 * a | --- range to clone ---| b
3495 * | ------------- extent ------------- |
3498 /* subtract range b */
3499 if (key.offset + datal > off + len)
3500 datal = off + len - key.offset;
3502 /* subtract range a */
3503 if (off > key.offset) {
3504 datao += off - key.offset;
3505 datal -= off - key.offset;
3508 ret = btrfs_drop_extents(trans, root, inode,
3509 drop_start,
3510 new_key.offset + datal,
3512 if (ret) {
3513 if (ret != -EOPNOTSUPP)
3514 btrfs_abort_transaction(trans,
3515 root, ret);
3516 btrfs_end_transaction(trans, root);
3517 goto out;
3520 ret = btrfs_insert_empty_item(trans, root, path,
3521 &new_key, size);
3522 if (ret) {
3523 btrfs_abort_transaction(trans, root,
3524 ret);
3525 btrfs_end_transaction(trans, root);
3526 goto out;
3529 leaf = path->nodes[0];
3530 slot = path->slots[0];
3531 write_extent_buffer(leaf, buf,
3532 btrfs_item_ptr_offset(leaf, slot),
3533 size);
3535 extent = btrfs_item_ptr(leaf, slot,
3536 struct btrfs_file_extent_item);
3538 /* disko == 0 means it's a hole */
3539 if (!disko)
3540 datao = 0;
3542 btrfs_set_file_extent_offset(leaf, extent,
3543 datao);
3544 btrfs_set_file_extent_num_bytes(leaf, extent,
3545 datal);
3548 * We need to look up the roots that point at
3549 * this bytenr and see if the new root does. If
3550 * it does not we need to make sure we update
3551 * quotas appropriately.
3553 if (disko && root != BTRFS_I(src)->root &&
3554 disko != last_disko) {
3555 no_quota = check_ref(trans, root,
3556 disko);
3557 if (no_quota < 0) {
3558 btrfs_abort_transaction(trans,
3559 root,
3560 ret);
3561 btrfs_end_transaction(trans,
3562 root);
3563 ret = no_quota;
3564 goto out;
3568 if (disko) {
3569 inode_add_bytes(inode, datal);
3570 ret = btrfs_inc_extent_ref(trans, root,
3571 disko, diskl, 0,
3572 root->root_key.objectid,
3573 btrfs_ino(inode),
3574 new_key.offset - datao,
3575 no_quota);
3576 if (ret) {
3577 btrfs_abort_transaction(trans,
3578 root,
3579 ret);
3580 btrfs_end_transaction(trans,
3581 root);
3582 goto out;
3586 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3587 u64 skip = 0;
3588 u64 trim = 0;
3589 u64 aligned_end = 0;
3592 * Don't copy an inline extent into an offset
3593 * greater than zero. Having an inline extent
3594 * at such an offset results in chaos as btrfs
3595 * isn't prepared for such cases. Just skip
3596 * this case for the same reasons as commented
3597 * at btrfs_ioctl_clone().
3599 if (last_dest_end > 0) {
3600 ret = -EOPNOTSUPP;
3601 btrfs_end_transaction(trans, root);
3602 goto out;
3605 if (off > key.offset) {
3606 skip = off - key.offset;
3607 new_key.offset += skip;
3610 if (key.offset + datal > off + len)
3611 trim = key.offset + datal - (off + len);
3613 if (comp && (skip || trim)) {
3614 ret = -EINVAL;
3615 btrfs_end_transaction(trans, root);
3616 goto out;
3618 size -= skip + trim;
3619 datal -= skip + trim;
3621 aligned_end = ALIGN(new_key.offset + datal,
3622 root->sectorsize);
3623 ret = btrfs_drop_extents(trans, root, inode,
3624 drop_start,
3625 aligned_end,
3627 if (ret) {
3628 if (ret != -EOPNOTSUPP)
3629 btrfs_abort_transaction(trans,
3630 root, ret);
3631 btrfs_end_transaction(trans, root);
3632 goto out;
3635 ret = btrfs_insert_empty_item(trans, root, path,
3636 &new_key, size);
3637 if (ret) {
3638 btrfs_abort_transaction(trans, root,
3639 ret);
3640 btrfs_end_transaction(trans, root);
3641 goto out;
3644 if (skip) {
3645 u32 start =
3646 btrfs_file_extent_calc_inline_size(0);
3647 memmove(buf+start, buf+start+skip,
3648 datal);
3651 leaf = path->nodes[0];
3652 slot = path->slots[0];
3653 write_extent_buffer(leaf, buf,
3654 btrfs_item_ptr_offset(leaf, slot),
3655 size);
3656 inode_add_bytes(inode, datal);
3659 /* If we have an implicit hole (NO_HOLES feature). */
3660 if (drop_start < new_key.offset)
3661 clone_update_extent_map(inode, trans,
3662 NULL, drop_start,
3663 new_key.offset - drop_start);
3665 clone_update_extent_map(inode, trans, path, 0, 0);
3667 btrfs_mark_buffer_dirty(leaf);
3668 btrfs_release_path(path);
3670 last_dest_end = ALIGN(new_key.offset + datal,
3671 root->sectorsize);
3672 ret = clone_finish_inode_update(trans, inode,
3673 last_dest_end,
3674 destoff, olen,
3675 no_time_update);
3676 if (ret)
3677 goto out;
3678 if (new_key.offset + datal >= destoff + len)
3679 break;
3681 btrfs_release_path(path);
3682 key.offset = next_key_min_offset;
3684 ret = 0;
3686 if (last_dest_end < destoff + len) {
3688 * We have an implicit hole (NO_HOLES feature is enabled) that
3689 * fully or partially overlaps our cloning range at its end.
3691 btrfs_release_path(path);
3694 * 1 - remove extent(s)
3695 * 1 - inode update
3697 trans = btrfs_start_transaction(root, 2);
3698 if (IS_ERR(trans)) {
3699 ret = PTR_ERR(trans);
3700 goto out;
3702 ret = btrfs_drop_extents(trans, root, inode,
3703 last_dest_end, destoff + len, 1);
3704 if (ret) {
3705 if (ret != -EOPNOTSUPP)
3706 btrfs_abort_transaction(trans, root, ret);
3707 btrfs_end_transaction(trans, root);
3708 goto out;
3710 clone_update_extent_map(inode, trans, NULL, last_dest_end,
3711 destoff + len - last_dest_end);
3712 ret = clone_finish_inode_update(trans, inode, destoff + len,
3713 destoff, olen, no_time_update);
3716 out:
3717 btrfs_free_path(path);
3718 vfree(buf);
3719 return ret;
3722 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3723 u64 off, u64 olen, u64 destoff)
3725 struct inode *inode = file_inode(file);
3726 struct btrfs_root *root = BTRFS_I(inode)->root;
3727 struct fd src_file;
3728 struct inode *src;
3729 int ret;
3730 u64 len = olen;
3731 u64 bs = root->fs_info->sb->s_blocksize;
3732 int same_inode = 0;
3735 * TODO:
3736 * - split compressed inline extents. annoying: we need to
3737 * decompress into destination's address_space (the file offset
3738 * may change, so source mapping won't do), then recompress (or
3739 * otherwise reinsert) a subrange.
3741 * - split destination inode's inline extents. The inline extents can
3742 * be either compressed or non-compressed.
3745 /* the destination must be opened for writing */
3746 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3747 return -EINVAL;
3749 if (btrfs_root_readonly(root))
3750 return -EROFS;
3752 ret = mnt_want_write_file(file);
3753 if (ret)
3754 return ret;
3756 src_file = fdget(srcfd);
3757 if (!src_file.file) {
3758 ret = -EBADF;
3759 goto out_drop_write;
3762 ret = -EXDEV;
3763 if (src_file.file->f_path.mnt != file->f_path.mnt)
3764 goto out_fput;
3766 src = file_inode(src_file.file);
3768 ret = -EINVAL;
3769 if (src == inode)
3770 same_inode = 1;
3772 /* the src must be open for reading */
3773 if (!(src_file.file->f_mode & FMODE_READ))
3774 goto out_fput;
3776 /* don't make the dst file partly checksummed */
3777 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3778 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3779 goto out_fput;
3781 ret = -EISDIR;
3782 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3783 goto out_fput;
3785 ret = -EXDEV;
3786 if (src->i_sb != inode->i_sb)
3787 goto out_fput;
3789 if (!same_inode) {
3790 if (inode < src) {
3791 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3792 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3793 } else {
3794 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3795 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3797 } else {
3798 mutex_lock(&src->i_mutex);
3801 /* determine range to clone */
3802 ret = -EINVAL;
3803 if (off + len > src->i_size || off + len < off)
3804 goto out_unlock;
3805 if (len == 0)
3806 olen = len = src->i_size - off;
3807 /* if we extend to eof, continue to block boundary */
3808 if (off + len == src->i_size)
3809 len = ALIGN(src->i_size, bs) - off;
3811 if (len == 0) {
3812 ret = 0;
3813 goto out_unlock;
3816 /* verify the end result is block aligned */
3817 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3818 !IS_ALIGNED(destoff, bs))
3819 goto out_unlock;
3821 /* verify if ranges are overlapped within the same file */
3822 if (same_inode) {
3823 if (destoff + len > off && destoff < off + len)
3824 goto out_unlock;
3827 if (destoff > inode->i_size) {
3828 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3829 if (ret)
3830 goto out_unlock;
3834 * Lock the target range too. Right after we replace the file extent
3835 * items in the fs tree (which now point to the cloned data), we might
3836 * have a worker replace them with extent items relative to a write
3837 * operation that was issued before this clone operation (i.e. confront
3838 * with inode.c:btrfs_finish_ordered_io).
3840 if (same_inode) {
3841 u64 lock_start = min_t(u64, off, destoff);
3842 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3844 lock_extent_range(src, lock_start, lock_len);
3845 } else {
3846 lock_extent_range(src, off, len);
3847 lock_extent_range(inode, destoff, len);
3850 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3852 if (same_inode) {
3853 u64 lock_start = min_t(u64, off, destoff);
3854 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3856 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3857 } else {
3858 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3859 unlock_extent(&BTRFS_I(inode)->io_tree, destoff,
3860 destoff + len - 1);
3863 * Truncate page cache pages so that future reads will see the cloned
3864 * data immediately and not the previous data.
3866 truncate_inode_pages_range(&inode->i_data, destoff,
3867 PAGE_CACHE_ALIGN(destoff + len) - 1);
3868 out_unlock:
3869 if (!same_inode) {
3870 if (inode < src) {
3871 mutex_unlock(&src->i_mutex);
3872 mutex_unlock(&inode->i_mutex);
3873 } else {
3874 mutex_unlock(&inode->i_mutex);
3875 mutex_unlock(&src->i_mutex);
3877 } else {
3878 mutex_unlock(&src->i_mutex);
3880 out_fput:
3881 fdput(src_file);
3882 out_drop_write:
3883 mnt_drop_write_file(file);
3884 return ret;
3887 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3889 struct btrfs_ioctl_clone_range_args args;
3891 if (copy_from_user(&args, argp, sizeof(args)))
3892 return -EFAULT;
3893 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3894 args.src_length, args.dest_offset);
3898 * there are many ways the trans_start and trans_end ioctls can lead
3899 * to deadlocks. They should only be used by applications that
3900 * basically own the machine, and have a very in depth understanding
3901 * of all the possible deadlocks and enospc problems.
3903 static long btrfs_ioctl_trans_start(struct file *file)
3905 struct inode *inode = file_inode(file);
3906 struct btrfs_root *root = BTRFS_I(inode)->root;
3907 struct btrfs_trans_handle *trans;
3908 int ret;
3910 ret = -EPERM;
3911 if (!capable(CAP_SYS_ADMIN))
3912 goto out;
3914 ret = -EINPROGRESS;
3915 if (file->private_data)
3916 goto out;
3918 ret = -EROFS;
3919 if (btrfs_root_readonly(root))
3920 goto out;
3922 ret = mnt_want_write_file(file);
3923 if (ret)
3924 goto out;
3926 atomic_inc(&root->fs_info->open_ioctl_trans);
3928 ret = -ENOMEM;
3929 trans = btrfs_start_ioctl_transaction(root);
3930 if (IS_ERR(trans))
3931 goto out_drop;
3933 file->private_data = trans;
3934 return 0;
3936 out_drop:
3937 atomic_dec(&root->fs_info->open_ioctl_trans);
3938 mnt_drop_write_file(file);
3939 out:
3940 return ret;
3943 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3945 struct inode *inode = file_inode(file);
3946 struct btrfs_root *root = BTRFS_I(inode)->root;
3947 struct btrfs_root *new_root;
3948 struct btrfs_dir_item *di;
3949 struct btrfs_trans_handle *trans;
3950 struct btrfs_path *path;
3951 struct btrfs_key location;
3952 struct btrfs_disk_key disk_key;
3953 u64 objectid = 0;
3954 u64 dir_id;
3955 int ret;
3957 if (!capable(CAP_SYS_ADMIN))
3958 return -EPERM;
3960 ret = mnt_want_write_file(file);
3961 if (ret)
3962 return ret;
3964 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3965 ret = -EFAULT;
3966 goto out;
3969 if (!objectid)
3970 objectid = BTRFS_FS_TREE_OBJECTID;
3972 location.objectid = objectid;
3973 location.type = BTRFS_ROOT_ITEM_KEY;
3974 location.offset = (u64)-1;
3976 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3977 if (IS_ERR(new_root)) {
3978 ret = PTR_ERR(new_root);
3979 goto out;
3982 path = btrfs_alloc_path();
3983 if (!path) {
3984 ret = -ENOMEM;
3985 goto out;
3987 path->leave_spinning = 1;
3989 trans = btrfs_start_transaction(root, 1);
3990 if (IS_ERR(trans)) {
3991 btrfs_free_path(path);
3992 ret = PTR_ERR(trans);
3993 goto out;
3996 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3997 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3998 dir_id, "default", 7, 1);
3999 if (IS_ERR_OR_NULL(di)) {
4000 btrfs_free_path(path);
4001 btrfs_end_transaction(trans, root);
4002 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4003 "item, this isn't going to work");
4004 ret = -ENOENT;
4005 goto out;
4008 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4009 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4010 btrfs_mark_buffer_dirty(path->nodes[0]);
4011 btrfs_free_path(path);
4013 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4014 btrfs_end_transaction(trans, root);
4015 out:
4016 mnt_drop_write_file(file);
4017 return ret;
4020 void btrfs_get_block_group_info(struct list_head *groups_list,
4021 struct btrfs_ioctl_space_info *space)
4023 struct btrfs_block_group_cache *block_group;
4025 space->total_bytes = 0;
4026 space->used_bytes = 0;
4027 space->flags = 0;
4028 list_for_each_entry(block_group, groups_list, list) {
4029 space->flags = block_group->flags;
4030 space->total_bytes += block_group->key.offset;
4031 space->used_bytes +=
4032 btrfs_block_group_used(&block_group->item);
4036 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
4038 struct btrfs_ioctl_space_args space_args;
4039 struct btrfs_ioctl_space_info space;
4040 struct btrfs_ioctl_space_info *dest;
4041 struct btrfs_ioctl_space_info *dest_orig;
4042 struct btrfs_ioctl_space_info __user *user_dest;
4043 struct btrfs_space_info *info;
4044 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4045 BTRFS_BLOCK_GROUP_SYSTEM,
4046 BTRFS_BLOCK_GROUP_METADATA,
4047 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4048 int num_types = 4;
4049 int alloc_size;
4050 int ret = 0;
4051 u64 slot_count = 0;
4052 int i, c;
4054 if (copy_from_user(&space_args,
4055 (struct btrfs_ioctl_space_args __user *)arg,
4056 sizeof(space_args)))
4057 return -EFAULT;
4059 for (i = 0; i < num_types; i++) {
4060 struct btrfs_space_info *tmp;
4062 info = NULL;
4063 rcu_read_lock();
4064 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4065 list) {
4066 if (tmp->flags == types[i]) {
4067 info = tmp;
4068 break;
4071 rcu_read_unlock();
4073 if (!info)
4074 continue;
4076 down_read(&info->groups_sem);
4077 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4078 if (!list_empty(&info->block_groups[c]))
4079 slot_count++;
4081 up_read(&info->groups_sem);
4085 * Global block reserve, exported as a space_info
4087 slot_count++;
4089 /* space_slots == 0 means they are asking for a count */
4090 if (space_args.space_slots == 0) {
4091 space_args.total_spaces = slot_count;
4092 goto out;
4095 slot_count = min_t(u64, space_args.space_slots, slot_count);
4097 alloc_size = sizeof(*dest) * slot_count;
4099 /* we generally have at most 6 or so space infos, one for each raid
4100 * level. So, a whole page should be more than enough for everyone
4102 if (alloc_size > PAGE_CACHE_SIZE)
4103 return -ENOMEM;
4105 space_args.total_spaces = 0;
4106 dest = kmalloc(alloc_size, GFP_NOFS);
4107 if (!dest)
4108 return -ENOMEM;
4109 dest_orig = dest;
4111 /* now we have a buffer to copy into */
4112 for (i = 0; i < num_types; i++) {
4113 struct btrfs_space_info *tmp;
4115 if (!slot_count)
4116 break;
4118 info = NULL;
4119 rcu_read_lock();
4120 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4121 list) {
4122 if (tmp->flags == types[i]) {
4123 info = tmp;
4124 break;
4127 rcu_read_unlock();
4129 if (!info)
4130 continue;
4131 down_read(&info->groups_sem);
4132 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4133 if (!list_empty(&info->block_groups[c])) {
4134 btrfs_get_block_group_info(
4135 &info->block_groups[c], &space);
4136 memcpy(dest, &space, sizeof(space));
4137 dest++;
4138 space_args.total_spaces++;
4139 slot_count--;
4141 if (!slot_count)
4142 break;
4144 up_read(&info->groups_sem);
4148 * Add global block reserve
4150 if (slot_count) {
4151 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4153 spin_lock(&block_rsv->lock);
4154 space.total_bytes = block_rsv->size;
4155 space.used_bytes = block_rsv->size - block_rsv->reserved;
4156 spin_unlock(&block_rsv->lock);
4157 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4158 memcpy(dest, &space, sizeof(space));
4159 space_args.total_spaces++;
4162 user_dest = (struct btrfs_ioctl_space_info __user *)
4163 (arg + sizeof(struct btrfs_ioctl_space_args));
4165 if (copy_to_user(user_dest, dest_orig, alloc_size))
4166 ret = -EFAULT;
4168 kfree(dest_orig);
4169 out:
4170 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4171 ret = -EFAULT;
4173 return ret;
4177 * there are many ways the trans_start and trans_end ioctls can lead
4178 * to deadlocks. They should only be used by applications that
4179 * basically own the machine, and have a very in depth understanding
4180 * of all the possible deadlocks and enospc problems.
4182 long btrfs_ioctl_trans_end(struct file *file)
4184 struct inode *inode = file_inode(file);
4185 struct btrfs_root *root = BTRFS_I(inode)->root;
4186 struct btrfs_trans_handle *trans;
4188 trans = file->private_data;
4189 if (!trans)
4190 return -EINVAL;
4191 file->private_data = NULL;
4193 btrfs_end_transaction(trans, root);
4195 atomic_dec(&root->fs_info->open_ioctl_trans);
4197 mnt_drop_write_file(file);
4198 return 0;
4201 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4202 void __user *argp)
4204 struct btrfs_trans_handle *trans;
4205 u64 transid;
4206 int ret;
4208 trans = btrfs_attach_transaction_barrier(root);
4209 if (IS_ERR(trans)) {
4210 if (PTR_ERR(trans) != -ENOENT)
4211 return PTR_ERR(trans);
4213 /* No running transaction, don't bother */
4214 transid = root->fs_info->last_trans_committed;
4215 goto out;
4217 transid = trans->transid;
4218 ret = btrfs_commit_transaction_async(trans, root, 0);
4219 if (ret) {
4220 btrfs_end_transaction(trans, root);
4221 return ret;
4223 out:
4224 if (argp)
4225 if (copy_to_user(argp, &transid, sizeof(transid)))
4226 return -EFAULT;
4227 return 0;
4230 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4231 void __user *argp)
4233 u64 transid;
4235 if (argp) {
4236 if (copy_from_user(&transid, argp, sizeof(transid)))
4237 return -EFAULT;
4238 } else {
4239 transid = 0; /* current trans */
4241 return btrfs_wait_for_commit(root, transid);
4244 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4246 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4247 struct btrfs_ioctl_scrub_args *sa;
4248 int ret;
4250 if (!capable(CAP_SYS_ADMIN))
4251 return -EPERM;
4253 sa = memdup_user(arg, sizeof(*sa));
4254 if (IS_ERR(sa))
4255 return PTR_ERR(sa);
4257 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4258 ret = mnt_want_write_file(file);
4259 if (ret)
4260 goto out;
4263 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4264 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4267 if (copy_to_user(arg, sa, sizeof(*sa)))
4268 ret = -EFAULT;
4270 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4271 mnt_drop_write_file(file);
4272 out:
4273 kfree(sa);
4274 return ret;
4277 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4279 if (!capable(CAP_SYS_ADMIN))
4280 return -EPERM;
4282 return btrfs_scrub_cancel(root->fs_info);
4285 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4286 void __user *arg)
4288 struct btrfs_ioctl_scrub_args *sa;
4289 int ret;
4291 if (!capable(CAP_SYS_ADMIN))
4292 return -EPERM;
4294 sa = memdup_user(arg, sizeof(*sa));
4295 if (IS_ERR(sa))
4296 return PTR_ERR(sa);
4298 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4300 if (copy_to_user(arg, sa, sizeof(*sa)))
4301 ret = -EFAULT;
4303 kfree(sa);
4304 return ret;
4307 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4308 void __user *arg)
4310 struct btrfs_ioctl_get_dev_stats *sa;
4311 int ret;
4313 sa = memdup_user(arg, sizeof(*sa));
4314 if (IS_ERR(sa))
4315 return PTR_ERR(sa);
4317 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4318 kfree(sa);
4319 return -EPERM;
4322 ret = btrfs_get_dev_stats(root, sa);
4324 if (copy_to_user(arg, sa, sizeof(*sa)))
4325 ret = -EFAULT;
4327 kfree(sa);
4328 return ret;
4331 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4333 struct btrfs_ioctl_dev_replace_args *p;
4334 int ret;
4336 if (!capable(CAP_SYS_ADMIN))
4337 return -EPERM;
4339 p = memdup_user(arg, sizeof(*p));
4340 if (IS_ERR(p))
4341 return PTR_ERR(p);
4343 switch (p->cmd) {
4344 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4345 if (root->fs_info->sb->s_flags & MS_RDONLY) {
4346 ret = -EROFS;
4347 goto out;
4349 if (atomic_xchg(
4350 &root->fs_info->mutually_exclusive_operation_running,
4351 1)) {
4352 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4353 } else {
4354 ret = btrfs_dev_replace_start(root, p);
4355 atomic_set(
4356 &root->fs_info->mutually_exclusive_operation_running,
4359 break;
4360 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4361 btrfs_dev_replace_status(root->fs_info, p);
4362 ret = 0;
4363 break;
4364 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4365 ret = btrfs_dev_replace_cancel(root->fs_info, p);
4366 break;
4367 default:
4368 ret = -EINVAL;
4369 break;
4372 if (copy_to_user(arg, p, sizeof(*p)))
4373 ret = -EFAULT;
4374 out:
4375 kfree(p);
4376 return ret;
4379 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4381 int ret = 0;
4382 int i;
4383 u64 rel_ptr;
4384 int size;
4385 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4386 struct inode_fs_paths *ipath = NULL;
4387 struct btrfs_path *path;
4389 if (!capable(CAP_DAC_READ_SEARCH))
4390 return -EPERM;
4392 path = btrfs_alloc_path();
4393 if (!path) {
4394 ret = -ENOMEM;
4395 goto out;
4398 ipa = memdup_user(arg, sizeof(*ipa));
4399 if (IS_ERR(ipa)) {
4400 ret = PTR_ERR(ipa);
4401 ipa = NULL;
4402 goto out;
4405 size = min_t(u32, ipa->size, 4096);
4406 ipath = init_ipath(size, root, path);
4407 if (IS_ERR(ipath)) {
4408 ret = PTR_ERR(ipath);
4409 ipath = NULL;
4410 goto out;
4413 ret = paths_from_inode(ipa->inum, ipath);
4414 if (ret < 0)
4415 goto out;
4417 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4418 rel_ptr = ipath->fspath->val[i] -
4419 (u64)(unsigned long)ipath->fspath->val;
4420 ipath->fspath->val[i] = rel_ptr;
4423 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4424 (void *)(unsigned long)ipath->fspath, size);
4425 if (ret) {
4426 ret = -EFAULT;
4427 goto out;
4430 out:
4431 btrfs_free_path(path);
4432 free_ipath(ipath);
4433 kfree(ipa);
4435 return ret;
4438 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4440 struct btrfs_data_container *inodes = ctx;
4441 const size_t c = 3 * sizeof(u64);
4443 if (inodes->bytes_left >= c) {
4444 inodes->bytes_left -= c;
4445 inodes->val[inodes->elem_cnt] = inum;
4446 inodes->val[inodes->elem_cnt + 1] = offset;
4447 inodes->val[inodes->elem_cnt + 2] = root;
4448 inodes->elem_cnt += 3;
4449 } else {
4450 inodes->bytes_missing += c - inodes->bytes_left;
4451 inodes->bytes_left = 0;
4452 inodes->elem_missed += 3;
4455 return 0;
4458 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4459 void __user *arg)
4461 int ret = 0;
4462 int size;
4463 struct btrfs_ioctl_logical_ino_args *loi;
4464 struct btrfs_data_container *inodes = NULL;
4465 struct btrfs_path *path = NULL;
4467 if (!capable(CAP_SYS_ADMIN))
4468 return -EPERM;
4470 loi = memdup_user(arg, sizeof(*loi));
4471 if (IS_ERR(loi)) {
4472 ret = PTR_ERR(loi);
4473 loi = NULL;
4474 goto out;
4477 path = btrfs_alloc_path();
4478 if (!path) {
4479 ret = -ENOMEM;
4480 goto out;
4483 size = min_t(u32, loi->size, 64 * 1024);
4484 inodes = init_data_container(size);
4485 if (IS_ERR(inodes)) {
4486 ret = PTR_ERR(inodes);
4487 inodes = NULL;
4488 goto out;
4491 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4492 build_ino_list, inodes);
4493 if (ret == -EINVAL)
4494 ret = -ENOENT;
4495 if (ret < 0)
4496 goto out;
4498 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4499 (void *)(unsigned long)inodes, size);
4500 if (ret)
4501 ret = -EFAULT;
4503 out:
4504 btrfs_free_path(path);
4505 vfree(inodes);
4506 kfree(loi);
4508 return ret;
4511 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4512 struct btrfs_ioctl_balance_args *bargs)
4514 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4516 bargs->flags = bctl->flags;
4518 if (atomic_read(&fs_info->balance_running))
4519 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4520 if (atomic_read(&fs_info->balance_pause_req))
4521 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4522 if (atomic_read(&fs_info->balance_cancel_req))
4523 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4525 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4526 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4527 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4529 if (lock) {
4530 spin_lock(&fs_info->balance_lock);
4531 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4532 spin_unlock(&fs_info->balance_lock);
4533 } else {
4534 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4538 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4540 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4541 struct btrfs_fs_info *fs_info = root->fs_info;
4542 struct btrfs_ioctl_balance_args *bargs;
4543 struct btrfs_balance_control *bctl;
4544 bool need_unlock; /* for mut. excl. ops lock */
4545 int ret;
4547 if (!capable(CAP_SYS_ADMIN))
4548 return -EPERM;
4550 ret = mnt_want_write_file(file);
4551 if (ret)
4552 return ret;
4554 again:
4555 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4556 mutex_lock(&fs_info->volume_mutex);
4557 mutex_lock(&fs_info->balance_mutex);
4558 need_unlock = true;
4559 goto locked;
4563 * mut. excl. ops lock is locked. Three possibilites:
4564 * (1) some other op is running
4565 * (2) balance is running
4566 * (3) balance is paused -- special case (think resume)
4568 mutex_lock(&fs_info->balance_mutex);
4569 if (fs_info->balance_ctl) {
4570 /* this is either (2) or (3) */
4571 if (!atomic_read(&fs_info->balance_running)) {
4572 mutex_unlock(&fs_info->balance_mutex);
4573 if (!mutex_trylock(&fs_info->volume_mutex))
4574 goto again;
4575 mutex_lock(&fs_info->balance_mutex);
4577 if (fs_info->balance_ctl &&
4578 !atomic_read(&fs_info->balance_running)) {
4579 /* this is (3) */
4580 need_unlock = false;
4581 goto locked;
4584 mutex_unlock(&fs_info->balance_mutex);
4585 mutex_unlock(&fs_info->volume_mutex);
4586 goto again;
4587 } else {
4588 /* this is (2) */
4589 mutex_unlock(&fs_info->balance_mutex);
4590 ret = -EINPROGRESS;
4591 goto out;
4593 } else {
4594 /* this is (1) */
4595 mutex_unlock(&fs_info->balance_mutex);
4596 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4597 goto out;
4600 locked:
4601 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4603 if (arg) {
4604 bargs = memdup_user(arg, sizeof(*bargs));
4605 if (IS_ERR(bargs)) {
4606 ret = PTR_ERR(bargs);
4607 goto out_unlock;
4610 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4611 if (!fs_info->balance_ctl) {
4612 ret = -ENOTCONN;
4613 goto out_bargs;
4616 bctl = fs_info->balance_ctl;
4617 spin_lock(&fs_info->balance_lock);
4618 bctl->flags |= BTRFS_BALANCE_RESUME;
4619 spin_unlock(&fs_info->balance_lock);
4621 goto do_balance;
4623 } else {
4624 bargs = NULL;
4627 if (fs_info->balance_ctl) {
4628 ret = -EINPROGRESS;
4629 goto out_bargs;
4632 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4633 if (!bctl) {
4634 ret = -ENOMEM;
4635 goto out_bargs;
4638 bctl->fs_info = fs_info;
4639 if (arg) {
4640 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4641 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4642 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4644 bctl->flags = bargs->flags;
4645 } else {
4646 /* balance everything - no filters */
4647 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4650 do_balance:
4652 * Ownership of bctl and mutually_exclusive_operation_running
4653 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4654 * or, if restriper was paused all the way until unmount, in
4655 * free_fs_info. mutually_exclusive_operation_running is
4656 * cleared in __cancel_balance.
4658 need_unlock = false;
4660 ret = btrfs_balance(bctl, bargs);
4662 if (arg) {
4663 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4664 ret = -EFAULT;
4667 out_bargs:
4668 kfree(bargs);
4669 out_unlock:
4670 mutex_unlock(&fs_info->balance_mutex);
4671 mutex_unlock(&fs_info->volume_mutex);
4672 if (need_unlock)
4673 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4674 out:
4675 mnt_drop_write_file(file);
4676 return ret;
4679 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4681 if (!capable(CAP_SYS_ADMIN))
4682 return -EPERM;
4684 switch (cmd) {
4685 case BTRFS_BALANCE_CTL_PAUSE:
4686 return btrfs_pause_balance(root->fs_info);
4687 case BTRFS_BALANCE_CTL_CANCEL:
4688 return btrfs_cancel_balance(root->fs_info);
4691 return -EINVAL;
4694 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4695 void __user *arg)
4697 struct btrfs_fs_info *fs_info = root->fs_info;
4698 struct btrfs_ioctl_balance_args *bargs;
4699 int ret = 0;
4701 if (!capable(CAP_SYS_ADMIN))
4702 return -EPERM;
4704 mutex_lock(&fs_info->balance_mutex);
4705 if (!fs_info->balance_ctl) {
4706 ret = -ENOTCONN;
4707 goto out;
4710 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4711 if (!bargs) {
4712 ret = -ENOMEM;
4713 goto out;
4716 update_ioctl_balance_args(fs_info, 1, bargs);
4718 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4719 ret = -EFAULT;
4721 kfree(bargs);
4722 out:
4723 mutex_unlock(&fs_info->balance_mutex);
4724 return ret;
4727 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4729 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4730 struct btrfs_ioctl_quota_ctl_args *sa;
4731 struct btrfs_trans_handle *trans = NULL;
4732 int ret;
4733 int err;
4735 if (!capable(CAP_SYS_ADMIN))
4736 return -EPERM;
4738 ret = mnt_want_write_file(file);
4739 if (ret)
4740 return ret;
4742 sa = memdup_user(arg, sizeof(*sa));
4743 if (IS_ERR(sa)) {
4744 ret = PTR_ERR(sa);
4745 goto drop_write;
4748 down_write(&root->fs_info->subvol_sem);
4749 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4750 if (IS_ERR(trans)) {
4751 ret = PTR_ERR(trans);
4752 goto out;
4755 switch (sa->cmd) {
4756 case BTRFS_QUOTA_CTL_ENABLE:
4757 ret = btrfs_quota_enable(trans, root->fs_info);
4758 break;
4759 case BTRFS_QUOTA_CTL_DISABLE:
4760 ret = btrfs_quota_disable(trans, root->fs_info);
4761 break;
4762 default:
4763 ret = -EINVAL;
4764 break;
4767 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4768 if (err && !ret)
4769 ret = err;
4770 out:
4771 kfree(sa);
4772 up_write(&root->fs_info->subvol_sem);
4773 drop_write:
4774 mnt_drop_write_file(file);
4775 return ret;
4778 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4780 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4781 struct btrfs_ioctl_qgroup_assign_args *sa;
4782 struct btrfs_trans_handle *trans;
4783 int ret;
4784 int err;
4786 if (!capable(CAP_SYS_ADMIN))
4787 return -EPERM;
4789 ret = mnt_want_write_file(file);
4790 if (ret)
4791 return ret;
4793 sa = memdup_user(arg, sizeof(*sa));
4794 if (IS_ERR(sa)) {
4795 ret = PTR_ERR(sa);
4796 goto drop_write;
4799 trans = btrfs_join_transaction(root);
4800 if (IS_ERR(trans)) {
4801 ret = PTR_ERR(trans);
4802 goto out;
4805 /* FIXME: check if the IDs really exist */
4806 if (sa->assign) {
4807 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4808 sa->src, sa->dst);
4809 } else {
4810 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4811 sa->src, sa->dst);
4814 /* update qgroup status and info */
4815 err = btrfs_run_qgroups(trans, root->fs_info);
4816 if (err < 0)
4817 btrfs_error(root->fs_info, ret,
4818 "failed to update qgroup status and info\n");
4819 err = btrfs_end_transaction(trans, root);
4820 if (err && !ret)
4821 ret = err;
4823 out:
4824 kfree(sa);
4825 drop_write:
4826 mnt_drop_write_file(file);
4827 return ret;
4830 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4832 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4833 struct btrfs_ioctl_qgroup_create_args *sa;
4834 struct btrfs_trans_handle *trans;
4835 int ret;
4836 int err;
4838 if (!capable(CAP_SYS_ADMIN))
4839 return -EPERM;
4841 ret = mnt_want_write_file(file);
4842 if (ret)
4843 return ret;
4845 sa = memdup_user(arg, sizeof(*sa));
4846 if (IS_ERR(sa)) {
4847 ret = PTR_ERR(sa);
4848 goto drop_write;
4851 if (!sa->qgroupid) {
4852 ret = -EINVAL;
4853 goto out;
4856 trans = btrfs_join_transaction(root);
4857 if (IS_ERR(trans)) {
4858 ret = PTR_ERR(trans);
4859 goto out;
4862 /* FIXME: check if the IDs really exist */
4863 if (sa->create) {
4864 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4865 } else {
4866 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4869 err = btrfs_end_transaction(trans, root);
4870 if (err && !ret)
4871 ret = err;
4873 out:
4874 kfree(sa);
4875 drop_write:
4876 mnt_drop_write_file(file);
4877 return ret;
4880 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4882 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4883 struct btrfs_ioctl_qgroup_limit_args *sa;
4884 struct btrfs_trans_handle *trans;
4885 int ret;
4886 int err;
4887 u64 qgroupid;
4889 if (!capable(CAP_SYS_ADMIN))
4890 return -EPERM;
4892 ret = mnt_want_write_file(file);
4893 if (ret)
4894 return ret;
4896 sa = memdup_user(arg, sizeof(*sa));
4897 if (IS_ERR(sa)) {
4898 ret = PTR_ERR(sa);
4899 goto drop_write;
4902 trans = btrfs_join_transaction(root);
4903 if (IS_ERR(trans)) {
4904 ret = PTR_ERR(trans);
4905 goto out;
4908 qgroupid = sa->qgroupid;
4909 if (!qgroupid) {
4910 /* take the current subvol as qgroup */
4911 qgroupid = root->root_key.objectid;
4914 /* FIXME: check if the IDs really exist */
4915 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4917 err = btrfs_end_transaction(trans, root);
4918 if (err && !ret)
4919 ret = err;
4921 out:
4922 kfree(sa);
4923 drop_write:
4924 mnt_drop_write_file(file);
4925 return ret;
4928 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4930 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4931 struct btrfs_ioctl_quota_rescan_args *qsa;
4932 int ret;
4934 if (!capable(CAP_SYS_ADMIN))
4935 return -EPERM;
4937 ret = mnt_want_write_file(file);
4938 if (ret)
4939 return ret;
4941 qsa = memdup_user(arg, sizeof(*qsa));
4942 if (IS_ERR(qsa)) {
4943 ret = PTR_ERR(qsa);
4944 goto drop_write;
4947 if (qsa->flags) {
4948 ret = -EINVAL;
4949 goto out;
4952 ret = btrfs_qgroup_rescan(root->fs_info);
4954 out:
4955 kfree(qsa);
4956 drop_write:
4957 mnt_drop_write_file(file);
4958 return ret;
4961 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4963 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4964 struct btrfs_ioctl_quota_rescan_args *qsa;
4965 int ret = 0;
4967 if (!capable(CAP_SYS_ADMIN))
4968 return -EPERM;
4970 qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4971 if (!qsa)
4972 return -ENOMEM;
4974 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4975 qsa->flags = 1;
4976 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4979 if (copy_to_user(arg, qsa, sizeof(*qsa)))
4980 ret = -EFAULT;
4982 kfree(qsa);
4983 return ret;
4986 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4988 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4990 if (!capable(CAP_SYS_ADMIN))
4991 return -EPERM;
4993 return btrfs_qgroup_wait_for_completion(root->fs_info);
4996 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4997 struct btrfs_ioctl_received_subvol_args *sa)
4999 struct inode *inode = file_inode(file);
5000 struct btrfs_root *root = BTRFS_I(inode)->root;
5001 struct btrfs_root_item *root_item = &root->root_item;
5002 struct btrfs_trans_handle *trans;
5003 struct timespec ct = CURRENT_TIME;
5004 int ret = 0;
5005 int received_uuid_changed;
5007 if (!inode_owner_or_capable(inode))
5008 return -EPERM;
5010 ret = mnt_want_write_file(file);
5011 if (ret < 0)
5012 return ret;
5014 down_write(&root->fs_info->subvol_sem);
5016 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5017 ret = -EINVAL;
5018 goto out;
5021 if (btrfs_root_readonly(root)) {
5022 ret = -EROFS;
5023 goto out;
5027 * 1 - root item
5028 * 2 - uuid items (received uuid + subvol uuid)
5030 trans = btrfs_start_transaction(root, 3);
5031 if (IS_ERR(trans)) {
5032 ret = PTR_ERR(trans);
5033 trans = NULL;
5034 goto out;
5037 sa->rtransid = trans->transid;
5038 sa->rtime.sec = ct.tv_sec;
5039 sa->rtime.nsec = ct.tv_nsec;
5041 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5042 BTRFS_UUID_SIZE);
5043 if (received_uuid_changed &&
5044 !btrfs_is_empty_uuid(root_item->received_uuid))
5045 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5046 root_item->received_uuid,
5047 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5048 root->root_key.objectid);
5049 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5050 btrfs_set_root_stransid(root_item, sa->stransid);
5051 btrfs_set_root_rtransid(root_item, sa->rtransid);
5052 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5053 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5054 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5055 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5057 ret = btrfs_update_root(trans, root->fs_info->tree_root,
5058 &root->root_key, &root->root_item);
5059 if (ret < 0) {
5060 btrfs_end_transaction(trans, root);
5061 goto out;
5063 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5064 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5065 sa->uuid,
5066 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5067 root->root_key.objectid);
5068 if (ret < 0 && ret != -EEXIST) {
5069 btrfs_abort_transaction(trans, root, ret);
5070 goto out;
5073 ret = btrfs_commit_transaction(trans, root);
5074 if (ret < 0) {
5075 btrfs_abort_transaction(trans, root, ret);
5076 goto out;
5079 out:
5080 up_write(&root->fs_info->subvol_sem);
5081 mnt_drop_write_file(file);
5082 return ret;
5085 #ifdef CONFIG_64BIT
5086 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5087 void __user *arg)
5089 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5090 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5091 int ret = 0;
5093 args32 = memdup_user(arg, sizeof(*args32));
5094 if (IS_ERR(args32)) {
5095 ret = PTR_ERR(args32);
5096 args32 = NULL;
5097 goto out;
5100 args64 = kmalloc(sizeof(*args64), GFP_NOFS);
5101 if (!args64) {
5102 ret = -ENOMEM;
5103 goto out;
5106 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5107 args64->stransid = args32->stransid;
5108 args64->rtransid = args32->rtransid;
5109 args64->stime.sec = args32->stime.sec;
5110 args64->stime.nsec = args32->stime.nsec;
5111 args64->rtime.sec = args32->rtime.sec;
5112 args64->rtime.nsec = args32->rtime.nsec;
5113 args64->flags = args32->flags;
5115 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5116 if (ret)
5117 goto out;
5119 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5120 args32->stransid = args64->stransid;
5121 args32->rtransid = args64->rtransid;
5122 args32->stime.sec = args64->stime.sec;
5123 args32->stime.nsec = args64->stime.nsec;
5124 args32->rtime.sec = args64->rtime.sec;
5125 args32->rtime.nsec = args64->rtime.nsec;
5126 args32->flags = args64->flags;
5128 ret = copy_to_user(arg, args32, sizeof(*args32));
5129 if (ret)
5130 ret = -EFAULT;
5132 out:
5133 kfree(args32);
5134 kfree(args64);
5135 return ret;
5137 #endif
5139 static long btrfs_ioctl_set_received_subvol(struct file *file,
5140 void __user *arg)
5142 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5143 int ret = 0;
5145 sa = memdup_user(arg, sizeof(*sa));
5146 if (IS_ERR(sa)) {
5147 ret = PTR_ERR(sa);
5148 sa = NULL;
5149 goto out;
5152 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5154 if (ret)
5155 goto out;
5157 ret = copy_to_user(arg, sa, sizeof(*sa));
5158 if (ret)
5159 ret = -EFAULT;
5161 out:
5162 kfree(sa);
5163 return ret;
5166 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5168 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5169 size_t len;
5170 int ret;
5171 char label[BTRFS_LABEL_SIZE];
5173 spin_lock(&root->fs_info->super_lock);
5174 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5175 spin_unlock(&root->fs_info->super_lock);
5177 len = strnlen(label, BTRFS_LABEL_SIZE);
5179 if (len == BTRFS_LABEL_SIZE) {
5180 btrfs_warn(root->fs_info,
5181 "label is too long, return the first %zu bytes", --len);
5184 ret = copy_to_user(arg, label, len);
5186 return ret ? -EFAULT : 0;
5189 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5191 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5192 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5193 struct btrfs_trans_handle *trans;
5194 char label[BTRFS_LABEL_SIZE];
5195 int ret;
5197 if (!capable(CAP_SYS_ADMIN))
5198 return -EPERM;
5200 if (copy_from_user(label, arg, sizeof(label)))
5201 return -EFAULT;
5203 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5204 btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5205 BTRFS_LABEL_SIZE - 1);
5206 return -EINVAL;
5209 ret = mnt_want_write_file(file);
5210 if (ret)
5211 return ret;
5213 trans = btrfs_start_transaction(root, 0);
5214 if (IS_ERR(trans)) {
5215 ret = PTR_ERR(trans);
5216 goto out_unlock;
5219 spin_lock(&root->fs_info->super_lock);
5220 strcpy(super_block->label, label);
5221 spin_unlock(&root->fs_info->super_lock);
5222 ret = btrfs_commit_transaction(trans, root);
5224 out_unlock:
5225 mnt_drop_write_file(file);
5226 return ret;
5229 #define INIT_FEATURE_FLAGS(suffix) \
5230 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5231 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5232 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5234 static int btrfs_ioctl_get_supported_features(struct file *file,
5235 void __user *arg)
5237 static struct btrfs_ioctl_feature_flags features[3] = {
5238 INIT_FEATURE_FLAGS(SUPP),
5239 INIT_FEATURE_FLAGS(SAFE_SET),
5240 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5243 if (copy_to_user(arg, &features, sizeof(features)))
5244 return -EFAULT;
5246 return 0;
5249 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5251 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5252 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5253 struct btrfs_ioctl_feature_flags features;
5255 features.compat_flags = btrfs_super_compat_flags(super_block);
5256 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5257 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5259 if (copy_to_user(arg, &features, sizeof(features)))
5260 return -EFAULT;
5262 return 0;
5265 static int check_feature_bits(struct btrfs_root *root,
5266 enum btrfs_feature_set set,
5267 u64 change_mask, u64 flags, u64 supported_flags,
5268 u64 safe_set, u64 safe_clear)
5270 const char *type = btrfs_feature_set_names[set];
5271 char *names;
5272 u64 disallowed, unsupported;
5273 u64 set_mask = flags & change_mask;
5274 u64 clear_mask = ~flags & change_mask;
5276 unsupported = set_mask & ~supported_flags;
5277 if (unsupported) {
5278 names = btrfs_printable_features(set, unsupported);
5279 if (names) {
5280 btrfs_warn(root->fs_info,
5281 "this kernel does not support the %s feature bit%s",
5282 names, strchr(names, ',') ? "s" : "");
5283 kfree(names);
5284 } else
5285 btrfs_warn(root->fs_info,
5286 "this kernel does not support %s bits 0x%llx",
5287 type, unsupported);
5288 return -EOPNOTSUPP;
5291 disallowed = set_mask & ~safe_set;
5292 if (disallowed) {
5293 names = btrfs_printable_features(set, disallowed);
5294 if (names) {
5295 btrfs_warn(root->fs_info,
5296 "can't set the %s feature bit%s while mounted",
5297 names, strchr(names, ',') ? "s" : "");
5298 kfree(names);
5299 } else
5300 btrfs_warn(root->fs_info,
5301 "can't set %s bits 0x%llx while mounted",
5302 type, disallowed);
5303 return -EPERM;
5306 disallowed = clear_mask & ~safe_clear;
5307 if (disallowed) {
5308 names = btrfs_printable_features(set, disallowed);
5309 if (names) {
5310 btrfs_warn(root->fs_info,
5311 "can't clear the %s feature bit%s while mounted",
5312 names, strchr(names, ',') ? "s" : "");
5313 kfree(names);
5314 } else
5315 btrfs_warn(root->fs_info,
5316 "can't clear %s bits 0x%llx while mounted",
5317 type, disallowed);
5318 return -EPERM;
5321 return 0;
5324 #define check_feature(root, change_mask, flags, mask_base) \
5325 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
5326 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5327 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5328 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5330 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5332 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5333 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5334 struct btrfs_ioctl_feature_flags flags[2];
5335 struct btrfs_trans_handle *trans;
5336 u64 newflags;
5337 int ret;
5339 if (!capable(CAP_SYS_ADMIN))
5340 return -EPERM;
5342 if (copy_from_user(flags, arg, sizeof(flags)))
5343 return -EFAULT;
5345 /* Nothing to do */
5346 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5347 !flags[0].incompat_flags)
5348 return 0;
5350 ret = check_feature(root, flags[0].compat_flags,
5351 flags[1].compat_flags, COMPAT);
5352 if (ret)
5353 return ret;
5355 ret = check_feature(root, flags[0].compat_ro_flags,
5356 flags[1].compat_ro_flags, COMPAT_RO);
5357 if (ret)
5358 return ret;
5360 ret = check_feature(root, flags[0].incompat_flags,
5361 flags[1].incompat_flags, INCOMPAT);
5362 if (ret)
5363 return ret;
5365 trans = btrfs_start_transaction(root, 0);
5366 if (IS_ERR(trans))
5367 return PTR_ERR(trans);
5369 spin_lock(&root->fs_info->super_lock);
5370 newflags = btrfs_super_compat_flags(super_block);
5371 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5372 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5373 btrfs_set_super_compat_flags(super_block, newflags);
5375 newflags = btrfs_super_compat_ro_flags(super_block);
5376 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5377 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5378 btrfs_set_super_compat_ro_flags(super_block, newflags);
5380 newflags = btrfs_super_incompat_flags(super_block);
5381 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5382 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5383 btrfs_set_super_incompat_flags(super_block, newflags);
5384 spin_unlock(&root->fs_info->super_lock);
5386 return btrfs_commit_transaction(trans, root);
5389 long btrfs_ioctl(struct file *file, unsigned int
5390 cmd, unsigned long arg)
5392 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5393 void __user *argp = (void __user *)arg;
5395 switch (cmd) {
5396 case FS_IOC_GETFLAGS:
5397 return btrfs_ioctl_getflags(file, argp);
5398 case FS_IOC_SETFLAGS:
5399 return btrfs_ioctl_setflags(file, argp);
5400 case FS_IOC_GETVERSION:
5401 return btrfs_ioctl_getversion(file, argp);
5402 case FITRIM:
5403 return btrfs_ioctl_fitrim(file, argp);
5404 case BTRFS_IOC_SNAP_CREATE:
5405 return btrfs_ioctl_snap_create(file, argp, 0);
5406 case BTRFS_IOC_SNAP_CREATE_V2:
5407 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5408 case BTRFS_IOC_SUBVOL_CREATE:
5409 return btrfs_ioctl_snap_create(file, argp, 1);
5410 case BTRFS_IOC_SUBVOL_CREATE_V2:
5411 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5412 case BTRFS_IOC_SNAP_DESTROY:
5413 return btrfs_ioctl_snap_destroy(file, argp);
5414 case BTRFS_IOC_SUBVOL_GETFLAGS:
5415 return btrfs_ioctl_subvol_getflags(file, argp);
5416 case BTRFS_IOC_SUBVOL_SETFLAGS:
5417 return btrfs_ioctl_subvol_setflags(file, argp);
5418 case BTRFS_IOC_DEFAULT_SUBVOL:
5419 return btrfs_ioctl_default_subvol(file, argp);
5420 case BTRFS_IOC_DEFRAG:
5421 return btrfs_ioctl_defrag(file, NULL);
5422 case BTRFS_IOC_DEFRAG_RANGE:
5423 return btrfs_ioctl_defrag(file, argp);
5424 case BTRFS_IOC_RESIZE:
5425 return btrfs_ioctl_resize(file, argp);
5426 case BTRFS_IOC_ADD_DEV:
5427 return btrfs_ioctl_add_dev(root, argp);
5428 case BTRFS_IOC_RM_DEV:
5429 return btrfs_ioctl_rm_dev(file, argp);
5430 case BTRFS_IOC_FS_INFO:
5431 return btrfs_ioctl_fs_info(root, argp);
5432 case BTRFS_IOC_DEV_INFO:
5433 return btrfs_ioctl_dev_info(root, argp);
5434 case BTRFS_IOC_BALANCE:
5435 return btrfs_ioctl_balance(file, NULL);
5436 case BTRFS_IOC_CLONE:
5437 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
5438 case BTRFS_IOC_CLONE_RANGE:
5439 return btrfs_ioctl_clone_range(file, argp);
5440 case BTRFS_IOC_TRANS_START:
5441 return btrfs_ioctl_trans_start(file);
5442 case BTRFS_IOC_TRANS_END:
5443 return btrfs_ioctl_trans_end(file);
5444 case BTRFS_IOC_TREE_SEARCH:
5445 return btrfs_ioctl_tree_search(file, argp);
5446 case BTRFS_IOC_TREE_SEARCH_V2:
5447 return btrfs_ioctl_tree_search_v2(file, argp);
5448 case BTRFS_IOC_INO_LOOKUP:
5449 return btrfs_ioctl_ino_lookup(file, argp);
5450 case BTRFS_IOC_INO_PATHS:
5451 return btrfs_ioctl_ino_to_path(root, argp);
5452 case BTRFS_IOC_LOGICAL_INO:
5453 return btrfs_ioctl_logical_to_ino(root, argp);
5454 case BTRFS_IOC_SPACE_INFO:
5455 return btrfs_ioctl_space_info(root, argp);
5456 case BTRFS_IOC_SYNC: {
5457 int ret;
5459 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5460 if (ret)
5461 return ret;
5462 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5464 * The transaction thread may want to do more work,
5465 * namely it pokes the cleaner ktread that will start
5466 * processing uncleaned subvols.
5468 wake_up_process(root->fs_info->transaction_kthread);
5469 return ret;
5471 case BTRFS_IOC_START_SYNC:
5472 return btrfs_ioctl_start_sync(root, argp);
5473 case BTRFS_IOC_WAIT_SYNC:
5474 return btrfs_ioctl_wait_sync(root, argp);
5475 case BTRFS_IOC_SCRUB:
5476 return btrfs_ioctl_scrub(file, argp);
5477 case BTRFS_IOC_SCRUB_CANCEL:
5478 return btrfs_ioctl_scrub_cancel(root, argp);
5479 case BTRFS_IOC_SCRUB_PROGRESS:
5480 return btrfs_ioctl_scrub_progress(root, argp);
5481 case BTRFS_IOC_BALANCE_V2:
5482 return btrfs_ioctl_balance(file, argp);
5483 case BTRFS_IOC_BALANCE_CTL:
5484 return btrfs_ioctl_balance_ctl(root, arg);
5485 case BTRFS_IOC_BALANCE_PROGRESS:
5486 return btrfs_ioctl_balance_progress(root, argp);
5487 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5488 return btrfs_ioctl_set_received_subvol(file, argp);
5489 #ifdef CONFIG_64BIT
5490 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5491 return btrfs_ioctl_set_received_subvol_32(file, argp);
5492 #endif
5493 case BTRFS_IOC_SEND:
5494 return btrfs_ioctl_send(file, argp);
5495 case BTRFS_IOC_GET_DEV_STATS:
5496 return btrfs_ioctl_get_dev_stats(root, argp);
5497 case BTRFS_IOC_QUOTA_CTL:
5498 return btrfs_ioctl_quota_ctl(file, argp);
5499 case BTRFS_IOC_QGROUP_ASSIGN:
5500 return btrfs_ioctl_qgroup_assign(file, argp);
5501 case BTRFS_IOC_QGROUP_CREATE:
5502 return btrfs_ioctl_qgroup_create(file, argp);
5503 case BTRFS_IOC_QGROUP_LIMIT:
5504 return btrfs_ioctl_qgroup_limit(file, argp);
5505 case BTRFS_IOC_QUOTA_RESCAN:
5506 return btrfs_ioctl_quota_rescan(file, argp);
5507 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5508 return btrfs_ioctl_quota_rescan_status(file, argp);
5509 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5510 return btrfs_ioctl_quota_rescan_wait(file, argp);
5511 case BTRFS_IOC_DEV_REPLACE:
5512 return btrfs_ioctl_dev_replace(root, argp);
5513 case BTRFS_IOC_GET_FSLABEL:
5514 return btrfs_ioctl_get_fslabel(file, argp);
5515 case BTRFS_IOC_SET_FSLABEL:
5516 return btrfs_ioctl_set_fslabel(file, argp);
5517 case BTRFS_IOC_FILE_EXTENT_SAME:
5518 return btrfs_ioctl_file_extent_same(file, argp);
5519 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5520 return btrfs_ioctl_get_supported_features(file, argp);
5521 case BTRFS_IOC_GET_FEATURES:
5522 return btrfs_ioctl_get_features(file, argp);
5523 case BTRFS_IOC_SET_FEATURES:
5524 return btrfs_ioctl_set_features(file, argp);
5527 return -ENOTTY;