2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
54 #include "inode-map.h"
56 #include "rcu-string.h"
58 #include "dev-replace.h"
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65 * structures are incorrect, as the timespec structure from userspace
66 * is 4 bytes too small. We define these alternatives here to teach
67 * the kernel about the 32-bit struct packing.
69 struct btrfs_ioctl_timespec_32
{
72 } __attribute__ ((__packed__
));
74 struct btrfs_ioctl_received_subvol_args_32
{
75 char uuid
[BTRFS_UUID_SIZE
]; /* in */
76 __u64 stransid
; /* in */
77 __u64 rtransid
; /* out */
78 struct btrfs_ioctl_timespec_32 stime
; /* in */
79 struct btrfs_ioctl_timespec_32 rtime
; /* out */
81 __u64 reserved
[16]; /* in */
82 } __attribute__ ((__packed__
));
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 struct btrfs_ioctl_received_subvol_args_32)
89 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
90 u64 off
, u64 olen
, u64 olen_aligned
, u64 destoff
,
93 /* Mask out flags that are inappropriate for the given type of inode. */
94 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
98 else if (S_ISREG(mode
))
99 return flags
& ~FS_DIRSYNC_FL
;
101 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
105 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
107 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
109 unsigned int iflags
= 0;
111 if (flags
& BTRFS_INODE_SYNC
)
112 iflags
|= FS_SYNC_FL
;
113 if (flags
& BTRFS_INODE_IMMUTABLE
)
114 iflags
|= FS_IMMUTABLE_FL
;
115 if (flags
& BTRFS_INODE_APPEND
)
116 iflags
|= FS_APPEND_FL
;
117 if (flags
& BTRFS_INODE_NODUMP
)
118 iflags
|= FS_NODUMP_FL
;
119 if (flags
& BTRFS_INODE_NOATIME
)
120 iflags
|= FS_NOATIME_FL
;
121 if (flags
& BTRFS_INODE_DIRSYNC
)
122 iflags
|= FS_DIRSYNC_FL
;
123 if (flags
& BTRFS_INODE_NODATACOW
)
124 iflags
|= FS_NOCOW_FL
;
126 if ((flags
& BTRFS_INODE_COMPRESS
) && !(flags
& BTRFS_INODE_NOCOMPRESS
))
127 iflags
|= FS_COMPR_FL
;
128 else if (flags
& BTRFS_INODE_NOCOMPRESS
)
129 iflags
|= FS_NOCOMP_FL
;
135 * Update inode->i_flags based on the btrfs internal flags.
137 void btrfs_update_iflags(struct inode
*inode
)
139 struct btrfs_inode
*ip
= BTRFS_I(inode
);
140 unsigned int new_fl
= 0;
142 if (ip
->flags
& BTRFS_INODE_SYNC
)
144 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
145 new_fl
|= S_IMMUTABLE
;
146 if (ip
->flags
& BTRFS_INODE_APPEND
)
148 if (ip
->flags
& BTRFS_INODE_NOATIME
)
150 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
153 set_mask_bits(&inode
->i_flags
,
154 S_SYNC
| S_APPEND
| S_IMMUTABLE
| S_NOATIME
| S_DIRSYNC
,
159 * Inherit flags from the parent inode.
161 * Currently only the compression flags and the cow flags are inherited.
163 void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
170 flags
= BTRFS_I(dir
)->flags
;
172 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
173 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
174 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
175 } else if (flags
& BTRFS_INODE_COMPRESS
) {
176 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
177 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
180 if (flags
& BTRFS_INODE_NODATACOW
) {
181 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
182 if (S_ISREG(inode
->i_mode
))
183 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
186 btrfs_update_iflags(inode
);
189 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
191 struct btrfs_inode
*ip
= BTRFS_I(file_inode(file
));
192 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
194 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
199 static int check_flags(unsigned int flags
)
201 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
202 FS_NOATIME_FL
| FS_NODUMP_FL
| \
203 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
204 FS_NOCOMP_FL
| FS_COMPR_FL
|
208 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
214 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
216 struct inode
*inode
= file_inode(file
);
217 struct btrfs_inode
*ip
= BTRFS_I(inode
);
218 struct btrfs_root
*root
= ip
->root
;
219 struct btrfs_trans_handle
*trans
;
220 unsigned int flags
, oldflags
;
223 unsigned int i_oldflags
;
226 if (!inode_owner_or_capable(inode
))
229 if (btrfs_root_readonly(root
))
232 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
235 ret
= check_flags(flags
);
239 ret
= mnt_want_write_file(file
);
243 mutex_lock(&inode
->i_mutex
);
245 ip_oldflags
= ip
->flags
;
246 i_oldflags
= inode
->i_flags
;
247 mode
= inode
->i_mode
;
249 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
250 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
251 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
252 if (!capable(CAP_LINUX_IMMUTABLE
)) {
258 if (flags
& FS_SYNC_FL
)
259 ip
->flags
|= BTRFS_INODE_SYNC
;
261 ip
->flags
&= ~BTRFS_INODE_SYNC
;
262 if (flags
& FS_IMMUTABLE_FL
)
263 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
265 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
266 if (flags
& FS_APPEND_FL
)
267 ip
->flags
|= BTRFS_INODE_APPEND
;
269 ip
->flags
&= ~BTRFS_INODE_APPEND
;
270 if (flags
& FS_NODUMP_FL
)
271 ip
->flags
|= BTRFS_INODE_NODUMP
;
273 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
274 if (flags
& FS_NOATIME_FL
)
275 ip
->flags
|= BTRFS_INODE_NOATIME
;
277 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
278 if (flags
& FS_DIRSYNC_FL
)
279 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
281 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
282 if (flags
& FS_NOCOW_FL
) {
285 * It's safe to turn csums off here, no extents exist.
286 * Otherwise we want the flag to reflect the real COW
287 * status of the file and will not set it.
289 if (inode
->i_size
== 0)
290 ip
->flags
|= BTRFS_INODE_NODATACOW
291 | BTRFS_INODE_NODATASUM
;
293 ip
->flags
|= BTRFS_INODE_NODATACOW
;
297 * Revert back under same assuptions as above
300 if (inode
->i_size
== 0)
301 ip
->flags
&= ~(BTRFS_INODE_NODATACOW
302 | BTRFS_INODE_NODATASUM
);
304 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
309 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
310 * flag may be changed automatically if compression code won't make
313 if (flags
& FS_NOCOMP_FL
) {
314 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
315 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
317 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
318 if (ret
&& ret
!= -ENODATA
)
320 } else if (flags
& FS_COMPR_FL
) {
323 ip
->flags
|= BTRFS_INODE_COMPRESS
;
324 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
326 if (root
->fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
330 ret
= btrfs_set_prop(inode
, "btrfs.compression",
331 comp
, strlen(comp
), 0);
336 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
337 if (ret
&& ret
!= -ENODATA
)
339 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
342 trans
= btrfs_start_transaction(root
, 1);
344 ret
= PTR_ERR(trans
);
348 btrfs_update_iflags(inode
);
349 inode_inc_iversion(inode
);
350 inode
->i_ctime
= CURRENT_TIME
;
351 ret
= btrfs_update_inode(trans
, root
, inode
);
353 btrfs_end_transaction(trans
, root
);
356 ip
->flags
= ip_oldflags
;
357 inode
->i_flags
= i_oldflags
;
361 mutex_unlock(&inode
->i_mutex
);
362 mnt_drop_write_file(file
);
366 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
368 struct inode
*inode
= file_inode(file
);
370 return put_user(inode
->i_generation
, arg
);
373 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
375 struct btrfs_fs_info
*fs_info
= btrfs_sb(file_inode(file
)->i_sb
);
376 struct btrfs_device
*device
;
377 struct request_queue
*q
;
378 struct fstrim_range range
;
379 u64 minlen
= ULLONG_MAX
;
381 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
384 if (!capable(CAP_SYS_ADMIN
))
388 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
392 q
= bdev_get_queue(device
->bdev
);
393 if (blk_queue_discard(q
)) {
395 minlen
= min((u64
)q
->limits
.discard_granularity
,
403 if (copy_from_user(&range
, arg
, sizeof(range
)))
405 if (range
.start
> total_bytes
||
406 range
.len
< fs_info
->sb
->s_blocksize
)
409 range
.len
= min(range
.len
, total_bytes
- range
.start
);
410 range
.minlen
= max(range
.minlen
, minlen
);
411 ret
= btrfs_trim_fs(fs_info
->tree_root
, &range
);
415 if (copy_to_user(arg
, &range
, sizeof(range
)))
421 int btrfs_is_empty_uuid(u8
*uuid
)
425 for (i
= 0; i
< BTRFS_UUID_SIZE
; i
++) {
432 static noinline
int create_subvol(struct inode
*dir
,
433 struct dentry
*dentry
,
434 char *name
, int namelen
,
436 struct btrfs_qgroup_inherit
*inherit
)
438 struct btrfs_trans_handle
*trans
;
439 struct btrfs_key key
;
440 struct btrfs_root_item root_item
;
441 struct btrfs_inode_item
*inode_item
;
442 struct extent_buffer
*leaf
;
443 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
444 struct btrfs_root
*new_root
;
445 struct btrfs_block_rsv block_rsv
;
446 struct timespec cur_time
= CURRENT_TIME
;
451 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
456 ret
= btrfs_find_free_objectid(root
->fs_info
->tree_root
, &objectid
);
461 * Don't create subvolume whose level is not zero. Or qgroup will be
462 * screwed up since it assume subvolme qgroup's level to be 0.
464 if (btrfs_qgroup_level(objectid
))
467 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
469 * The same as the snapshot creation, please see the comment
470 * of create_snapshot().
472 ret
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
473 8, &qgroup_reserved
, false);
477 trans
= btrfs_start_transaction(root
, 0);
479 ret
= PTR_ERR(trans
);
480 btrfs_subvolume_release_metadata(root
, &block_rsv
,
484 trans
->block_rsv
= &block_rsv
;
485 trans
->bytes_reserved
= block_rsv
.size
;
487 ret
= btrfs_qgroup_inherit(trans
, root
->fs_info
, 0, objectid
, inherit
);
491 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
497 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
498 btrfs_set_header_bytenr(leaf
, leaf
->start
);
499 btrfs_set_header_generation(leaf
, trans
->transid
);
500 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
501 btrfs_set_header_owner(leaf
, objectid
);
503 write_extent_buffer(leaf
, root
->fs_info
->fsid
, btrfs_header_fsid(),
505 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
506 btrfs_header_chunk_tree_uuid(leaf
),
508 btrfs_mark_buffer_dirty(leaf
);
510 memset(&root_item
, 0, sizeof(root_item
));
512 inode_item
= &root_item
.inode
;
513 btrfs_set_stack_inode_generation(inode_item
, 1);
514 btrfs_set_stack_inode_size(inode_item
, 3);
515 btrfs_set_stack_inode_nlink(inode_item
, 1);
516 btrfs_set_stack_inode_nbytes(inode_item
, root
->nodesize
);
517 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
519 btrfs_set_root_flags(&root_item
, 0);
520 btrfs_set_root_limit(&root_item
, 0);
521 btrfs_set_stack_inode_flags(inode_item
, BTRFS_INODE_ROOT_ITEM_INIT
);
523 btrfs_set_root_bytenr(&root_item
, leaf
->start
);
524 btrfs_set_root_generation(&root_item
, trans
->transid
);
525 btrfs_set_root_level(&root_item
, 0);
526 btrfs_set_root_refs(&root_item
, 1);
527 btrfs_set_root_used(&root_item
, leaf
->len
);
528 btrfs_set_root_last_snapshot(&root_item
, 0);
530 btrfs_set_root_generation_v2(&root_item
,
531 btrfs_root_generation(&root_item
));
532 uuid_le_gen(&new_uuid
);
533 memcpy(root_item
.uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
534 btrfs_set_stack_timespec_sec(&root_item
.otime
, cur_time
.tv_sec
);
535 btrfs_set_stack_timespec_nsec(&root_item
.otime
, cur_time
.tv_nsec
);
536 root_item
.ctime
= root_item
.otime
;
537 btrfs_set_root_ctransid(&root_item
, trans
->transid
);
538 btrfs_set_root_otransid(&root_item
, trans
->transid
);
540 btrfs_tree_unlock(leaf
);
541 free_extent_buffer(leaf
);
544 btrfs_set_root_dirid(&root_item
, new_dirid
);
546 key
.objectid
= objectid
;
548 key
.type
= BTRFS_ROOT_ITEM_KEY
;
549 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
554 key
.offset
= (u64
)-1;
555 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
556 if (IS_ERR(new_root
)) {
557 ret
= PTR_ERR(new_root
);
558 btrfs_abort_transaction(trans
, root
, ret
);
562 btrfs_record_root_in_trans(trans
, new_root
);
564 ret
= btrfs_create_subvol_root(trans
, new_root
, root
, new_dirid
);
566 /* We potentially lose an unused inode item here */
567 btrfs_abort_transaction(trans
, root
, ret
);
572 * insert the directory item
574 ret
= btrfs_set_inode_index(dir
, &index
);
576 btrfs_abort_transaction(trans
, root
, ret
);
580 ret
= btrfs_insert_dir_item(trans
, root
,
581 name
, namelen
, dir
, &key
,
582 BTRFS_FT_DIR
, index
);
584 btrfs_abort_transaction(trans
, root
, ret
);
588 btrfs_i_size_write(dir
, dir
->i_size
+ namelen
* 2);
589 ret
= btrfs_update_inode(trans
, root
, dir
);
592 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
593 objectid
, root
->root_key
.objectid
,
594 btrfs_ino(dir
), index
, name
, namelen
);
597 ret
= btrfs_uuid_tree_add(trans
, root
->fs_info
->uuid_root
,
598 root_item
.uuid
, BTRFS_UUID_KEY_SUBVOL
,
601 btrfs_abort_transaction(trans
, root
, ret
);
604 trans
->block_rsv
= NULL
;
605 trans
->bytes_reserved
= 0;
606 btrfs_subvolume_release_metadata(root
, &block_rsv
, qgroup_reserved
);
609 *async_transid
= trans
->transid
;
610 err
= btrfs_commit_transaction_async(trans
, root
, 1);
612 err
= btrfs_commit_transaction(trans
, root
);
614 err
= btrfs_commit_transaction(trans
, root
);
620 inode
= btrfs_lookup_dentry(dir
, dentry
);
622 return PTR_ERR(inode
);
623 d_instantiate(dentry
, inode
);
628 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root
*root
)
634 prepare_to_wait(&root
->subv_writers
->wait
, &wait
,
635 TASK_UNINTERRUPTIBLE
);
637 writers
= percpu_counter_sum(&root
->subv_writers
->counter
);
641 finish_wait(&root
->subv_writers
->wait
, &wait
);
645 static int create_snapshot(struct btrfs_root
*root
, struct inode
*dir
,
646 struct dentry
*dentry
, char *name
, int namelen
,
647 u64
*async_transid
, bool readonly
,
648 struct btrfs_qgroup_inherit
*inherit
)
651 struct btrfs_pending_snapshot
*pending_snapshot
;
652 struct btrfs_trans_handle
*trans
;
655 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
658 atomic_inc(&root
->will_be_snapshoted
);
659 smp_mb__after_atomic();
660 btrfs_wait_for_no_snapshoting_writes(root
);
662 ret
= btrfs_start_delalloc_inodes(root
, 0);
666 btrfs_wait_ordered_extents(root
, -1);
668 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_NOFS
);
669 if (!pending_snapshot
) {
674 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
,
675 BTRFS_BLOCK_RSV_TEMP
);
677 * 1 - parent dir inode
680 * 2 - root ref/backref
681 * 1 - root of snapshot
684 ret
= btrfs_subvolume_reserve_metadata(BTRFS_I(dir
)->root
,
685 &pending_snapshot
->block_rsv
, 8,
686 &pending_snapshot
->qgroup_reserved
,
691 pending_snapshot
->dentry
= dentry
;
692 pending_snapshot
->root
= root
;
693 pending_snapshot
->readonly
= readonly
;
694 pending_snapshot
->dir
= dir
;
695 pending_snapshot
->inherit
= inherit
;
697 trans
= btrfs_start_transaction(root
, 0);
699 ret
= PTR_ERR(trans
);
703 spin_lock(&root
->fs_info
->trans_lock
);
704 list_add(&pending_snapshot
->list
,
705 &trans
->transaction
->pending_snapshots
);
706 spin_unlock(&root
->fs_info
->trans_lock
);
708 *async_transid
= trans
->transid
;
709 ret
= btrfs_commit_transaction_async(trans
,
710 root
->fs_info
->extent_root
, 1);
712 ret
= btrfs_commit_transaction(trans
, root
);
714 ret
= btrfs_commit_transaction(trans
,
715 root
->fs_info
->extent_root
);
720 ret
= pending_snapshot
->error
;
724 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
728 inode
= btrfs_lookup_dentry(d_inode(dentry
->d_parent
), dentry
);
730 ret
= PTR_ERR(inode
);
734 d_instantiate(dentry
, inode
);
737 btrfs_subvolume_release_metadata(BTRFS_I(dir
)->root
,
738 &pending_snapshot
->block_rsv
,
739 pending_snapshot
->qgroup_reserved
);
741 kfree(pending_snapshot
);
743 if (atomic_dec_and_test(&root
->will_be_snapshoted
))
744 wake_up_atomic_t(&root
->will_be_snapshoted
);
748 /* copy of may_delete in fs/namei.c()
749 * Check whether we can remove a link victim from directory dir, check
750 * whether the type of victim is right.
751 * 1. We can't do it if dir is read-only (done in permission())
752 * 2. We should have write and exec permissions on dir
753 * 3. We can't remove anything from append-only dir
754 * 4. We can't do anything with immutable dir (done in permission())
755 * 5. If the sticky bit on dir is set we should either
756 * a. be owner of dir, or
757 * b. be owner of victim, or
758 * c. have CAP_FOWNER capability
759 * 6. If the victim is append-only or immutable we can't do antyhing with
760 * links pointing to it.
761 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
762 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
763 * 9. We can't remove a root or mountpoint.
764 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
765 * nfs_async_unlink().
768 static int btrfs_may_delete(struct inode
*dir
, struct dentry
*victim
, int isdir
)
772 if (d_really_is_negative(victim
))
775 BUG_ON(d_inode(victim
->d_parent
) != dir
);
776 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
778 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
783 if (check_sticky(dir
, d_inode(victim
)) || IS_APPEND(d_inode(victim
)) ||
784 IS_IMMUTABLE(d_inode(victim
)) || IS_SWAPFILE(d_inode(victim
)))
787 if (!d_is_dir(victim
))
791 } else if (d_is_dir(victim
))
795 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
800 /* copy of may_create in fs/namei.c() */
801 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
803 if (d_really_is_positive(child
))
807 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
811 * Create a new subvolume below @parent. This is largely modeled after
812 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
813 * inside this filesystem so it's quite a bit simpler.
815 static noinline
int btrfs_mksubvol(struct path
*parent
,
816 char *name
, int namelen
,
817 struct btrfs_root
*snap_src
,
818 u64
*async_transid
, bool readonly
,
819 struct btrfs_qgroup_inherit
*inherit
)
821 struct inode
*dir
= d_inode(parent
->dentry
);
822 struct dentry
*dentry
;
825 error
= mutex_lock_killable_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
829 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
830 error
= PTR_ERR(dentry
);
835 if (d_really_is_positive(dentry
))
838 error
= btrfs_may_create(dir
, dentry
);
843 * even if this name doesn't exist, we may get hash collisions.
844 * check for them now when we can safely fail
846 error
= btrfs_check_dir_item_collision(BTRFS_I(dir
)->root
,
852 down_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
854 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
858 error
= create_snapshot(snap_src
, dir
, dentry
, name
, namelen
,
859 async_transid
, readonly
, inherit
);
861 error
= create_subvol(dir
, dentry
, name
, namelen
,
862 async_transid
, inherit
);
865 fsnotify_mkdir(dir
, dentry
);
867 up_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
871 mutex_unlock(&dir
->i_mutex
);
876 * When we're defragging a range, we don't want to kick it off again
877 * if it is really just waiting for delalloc to send it down.
878 * If we find a nice big extent or delalloc range for the bytes in the
879 * file you want to defrag, we return 0 to let you know to skip this
882 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, u32 thresh
)
884 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
885 struct extent_map
*em
= NULL
;
886 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
889 read_lock(&em_tree
->lock
);
890 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
891 read_unlock(&em_tree
->lock
);
894 end
= extent_map_end(em
);
896 if (end
- offset
> thresh
)
899 /* if we already have a nice delalloc here, just stop */
901 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
902 thresh
, EXTENT_DELALLOC
, 1);
909 * helper function to walk through a file and find extents
910 * newer than a specific transid, and smaller than thresh.
912 * This is used by the defragging code to find new and small
915 static int find_new_extents(struct btrfs_root
*root
,
916 struct inode
*inode
, u64 newer_than
,
917 u64
*off
, u32 thresh
)
919 struct btrfs_path
*path
;
920 struct btrfs_key min_key
;
921 struct extent_buffer
*leaf
;
922 struct btrfs_file_extent_item
*extent
;
925 u64 ino
= btrfs_ino(inode
);
927 path
= btrfs_alloc_path();
931 min_key
.objectid
= ino
;
932 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
933 min_key
.offset
= *off
;
936 ret
= btrfs_search_forward(root
, &min_key
, path
, newer_than
);
940 if (min_key
.objectid
!= ino
)
942 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
945 leaf
= path
->nodes
[0];
946 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
947 struct btrfs_file_extent_item
);
949 type
= btrfs_file_extent_type(leaf
, extent
);
950 if (type
== BTRFS_FILE_EXTENT_REG
&&
951 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
952 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
953 *off
= min_key
.offset
;
954 btrfs_free_path(path
);
959 if (path
->slots
[0] < btrfs_header_nritems(leaf
)) {
960 btrfs_item_key_to_cpu(leaf
, &min_key
, path
->slots
[0]);
964 if (min_key
.offset
== (u64
)-1)
968 btrfs_release_path(path
);
971 btrfs_free_path(path
);
975 static struct extent_map
*defrag_lookup_extent(struct inode
*inode
, u64 start
)
977 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
978 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
979 struct extent_map
*em
;
980 u64 len
= PAGE_CACHE_SIZE
;
983 * hopefully we have this extent in the tree already, try without
984 * the full extent lock
986 read_lock(&em_tree
->lock
);
987 em
= lookup_extent_mapping(em_tree
, start
, len
);
988 read_unlock(&em_tree
->lock
);
991 struct extent_state
*cached
= NULL
;
992 u64 end
= start
+ len
- 1;
994 /* get the big lock and read metadata off disk */
995 lock_extent_bits(io_tree
, start
, end
, 0, &cached
);
996 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
997 unlock_extent_cached(io_tree
, start
, end
, &cached
, GFP_NOFS
);
1006 static bool defrag_check_next_extent(struct inode
*inode
, struct extent_map
*em
)
1008 struct extent_map
*next
;
1011 /* this is the last extent */
1012 if (em
->start
+ em
->len
>= i_size_read(inode
))
1015 next
= defrag_lookup_extent(inode
, em
->start
+ em
->len
);
1016 if (!next
|| next
->block_start
>= EXTENT_MAP_LAST_BYTE
)
1018 else if ((em
->block_start
+ em
->block_len
== next
->block_start
) &&
1019 (em
->block_len
> 128 * 1024 && next
->block_len
> 128 * 1024))
1022 free_extent_map(next
);
1026 static int should_defrag_range(struct inode
*inode
, u64 start
, u32 thresh
,
1027 u64
*last_len
, u64
*skip
, u64
*defrag_end
,
1030 struct extent_map
*em
;
1032 bool next_mergeable
= true;
1035 * make sure that once we start defragging an extent, we keep on
1038 if (start
< *defrag_end
)
1043 em
= defrag_lookup_extent(inode
, start
);
1047 /* this will cover holes, and inline extents */
1048 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1053 next_mergeable
= defrag_check_next_extent(inode
, em
);
1055 * we hit a real extent, if it is big or the next extent is not a
1056 * real extent, don't bother defragging it
1058 if (!compress
&& (*last_len
== 0 || *last_len
>= thresh
) &&
1059 (em
->len
>= thresh
|| !next_mergeable
))
1063 * last_len ends up being a counter of how many bytes we've defragged.
1064 * every time we choose not to defrag an extent, we reset *last_len
1065 * so that the next tiny extent will force a defrag.
1067 * The end result of this is that tiny extents before a single big
1068 * extent will force at least part of that big extent to be defragged.
1071 *defrag_end
= extent_map_end(em
);
1074 *skip
= extent_map_end(em
);
1078 free_extent_map(em
);
1083 * it doesn't do much good to defrag one or two pages
1084 * at a time. This pulls in a nice chunk of pages
1085 * to COW and defrag.
1087 * It also makes sure the delalloc code has enough
1088 * dirty data to avoid making new small extents as part
1091 * It's a good idea to start RA on this range
1092 * before calling this.
1094 static int cluster_pages_for_defrag(struct inode
*inode
,
1095 struct page
**pages
,
1096 unsigned long start_index
,
1097 unsigned long num_pages
)
1099 unsigned long file_end
;
1100 u64 isize
= i_size_read(inode
);
1107 struct btrfs_ordered_extent
*ordered
;
1108 struct extent_state
*cached_state
= NULL
;
1109 struct extent_io_tree
*tree
;
1110 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1112 file_end
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1113 if (!isize
|| start_index
> file_end
)
1116 page_cnt
= min_t(u64
, (u64
)num_pages
, (u64
)file_end
- start_index
+ 1);
1118 ret
= btrfs_delalloc_reserve_space(inode
,
1119 page_cnt
<< PAGE_CACHE_SHIFT
);
1123 tree
= &BTRFS_I(inode
)->io_tree
;
1125 /* step one, lock all the pages */
1126 for (i
= 0; i
< page_cnt
; i
++) {
1129 page
= find_or_create_page(inode
->i_mapping
,
1130 start_index
+ i
, mask
);
1134 page_start
= page_offset(page
);
1135 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
1137 lock_extent_bits(tree
, page_start
, page_end
,
1139 ordered
= btrfs_lookup_ordered_extent(inode
,
1141 unlock_extent_cached(tree
, page_start
, page_end
,
1142 &cached_state
, GFP_NOFS
);
1147 btrfs_start_ordered_extent(inode
, ordered
, 1);
1148 btrfs_put_ordered_extent(ordered
);
1151 * we unlocked the page above, so we need check if
1152 * it was released or not.
1154 if (page
->mapping
!= inode
->i_mapping
) {
1156 page_cache_release(page
);
1161 if (!PageUptodate(page
)) {
1162 btrfs_readpage(NULL
, page
);
1164 if (!PageUptodate(page
)) {
1166 page_cache_release(page
);
1172 if (page
->mapping
!= inode
->i_mapping
) {
1174 page_cache_release(page
);
1184 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1188 * so now we have a nice long stream of locked
1189 * and up to date pages, lets wait on them
1191 for (i
= 0; i
< i_done
; i
++)
1192 wait_on_page_writeback(pages
[i
]);
1194 page_start
= page_offset(pages
[0]);
1195 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_CACHE_SIZE
;
1197 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1198 page_start
, page_end
- 1, 0, &cached_state
);
1199 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
1200 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1201 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 0, 0,
1202 &cached_state
, GFP_NOFS
);
1204 if (i_done
!= page_cnt
) {
1205 spin_lock(&BTRFS_I(inode
)->lock
);
1206 BTRFS_I(inode
)->outstanding_extents
++;
1207 spin_unlock(&BTRFS_I(inode
)->lock
);
1208 btrfs_delalloc_release_space(inode
,
1209 (page_cnt
- i_done
) << PAGE_CACHE_SHIFT
);
1213 set_extent_defrag(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
- 1,
1214 &cached_state
, GFP_NOFS
);
1216 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1217 page_start
, page_end
- 1, &cached_state
,
1220 for (i
= 0; i
< i_done
; i
++) {
1221 clear_page_dirty_for_io(pages
[i
]);
1222 ClearPageChecked(pages
[i
]);
1223 set_page_extent_mapped(pages
[i
]);
1224 set_page_dirty(pages
[i
]);
1225 unlock_page(pages
[i
]);
1226 page_cache_release(pages
[i
]);
1230 for (i
= 0; i
< i_done
; i
++) {
1231 unlock_page(pages
[i
]);
1232 page_cache_release(pages
[i
]);
1234 btrfs_delalloc_release_space(inode
, page_cnt
<< PAGE_CACHE_SHIFT
);
1239 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
1240 struct btrfs_ioctl_defrag_range_args
*range
,
1241 u64 newer_than
, unsigned long max_to_defrag
)
1243 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1244 struct file_ra_state
*ra
= NULL
;
1245 unsigned long last_index
;
1246 u64 isize
= i_size_read(inode
);
1250 u64 newer_off
= range
->start
;
1252 unsigned long ra_index
= 0;
1254 int defrag_count
= 0;
1255 int compress_type
= BTRFS_COMPRESS_ZLIB
;
1256 u32 extent_thresh
= range
->extent_thresh
;
1257 unsigned long max_cluster
= (256 * 1024) >> PAGE_CACHE_SHIFT
;
1258 unsigned long cluster
= max_cluster
;
1259 u64 new_align
= ~((u64
)128 * 1024 - 1);
1260 struct page
**pages
= NULL
;
1265 if (range
->start
>= isize
)
1268 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1269 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1271 if (range
->compress_type
)
1272 compress_type
= range
->compress_type
;
1275 if (extent_thresh
== 0)
1276 extent_thresh
= 256 * 1024;
1279 * if we were not given a file, allocate a readahead
1283 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
1286 file_ra_state_init(ra
, inode
->i_mapping
);
1291 pages
= kmalloc_array(max_cluster
, sizeof(struct page
*),
1298 /* find the last page to defrag */
1299 if (range
->start
+ range
->len
> range
->start
) {
1300 last_index
= min_t(u64
, isize
- 1,
1301 range
->start
+ range
->len
- 1) >> PAGE_CACHE_SHIFT
;
1303 last_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1307 ret
= find_new_extents(root
, inode
, newer_than
,
1308 &newer_off
, 64 * 1024);
1310 range
->start
= newer_off
;
1312 * we always align our defrag to help keep
1313 * the extents in the file evenly spaced
1315 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1319 i
= range
->start
>> PAGE_CACHE_SHIFT
;
1322 max_to_defrag
= last_index
- i
+ 1;
1325 * make writeback starts from i, so the defrag range can be
1326 * written sequentially.
1328 if (i
< inode
->i_mapping
->writeback_index
)
1329 inode
->i_mapping
->writeback_index
= i
;
1331 while (i
<= last_index
&& defrag_count
< max_to_defrag
&&
1332 (i
< DIV_ROUND_UP(i_size_read(inode
), PAGE_CACHE_SIZE
))) {
1334 * make sure we stop running if someone unmounts
1337 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1340 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1341 printk(KERN_DEBUG
"BTRFS: defrag_file cancelled\n");
1346 if (!should_defrag_range(inode
, (u64
)i
<< PAGE_CACHE_SHIFT
,
1347 extent_thresh
, &last_len
, &skip
,
1348 &defrag_end
, range
->flags
&
1349 BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1352 * the should_defrag function tells us how much to skip
1353 * bump our counter by the suggested amount
1355 next
= DIV_ROUND_UP(skip
, PAGE_CACHE_SIZE
);
1356 i
= max(i
+ 1, next
);
1361 cluster
= (PAGE_CACHE_ALIGN(defrag_end
) >>
1362 PAGE_CACHE_SHIFT
) - i
;
1363 cluster
= min(cluster
, max_cluster
);
1365 cluster
= max_cluster
;
1368 if (i
+ cluster
> ra_index
) {
1369 ra_index
= max(i
, ra_index
);
1370 btrfs_force_ra(inode
->i_mapping
, ra
, file
, ra_index
,
1372 ra_index
+= cluster
;
1375 mutex_lock(&inode
->i_mutex
);
1376 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)
1377 BTRFS_I(inode
)->force_compress
= compress_type
;
1378 ret
= cluster_pages_for_defrag(inode
, pages
, i
, cluster
);
1380 mutex_unlock(&inode
->i_mutex
);
1384 defrag_count
+= ret
;
1385 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1386 mutex_unlock(&inode
->i_mutex
);
1389 if (newer_off
== (u64
)-1)
1395 newer_off
= max(newer_off
+ 1,
1396 (u64
)i
<< PAGE_CACHE_SHIFT
);
1398 ret
= find_new_extents(root
, inode
,
1399 newer_than
, &newer_off
,
1402 range
->start
= newer_off
;
1403 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1410 last_len
+= ret
<< PAGE_CACHE_SHIFT
;
1418 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
)) {
1419 filemap_flush(inode
->i_mapping
);
1420 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1421 &BTRFS_I(inode
)->runtime_flags
))
1422 filemap_flush(inode
->i_mapping
);
1425 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1426 /* the filemap_flush will queue IO into the worker threads, but
1427 * we have to make sure the IO is actually started and that
1428 * ordered extents get created before we return
1430 atomic_inc(&root
->fs_info
->async_submit_draining
);
1431 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
1432 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1433 wait_event(root
->fs_info
->async_submit_wait
,
1434 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
1435 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
1437 atomic_dec(&root
->fs_info
->async_submit_draining
);
1440 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1441 btrfs_set_fs_incompat(root
->fs_info
, COMPRESS_LZO
);
1447 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1448 mutex_lock(&inode
->i_mutex
);
1449 BTRFS_I(inode
)->force_compress
= BTRFS_COMPRESS_NONE
;
1450 mutex_unlock(&inode
->i_mutex
);
1458 static noinline
int btrfs_ioctl_resize(struct file
*file
,
1464 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
1465 struct btrfs_ioctl_vol_args
*vol_args
;
1466 struct btrfs_trans_handle
*trans
;
1467 struct btrfs_device
*device
= NULL
;
1470 char *devstr
= NULL
;
1474 if (!capable(CAP_SYS_ADMIN
))
1477 ret
= mnt_want_write_file(file
);
1481 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
1483 mnt_drop_write_file(file
);
1484 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
1487 mutex_lock(&root
->fs_info
->volume_mutex
);
1488 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1489 if (IS_ERR(vol_args
)) {
1490 ret
= PTR_ERR(vol_args
);
1494 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1496 sizestr
= vol_args
->name
;
1497 devstr
= strchr(sizestr
, ':');
1499 sizestr
= devstr
+ 1;
1501 devstr
= vol_args
->name
;
1502 ret
= kstrtoull(devstr
, 10, &devid
);
1509 btrfs_info(root
->fs_info
, "resizing devid %llu", devid
);
1512 device
= btrfs_find_device(root
->fs_info
, devid
, NULL
, NULL
);
1514 btrfs_info(root
->fs_info
, "resizer unable to find device %llu",
1520 if (!device
->writeable
) {
1521 btrfs_info(root
->fs_info
,
1522 "resizer unable to apply on readonly device %llu",
1528 if (!strcmp(sizestr
, "max"))
1529 new_size
= device
->bdev
->bd_inode
->i_size
;
1531 if (sizestr
[0] == '-') {
1534 } else if (sizestr
[0] == '+') {
1538 new_size
= memparse(sizestr
, &retptr
);
1539 if (*retptr
!= '\0' || new_size
== 0) {
1545 if (device
->is_tgtdev_for_dev_replace
) {
1550 old_size
= btrfs_device_get_total_bytes(device
);
1553 if (new_size
> old_size
) {
1557 new_size
= old_size
- new_size
;
1558 } else if (mod
> 0) {
1559 if (new_size
> ULLONG_MAX
- old_size
) {
1563 new_size
= old_size
+ new_size
;
1566 if (new_size
< 256 * 1024 * 1024) {
1570 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1575 new_size
= div_u64(new_size
, root
->sectorsize
);
1576 new_size
*= root
->sectorsize
;
1578 printk_in_rcu(KERN_INFO
"BTRFS: new size for %s is %llu\n",
1579 rcu_str_deref(device
->name
), new_size
);
1581 if (new_size
> old_size
) {
1582 trans
= btrfs_start_transaction(root
, 0);
1583 if (IS_ERR(trans
)) {
1584 ret
= PTR_ERR(trans
);
1587 ret
= btrfs_grow_device(trans
, device
, new_size
);
1588 btrfs_commit_transaction(trans
, root
);
1589 } else if (new_size
< old_size
) {
1590 ret
= btrfs_shrink_device(device
, new_size
);
1591 } /* equal, nothing need to do */
1596 mutex_unlock(&root
->fs_info
->volume_mutex
);
1597 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
1598 mnt_drop_write_file(file
);
1602 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1603 char *name
, unsigned long fd
, int subvol
,
1604 u64
*transid
, bool readonly
,
1605 struct btrfs_qgroup_inherit
*inherit
)
1610 ret
= mnt_want_write_file(file
);
1614 namelen
= strlen(name
);
1615 if (strchr(name
, '/')) {
1617 goto out_drop_write
;
1620 if (name
[0] == '.' &&
1621 (namelen
== 1 || (name
[1] == '.' && namelen
== 2))) {
1623 goto out_drop_write
;
1627 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1628 NULL
, transid
, readonly
, inherit
);
1630 struct fd src
= fdget(fd
);
1631 struct inode
*src_inode
;
1634 goto out_drop_write
;
1637 src_inode
= file_inode(src
.file
);
1638 if (src_inode
->i_sb
!= file_inode(file
)->i_sb
) {
1639 btrfs_info(BTRFS_I(src_inode
)->root
->fs_info
,
1640 "Snapshot src from another FS");
1642 } else if (!inode_owner_or_capable(src_inode
)) {
1644 * Subvolume creation is not restricted, but snapshots
1645 * are limited to own subvolumes only
1649 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1650 BTRFS_I(src_inode
)->root
,
1651 transid
, readonly
, inherit
);
1656 mnt_drop_write_file(file
);
1661 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1662 void __user
*arg
, int subvol
)
1664 struct btrfs_ioctl_vol_args
*vol_args
;
1667 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1668 if (IS_ERR(vol_args
))
1669 return PTR_ERR(vol_args
);
1670 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1672 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1673 vol_args
->fd
, subvol
,
1680 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1681 void __user
*arg
, int subvol
)
1683 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1687 bool readonly
= false;
1688 struct btrfs_qgroup_inherit
*inherit
= NULL
;
1690 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1691 if (IS_ERR(vol_args
))
1692 return PTR_ERR(vol_args
);
1693 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1695 if (vol_args
->flags
&
1696 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
|
1697 BTRFS_SUBVOL_QGROUP_INHERIT
)) {
1702 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1704 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1706 if (vol_args
->flags
& BTRFS_SUBVOL_QGROUP_INHERIT
) {
1707 if (vol_args
->size
> PAGE_CACHE_SIZE
) {
1711 inherit
= memdup_user(vol_args
->qgroup_inherit
, vol_args
->size
);
1712 if (IS_ERR(inherit
)) {
1713 ret
= PTR_ERR(inherit
);
1718 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1719 vol_args
->fd
, subvol
, ptr
,
1724 if (ptr
&& copy_to_user(arg
+
1725 offsetof(struct btrfs_ioctl_vol_args_v2
,
1737 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1740 struct inode
*inode
= file_inode(file
);
1741 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1745 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1748 down_read(&root
->fs_info
->subvol_sem
);
1749 if (btrfs_root_readonly(root
))
1750 flags
|= BTRFS_SUBVOL_RDONLY
;
1751 up_read(&root
->fs_info
->subvol_sem
);
1753 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1759 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1762 struct inode
*inode
= file_inode(file
);
1763 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1764 struct btrfs_trans_handle
*trans
;
1769 if (!inode_owner_or_capable(inode
))
1772 ret
= mnt_want_write_file(file
);
1776 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
1778 goto out_drop_write
;
1781 if (copy_from_user(&flags
, arg
, sizeof(flags
))) {
1783 goto out_drop_write
;
1786 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
) {
1788 goto out_drop_write
;
1791 if (flags
& ~BTRFS_SUBVOL_RDONLY
) {
1793 goto out_drop_write
;
1796 down_write(&root
->fs_info
->subvol_sem
);
1799 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1802 root_flags
= btrfs_root_flags(&root
->root_item
);
1803 if (flags
& BTRFS_SUBVOL_RDONLY
) {
1804 btrfs_set_root_flags(&root
->root_item
,
1805 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1808 * Block RO -> RW transition if this subvolume is involved in
1811 spin_lock(&root
->root_item_lock
);
1812 if (root
->send_in_progress
== 0) {
1813 btrfs_set_root_flags(&root
->root_item
,
1814 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1815 spin_unlock(&root
->root_item_lock
);
1817 spin_unlock(&root
->root_item_lock
);
1818 btrfs_warn(root
->fs_info
,
1819 "Attempt to set subvolume %llu read-write during send",
1820 root
->root_key
.objectid
);
1826 trans
= btrfs_start_transaction(root
, 1);
1827 if (IS_ERR(trans
)) {
1828 ret
= PTR_ERR(trans
);
1832 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
1833 &root
->root_key
, &root
->root_item
);
1835 btrfs_commit_transaction(trans
, root
);
1838 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1840 up_write(&root
->fs_info
->subvol_sem
);
1842 mnt_drop_write_file(file
);
1848 * helper to check if the subvolume references other subvolumes
1850 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1852 struct btrfs_path
*path
;
1853 struct btrfs_dir_item
*di
;
1854 struct btrfs_key key
;
1858 path
= btrfs_alloc_path();
1862 /* Make sure this root isn't set as the default subvol */
1863 dir_id
= btrfs_super_root_dir(root
->fs_info
->super_copy
);
1864 di
= btrfs_lookup_dir_item(NULL
, root
->fs_info
->tree_root
, path
,
1865 dir_id
, "default", 7, 0);
1866 if (di
&& !IS_ERR(di
)) {
1867 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1868 if (key
.objectid
== root
->root_key
.objectid
) {
1870 btrfs_err(root
->fs_info
, "deleting default subvolume "
1871 "%llu is not allowed", key
.objectid
);
1874 btrfs_release_path(path
);
1877 key
.objectid
= root
->root_key
.objectid
;
1878 key
.type
= BTRFS_ROOT_REF_KEY
;
1879 key
.offset
= (u64
)-1;
1881 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
,
1888 if (path
->slots
[0] > 0) {
1890 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1891 if (key
.objectid
== root
->root_key
.objectid
&&
1892 key
.type
== BTRFS_ROOT_REF_KEY
)
1896 btrfs_free_path(path
);
1900 static noinline
int key_in_sk(struct btrfs_key
*key
,
1901 struct btrfs_ioctl_search_key
*sk
)
1903 struct btrfs_key test
;
1906 test
.objectid
= sk
->min_objectid
;
1907 test
.type
= sk
->min_type
;
1908 test
.offset
= sk
->min_offset
;
1910 ret
= btrfs_comp_cpu_keys(key
, &test
);
1914 test
.objectid
= sk
->max_objectid
;
1915 test
.type
= sk
->max_type
;
1916 test
.offset
= sk
->max_offset
;
1918 ret
= btrfs_comp_cpu_keys(key
, &test
);
1924 static noinline
int copy_to_sk(struct btrfs_root
*root
,
1925 struct btrfs_path
*path
,
1926 struct btrfs_key
*key
,
1927 struct btrfs_ioctl_search_key
*sk
,
1930 unsigned long *sk_offset
,
1934 struct extent_buffer
*leaf
;
1935 struct btrfs_ioctl_search_header sh
;
1936 unsigned long item_off
;
1937 unsigned long item_len
;
1943 leaf
= path
->nodes
[0];
1944 slot
= path
->slots
[0];
1945 nritems
= btrfs_header_nritems(leaf
);
1947 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1951 found_transid
= btrfs_header_generation(leaf
);
1953 for (i
= slot
; i
< nritems
; i
++) {
1954 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1955 item_len
= btrfs_item_size_nr(leaf
, i
);
1957 btrfs_item_key_to_cpu(leaf
, key
, i
);
1958 if (!key_in_sk(key
, sk
))
1961 if (sizeof(sh
) + item_len
> *buf_size
) {
1968 * return one empty item back for v1, which does not
1972 *buf_size
= sizeof(sh
) + item_len
;
1977 if (sizeof(sh
) + item_len
+ *sk_offset
> *buf_size
) {
1982 sh
.objectid
= key
->objectid
;
1983 sh
.offset
= key
->offset
;
1984 sh
.type
= key
->type
;
1986 sh
.transid
= found_transid
;
1988 /* copy search result header */
1989 if (copy_to_user(ubuf
+ *sk_offset
, &sh
, sizeof(sh
))) {
1994 *sk_offset
+= sizeof(sh
);
1997 char __user
*up
= ubuf
+ *sk_offset
;
1999 if (read_extent_buffer_to_user(leaf
, up
,
2000 item_off
, item_len
)) {
2005 *sk_offset
+= item_len
;
2009 if (ret
) /* -EOVERFLOW from above */
2012 if (*num_found
>= sk
->nr_items
) {
2019 if (key
->offset
< (u64
)-1 && key
->offset
< sk
->max_offset
)
2021 else if (key
->type
< (u8
)-1 && key
->type
< sk
->max_type
) {
2024 } else if (key
->objectid
< (u64
)-1 && key
->objectid
< sk
->max_objectid
) {
2032 * 0: all items from this leaf copied, continue with next
2033 * 1: * more items can be copied, but unused buffer is too small
2034 * * all items were found
2035 * Either way, it will stops the loop which iterates to the next
2037 * -EOVERFLOW: item was to large for buffer
2038 * -EFAULT: could not copy extent buffer back to userspace
2043 static noinline
int search_ioctl(struct inode
*inode
,
2044 struct btrfs_ioctl_search_key
*sk
,
2048 struct btrfs_root
*root
;
2049 struct btrfs_key key
;
2050 struct btrfs_path
*path
;
2051 struct btrfs_fs_info
*info
= BTRFS_I(inode
)->root
->fs_info
;
2054 unsigned long sk_offset
= 0;
2056 if (*buf_size
< sizeof(struct btrfs_ioctl_search_header
)) {
2057 *buf_size
= sizeof(struct btrfs_ioctl_search_header
);
2061 path
= btrfs_alloc_path();
2065 if (sk
->tree_id
== 0) {
2066 /* search the root of the inode that was passed */
2067 root
= BTRFS_I(inode
)->root
;
2069 key
.objectid
= sk
->tree_id
;
2070 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2071 key
.offset
= (u64
)-1;
2072 root
= btrfs_read_fs_root_no_name(info
, &key
);
2074 printk(KERN_ERR
"BTRFS: could not find root %llu\n",
2076 btrfs_free_path(path
);
2081 key
.objectid
= sk
->min_objectid
;
2082 key
.type
= sk
->min_type
;
2083 key
.offset
= sk
->min_offset
;
2086 ret
= btrfs_search_forward(root
, &key
, path
, sk
->min_transid
);
2092 ret
= copy_to_sk(root
, path
, &key
, sk
, buf_size
, ubuf
,
2093 &sk_offset
, &num_found
);
2094 btrfs_release_path(path
);
2102 sk
->nr_items
= num_found
;
2103 btrfs_free_path(path
);
2107 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
2110 struct btrfs_ioctl_search_args __user
*uargs
;
2111 struct btrfs_ioctl_search_key sk
;
2112 struct inode
*inode
;
2116 if (!capable(CAP_SYS_ADMIN
))
2119 uargs
= (struct btrfs_ioctl_search_args __user
*)argp
;
2121 if (copy_from_user(&sk
, &uargs
->key
, sizeof(sk
)))
2124 buf_size
= sizeof(uargs
->buf
);
2126 inode
= file_inode(file
);
2127 ret
= search_ioctl(inode
, &sk
, &buf_size
, uargs
->buf
);
2130 * In the origin implementation an overflow is handled by returning a
2131 * search header with a len of zero, so reset ret.
2133 if (ret
== -EOVERFLOW
)
2136 if (ret
== 0 && copy_to_user(&uargs
->key
, &sk
, sizeof(sk
)))
2141 static noinline
int btrfs_ioctl_tree_search_v2(struct file
*file
,
2144 struct btrfs_ioctl_search_args_v2 __user
*uarg
;
2145 struct btrfs_ioctl_search_args_v2 args
;
2146 struct inode
*inode
;
2149 const size_t buf_limit
= 16 * 1024 * 1024;
2151 if (!capable(CAP_SYS_ADMIN
))
2154 /* copy search header and buffer size */
2155 uarg
= (struct btrfs_ioctl_search_args_v2 __user
*)argp
;
2156 if (copy_from_user(&args
, uarg
, sizeof(args
)))
2159 buf_size
= args
.buf_size
;
2161 if (buf_size
< sizeof(struct btrfs_ioctl_search_header
))
2164 /* limit result size to 16MB */
2165 if (buf_size
> buf_limit
)
2166 buf_size
= buf_limit
;
2168 inode
= file_inode(file
);
2169 ret
= search_ioctl(inode
, &args
.key
, &buf_size
,
2170 (char *)(&uarg
->buf
[0]));
2171 if (ret
== 0 && copy_to_user(&uarg
->key
, &args
.key
, sizeof(args
.key
)))
2173 else if (ret
== -EOVERFLOW
&&
2174 copy_to_user(&uarg
->buf_size
, &buf_size
, sizeof(buf_size
)))
2181 * Search INODE_REFs to identify path name of 'dirid' directory
2182 * in a 'tree_id' tree. and sets path name to 'name'.
2184 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
2185 u64 tree_id
, u64 dirid
, char *name
)
2187 struct btrfs_root
*root
;
2188 struct btrfs_key key
;
2194 struct btrfs_inode_ref
*iref
;
2195 struct extent_buffer
*l
;
2196 struct btrfs_path
*path
;
2198 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
2203 path
= btrfs_alloc_path();
2207 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
];
2209 key
.objectid
= tree_id
;
2210 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2211 key
.offset
= (u64
)-1;
2212 root
= btrfs_read_fs_root_no_name(info
, &key
);
2214 printk(KERN_ERR
"BTRFS: could not find root %llu\n", tree_id
);
2219 key
.objectid
= dirid
;
2220 key
.type
= BTRFS_INODE_REF_KEY
;
2221 key
.offset
= (u64
)-1;
2224 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2228 ret
= btrfs_previous_item(root
, path
, dirid
,
2229 BTRFS_INODE_REF_KEY
);
2239 slot
= path
->slots
[0];
2240 btrfs_item_key_to_cpu(l
, &key
, slot
);
2242 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
2243 len
= btrfs_inode_ref_name_len(l
, iref
);
2245 total_len
+= len
+ 1;
2247 ret
= -ENAMETOOLONG
;
2252 read_extent_buffer(l
, ptr
, (unsigned long)(iref
+ 1), len
);
2254 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
2257 btrfs_release_path(path
);
2258 key
.objectid
= key
.offset
;
2259 key
.offset
= (u64
)-1;
2260 dirid
= key
.objectid
;
2262 memmove(name
, ptr
, total_len
);
2263 name
[total_len
] = '\0';
2266 btrfs_free_path(path
);
2270 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
2273 struct btrfs_ioctl_ino_lookup_args
*args
;
2274 struct inode
*inode
;
2277 args
= memdup_user(argp
, sizeof(*args
));
2279 return PTR_ERR(args
);
2281 inode
= file_inode(file
);
2284 * Unprivileged query to obtain the containing subvolume root id. The
2285 * path is reset so it's consistent with btrfs_search_path_in_tree.
2287 if (args
->treeid
== 0)
2288 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2290 if (args
->objectid
== BTRFS_FIRST_FREE_OBJECTID
) {
2295 if (!capable(CAP_SYS_ADMIN
)) {
2300 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
2301 args
->treeid
, args
->objectid
,
2305 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2312 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
2315 struct dentry
*parent
= file
->f_path
.dentry
;
2316 struct dentry
*dentry
;
2317 struct inode
*dir
= d_inode(parent
);
2318 struct inode
*inode
;
2319 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2320 struct btrfs_root
*dest
= NULL
;
2321 struct btrfs_ioctl_vol_args
*vol_args
;
2322 struct btrfs_trans_handle
*trans
;
2323 struct btrfs_block_rsv block_rsv
;
2325 u64 qgroup_reserved
;
2330 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2331 if (IS_ERR(vol_args
))
2332 return PTR_ERR(vol_args
);
2334 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2335 namelen
= strlen(vol_args
->name
);
2336 if (strchr(vol_args
->name
, '/') ||
2337 strncmp(vol_args
->name
, "..", namelen
) == 0) {
2342 err
= mnt_want_write_file(file
);
2347 err
= mutex_lock_killable_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
2349 goto out_drop_write
;
2350 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
2351 if (IS_ERR(dentry
)) {
2352 err
= PTR_ERR(dentry
);
2353 goto out_unlock_dir
;
2356 if (d_really_is_negative(dentry
)) {
2361 inode
= d_inode(dentry
);
2362 dest
= BTRFS_I(inode
)->root
;
2363 if (!capable(CAP_SYS_ADMIN
)) {
2365 * Regular user. Only allow this with a special mount
2366 * option, when the user has write+exec access to the
2367 * subvol root, and when rmdir(2) would have been
2370 * Note that this is _not_ check that the subvol is
2371 * empty or doesn't contain data that we wouldn't
2372 * otherwise be able to delete.
2374 * Users who want to delete empty subvols should try
2378 if (!btrfs_test_opt(root
, USER_SUBVOL_RM_ALLOWED
))
2382 * Do not allow deletion if the parent dir is the same
2383 * as the dir to be deleted. That means the ioctl
2384 * must be called on the dentry referencing the root
2385 * of the subvol, not a random directory contained
2392 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
2397 /* check if subvolume may be deleted by a user */
2398 err
= btrfs_may_delete(dir
, dentry
, 1);
2402 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
2407 mutex_lock(&inode
->i_mutex
);
2410 * Don't allow to delete a subvolume with send in progress. This is
2411 * inside the i_mutex so the error handling that has to drop the bit
2412 * again is not run concurrently.
2414 spin_lock(&dest
->root_item_lock
);
2415 root_flags
= btrfs_root_flags(&dest
->root_item
);
2416 if (dest
->send_in_progress
== 0) {
2417 btrfs_set_root_flags(&dest
->root_item
,
2418 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
2419 spin_unlock(&dest
->root_item_lock
);
2421 spin_unlock(&dest
->root_item_lock
);
2422 btrfs_warn(root
->fs_info
,
2423 "Attempt to delete subvolume %llu during send",
2424 dest
->root_key
.objectid
);
2426 goto out_unlock_inode
;
2429 down_write(&root
->fs_info
->subvol_sem
);
2431 err
= may_destroy_subvol(dest
);
2435 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
2437 * One for dir inode, two for dir entries, two for root
2440 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
2441 5, &qgroup_reserved
, true);
2445 trans
= btrfs_start_transaction(root
, 0);
2446 if (IS_ERR(trans
)) {
2447 err
= PTR_ERR(trans
);
2450 trans
->block_rsv
= &block_rsv
;
2451 trans
->bytes_reserved
= block_rsv
.size
;
2453 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
2454 dest
->root_key
.objectid
,
2455 dentry
->d_name
.name
,
2456 dentry
->d_name
.len
);
2459 btrfs_abort_transaction(trans
, root
, ret
);
2463 btrfs_record_root_in_trans(trans
, dest
);
2465 memset(&dest
->root_item
.drop_progress
, 0,
2466 sizeof(dest
->root_item
.drop_progress
));
2467 dest
->root_item
.drop_level
= 0;
2468 btrfs_set_root_refs(&dest
->root_item
, 0);
2470 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
2471 ret
= btrfs_insert_orphan_item(trans
,
2472 root
->fs_info
->tree_root
,
2473 dest
->root_key
.objectid
);
2475 btrfs_abort_transaction(trans
, root
, ret
);
2481 ret
= btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
2482 dest
->root_item
.uuid
, BTRFS_UUID_KEY_SUBVOL
,
2483 dest
->root_key
.objectid
);
2484 if (ret
&& ret
!= -ENOENT
) {
2485 btrfs_abort_transaction(trans
, root
, ret
);
2489 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
2490 ret
= btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
2491 dest
->root_item
.received_uuid
,
2492 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
2493 dest
->root_key
.objectid
);
2494 if (ret
&& ret
!= -ENOENT
) {
2495 btrfs_abort_transaction(trans
, root
, ret
);
2502 trans
->block_rsv
= NULL
;
2503 trans
->bytes_reserved
= 0;
2504 ret
= btrfs_end_transaction(trans
, root
);
2507 inode
->i_flags
|= S_DEAD
;
2509 btrfs_subvolume_release_metadata(root
, &block_rsv
, qgroup_reserved
);
2511 up_write(&root
->fs_info
->subvol_sem
);
2513 spin_lock(&dest
->root_item_lock
);
2514 root_flags
= btrfs_root_flags(&dest
->root_item
);
2515 btrfs_set_root_flags(&dest
->root_item
,
2516 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
2517 spin_unlock(&dest
->root_item_lock
);
2520 mutex_unlock(&inode
->i_mutex
);
2522 d_invalidate(dentry
);
2523 btrfs_invalidate_inodes(dest
);
2525 ASSERT(dest
->send_in_progress
== 0);
2528 if (dest
->ino_cache_inode
) {
2529 iput(dest
->ino_cache_inode
);
2530 dest
->ino_cache_inode
= NULL
;
2536 mutex_unlock(&dir
->i_mutex
);
2538 mnt_drop_write_file(file
);
2544 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
2546 struct inode
*inode
= file_inode(file
);
2547 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2548 struct btrfs_ioctl_defrag_range_args
*range
;
2551 ret
= mnt_want_write_file(file
);
2555 if (btrfs_root_readonly(root
)) {
2560 switch (inode
->i_mode
& S_IFMT
) {
2562 if (!capable(CAP_SYS_ADMIN
)) {
2566 ret
= btrfs_defrag_root(root
);
2569 ret
= btrfs_defrag_root(root
->fs_info
->extent_root
);
2572 if (!(file
->f_mode
& FMODE_WRITE
)) {
2577 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
2584 if (copy_from_user(range
, argp
,
2590 /* compression requires us to start the IO */
2591 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
2592 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
2593 range
->extent_thresh
= (u32
)-1;
2596 /* the rest are all set to zero by kzalloc */
2597 range
->len
= (u64
)-1;
2599 ret
= btrfs_defrag_file(file_inode(file
), file
,
2609 mnt_drop_write_file(file
);
2613 static long btrfs_ioctl_add_dev(struct btrfs_root
*root
, void __user
*arg
)
2615 struct btrfs_ioctl_vol_args
*vol_args
;
2618 if (!capable(CAP_SYS_ADMIN
))
2621 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2623 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2626 mutex_lock(&root
->fs_info
->volume_mutex
);
2627 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2628 if (IS_ERR(vol_args
)) {
2629 ret
= PTR_ERR(vol_args
);
2633 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2634 ret
= btrfs_init_new_device(root
, vol_args
->name
);
2637 btrfs_info(root
->fs_info
, "disk added %s",vol_args
->name
);
2641 mutex_unlock(&root
->fs_info
->volume_mutex
);
2642 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2646 static long btrfs_ioctl_rm_dev(struct file
*file
, void __user
*arg
)
2648 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
2649 struct btrfs_ioctl_vol_args
*vol_args
;
2652 if (!capable(CAP_SYS_ADMIN
))
2655 ret
= mnt_want_write_file(file
);
2659 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2660 if (IS_ERR(vol_args
)) {
2661 ret
= PTR_ERR(vol_args
);
2665 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2667 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2669 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2673 mutex_lock(&root
->fs_info
->volume_mutex
);
2674 ret
= btrfs_rm_device(root
, vol_args
->name
);
2675 mutex_unlock(&root
->fs_info
->volume_mutex
);
2676 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2679 btrfs_info(root
->fs_info
, "disk deleted %s",vol_args
->name
);
2684 mnt_drop_write_file(file
);
2688 static long btrfs_ioctl_fs_info(struct btrfs_root
*root
, void __user
*arg
)
2690 struct btrfs_ioctl_fs_info_args
*fi_args
;
2691 struct btrfs_device
*device
;
2692 struct btrfs_device
*next
;
2693 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2696 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2700 mutex_lock(&fs_devices
->device_list_mutex
);
2701 fi_args
->num_devices
= fs_devices
->num_devices
;
2702 memcpy(&fi_args
->fsid
, root
->fs_info
->fsid
, sizeof(fi_args
->fsid
));
2704 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
2705 if (device
->devid
> fi_args
->max_id
)
2706 fi_args
->max_id
= device
->devid
;
2708 mutex_unlock(&fs_devices
->device_list_mutex
);
2710 fi_args
->nodesize
= root
->fs_info
->super_copy
->nodesize
;
2711 fi_args
->sectorsize
= root
->fs_info
->super_copy
->sectorsize
;
2712 fi_args
->clone_alignment
= root
->fs_info
->super_copy
->sectorsize
;
2714 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2721 static long btrfs_ioctl_dev_info(struct btrfs_root
*root
, void __user
*arg
)
2723 struct btrfs_ioctl_dev_info_args
*di_args
;
2724 struct btrfs_device
*dev
;
2725 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2727 char *s_uuid
= NULL
;
2729 di_args
= memdup_user(arg
, sizeof(*di_args
));
2730 if (IS_ERR(di_args
))
2731 return PTR_ERR(di_args
);
2733 if (!btrfs_is_empty_uuid(di_args
->uuid
))
2734 s_uuid
= di_args
->uuid
;
2736 mutex_lock(&fs_devices
->device_list_mutex
);
2737 dev
= btrfs_find_device(root
->fs_info
, di_args
->devid
, s_uuid
, NULL
);
2744 di_args
->devid
= dev
->devid
;
2745 di_args
->bytes_used
= btrfs_device_get_bytes_used(dev
);
2746 di_args
->total_bytes
= btrfs_device_get_total_bytes(dev
);
2747 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2749 struct rcu_string
*name
;
2752 name
= rcu_dereference(dev
->name
);
2753 strncpy(di_args
->path
, name
->str
, sizeof(di_args
->path
));
2755 di_args
->path
[sizeof(di_args
->path
) - 1] = 0;
2757 di_args
->path
[0] = '\0';
2761 mutex_unlock(&fs_devices
->device_list_mutex
);
2762 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2769 static struct page
*extent_same_get_page(struct inode
*inode
, pgoff_t index
)
2772 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2774 page
= grab_cache_page(inode
->i_mapping
, index
);
2778 if (!PageUptodate(page
)) {
2779 if (extent_read_full_page_nolock(tree
, page
, btrfs_get_extent
,
2783 if (!PageUptodate(page
)) {
2785 page_cache_release(page
);
2794 static int gather_extent_pages(struct inode
*inode
, struct page
**pages
,
2795 int num_pages
, u64 off
)
2798 pgoff_t index
= off
>> PAGE_CACHE_SHIFT
;
2800 for (i
= 0; i
< num_pages
; i
++) {
2801 pages
[i
] = extent_same_get_page(inode
, index
+ i
);
2808 static inline void lock_extent_range(struct inode
*inode
, u64 off
, u64 len
)
2810 /* do any pending delalloc/csum calc on src, one way or
2811 another, and lock file content */
2813 struct btrfs_ordered_extent
*ordered
;
2814 lock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2815 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2818 ordered
->file_offset
+ ordered
->len
<= off
||
2819 ordered
->file_offset
>= off
+ len
) &&
2820 !test_range_bit(&BTRFS_I(inode
)->io_tree
, off
,
2821 off
+ len
- 1, EXTENT_DELALLOC
, 0, NULL
)) {
2823 btrfs_put_ordered_extent(ordered
);
2826 unlock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2828 btrfs_put_ordered_extent(ordered
);
2829 btrfs_wait_ordered_range(inode
, off
, len
);
2833 static void btrfs_double_inode_unlock(struct inode
*inode1
, struct inode
*inode2
)
2835 mutex_unlock(&inode1
->i_mutex
);
2836 mutex_unlock(&inode2
->i_mutex
);
2839 static void btrfs_double_inode_lock(struct inode
*inode1
, struct inode
*inode2
)
2841 if (inode1
< inode2
)
2842 swap(inode1
, inode2
);
2844 mutex_lock_nested(&inode1
->i_mutex
, I_MUTEX_PARENT
);
2845 if (inode1
!= inode2
)
2846 mutex_lock_nested(&inode2
->i_mutex
, I_MUTEX_CHILD
);
2849 static void btrfs_double_extent_unlock(struct inode
*inode1
, u64 loff1
,
2850 struct inode
*inode2
, u64 loff2
, u64 len
)
2852 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
, loff1
+ len
- 1);
2853 unlock_extent(&BTRFS_I(inode2
)->io_tree
, loff2
, loff2
+ len
- 1);
2856 static void btrfs_double_extent_lock(struct inode
*inode1
, u64 loff1
,
2857 struct inode
*inode2
, u64 loff2
, u64 len
)
2859 if (inode1
< inode2
) {
2860 swap(inode1
, inode2
);
2863 lock_extent_range(inode1
, loff1
, len
);
2864 if (inode1
!= inode2
)
2865 lock_extent_range(inode2
, loff2
, len
);
2870 struct page
**src_pages
;
2871 struct page
**dst_pages
;
2874 static void btrfs_cmp_data_free(struct cmp_pages
*cmp
)
2879 for (i
= 0; i
< cmp
->num_pages
; i
++) {
2880 pg
= cmp
->src_pages
[i
];
2882 page_cache_release(pg
);
2883 pg
= cmp
->dst_pages
[i
];
2885 page_cache_release(pg
);
2887 kfree(cmp
->src_pages
);
2888 kfree(cmp
->dst_pages
);
2891 static int btrfs_cmp_data_prepare(struct inode
*src
, u64 loff
,
2892 struct inode
*dst
, u64 dst_loff
,
2893 u64 len
, struct cmp_pages
*cmp
)
2896 int num_pages
= PAGE_CACHE_ALIGN(len
) >> PAGE_CACHE_SHIFT
;
2897 struct page
**src_pgarr
, **dst_pgarr
;
2900 * We must gather up all the pages before we initiate our
2901 * extent locking. We use an array for the page pointers. Size
2902 * of the array is bounded by len, which is in turn bounded by
2903 * BTRFS_MAX_DEDUPE_LEN.
2905 src_pgarr
= kzalloc(num_pages
* sizeof(struct page
*), GFP_NOFS
);
2906 dst_pgarr
= kzalloc(num_pages
* sizeof(struct page
*), GFP_NOFS
);
2907 if (!src_pgarr
|| !dst_pgarr
) {
2912 cmp
->num_pages
= num_pages
;
2913 cmp
->src_pages
= src_pgarr
;
2914 cmp
->dst_pages
= dst_pgarr
;
2916 ret
= gather_extent_pages(src
, cmp
->src_pages
, cmp
->num_pages
, loff
);
2920 ret
= gather_extent_pages(dst
, cmp
->dst_pages
, cmp
->num_pages
, dst_loff
);
2924 btrfs_cmp_data_free(cmp
);
2928 static int btrfs_cmp_data(struct inode
*src
, u64 loff
, struct inode
*dst
,
2929 u64 dst_loff
, u64 len
, struct cmp_pages
*cmp
)
2933 struct page
*src_page
, *dst_page
;
2934 unsigned int cmp_len
= PAGE_CACHE_SIZE
;
2935 void *addr
, *dst_addr
;
2939 if (len
< PAGE_CACHE_SIZE
)
2942 BUG_ON(i
>= cmp
->num_pages
);
2944 src_page
= cmp
->src_pages
[i
];
2945 dst_page
= cmp
->dst_pages
[i
];
2947 addr
= kmap_atomic(src_page
);
2948 dst_addr
= kmap_atomic(dst_page
);
2950 flush_dcache_page(src_page
);
2951 flush_dcache_page(dst_page
);
2953 if (memcmp(addr
, dst_addr
, cmp_len
))
2954 ret
= BTRFS_SAME_DATA_DIFFERS
;
2956 kunmap_atomic(addr
);
2957 kunmap_atomic(dst_addr
);
2969 static int extent_same_check_offsets(struct inode
*inode
, u64 off
, u64
*plen
,
2973 u64 bs
= BTRFS_I(inode
)->root
->fs_info
->sb
->s_blocksize
;
2975 if (off
+ olen
> inode
->i_size
|| off
+ olen
< off
)
2978 /* if we extend to eof, continue to block boundary */
2979 if (off
+ len
== inode
->i_size
)
2980 *plen
= len
= ALIGN(inode
->i_size
, bs
) - off
;
2982 /* Check that we are block aligned - btrfs_clone() requires this */
2983 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
))
2989 static int btrfs_extent_same(struct inode
*src
, u64 loff
, u64 olen
,
2990 struct inode
*dst
, u64 dst_loff
)
2994 struct cmp_pages cmp
;
2996 u64 same_lock_start
= 0;
2997 u64 same_lock_len
= 0;
3006 mutex_lock(&src
->i_mutex
);
3008 ret
= extent_same_check_offsets(src
, loff
, &len
, olen
);
3013 * Single inode case wants the same checks, except we
3014 * don't want our length pushed out past i_size as
3015 * comparing that data range makes no sense.
3017 * extent_same_check_offsets() will do this for an
3018 * unaligned length at i_size, so catch it here and
3019 * reject the request.
3021 * This effectively means we require aligned extents
3022 * for the single-inode case, whereas the other cases
3023 * allow an unaligned length so long as it ends at
3031 /* Check for overlapping ranges */
3032 if (dst_loff
+ len
> loff
&& dst_loff
< loff
+ len
) {
3037 same_lock_start
= min_t(u64
, loff
, dst_loff
);
3038 same_lock_len
= max_t(u64
, loff
, dst_loff
) + len
- same_lock_start
;
3040 btrfs_double_inode_lock(src
, dst
);
3042 ret
= extent_same_check_offsets(src
, loff
, &len
, olen
);
3046 ret
= extent_same_check_offsets(dst
, dst_loff
, &len
, olen
);
3051 /* don't make the dst file partly checksummed */
3052 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3053 (BTRFS_I(dst
)->flags
& BTRFS_INODE_NODATASUM
)) {
3058 ret
= btrfs_cmp_data_prepare(src
, loff
, dst
, dst_loff
, olen
, &cmp
);
3063 lock_extent_range(src
, same_lock_start
, same_lock_len
);
3065 btrfs_double_extent_lock(src
, loff
, dst
, dst_loff
, len
);
3067 /* pass original length for comparison so we stay within i_size */
3068 ret
= btrfs_cmp_data(src
, loff
, dst
, dst_loff
, olen
, &cmp
);
3070 ret
= btrfs_clone(src
, dst
, loff
, olen
, len
, dst_loff
, 1);
3073 unlock_extent(&BTRFS_I(src
)->io_tree
, same_lock_start
,
3074 same_lock_start
+ same_lock_len
- 1);
3076 btrfs_double_extent_unlock(src
, loff
, dst
, dst_loff
, len
);
3078 btrfs_cmp_data_free(&cmp
);
3081 mutex_unlock(&src
->i_mutex
);
3083 btrfs_double_inode_unlock(src
, dst
);
3088 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024)
3090 static long btrfs_ioctl_file_extent_same(struct file
*file
,
3091 struct btrfs_ioctl_same_args __user
*argp
)
3093 struct btrfs_ioctl_same_args
*same
= NULL
;
3094 struct btrfs_ioctl_same_extent_info
*info
;
3095 struct inode
*src
= file_inode(file
);
3101 u64 bs
= BTRFS_I(src
)->root
->fs_info
->sb
->s_blocksize
;
3102 bool is_admin
= capable(CAP_SYS_ADMIN
);
3105 if (!(file
->f_mode
& FMODE_READ
))
3108 ret
= mnt_want_write_file(file
);
3112 if (get_user(count
, &argp
->dest_count
)) {
3117 size
= offsetof(struct btrfs_ioctl_same_args __user
, info
[count
]);
3119 same
= memdup_user(argp
, size
);
3122 ret
= PTR_ERR(same
);
3127 off
= same
->logical_offset
;
3131 * Limit the total length we will dedupe for each operation.
3132 * This is intended to bound the total time spent in this
3133 * ioctl to something sane.
3135 if (len
> BTRFS_MAX_DEDUPE_LEN
)
3136 len
= BTRFS_MAX_DEDUPE_LEN
;
3138 if (WARN_ON_ONCE(bs
< PAGE_CACHE_SIZE
)) {
3140 * Btrfs does not support blocksize < page_size. As a
3141 * result, btrfs_cmp_data() won't correctly handle
3142 * this situation without an update.
3149 if (S_ISDIR(src
->i_mode
))
3153 if (!S_ISREG(src
->i_mode
))
3156 /* pre-format output fields to sane values */
3157 for (i
= 0; i
< count
; i
++) {
3158 same
->info
[i
].bytes_deduped
= 0ULL;
3159 same
->info
[i
].status
= 0;
3162 for (i
= 0, info
= same
->info
; i
< count
; i
++, info
++) {
3164 struct fd dst_file
= fdget(info
->fd
);
3165 if (!dst_file
.file
) {
3166 info
->status
= -EBADF
;
3169 dst
= file_inode(dst_file
.file
);
3171 if (!(is_admin
|| (dst_file
.file
->f_mode
& FMODE_WRITE
))) {
3172 info
->status
= -EINVAL
;
3173 } else if (file
->f_path
.mnt
!= dst_file
.file
->f_path
.mnt
) {
3174 info
->status
= -EXDEV
;
3175 } else if (S_ISDIR(dst
->i_mode
)) {
3176 info
->status
= -EISDIR
;
3177 } else if (!S_ISREG(dst
->i_mode
)) {
3178 info
->status
= -EACCES
;
3180 info
->status
= btrfs_extent_same(src
, off
, len
, dst
,
3181 info
->logical_offset
);
3182 if (info
->status
== 0)
3183 info
->bytes_deduped
+= len
;
3188 ret
= copy_to_user(argp
, same
, size
);
3193 mnt_drop_write_file(file
);
3198 /* Helper to check and see if this root currently has a ref on the given disk
3199 * bytenr. If it does then we need to update the quota for this root. This
3200 * doesn't do anything if quotas aren't enabled.
3202 static int check_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3205 struct seq_list tree_mod_seq_elem
= SEQ_LIST_INIT(tree_mod_seq_elem
);
3206 struct ulist
*roots
;
3207 struct ulist_iterator uiter
;
3208 struct ulist_node
*root_node
= NULL
;
3211 if (!root
->fs_info
->quota_enabled
)
3214 btrfs_get_tree_mod_seq(root
->fs_info
, &tree_mod_seq_elem
);
3215 ret
= btrfs_find_all_roots(trans
, root
->fs_info
, disko
,
3216 tree_mod_seq_elem
.seq
, &roots
);
3220 ULIST_ITER_INIT(&uiter
);
3221 while ((root_node
= ulist_next(roots
, &uiter
))) {
3222 if (root_node
->val
== root
->objectid
) {
3229 btrfs_put_tree_mod_seq(root
->fs_info
, &tree_mod_seq_elem
);
3233 static int clone_finish_inode_update(struct btrfs_trans_handle
*trans
,
3234 struct inode
*inode
,
3240 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3243 inode_inc_iversion(inode
);
3244 if (!no_time_update
)
3245 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
3247 * We round up to the block size at eof when determining which
3248 * extents to clone above, but shouldn't round up the file size.
3250 if (endoff
> destoff
+ olen
)
3251 endoff
= destoff
+ olen
;
3252 if (endoff
> inode
->i_size
)
3253 btrfs_i_size_write(inode
, endoff
);
3255 ret
= btrfs_update_inode(trans
, root
, inode
);
3257 btrfs_abort_transaction(trans
, root
, ret
);
3258 btrfs_end_transaction(trans
, root
);
3261 ret
= btrfs_end_transaction(trans
, root
);
3266 static void clone_update_extent_map(struct inode
*inode
,
3267 const struct btrfs_trans_handle
*trans
,
3268 const struct btrfs_path
*path
,
3269 const u64 hole_offset
,
3272 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
3273 struct extent_map
*em
;
3276 em
= alloc_extent_map();
3278 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3279 &BTRFS_I(inode
)->runtime_flags
);
3284 struct btrfs_file_extent_item
*fi
;
3286 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3287 struct btrfs_file_extent_item
);
3288 btrfs_extent_item_to_extent_map(inode
, path
, fi
, false, em
);
3289 em
->generation
= -1;
3290 if (btrfs_file_extent_type(path
->nodes
[0], fi
) ==
3291 BTRFS_FILE_EXTENT_INLINE
)
3292 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3293 &BTRFS_I(inode
)->runtime_flags
);
3295 em
->start
= hole_offset
;
3297 em
->ram_bytes
= em
->len
;
3298 em
->orig_start
= hole_offset
;
3299 em
->block_start
= EXTENT_MAP_HOLE
;
3301 em
->orig_block_len
= 0;
3302 em
->compress_type
= BTRFS_COMPRESS_NONE
;
3303 em
->generation
= trans
->transid
;
3307 write_lock(&em_tree
->lock
);
3308 ret
= add_extent_mapping(em_tree
, em
, 1);
3309 write_unlock(&em_tree
->lock
);
3310 if (ret
!= -EEXIST
) {
3311 free_extent_map(em
);
3314 btrfs_drop_extent_cache(inode
, em
->start
,
3315 em
->start
+ em
->len
- 1, 0);
3319 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3320 &BTRFS_I(inode
)->runtime_flags
);
3324 * btrfs_clone() - clone a range from inode file to another
3326 * @src: Inode to clone from
3327 * @inode: Inode to clone to
3328 * @off: Offset within source to start clone from
3329 * @olen: Original length, passed by user, of range to clone
3330 * @olen_aligned: Block-aligned value of olen
3331 * @destoff: Offset within @inode to start clone
3332 * @no_time_update: Whether to update mtime/ctime on the target inode
3334 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
3335 const u64 off
, const u64 olen
, const u64 olen_aligned
,
3336 const u64 destoff
, int no_time_update
)
3338 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3339 struct btrfs_path
*path
= NULL
;
3340 struct extent_buffer
*leaf
;
3341 struct btrfs_trans_handle
*trans
;
3343 struct btrfs_key key
;
3348 const u64 len
= olen_aligned
;
3350 u64 last_dest_end
= destoff
;
3353 buf
= vmalloc(root
->nodesize
);
3357 path
= btrfs_alloc_path();
3365 key
.objectid
= btrfs_ino(src
);
3366 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3370 u64 next_key_min_offset
= key
.offset
+ 1;
3373 * note the key will change type as we walk through the
3376 path
->leave_spinning
= 1;
3377 ret
= btrfs_search_slot(NULL
, BTRFS_I(src
)->root
, &key
, path
,
3382 * First search, if no extent item that starts at offset off was
3383 * found but the previous item is an extent item, it's possible
3384 * it might overlap our target range, therefore process it.
3386 if (key
.offset
== off
&& ret
> 0 && path
->slots
[0] > 0) {
3387 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3388 path
->slots
[0] - 1);
3389 if (key
.type
== BTRFS_EXTENT_DATA_KEY
)
3393 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3396 if (path
->slots
[0] >= nritems
) {
3397 ret
= btrfs_next_leaf(BTRFS_I(src
)->root
, path
);
3402 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3404 leaf
= path
->nodes
[0];
3405 slot
= path
->slots
[0];
3407 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
3408 if (key
.type
> BTRFS_EXTENT_DATA_KEY
||
3409 key
.objectid
!= btrfs_ino(src
))
3412 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3413 struct btrfs_file_extent_item
*extent
;
3416 struct btrfs_key new_key
;
3417 u64 disko
= 0, diskl
= 0;
3418 u64 datao
= 0, datal
= 0;
3422 extent
= btrfs_item_ptr(leaf
, slot
,
3423 struct btrfs_file_extent_item
);
3424 comp
= btrfs_file_extent_compression(leaf
, extent
);
3425 type
= btrfs_file_extent_type(leaf
, extent
);
3426 if (type
== BTRFS_FILE_EXTENT_REG
||
3427 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3428 disko
= btrfs_file_extent_disk_bytenr(leaf
,
3430 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
3432 datao
= btrfs_file_extent_offset(leaf
, extent
);
3433 datal
= btrfs_file_extent_num_bytes(leaf
,
3435 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3436 /* take upper bound, may be compressed */
3437 datal
= btrfs_file_extent_ram_bytes(leaf
,
3442 * The first search might have left us at an extent
3443 * item that ends before our target range's start, can
3444 * happen if we have holes and NO_HOLES feature enabled.
3446 if (key
.offset
+ datal
<= off
) {
3449 } else if (key
.offset
>= off
+ len
) {
3452 next_key_min_offset
= key
.offset
+ datal
;
3453 size
= btrfs_item_size_nr(leaf
, slot
);
3454 read_extent_buffer(leaf
, buf
,
3455 btrfs_item_ptr_offset(leaf
, slot
),
3458 btrfs_release_path(path
);
3459 path
->leave_spinning
= 0;
3461 memcpy(&new_key
, &key
, sizeof(new_key
));
3462 new_key
.objectid
= btrfs_ino(inode
);
3463 if (off
<= key
.offset
)
3464 new_key
.offset
= key
.offset
+ destoff
- off
;
3466 new_key
.offset
= destoff
;
3469 * Deal with a hole that doesn't have an extent item
3470 * that represents it (NO_HOLES feature enabled).
3471 * This hole is either in the middle of the cloning
3472 * range or at the beginning (fully overlaps it or
3473 * partially overlaps it).
3475 if (new_key
.offset
!= last_dest_end
)
3476 drop_start
= last_dest_end
;
3478 drop_start
= new_key
.offset
;
3481 * 1 - adjusting old extent (we may have to split it)
3482 * 1 - add new extent
3485 trans
= btrfs_start_transaction(root
, 3);
3486 if (IS_ERR(trans
)) {
3487 ret
= PTR_ERR(trans
);
3491 if (type
== BTRFS_FILE_EXTENT_REG
||
3492 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3494 * a | --- range to clone ---| b
3495 * | ------------- extent ------------- |
3498 /* subtract range b */
3499 if (key
.offset
+ datal
> off
+ len
)
3500 datal
= off
+ len
- key
.offset
;
3502 /* subtract range a */
3503 if (off
> key
.offset
) {
3504 datao
+= off
- key
.offset
;
3505 datal
-= off
- key
.offset
;
3508 ret
= btrfs_drop_extents(trans
, root
, inode
,
3510 new_key
.offset
+ datal
,
3513 if (ret
!= -EOPNOTSUPP
)
3514 btrfs_abort_transaction(trans
,
3516 btrfs_end_transaction(trans
, root
);
3520 ret
= btrfs_insert_empty_item(trans
, root
, path
,
3523 btrfs_abort_transaction(trans
, root
,
3525 btrfs_end_transaction(trans
, root
);
3529 leaf
= path
->nodes
[0];
3530 slot
= path
->slots
[0];
3531 write_extent_buffer(leaf
, buf
,
3532 btrfs_item_ptr_offset(leaf
, slot
),
3535 extent
= btrfs_item_ptr(leaf
, slot
,
3536 struct btrfs_file_extent_item
);
3538 /* disko == 0 means it's a hole */
3542 btrfs_set_file_extent_offset(leaf
, extent
,
3544 btrfs_set_file_extent_num_bytes(leaf
, extent
,
3548 * We need to look up the roots that point at
3549 * this bytenr and see if the new root does. If
3550 * it does not we need to make sure we update
3551 * quotas appropriately.
3553 if (disko
&& root
!= BTRFS_I(src
)->root
&&
3554 disko
!= last_disko
) {
3555 no_quota
= check_ref(trans
, root
,
3558 btrfs_abort_transaction(trans
,
3561 btrfs_end_transaction(trans
,
3569 inode_add_bytes(inode
, datal
);
3570 ret
= btrfs_inc_extent_ref(trans
, root
,
3572 root
->root_key
.objectid
,
3574 new_key
.offset
- datao
,
3577 btrfs_abort_transaction(trans
,
3580 btrfs_end_transaction(trans
,
3586 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3589 u64 aligned_end
= 0;
3592 * Don't copy an inline extent into an offset
3593 * greater than zero. Having an inline extent
3594 * at such an offset results in chaos as btrfs
3595 * isn't prepared for such cases. Just skip
3596 * this case for the same reasons as commented
3597 * at btrfs_ioctl_clone().
3599 if (last_dest_end
> 0) {
3601 btrfs_end_transaction(trans
, root
);
3605 if (off
> key
.offset
) {
3606 skip
= off
- key
.offset
;
3607 new_key
.offset
+= skip
;
3610 if (key
.offset
+ datal
> off
+ len
)
3611 trim
= key
.offset
+ datal
- (off
+ len
);
3613 if (comp
&& (skip
|| trim
)) {
3615 btrfs_end_transaction(trans
, root
);
3618 size
-= skip
+ trim
;
3619 datal
-= skip
+ trim
;
3621 aligned_end
= ALIGN(new_key
.offset
+ datal
,
3623 ret
= btrfs_drop_extents(trans
, root
, inode
,
3628 if (ret
!= -EOPNOTSUPP
)
3629 btrfs_abort_transaction(trans
,
3631 btrfs_end_transaction(trans
, root
);
3635 ret
= btrfs_insert_empty_item(trans
, root
, path
,
3638 btrfs_abort_transaction(trans
, root
,
3640 btrfs_end_transaction(trans
, root
);
3646 btrfs_file_extent_calc_inline_size(0);
3647 memmove(buf
+start
, buf
+start
+skip
,
3651 leaf
= path
->nodes
[0];
3652 slot
= path
->slots
[0];
3653 write_extent_buffer(leaf
, buf
,
3654 btrfs_item_ptr_offset(leaf
, slot
),
3656 inode_add_bytes(inode
, datal
);
3659 /* If we have an implicit hole (NO_HOLES feature). */
3660 if (drop_start
< new_key
.offset
)
3661 clone_update_extent_map(inode
, trans
,
3663 new_key
.offset
- drop_start
);
3665 clone_update_extent_map(inode
, trans
, path
, 0, 0);
3667 btrfs_mark_buffer_dirty(leaf
);
3668 btrfs_release_path(path
);
3670 last_dest_end
= ALIGN(new_key
.offset
+ datal
,
3672 ret
= clone_finish_inode_update(trans
, inode
,
3678 if (new_key
.offset
+ datal
>= destoff
+ len
)
3681 btrfs_release_path(path
);
3682 key
.offset
= next_key_min_offset
;
3686 if (last_dest_end
< destoff
+ len
) {
3688 * We have an implicit hole (NO_HOLES feature is enabled) that
3689 * fully or partially overlaps our cloning range at its end.
3691 btrfs_release_path(path
);
3694 * 1 - remove extent(s)
3697 trans
= btrfs_start_transaction(root
, 2);
3698 if (IS_ERR(trans
)) {
3699 ret
= PTR_ERR(trans
);
3702 ret
= btrfs_drop_extents(trans
, root
, inode
,
3703 last_dest_end
, destoff
+ len
, 1);
3705 if (ret
!= -EOPNOTSUPP
)
3706 btrfs_abort_transaction(trans
, root
, ret
);
3707 btrfs_end_transaction(trans
, root
);
3710 clone_update_extent_map(inode
, trans
, NULL
, last_dest_end
,
3711 destoff
+ len
- last_dest_end
);
3712 ret
= clone_finish_inode_update(trans
, inode
, destoff
+ len
,
3713 destoff
, olen
, no_time_update
);
3717 btrfs_free_path(path
);
3722 static noinline
long btrfs_ioctl_clone(struct file
*file
, unsigned long srcfd
,
3723 u64 off
, u64 olen
, u64 destoff
)
3725 struct inode
*inode
= file_inode(file
);
3726 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3731 u64 bs
= root
->fs_info
->sb
->s_blocksize
;
3736 * - split compressed inline extents. annoying: we need to
3737 * decompress into destination's address_space (the file offset
3738 * may change, so source mapping won't do), then recompress (or
3739 * otherwise reinsert) a subrange.
3741 * - split destination inode's inline extents. The inline extents can
3742 * be either compressed or non-compressed.
3745 /* the destination must be opened for writing */
3746 if (!(file
->f_mode
& FMODE_WRITE
) || (file
->f_flags
& O_APPEND
))
3749 if (btrfs_root_readonly(root
))
3752 ret
= mnt_want_write_file(file
);
3756 src_file
= fdget(srcfd
);
3757 if (!src_file
.file
) {
3759 goto out_drop_write
;
3763 if (src_file
.file
->f_path
.mnt
!= file
->f_path
.mnt
)
3766 src
= file_inode(src_file
.file
);
3772 /* the src must be open for reading */
3773 if (!(src_file
.file
->f_mode
& FMODE_READ
))
3776 /* don't make the dst file partly checksummed */
3777 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3778 (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
))
3782 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
3786 if (src
->i_sb
!= inode
->i_sb
)
3791 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_PARENT
);
3792 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_CHILD
);
3794 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_PARENT
);
3795 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
3798 mutex_lock(&src
->i_mutex
);
3801 /* determine range to clone */
3803 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
3806 olen
= len
= src
->i_size
- off
;
3807 /* if we extend to eof, continue to block boundary */
3808 if (off
+ len
== src
->i_size
)
3809 len
= ALIGN(src
->i_size
, bs
) - off
;
3816 /* verify the end result is block aligned */
3817 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
3818 !IS_ALIGNED(destoff
, bs
))
3821 /* verify if ranges are overlapped within the same file */
3823 if (destoff
+ len
> off
&& destoff
< off
+ len
)
3827 if (destoff
> inode
->i_size
) {
3828 ret
= btrfs_cont_expand(inode
, inode
->i_size
, destoff
);
3834 * Lock the target range too. Right after we replace the file extent
3835 * items in the fs tree (which now point to the cloned data), we might
3836 * have a worker replace them with extent items relative to a write
3837 * operation that was issued before this clone operation (i.e. confront
3838 * with inode.c:btrfs_finish_ordered_io).
3841 u64 lock_start
= min_t(u64
, off
, destoff
);
3842 u64 lock_len
= max_t(u64
, off
, destoff
) + len
- lock_start
;
3844 lock_extent_range(src
, lock_start
, lock_len
);
3846 lock_extent_range(src
, off
, len
);
3847 lock_extent_range(inode
, destoff
, len
);
3850 ret
= btrfs_clone(src
, inode
, off
, olen
, len
, destoff
, 0);
3853 u64 lock_start
= min_t(u64
, off
, destoff
);
3854 u64 lock_end
= max_t(u64
, off
, destoff
) + len
- 1;
3856 unlock_extent(&BTRFS_I(src
)->io_tree
, lock_start
, lock_end
);
3858 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+ len
- 1);
3859 unlock_extent(&BTRFS_I(inode
)->io_tree
, destoff
,
3863 * Truncate page cache pages so that future reads will see the cloned
3864 * data immediately and not the previous data.
3866 truncate_inode_pages_range(&inode
->i_data
, destoff
,
3867 PAGE_CACHE_ALIGN(destoff
+ len
) - 1);
3871 mutex_unlock(&src
->i_mutex
);
3872 mutex_unlock(&inode
->i_mutex
);
3874 mutex_unlock(&inode
->i_mutex
);
3875 mutex_unlock(&src
->i_mutex
);
3878 mutex_unlock(&src
->i_mutex
);
3883 mnt_drop_write_file(file
);
3887 static long btrfs_ioctl_clone_range(struct file
*file
, void __user
*argp
)
3889 struct btrfs_ioctl_clone_range_args args
;
3891 if (copy_from_user(&args
, argp
, sizeof(args
)))
3893 return btrfs_ioctl_clone(file
, args
.src_fd
, args
.src_offset
,
3894 args
.src_length
, args
.dest_offset
);
3898 * there are many ways the trans_start and trans_end ioctls can lead
3899 * to deadlocks. They should only be used by applications that
3900 * basically own the machine, and have a very in depth understanding
3901 * of all the possible deadlocks and enospc problems.
3903 static long btrfs_ioctl_trans_start(struct file
*file
)
3905 struct inode
*inode
= file_inode(file
);
3906 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3907 struct btrfs_trans_handle
*trans
;
3911 if (!capable(CAP_SYS_ADMIN
))
3915 if (file
->private_data
)
3919 if (btrfs_root_readonly(root
))
3922 ret
= mnt_want_write_file(file
);
3926 atomic_inc(&root
->fs_info
->open_ioctl_trans
);
3929 trans
= btrfs_start_ioctl_transaction(root
);
3933 file
->private_data
= trans
;
3937 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
3938 mnt_drop_write_file(file
);
3943 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
3945 struct inode
*inode
= file_inode(file
);
3946 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3947 struct btrfs_root
*new_root
;
3948 struct btrfs_dir_item
*di
;
3949 struct btrfs_trans_handle
*trans
;
3950 struct btrfs_path
*path
;
3951 struct btrfs_key location
;
3952 struct btrfs_disk_key disk_key
;
3957 if (!capable(CAP_SYS_ADMIN
))
3960 ret
= mnt_want_write_file(file
);
3964 if (copy_from_user(&objectid
, argp
, sizeof(objectid
))) {
3970 objectid
= BTRFS_FS_TREE_OBJECTID
;
3972 location
.objectid
= objectid
;
3973 location
.type
= BTRFS_ROOT_ITEM_KEY
;
3974 location
.offset
= (u64
)-1;
3976 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
3977 if (IS_ERR(new_root
)) {
3978 ret
= PTR_ERR(new_root
);
3982 path
= btrfs_alloc_path();
3987 path
->leave_spinning
= 1;
3989 trans
= btrfs_start_transaction(root
, 1);
3990 if (IS_ERR(trans
)) {
3991 btrfs_free_path(path
);
3992 ret
= PTR_ERR(trans
);
3996 dir_id
= btrfs_super_root_dir(root
->fs_info
->super_copy
);
3997 di
= btrfs_lookup_dir_item(trans
, root
->fs_info
->tree_root
, path
,
3998 dir_id
, "default", 7, 1);
3999 if (IS_ERR_OR_NULL(di
)) {
4000 btrfs_free_path(path
);
4001 btrfs_end_transaction(trans
, root
);
4002 btrfs_err(new_root
->fs_info
, "Umm, you don't have the default dir"
4003 "item, this isn't going to work");
4008 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
4009 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
4010 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4011 btrfs_free_path(path
);
4013 btrfs_set_fs_incompat(root
->fs_info
, DEFAULT_SUBVOL
);
4014 btrfs_end_transaction(trans
, root
);
4016 mnt_drop_write_file(file
);
4020 void btrfs_get_block_group_info(struct list_head
*groups_list
,
4021 struct btrfs_ioctl_space_info
*space
)
4023 struct btrfs_block_group_cache
*block_group
;
4025 space
->total_bytes
= 0;
4026 space
->used_bytes
= 0;
4028 list_for_each_entry(block_group
, groups_list
, list
) {
4029 space
->flags
= block_group
->flags
;
4030 space
->total_bytes
+= block_group
->key
.offset
;
4031 space
->used_bytes
+=
4032 btrfs_block_group_used(&block_group
->item
);
4036 static long btrfs_ioctl_space_info(struct btrfs_root
*root
, void __user
*arg
)
4038 struct btrfs_ioctl_space_args space_args
;
4039 struct btrfs_ioctl_space_info space
;
4040 struct btrfs_ioctl_space_info
*dest
;
4041 struct btrfs_ioctl_space_info
*dest_orig
;
4042 struct btrfs_ioctl_space_info __user
*user_dest
;
4043 struct btrfs_space_info
*info
;
4044 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
4045 BTRFS_BLOCK_GROUP_SYSTEM
,
4046 BTRFS_BLOCK_GROUP_METADATA
,
4047 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
4054 if (copy_from_user(&space_args
,
4055 (struct btrfs_ioctl_space_args __user
*)arg
,
4056 sizeof(space_args
)))
4059 for (i
= 0; i
< num_types
; i
++) {
4060 struct btrfs_space_info
*tmp
;
4064 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
4066 if (tmp
->flags
== types
[i
]) {
4076 down_read(&info
->groups_sem
);
4077 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4078 if (!list_empty(&info
->block_groups
[c
]))
4081 up_read(&info
->groups_sem
);
4085 * Global block reserve, exported as a space_info
4089 /* space_slots == 0 means they are asking for a count */
4090 if (space_args
.space_slots
== 0) {
4091 space_args
.total_spaces
= slot_count
;
4095 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
4097 alloc_size
= sizeof(*dest
) * slot_count
;
4099 /* we generally have at most 6 or so space infos, one for each raid
4100 * level. So, a whole page should be more than enough for everyone
4102 if (alloc_size
> PAGE_CACHE_SIZE
)
4105 space_args
.total_spaces
= 0;
4106 dest
= kmalloc(alloc_size
, GFP_NOFS
);
4111 /* now we have a buffer to copy into */
4112 for (i
= 0; i
< num_types
; i
++) {
4113 struct btrfs_space_info
*tmp
;
4120 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
4122 if (tmp
->flags
== types
[i
]) {
4131 down_read(&info
->groups_sem
);
4132 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4133 if (!list_empty(&info
->block_groups
[c
])) {
4134 btrfs_get_block_group_info(
4135 &info
->block_groups
[c
], &space
);
4136 memcpy(dest
, &space
, sizeof(space
));
4138 space_args
.total_spaces
++;
4144 up_read(&info
->groups_sem
);
4148 * Add global block reserve
4151 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->global_block_rsv
;
4153 spin_lock(&block_rsv
->lock
);
4154 space
.total_bytes
= block_rsv
->size
;
4155 space
.used_bytes
= block_rsv
->size
- block_rsv
->reserved
;
4156 spin_unlock(&block_rsv
->lock
);
4157 space
.flags
= BTRFS_SPACE_INFO_GLOBAL_RSV
;
4158 memcpy(dest
, &space
, sizeof(space
));
4159 space_args
.total_spaces
++;
4162 user_dest
= (struct btrfs_ioctl_space_info __user
*)
4163 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
4165 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
4170 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
4177 * there are many ways the trans_start and trans_end ioctls can lead
4178 * to deadlocks. They should only be used by applications that
4179 * basically own the machine, and have a very in depth understanding
4180 * of all the possible deadlocks and enospc problems.
4182 long btrfs_ioctl_trans_end(struct file
*file
)
4184 struct inode
*inode
= file_inode(file
);
4185 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4186 struct btrfs_trans_handle
*trans
;
4188 trans
= file
->private_data
;
4191 file
->private_data
= NULL
;
4193 btrfs_end_transaction(trans
, root
);
4195 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
4197 mnt_drop_write_file(file
);
4201 static noinline
long btrfs_ioctl_start_sync(struct btrfs_root
*root
,
4204 struct btrfs_trans_handle
*trans
;
4208 trans
= btrfs_attach_transaction_barrier(root
);
4209 if (IS_ERR(trans
)) {
4210 if (PTR_ERR(trans
) != -ENOENT
)
4211 return PTR_ERR(trans
);
4213 /* No running transaction, don't bother */
4214 transid
= root
->fs_info
->last_trans_committed
;
4217 transid
= trans
->transid
;
4218 ret
= btrfs_commit_transaction_async(trans
, root
, 0);
4220 btrfs_end_transaction(trans
, root
);
4225 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
4230 static noinline
long btrfs_ioctl_wait_sync(struct btrfs_root
*root
,
4236 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
4239 transid
= 0; /* current trans */
4241 return btrfs_wait_for_commit(root
, transid
);
4244 static long btrfs_ioctl_scrub(struct file
*file
, void __user
*arg
)
4246 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4247 struct btrfs_ioctl_scrub_args
*sa
;
4250 if (!capable(CAP_SYS_ADMIN
))
4253 sa
= memdup_user(arg
, sizeof(*sa
));
4257 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
)) {
4258 ret
= mnt_want_write_file(file
);
4263 ret
= btrfs_scrub_dev(root
->fs_info
, sa
->devid
, sa
->start
, sa
->end
,
4264 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
,
4267 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4270 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
))
4271 mnt_drop_write_file(file
);
4277 static long btrfs_ioctl_scrub_cancel(struct btrfs_root
*root
, void __user
*arg
)
4279 if (!capable(CAP_SYS_ADMIN
))
4282 return btrfs_scrub_cancel(root
->fs_info
);
4285 static long btrfs_ioctl_scrub_progress(struct btrfs_root
*root
,
4288 struct btrfs_ioctl_scrub_args
*sa
;
4291 if (!capable(CAP_SYS_ADMIN
))
4294 sa
= memdup_user(arg
, sizeof(*sa
));
4298 ret
= btrfs_scrub_progress(root
, sa
->devid
, &sa
->progress
);
4300 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4307 static long btrfs_ioctl_get_dev_stats(struct btrfs_root
*root
,
4310 struct btrfs_ioctl_get_dev_stats
*sa
;
4313 sa
= memdup_user(arg
, sizeof(*sa
));
4317 if ((sa
->flags
& BTRFS_DEV_STATS_RESET
) && !capable(CAP_SYS_ADMIN
)) {
4322 ret
= btrfs_get_dev_stats(root
, sa
);
4324 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4331 static long btrfs_ioctl_dev_replace(struct btrfs_root
*root
, void __user
*arg
)
4333 struct btrfs_ioctl_dev_replace_args
*p
;
4336 if (!capable(CAP_SYS_ADMIN
))
4339 p
= memdup_user(arg
, sizeof(*p
));
4344 case BTRFS_IOCTL_DEV_REPLACE_CMD_START
:
4345 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
) {
4350 &root
->fs_info
->mutually_exclusive_operation_running
,
4352 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4354 ret
= btrfs_dev_replace_start(root
, p
);
4356 &root
->fs_info
->mutually_exclusive_operation_running
,
4360 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS
:
4361 btrfs_dev_replace_status(root
->fs_info
, p
);
4364 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL
:
4365 ret
= btrfs_dev_replace_cancel(root
->fs_info
, p
);
4372 if (copy_to_user(arg
, p
, sizeof(*p
)))
4379 static long btrfs_ioctl_ino_to_path(struct btrfs_root
*root
, void __user
*arg
)
4385 struct btrfs_ioctl_ino_path_args
*ipa
= NULL
;
4386 struct inode_fs_paths
*ipath
= NULL
;
4387 struct btrfs_path
*path
;
4389 if (!capable(CAP_DAC_READ_SEARCH
))
4392 path
= btrfs_alloc_path();
4398 ipa
= memdup_user(arg
, sizeof(*ipa
));
4405 size
= min_t(u32
, ipa
->size
, 4096);
4406 ipath
= init_ipath(size
, root
, path
);
4407 if (IS_ERR(ipath
)) {
4408 ret
= PTR_ERR(ipath
);
4413 ret
= paths_from_inode(ipa
->inum
, ipath
);
4417 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
) {
4418 rel_ptr
= ipath
->fspath
->val
[i
] -
4419 (u64
)(unsigned long)ipath
->fspath
->val
;
4420 ipath
->fspath
->val
[i
] = rel_ptr
;
4423 ret
= copy_to_user((void *)(unsigned long)ipa
->fspath
,
4424 (void *)(unsigned long)ipath
->fspath
, size
);
4431 btrfs_free_path(path
);
4438 static int build_ino_list(u64 inum
, u64 offset
, u64 root
, void *ctx
)
4440 struct btrfs_data_container
*inodes
= ctx
;
4441 const size_t c
= 3 * sizeof(u64
);
4443 if (inodes
->bytes_left
>= c
) {
4444 inodes
->bytes_left
-= c
;
4445 inodes
->val
[inodes
->elem_cnt
] = inum
;
4446 inodes
->val
[inodes
->elem_cnt
+ 1] = offset
;
4447 inodes
->val
[inodes
->elem_cnt
+ 2] = root
;
4448 inodes
->elem_cnt
+= 3;
4450 inodes
->bytes_missing
+= c
- inodes
->bytes_left
;
4451 inodes
->bytes_left
= 0;
4452 inodes
->elem_missed
+= 3;
4458 static long btrfs_ioctl_logical_to_ino(struct btrfs_root
*root
,
4463 struct btrfs_ioctl_logical_ino_args
*loi
;
4464 struct btrfs_data_container
*inodes
= NULL
;
4465 struct btrfs_path
*path
= NULL
;
4467 if (!capable(CAP_SYS_ADMIN
))
4470 loi
= memdup_user(arg
, sizeof(*loi
));
4477 path
= btrfs_alloc_path();
4483 size
= min_t(u32
, loi
->size
, 64 * 1024);
4484 inodes
= init_data_container(size
);
4485 if (IS_ERR(inodes
)) {
4486 ret
= PTR_ERR(inodes
);
4491 ret
= iterate_inodes_from_logical(loi
->logical
, root
->fs_info
, path
,
4492 build_ino_list
, inodes
);
4498 ret
= copy_to_user((void *)(unsigned long)loi
->inodes
,
4499 (void *)(unsigned long)inodes
, size
);
4504 btrfs_free_path(path
);
4511 void update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
, int lock
,
4512 struct btrfs_ioctl_balance_args
*bargs
)
4514 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4516 bargs
->flags
= bctl
->flags
;
4518 if (atomic_read(&fs_info
->balance_running
))
4519 bargs
->state
|= BTRFS_BALANCE_STATE_RUNNING
;
4520 if (atomic_read(&fs_info
->balance_pause_req
))
4521 bargs
->state
|= BTRFS_BALANCE_STATE_PAUSE_REQ
;
4522 if (atomic_read(&fs_info
->balance_cancel_req
))
4523 bargs
->state
|= BTRFS_BALANCE_STATE_CANCEL_REQ
;
4525 memcpy(&bargs
->data
, &bctl
->data
, sizeof(bargs
->data
));
4526 memcpy(&bargs
->meta
, &bctl
->meta
, sizeof(bargs
->meta
));
4527 memcpy(&bargs
->sys
, &bctl
->sys
, sizeof(bargs
->sys
));
4530 spin_lock(&fs_info
->balance_lock
);
4531 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4532 spin_unlock(&fs_info
->balance_lock
);
4534 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4538 static long btrfs_ioctl_balance(struct file
*file
, void __user
*arg
)
4540 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4541 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4542 struct btrfs_ioctl_balance_args
*bargs
;
4543 struct btrfs_balance_control
*bctl
;
4544 bool need_unlock
; /* for mut. excl. ops lock */
4547 if (!capable(CAP_SYS_ADMIN
))
4550 ret
= mnt_want_write_file(file
);
4555 if (!atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1)) {
4556 mutex_lock(&fs_info
->volume_mutex
);
4557 mutex_lock(&fs_info
->balance_mutex
);
4563 * mut. excl. ops lock is locked. Three possibilites:
4564 * (1) some other op is running
4565 * (2) balance is running
4566 * (3) balance is paused -- special case (think resume)
4568 mutex_lock(&fs_info
->balance_mutex
);
4569 if (fs_info
->balance_ctl
) {
4570 /* this is either (2) or (3) */
4571 if (!atomic_read(&fs_info
->balance_running
)) {
4572 mutex_unlock(&fs_info
->balance_mutex
);
4573 if (!mutex_trylock(&fs_info
->volume_mutex
))
4575 mutex_lock(&fs_info
->balance_mutex
);
4577 if (fs_info
->balance_ctl
&&
4578 !atomic_read(&fs_info
->balance_running
)) {
4580 need_unlock
= false;
4584 mutex_unlock(&fs_info
->balance_mutex
);
4585 mutex_unlock(&fs_info
->volume_mutex
);
4589 mutex_unlock(&fs_info
->balance_mutex
);
4595 mutex_unlock(&fs_info
->balance_mutex
);
4596 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4601 BUG_ON(!atomic_read(&fs_info
->mutually_exclusive_operation_running
));
4604 bargs
= memdup_user(arg
, sizeof(*bargs
));
4605 if (IS_ERR(bargs
)) {
4606 ret
= PTR_ERR(bargs
);
4610 if (bargs
->flags
& BTRFS_BALANCE_RESUME
) {
4611 if (!fs_info
->balance_ctl
) {
4616 bctl
= fs_info
->balance_ctl
;
4617 spin_lock(&fs_info
->balance_lock
);
4618 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4619 spin_unlock(&fs_info
->balance_lock
);
4627 if (fs_info
->balance_ctl
) {
4632 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
4638 bctl
->fs_info
= fs_info
;
4640 memcpy(&bctl
->data
, &bargs
->data
, sizeof(bctl
->data
));
4641 memcpy(&bctl
->meta
, &bargs
->meta
, sizeof(bctl
->meta
));
4642 memcpy(&bctl
->sys
, &bargs
->sys
, sizeof(bctl
->sys
));
4644 bctl
->flags
= bargs
->flags
;
4646 /* balance everything - no filters */
4647 bctl
->flags
|= BTRFS_BALANCE_TYPE_MASK
;
4652 * Ownership of bctl and mutually_exclusive_operation_running
4653 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4654 * or, if restriper was paused all the way until unmount, in
4655 * free_fs_info. mutually_exclusive_operation_running is
4656 * cleared in __cancel_balance.
4658 need_unlock
= false;
4660 ret
= btrfs_balance(bctl
, bargs
);
4663 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4670 mutex_unlock(&fs_info
->balance_mutex
);
4671 mutex_unlock(&fs_info
->volume_mutex
);
4673 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
4675 mnt_drop_write_file(file
);
4679 static long btrfs_ioctl_balance_ctl(struct btrfs_root
*root
, int cmd
)
4681 if (!capable(CAP_SYS_ADMIN
))
4685 case BTRFS_BALANCE_CTL_PAUSE
:
4686 return btrfs_pause_balance(root
->fs_info
);
4687 case BTRFS_BALANCE_CTL_CANCEL
:
4688 return btrfs_cancel_balance(root
->fs_info
);
4694 static long btrfs_ioctl_balance_progress(struct btrfs_root
*root
,
4697 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4698 struct btrfs_ioctl_balance_args
*bargs
;
4701 if (!capable(CAP_SYS_ADMIN
))
4704 mutex_lock(&fs_info
->balance_mutex
);
4705 if (!fs_info
->balance_ctl
) {
4710 bargs
= kzalloc(sizeof(*bargs
), GFP_NOFS
);
4716 update_ioctl_balance_args(fs_info
, 1, bargs
);
4718 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4723 mutex_unlock(&fs_info
->balance_mutex
);
4727 static long btrfs_ioctl_quota_ctl(struct file
*file
, void __user
*arg
)
4729 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4730 struct btrfs_ioctl_quota_ctl_args
*sa
;
4731 struct btrfs_trans_handle
*trans
= NULL
;
4735 if (!capable(CAP_SYS_ADMIN
))
4738 ret
= mnt_want_write_file(file
);
4742 sa
= memdup_user(arg
, sizeof(*sa
));
4748 down_write(&root
->fs_info
->subvol_sem
);
4749 trans
= btrfs_start_transaction(root
->fs_info
->tree_root
, 2);
4750 if (IS_ERR(trans
)) {
4751 ret
= PTR_ERR(trans
);
4756 case BTRFS_QUOTA_CTL_ENABLE
:
4757 ret
= btrfs_quota_enable(trans
, root
->fs_info
);
4759 case BTRFS_QUOTA_CTL_DISABLE
:
4760 ret
= btrfs_quota_disable(trans
, root
->fs_info
);
4767 err
= btrfs_commit_transaction(trans
, root
->fs_info
->tree_root
);
4772 up_write(&root
->fs_info
->subvol_sem
);
4774 mnt_drop_write_file(file
);
4778 static long btrfs_ioctl_qgroup_assign(struct file
*file
, void __user
*arg
)
4780 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4781 struct btrfs_ioctl_qgroup_assign_args
*sa
;
4782 struct btrfs_trans_handle
*trans
;
4786 if (!capable(CAP_SYS_ADMIN
))
4789 ret
= mnt_want_write_file(file
);
4793 sa
= memdup_user(arg
, sizeof(*sa
));
4799 trans
= btrfs_join_transaction(root
);
4800 if (IS_ERR(trans
)) {
4801 ret
= PTR_ERR(trans
);
4805 /* FIXME: check if the IDs really exist */
4807 ret
= btrfs_add_qgroup_relation(trans
, root
->fs_info
,
4810 ret
= btrfs_del_qgroup_relation(trans
, root
->fs_info
,
4814 /* update qgroup status and info */
4815 err
= btrfs_run_qgroups(trans
, root
->fs_info
);
4817 btrfs_error(root
->fs_info
, ret
,
4818 "failed to update qgroup status and info\n");
4819 err
= btrfs_end_transaction(trans
, root
);
4826 mnt_drop_write_file(file
);
4830 static long btrfs_ioctl_qgroup_create(struct file
*file
, void __user
*arg
)
4832 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4833 struct btrfs_ioctl_qgroup_create_args
*sa
;
4834 struct btrfs_trans_handle
*trans
;
4838 if (!capable(CAP_SYS_ADMIN
))
4841 ret
= mnt_want_write_file(file
);
4845 sa
= memdup_user(arg
, sizeof(*sa
));
4851 if (!sa
->qgroupid
) {
4856 trans
= btrfs_join_transaction(root
);
4857 if (IS_ERR(trans
)) {
4858 ret
= PTR_ERR(trans
);
4862 /* FIXME: check if the IDs really exist */
4864 ret
= btrfs_create_qgroup(trans
, root
->fs_info
, sa
->qgroupid
);
4866 ret
= btrfs_remove_qgroup(trans
, root
->fs_info
, sa
->qgroupid
);
4869 err
= btrfs_end_transaction(trans
, root
);
4876 mnt_drop_write_file(file
);
4880 static long btrfs_ioctl_qgroup_limit(struct file
*file
, void __user
*arg
)
4882 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4883 struct btrfs_ioctl_qgroup_limit_args
*sa
;
4884 struct btrfs_trans_handle
*trans
;
4889 if (!capable(CAP_SYS_ADMIN
))
4892 ret
= mnt_want_write_file(file
);
4896 sa
= memdup_user(arg
, sizeof(*sa
));
4902 trans
= btrfs_join_transaction(root
);
4903 if (IS_ERR(trans
)) {
4904 ret
= PTR_ERR(trans
);
4908 qgroupid
= sa
->qgroupid
;
4910 /* take the current subvol as qgroup */
4911 qgroupid
= root
->root_key
.objectid
;
4914 /* FIXME: check if the IDs really exist */
4915 ret
= btrfs_limit_qgroup(trans
, root
->fs_info
, qgroupid
, &sa
->lim
);
4917 err
= btrfs_end_transaction(trans
, root
);
4924 mnt_drop_write_file(file
);
4928 static long btrfs_ioctl_quota_rescan(struct file
*file
, void __user
*arg
)
4930 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4931 struct btrfs_ioctl_quota_rescan_args
*qsa
;
4934 if (!capable(CAP_SYS_ADMIN
))
4937 ret
= mnt_want_write_file(file
);
4941 qsa
= memdup_user(arg
, sizeof(*qsa
));
4952 ret
= btrfs_qgroup_rescan(root
->fs_info
);
4957 mnt_drop_write_file(file
);
4961 static long btrfs_ioctl_quota_rescan_status(struct file
*file
, void __user
*arg
)
4963 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4964 struct btrfs_ioctl_quota_rescan_args
*qsa
;
4967 if (!capable(CAP_SYS_ADMIN
))
4970 qsa
= kzalloc(sizeof(*qsa
), GFP_NOFS
);
4974 if (root
->fs_info
->qgroup_flags
& BTRFS_QGROUP_STATUS_FLAG_RESCAN
) {
4976 qsa
->progress
= root
->fs_info
->qgroup_rescan_progress
.objectid
;
4979 if (copy_to_user(arg
, qsa
, sizeof(*qsa
)))
4986 static long btrfs_ioctl_quota_rescan_wait(struct file
*file
, void __user
*arg
)
4988 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4990 if (!capable(CAP_SYS_ADMIN
))
4993 return btrfs_qgroup_wait_for_completion(root
->fs_info
);
4996 static long _btrfs_ioctl_set_received_subvol(struct file
*file
,
4997 struct btrfs_ioctl_received_subvol_args
*sa
)
4999 struct inode
*inode
= file_inode(file
);
5000 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5001 struct btrfs_root_item
*root_item
= &root
->root_item
;
5002 struct btrfs_trans_handle
*trans
;
5003 struct timespec ct
= CURRENT_TIME
;
5005 int received_uuid_changed
;
5007 if (!inode_owner_or_capable(inode
))
5010 ret
= mnt_want_write_file(file
);
5014 down_write(&root
->fs_info
->subvol_sem
);
5016 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
5021 if (btrfs_root_readonly(root
)) {
5028 * 2 - uuid items (received uuid + subvol uuid)
5030 trans
= btrfs_start_transaction(root
, 3);
5031 if (IS_ERR(trans
)) {
5032 ret
= PTR_ERR(trans
);
5037 sa
->rtransid
= trans
->transid
;
5038 sa
->rtime
.sec
= ct
.tv_sec
;
5039 sa
->rtime
.nsec
= ct
.tv_nsec
;
5041 received_uuid_changed
= memcmp(root_item
->received_uuid
, sa
->uuid
,
5043 if (received_uuid_changed
&&
5044 !btrfs_is_empty_uuid(root_item
->received_uuid
))
5045 btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
5046 root_item
->received_uuid
,
5047 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5048 root
->root_key
.objectid
);
5049 memcpy(root_item
->received_uuid
, sa
->uuid
, BTRFS_UUID_SIZE
);
5050 btrfs_set_root_stransid(root_item
, sa
->stransid
);
5051 btrfs_set_root_rtransid(root_item
, sa
->rtransid
);
5052 btrfs_set_stack_timespec_sec(&root_item
->stime
, sa
->stime
.sec
);
5053 btrfs_set_stack_timespec_nsec(&root_item
->stime
, sa
->stime
.nsec
);
5054 btrfs_set_stack_timespec_sec(&root_item
->rtime
, sa
->rtime
.sec
);
5055 btrfs_set_stack_timespec_nsec(&root_item
->rtime
, sa
->rtime
.nsec
);
5057 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
5058 &root
->root_key
, &root
->root_item
);
5060 btrfs_end_transaction(trans
, root
);
5063 if (received_uuid_changed
&& !btrfs_is_empty_uuid(sa
->uuid
)) {
5064 ret
= btrfs_uuid_tree_add(trans
, root
->fs_info
->uuid_root
,
5066 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5067 root
->root_key
.objectid
);
5068 if (ret
< 0 && ret
!= -EEXIST
) {
5069 btrfs_abort_transaction(trans
, root
, ret
);
5073 ret
= btrfs_commit_transaction(trans
, root
);
5075 btrfs_abort_transaction(trans
, root
, ret
);
5080 up_write(&root
->fs_info
->subvol_sem
);
5081 mnt_drop_write_file(file
);
5086 static long btrfs_ioctl_set_received_subvol_32(struct file
*file
,
5089 struct btrfs_ioctl_received_subvol_args_32
*args32
= NULL
;
5090 struct btrfs_ioctl_received_subvol_args
*args64
= NULL
;
5093 args32
= memdup_user(arg
, sizeof(*args32
));
5094 if (IS_ERR(args32
)) {
5095 ret
= PTR_ERR(args32
);
5100 args64
= kmalloc(sizeof(*args64
), GFP_NOFS
);
5106 memcpy(args64
->uuid
, args32
->uuid
, BTRFS_UUID_SIZE
);
5107 args64
->stransid
= args32
->stransid
;
5108 args64
->rtransid
= args32
->rtransid
;
5109 args64
->stime
.sec
= args32
->stime
.sec
;
5110 args64
->stime
.nsec
= args32
->stime
.nsec
;
5111 args64
->rtime
.sec
= args32
->rtime
.sec
;
5112 args64
->rtime
.nsec
= args32
->rtime
.nsec
;
5113 args64
->flags
= args32
->flags
;
5115 ret
= _btrfs_ioctl_set_received_subvol(file
, args64
);
5119 memcpy(args32
->uuid
, args64
->uuid
, BTRFS_UUID_SIZE
);
5120 args32
->stransid
= args64
->stransid
;
5121 args32
->rtransid
= args64
->rtransid
;
5122 args32
->stime
.sec
= args64
->stime
.sec
;
5123 args32
->stime
.nsec
= args64
->stime
.nsec
;
5124 args32
->rtime
.sec
= args64
->rtime
.sec
;
5125 args32
->rtime
.nsec
= args64
->rtime
.nsec
;
5126 args32
->flags
= args64
->flags
;
5128 ret
= copy_to_user(arg
, args32
, sizeof(*args32
));
5139 static long btrfs_ioctl_set_received_subvol(struct file
*file
,
5142 struct btrfs_ioctl_received_subvol_args
*sa
= NULL
;
5145 sa
= memdup_user(arg
, sizeof(*sa
));
5152 ret
= _btrfs_ioctl_set_received_subvol(file
, sa
);
5157 ret
= copy_to_user(arg
, sa
, sizeof(*sa
));
5166 static int btrfs_ioctl_get_fslabel(struct file
*file
, void __user
*arg
)
5168 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5171 char label
[BTRFS_LABEL_SIZE
];
5173 spin_lock(&root
->fs_info
->super_lock
);
5174 memcpy(label
, root
->fs_info
->super_copy
->label
, BTRFS_LABEL_SIZE
);
5175 spin_unlock(&root
->fs_info
->super_lock
);
5177 len
= strnlen(label
, BTRFS_LABEL_SIZE
);
5179 if (len
== BTRFS_LABEL_SIZE
) {
5180 btrfs_warn(root
->fs_info
,
5181 "label is too long, return the first %zu bytes", --len
);
5184 ret
= copy_to_user(arg
, label
, len
);
5186 return ret
? -EFAULT
: 0;
5189 static int btrfs_ioctl_set_fslabel(struct file
*file
, void __user
*arg
)
5191 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5192 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
5193 struct btrfs_trans_handle
*trans
;
5194 char label
[BTRFS_LABEL_SIZE
];
5197 if (!capable(CAP_SYS_ADMIN
))
5200 if (copy_from_user(label
, arg
, sizeof(label
)))
5203 if (strnlen(label
, BTRFS_LABEL_SIZE
) == BTRFS_LABEL_SIZE
) {
5204 btrfs_err(root
->fs_info
, "unable to set label with more than %d bytes",
5205 BTRFS_LABEL_SIZE
- 1);
5209 ret
= mnt_want_write_file(file
);
5213 trans
= btrfs_start_transaction(root
, 0);
5214 if (IS_ERR(trans
)) {
5215 ret
= PTR_ERR(trans
);
5219 spin_lock(&root
->fs_info
->super_lock
);
5220 strcpy(super_block
->label
, label
);
5221 spin_unlock(&root
->fs_info
->super_lock
);
5222 ret
= btrfs_commit_transaction(trans
, root
);
5225 mnt_drop_write_file(file
);
5229 #define INIT_FEATURE_FLAGS(suffix) \
5230 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5231 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5232 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5234 static int btrfs_ioctl_get_supported_features(struct file
*file
,
5237 static struct btrfs_ioctl_feature_flags features
[3] = {
5238 INIT_FEATURE_FLAGS(SUPP
),
5239 INIT_FEATURE_FLAGS(SAFE_SET
),
5240 INIT_FEATURE_FLAGS(SAFE_CLEAR
)
5243 if (copy_to_user(arg
, &features
, sizeof(features
)))
5249 static int btrfs_ioctl_get_features(struct file
*file
, void __user
*arg
)
5251 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5252 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
5253 struct btrfs_ioctl_feature_flags features
;
5255 features
.compat_flags
= btrfs_super_compat_flags(super_block
);
5256 features
.compat_ro_flags
= btrfs_super_compat_ro_flags(super_block
);
5257 features
.incompat_flags
= btrfs_super_incompat_flags(super_block
);
5259 if (copy_to_user(arg
, &features
, sizeof(features
)))
5265 static int check_feature_bits(struct btrfs_root
*root
,
5266 enum btrfs_feature_set set
,
5267 u64 change_mask
, u64 flags
, u64 supported_flags
,
5268 u64 safe_set
, u64 safe_clear
)
5270 const char *type
= btrfs_feature_set_names
[set
];
5272 u64 disallowed
, unsupported
;
5273 u64 set_mask
= flags
& change_mask
;
5274 u64 clear_mask
= ~flags
& change_mask
;
5276 unsupported
= set_mask
& ~supported_flags
;
5278 names
= btrfs_printable_features(set
, unsupported
);
5280 btrfs_warn(root
->fs_info
,
5281 "this kernel does not support the %s feature bit%s",
5282 names
, strchr(names
, ',') ? "s" : "");
5285 btrfs_warn(root
->fs_info
,
5286 "this kernel does not support %s bits 0x%llx",
5291 disallowed
= set_mask
& ~safe_set
;
5293 names
= btrfs_printable_features(set
, disallowed
);
5295 btrfs_warn(root
->fs_info
,
5296 "can't set the %s feature bit%s while mounted",
5297 names
, strchr(names
, ',') ? "s" : "");
5300 btrfs_warn(root
->fs_info
,
5301 "can't set %s bits 0x%llx while mounted",
5306 disallowed
= clear_mask
& ~safe_clear
;
5308 names
= btrfs_printable_features(set
, disallowed
);
5310 btrfs_warn(root
->fs_info
,
5311 "can't clear the %s feature bit%s while mounted",
5312 names
, strchr(names
, ',') ? "s" : "");
5315 btrfs_warn(root
->fs_info
,
5316 "can't clear %s bits 0x%llx while mounted",
5324 #define check_feature(root, change_mask, flags, mask_base) \
5325 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
5326 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5327 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5328 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5330 static int btrfs_ioctl_set_features(struct file
*file
, void __user
*arg
)
5332 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5333 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
5334 struct btrfs_ioctl_feature_flags flags
[2];
5335 struct btrfs_trans_handle
*trans
;
5339 if (!capable(CAP_SYS_ADMIN
))
5342 if (copy_from_user(flags
, arg
, sizeof(flags
)))
5346 if (!flags
[0].compat_flags
&& !flags
[0].compat_ro_flags
&&
5347 !flags
[0].incompat_flags
)
5350 ret
= check_feature(root
, flags
[0].compat_flags
,
5351 flags
[1].compat_flags
, COMPAT
);
5355 ret
= check_feature(root
, flags
[0].compat_ro_flags
,
5356 flags
[1].compat_ro_flags
, COMPAT_RO
);
5360 ret
= check_feature(root
, flags
[0].incompat_flags
,
5361 flags
[1].incompat_flags
, INCOMPAT
);
5365 trans
= btrfs_start_transaction(root
, 0);
5367 return PTR_ERR(trans
);
5369 spin_lock(&root
->fs_info
->super_lock
);
5370 newflags
= btrfs_super_compat_flags(super_block
);
5371 newflags
|= flags
[0].compat_flags
& flags
[1].compat_flags
;
5372 newflags
&= ~(flags
[0].compat_flags
& ~flags
[1].compat_flags
);
5373 btrfs_set_super_compat_flags(super_block
, newflags
);
5375 newflags
= btrfs_super_compat_ro_flags(super_block
);
5376 newflags
|= flags
[0].compat_ro_flags
& flags
[1].compat_ro_flags
;
5377 newflags
&= ~(flags
[0].compat_ro_flags
& ~flags
[1].compat_ro_flags
);
5378 btrfs_set_super_compat_ro_flags(super_block
, newflags
);
5380 newflags
= btrfs_super_incompat_flags(super_block
);
5381 newflags
|= flags
[0].incompat_flags
& flags
[1].incompat_flags
;
5382 newflags
&= ~(flags
[0].incompat_flags
& ~flags
[1].incompat_flags
);
5383 btrfs_set_super_incompat_flags(super_block
, newflags
);
5384 spin_unlock(&root
->fs_info
->super_lock
);
5386 return btrfs_commit_transaction(trans
, root
);
5389 long btrfs_ioctl(struct file
*file
, unsigned int
5390 cmd
, unsigned long arg
)
5392 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5393 void __user
*argp
= (void __user
*)arg
;
5396 case FS_IOC_GETFLAGS
:
5397 return btrfs_ioctl_getflags(file
, argp
);
5398 case FS_IOC_SETFLAGS
:
5399 return btrfs_ioctl_setflags(file
, argp
);
5400 case FS_IOC_GETVERSION
:
5401 return btrfs_ioctl_getversion(file
, argp
);
5403 return btrfs_ioctl_fitrim(file
, argp
);
5404 case BTRFS_IOC_SNAP_CREATE
:
5405 return btrfs_ioctl_snap_create(file
, argp
, 0);
5406 case BTRFS_IOC_SNAP_CREATE_V2
:
5407 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
5408 case BTRFS_IOC_SUBVOL_CREATE
:
5409 return btrfs_ioctl_snap_create(file
, argp
, 1);
5410 case BTRFS_IOC_SUBVOL_CREATE_V2
:
5411 return btrfs_ioctl_snap_create_v2(file
, argp
, 1);
5412 case BTRFS_IOC_SNAP_DESTROY
:
5413 return btrfs_ioctl_snap_destroy(file
, argp
);
5414 case BTRFS_IOC_SUBVOL_GETFLAGS
:
5415 return btrfs_ioctl_subvol_getflags(file
, argp
);
5416 case BTRFS_IOC_SUBVOL_SETFLAGS
:
5417 return btrfs_ioctl_subvol_setflags(file
, argp
);
5418 case BTRFS_IOC_DEFAULT_SUBVOL
:
5419 return btrfs_ioctl_default_subvol(file
, argp
);
5420 case BTRFS_IOC_DEFRAG
:
5421 return btrfs_ioctl_defrag(file
, NULL
);
5422 case BTRFS_IOC_DEFRAG_RANGE
:
5423 return btrfs_ioctl_defrag(file
, argp
);
5424 case BTRFS_IOC_RESIZE
:
5425 return btrfs_ioctl_resize(file
, argp
);
5426 case BTRFS_IOC_ADD_DEV
:
5427 return btrfs_ioctl_add_dev(root
, argp
);
5428 case BTRFS_IOC_RM_DEV
:
5429 return btrfs_ioctl_rm_dev(file
, argp
);
5430 case BTRFS_IOC_FS_INFO
:
5431 return btrfs_ioctl_fs_info(root
, argp
);
5432 case BTRFS_IOC_DEV_INFO
:
5433 return btrfs_ioctl_dev_info(root
, argp
);
5434 case BTRFS_IOC_BALANCE
:
5435 return btrfs_ioctl_balance(file
, NULL
);
5436 case BTRFS_IOC_CLONE
:
5437 return btrfs_ioctl_clone(file
, arg
, 0, 0, 0);
5438 case BTRFS_IOC_CLONE_RANGE
:
5439 return btrfs_ioctl_clone_range(file
, argp
);
5440 case BTRFS_IOC_TRANS_START
:
5441 return btrfs_ioctl_trans_start(file
);
5442 case BTRFS_IOC_TRANS_END
:
5443 return btrfs_ioctl_trans_end(file
);
5444 case BTRFS_IOC_TREE_SEARCH
:
5445 return btrfs_ioctl_tree_search(file
, argp
);
5446 case BTRFS_IOC_TREE_SEARCH_V2
:
5447 return btrfs_ioctl_tree_search_v2(file
, argp
);
5448 case BTRFS_IOC_INO_LOOKUP
:
5449 return btrfs_ioctl_ino_lookup(file
, argp
);
5450 case BTRFS_IOC_INO_PATHS
:
5451 return btrfs_ioctl_ino_to_path(root
, argp
);
5452 case BTRFS_IOC_LOGICAL_INO
:
5453 return btrfs_ioctl_logical_to_ino(root
, argp
);
5454 case BTRFS_IOC_SPACE_INFO
:
5455 return btrfs_ioctl_space_info(root
, argp
);
5456 case BTRFS_IOC_SYNC
: {
5459 ret
= btrfs_start_delalloc_roots(root
->fs_info
, 0, -1);
5462 ret
= btrfs_sync_fs(file_inode(file
)->i_sb
, 1);
5464 * The transaction thread may want to do more work,
5465 * namely it pokes the cleaner ktread that will start
5466 * processing uncleaned subvols.
5468 wake_up_process(root
->fs_info
->transaction_kthread
);
5471 case BTRFS_IOC_START_SYNC
:
5472 return btrfs_ioctl_start_sync(root
, argp
);
5473 case BTRFS_IOC_WAIT_SYNC
:
5474 return btrfs_ioctl_wait_sync(root
, argp
);
5475 case BTRFS_IOC_SCRUB
:
5476 return btrfs_ioctl_scrub(file
, argp
);
5477 case BTRFS_IOC_SCRUB_CANCEL
:
5478 return btrfs_ioctl_scrub_cancel(root
, argp
);
5479 case BTRFS_IOC_SCRUB_PROGRESS
:
5480 return btrfs_ioctl_scrub_progress(root
, argp
);
5481 case BTRFS_IOC_BALANCE_V2
:
5482 return btrfs_ioctl_balance(file
, argp
);
5483 case BTRFS_IOC_BALANCE_CTL
:
5484 return btrfs_ioctl_balance_ctl(root
, arg
);
5485 case BTRFS_IOC_BALANCE_PROGRESS
:
5486 return btrfs_ioctl_balance_progress(root
, argp
);
5487 case BTRFS_IOC_SET_RECEIVED_SUBVOL
:
5488 return btrfs_ioctl_set_received_subvol(file
, argp
);
5490 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32
:
5491 return btrfs_ioctl_set_received_subvol_32(file
, argp
);
5493 case BTRFS_IOC_SEND
:
5494 return btrfs_ioctl_send(file
, argp
);
5495 case BTRFS_IOC_GET_DEV_STATS
:
5496 return btrfs_ioctl_get_dev_stats(root
, argp
);
5497 case BTRFS_IOC_QUOTA_CTL
:
5498 return btrfs_ioctl_quota_ctl(file
, argp
);
5499 case BTRFS_IOC_QGROUP_ASSIGN
:
5500 return btrfs_ioctl_qgroup_assign(file
, argp
);
5501 case BTRFS_IOC_QGROUP_CREATE
:
5502 return btrfs_ioctl_qgroup_create(file
, argp
);
5503 case BTRFS_IOC_QGROUP_LIMIT
:
5504 return btrfs_ioctl_qgroup_limit(file
, argp
);
5505 case BTRFS_IOC_QUOTA_RESCAN
:
5506 return btrfs_ioctl_quota_rescan(file
, argp
);
5507 case BTRFS_IOC_QUOTA_RESCAN_STATUS
:
5508 return btrfs_ioctl_quota_rescan_status(file
, argp
);
5509 case BTRFS_IOC_QUOTA_RESCAN_WAIT
:
5510 return btrfs_ioctl_quota_rescan_wait(file
, argp
);
5511 case BTRFS_IOC_DEV_REPLACE
:
5512 return btrfs_ioctl_dev_replace(root
, argp
);
5513 case BTRFS_IOC_GET_FSLABEL
:
5514 return btrfs_ioctl_get_fslabel(file
, argp
);
5515 case BTRFS_IOC_SET_FSLABEL
:
5516 return btrfs_ioctl_set_fslabel(file
, argp
);
5517 case BTRFS_IOC_FILE_EXTENT_SAME
:
5518 return btrfs_ioctl_file_extent_same(file
, argp
);
5519 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
5520 return btrfs_ioctl_get_supported_features(file
, argp
);
5521 case BTRFS_IOC_GET_FEATURES
:
5522 return btrfs_ioctl_get_features(file
, argp
);
5523 case BTRFS_IOC_SET_FEATURES
:
5524 return btrfs_ioctl_set_features(file
, argp
);