2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static const unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
39 [TRANS_STATE_RUNNING
] = 0U,
40 [TRANS_STATE_BLOCKED
] = (__TRANS_USERSPACE
|
42 [TRANS_STATE_COMMIT_START
] = (__TRANS_USERSPACE
|
45 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_USERSPACE
|
49 [TRANS_STATE_UNBLOCKED
] = (__TRANS_USERSPACE
|
54 [TRANS_STATE_COMPLETED
] = (__TRANS_USERSPACE
|
61 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
63 WARN_ON(atomic_read(&transaction
->use_count
) == 0);
64 if (atomic_dec_and_test(&transaction
->use_count
)) {
65 BUG_ON(!list_empty(&transaction
->list
));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction
->delayed_refs
.href_root
));
67 if (transaction
->delayed_refs
.pending_csums
)
68 printk(KERN_ERR
"pending csums is %llu\n",
69 transaction
->delayed_refs
.pending_csums
);
70 while (!list_empty(&transaction
->pending_chunks
)) {
71 struct extent_map
*em
;
73 em
= list_first_entry(&transaction
->pending_chunks
,
74 struct extent_map
, list
);
75 list_del_init(&em
->list
);
78 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
82 static void clear_btree_io_tree(struct extent_io_tree
*tree
)
84 spin_lock(&tree
->lock
);
85 while (!RB_EMPTY_ROOT(&tree
->state
)) {
87 struct extent_state
*state
;
89 node
= rb_first(&tree
->state
);
90 state
= rb_entry(node
, struct extent_state
, rb_node
);
91 rb_erase(&state
->rb_node
, &tree
->state
);
92 RB_CLEAR_NODE(&state
->rb_node
);
94 * btree io trees aren't supposed to have tasks waiting for
95 * changes in the flags of extent states ever.
97 ASSERT(!waitqueue_active(&state
->wq
));
98 free_extent_state(state
);
100 cond_resched_lock(&tree
->lock
);
102 spin_unlock(&tree
->lock
);
105 static noinline
void switch_commit_roots(struct btrfs_transaction
*trans
,
106 struct btrfs_fs_info
*fs_info
)
108 struct btrfs_root
*root
, *tmp
;
110 down_write(&fs_info
->commit_root_sem
);
111 list_for_each_entry_safe(root
, tmp
, &trans
->switch_commits
,
113 list_del_init(&root
->dirty_list
);
114 free_extent_buffer(root
->commit_root
);
115 root
->commit_root
= btrfs_root_node(root
);
116 if (is_fstree(root
->objectid
))
117 btrfs_unpin_free_ino(root
);
118 clear_btree_io_tree(&root
->dirty_log_pages
);
120 up_write(&fs_info
->commit_root_sem
);
123 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
126 if (type
& TRANS_EXTWRITERS
)
127 atomic_inc(&trans
->num_extwriters
);
130 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
133 if (type
& TRANS_EXTWRITERS
)
134 atomic_dec(&trans
->num_extwriters
);
137 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
140 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
143 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
145 return atomic_read(&trans
->num_extwriters
);
149 * either allocate a new transaction or hop into the existing one
151 static noinline
int join_transaction(struct btrfs_root
*root
, unsigned int type
)
153 struct btrfs_transaction
*cur_trans
;
154 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
156 spin_lock(&fs_info
->trans_lock
);
158 /* The file system has been taken offline. No new transactions. */
159 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
160 spin_unlock(&fs_info
->trans_lock
);
164 cur_trans
= fs_info
->running_transaction
;
166 if (cur_trans
->aborted
) {
167 spin_unlock(&fs_info
->trans_lock
);
168 return cur_trans
->aborted
;
170 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
171 spin_unlock(&fs_info
->trans_lock
);
174 atomic_inc(&cur_trans
->use_count
);
175 atomic_inc(&cur_trans
->num_writers
);
176 extwriter_counter_inc(cur_trans
, type
);
177 spin_unlock(&fs_info
->trans_lock
);
180 spin_unlock(&fs_info
->trans_lock
);
183 * If we are ATTACH, we just want to catch the current transaction,
184 * and commit it. If there is no transaction, just return ENOENT.
186 if (type
== TRANS_ATTACH
)
190 * JOIN_NOLOCK only happens during the transaction commit, so
191 * it is impossible that ->running_transaction is NULL
193 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
195 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
, GFP_NOFS
);
199 spin_lock(&fs_info
->trans_lock
);
200 if (fs_info
->running_transaction
) {
202 * someone started a transaction after we unlocked. Make sure
203 * to redo the checks above
205 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
207 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
208 spin_unlock(&fs_info
->trans_lock
);
209 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
213 atomic_set(&cur_trans
->num_writers
, 1);
214 extwriter_counter_init(cur_trans
, type
);
215 init_waitqueue_head(&cur_trans
->writer_wait
);
216 init_waitqueue_head(&cur_trans
->commit_wait
);
217 cur_trans
->state
= TRANS_STATE_RUNNING
;
219 * One for this trans handle, one so it will live on until we
220 * commit the transaction.
222 atomic_set(&cur_trans
->use_count
, 2);
223 cur_trans
->have_free_bgs
= 0;
224 cur_trans
->start_time
= get_seconds();
225 cur_trans
->dirty_bg_run
= 0;
227 cur_trans
->delayed_refs
.href_root
= RB_ROOT
;
228 cur_trans
->delayed_refs
.dirty_extent_root
= RB_ROOT
;
229 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
230 cur_trans
->delayed_refs
.num_heads_ready
= 0;
231 cur_trans
->delayed_refs
.pending_csums
= 0;
232 cur_trans
->delayed_refs
.num_heads
= 0;
233 cur_trans
->delayed_refs
.flushing
= 0;
234 cur_trans
->delayed_refs
.run_delayed_start
= 0;
235 cur_trans
->delayed_refs
.qgroup_to_skip
= 0;
238 * although the tree mod log is per file system and not per transaction,
239 * the log must never go across transaction boundaries.
242 if (!list_empty(&fs_info
->tree_mod_seq_list
))
243 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when "
244 "creating a fresh transaction\n");
245 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
246 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when "
247 "creating a fresh transaction\n");
248 atomic64_set(&fs_info
->tree_mod_seq
, 0);
250 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
252 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
253 INIT_LIST_HEAD(&cur_trans
->pending_chunks
);
254 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
255 INIT_LIST_HEAD(&cur_trans
->pending_ordered
);
256 INIT_LIST_HEAD(&cur_trans
->dirty_bgs
);
257 INIT_LIST_HEAD(&cur_trans
->io_bgs
);
258 mutex_init(&cur_trans
->cache_write_mutex
);
259 cur_trans
->num_dirty_bgs
= 0;
260 spin_lock_init(&cur_trans
->dirty_bgs_lock
);
261 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
262 extent_io_tree_init(&cur_trans
->dirty_pages
,
263 fs_info
->btree_inode
->i_mapping
);
264 fs_info
->generation
++;
265 cur_trans
->transid
= fs_info
->generation
;
266 fs_info
->running_transaction
= cur_trans
;
267 cur_trans
->aborted
= 0;
268 spin_unlock(&fs_info
->trans_lock
);
274 * this does all the record keeping required to make sure that a reference
275 * counted root is properly recorded in a given transaction. This is required
276 * to make sure the old root from before we joined the transaction is deleted
277 * when the transaction commits
279 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
280 struct btrfs_root
*root
)
282 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
283 root
->last_trans
< trans
->transid
) {
284 WARN_ON(root
== root
->fs_info
->extent_root
);
285 WARN_ON(root
->commit_root
!= root
->node
);
288 * see below for IN_TRANS_SETUP usage rules
289 * we have the reloc mutex held now, so there
290 * is only one writer in this function
292 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
294 /* make sure readers find IN_TRANS_SETUP before
295 * they find our root->last_trans update
299 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
300 if (root
->last_trans
== trans
->transid
) {
301 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
304 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
305 (unsigned long)root
->root_key
.objectid
,
306 BTRFS_ROOT_TRANS_TAG
);
307 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
308 root
->last_trans
= trans
->transid
;
310 /* this is pretty tricky. We don't want to
311 * take the relocation lock in btrfs_record_root_in_trans
312 * unless we're really doing the first setup for this root in
315 * Normally we'd use root->last_trans as a flag to decide
316 * if we want to take the expensive mutex.
318 * But, we have to set root->last_trans before we
319 * init the relocation root, otherwise, we trip over warnings
320 * in ctree.c. The solution used here is to flag ourselves
321 * with root IN_TRANS_SETUP. When this is 1, we're still
322 * fixing up the reloc trees and everyone must wait.
324 * When this is zero, they can trust root->last_trans and fly
325 * through btrfs_record_root_in_trans without having to take the
326 * lock. smp_wmb() makes sure that all the writes above are
327 * done before we pop in the zero below
329 btrfs_init_reloc_root(trans
, root
);
330 smp_mb__before_atomic();
331 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
337 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
338 struct btrfs_root
*root
)
340 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
344 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
348 if (root
->last_trans
== trans
->transid
&&
349 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
352 mutex_lock(&root
->fs_info
->reloc_mutex
);
353 record_root_in_trans(trans
, root
);
354 mutex_unlock(&root
->fs_info
->reloc_mutex
);
359 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
361 return (trans
->state
>= TRANS_STATE_BLOCKED
&&
362 trans
->state
< TRANS_STATE_UNBLOCKED
&&
366 /* wait for commit against the current transaction to become unblocked
367 * when this is done, it is safe to start a new transaction, but the current
368 * transaction might not be fully on disk.
370 static void wait_current_trans(struct btrfs_root
*root
)
372 struct btrfs_transaction
*cur_trans
;
374 spin_lock(&root
->fs_info
->trans_lock
);
375 cur_trans
= root
->fs_info
->running_transaction
;
376 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
377 atomic_inc(&cur_trans
->use_count
);
378 spin_unlock(&root
->fs_info
->trans_lock
);
380 wait_event(root
->fs_info
->transaction_wait
,
381 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
383 btrfs_put_transaction(cur_trans
);
385 spin_unlock(&root
->fs_info
->trans_lock
);
389 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
391 if (root
->fs_info
->log_root_recovering
)
394 if (type
== TRANS_USERSPACE
)
397 if (type
== TRANS_START
&&
398 !atomic_read(&root
->fs_info
->open_ioctl_trans
))
404 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
406 if (!root
->fs_info
->reloc_ctl
||
407 !test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
408 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
415 static struct btrfs_trans_handle
*
416 start_transaction(struct btrfs_root
*root
, u64 num_items
, unsigned int type
,
417 enum btrfs_reserve_flush_enum flush
)
419 struct btrfs_trans_handle
*h
;
420 struct btrfs_transaction
*cur_trans
;
422 u64 qgroup_reserved
= 0;
423 bool reloc_reserved
= false;
426 /* Send isn't supposed to start transactions. */
427 ASSERT(current
->journal_info
!= BTRFS_SEND_TRANS_STUB
);
429 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
430 return ERR_PTR(-EROFS
);
432 if (current
->journal_info
) {
433 WARN_ON(type
& TRANS_EXTWRITERS
);
434 h
= current
->journal_info
;
436 WARN_ON(h
->use_count
> 2);
437 h
->orig_rsv
= h
->block_rsv
;
443 * Do the reservation before we join the transaction so we can do all
444 * the appropriate flushing if need be.
446 if (num_items
> 0 && root
!= root
->fs_info
->chunk_root
) {
447 if (root
->fs_info
->quota_enabled
&&
448 is_fstree(root
->root_key
.objectid
)) {
449 qgroup_reserved
= num_items
* root
->nodesize
;
450 ret
= btrfs_qgroup_reserve(root
, qgroup_reserved
);
455 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
457 * Do the reservation for the relocation root creation
459 if (need_reserve_reloc_root(root
)) {
460 num_bytes
+= root
->nodesize
;
461 reloc_reserved
= true;
464 ret
= btrfs_block_rsv_add(root
,
465 &root
->fs_info
->trans_block_rsv
,
471 h
= kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
478 * If we are JOIN_NOLOCK we're already committing a transaction and
479 * waiting on this guy, so we don't need to do the sb_start_intwrite
480 * because we're already holding a ref. We need this because we could
481 * have raced in and did an fsync() on a file which can kick a commit
482 * and then we deadlock with somebody doing a freeze.
484 * If we are ATTACH, it means we just want to catch the current
485 * transaction and commit it, so we needn't do sb_start_intwrite().
487 if (type
& __TRANS_FREEZABLE
)
488 sb_start_intwrite(root
->fs_info
->sb
);
490 if (may_wait_transaction(root
, type
))
491 wait_current_trans(root
);
494 ret
= join_transaction(root
, type
);
496 wait_current_trans(root
);
497 if (unlikely(type
== TRANS_ATTACH
))
500 } while (ret
== -EBUSY
);
503 /* We must get the transaction if we are JOIN_NOLOCK. */
504 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
508 cur_trans
= root
->fs_info
->running_transaction
;
510 h
->transid
= cur_trans
->transid
;
511 h
->transaction
= cur_trans
;
513 h
->bytes_reserved
= 0;
514 h
->chunk_bytes_reserved
= 0;
516 h
->delayed_ref_updates
= 0;
522 h
->qgroup_reserved
= 0;
523 h
->delayed_ref_elem
.seq
= 0;
525 h
->allocating_chunk
= false;
526 h
->reloc_reserved
= false;
528 INIT_LIST_HEAD(&h
->qgroup_ref_list
);
529 INIT_LIST_HEAD(&h
->new_bgs
);
530 INIT_LIST_HEAD(&h
->ordered
);
533 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
&&
534 may_wait_transaction(root
, type
)) {
535 current
->journal_info
= h
;
536 btrfs_commit_transaction(h
, root
);
541 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
542 h
->transid
, num_bytes
, 1);
543 h
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
544 h
->bytes_reserved
= num_bytes
;
545 h
->reloc_reserved
= reloc_reserved
;
547 h
->qgroup_reserved
= qgroup_reserved
;
550 btrfs_record_root_in_trans(h
, root
);
552 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
553 current
->journal_info
= h
;
557 if (type
& __TRANS_FREEZABLE
)
558 sb_end_intwrite(root
->fs_info
->sb
);
559 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
562 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
566 btrfs_qgroup_free(root
, qgroup_reserved
);
570 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
573 return start_transaction(root
, num_items
, TRANS_START
,
574 BTRFS_RESERVE_FLUSH_ALL
);
577 struct btrfs_trans_handle
*btrfs_start_transaction_lflush(
578 struct btrfs_root
*root
, int num_items
)
580 return start_transaction(root
, num_items
, TRANS_START
,
581 BTRFS_RESERVE_FLUSH_LIMIT
);
584 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
586 return start_transaction(root
, 0, TRANS_JOIN
, 0);
589 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
591 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
, 0);
594 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*root
)
596 return start_transaction(root
, 0, TRANS_USERSPACE
, 0);
600 * btrfs_attach_transaction() - catch the running transaction
602 * It is used when we want to commit the current the transaction, but
603 * don't want to start a new one.
605 * Note: If this function return -ENOENT, it just means there is no
606 * running transaction. But it is possible that the inactive transaction
607 * is still in the memory, not fully on disk. If you hope there is no
608 * inactive transaction in the fs when -ENOENT is returned, you should
610 * btrfs_attach_transaction_barrier()
612 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
614 return start_transaction(root
, 0, TRANS_ATTACH
, 0);
618 * btrfs_attach_transaction_barrier() - catch the running transaction
620 * It is similar to the above function, the differentia is this one
621 * will wait for all the inactive transactions until they fully
624 struct btrfs_trans_handle
*
625 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
627 struct btrfs_trans_handle
*trans
;
629 trans
= start_transaction(root
, 0, TRANS_ATTACH
, 0);
630 if (IS_ERR(trans
) && PTR_ERR(trans
) == -ENOENT
)
631 btrfs_wait_for_commit(root
, 0);
636 /* wait for a transaction commit to be fully complete */
637 static noinline
void wait_for_commit(struct btrfs_root
*root
,
638 struct btrfs_transaction
*commit
)
640 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
643 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
645 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
649 if (transid
<= root
->fs_info
->last_trans_committed
)
652 /* find specified transaction */
653 spin_lock(&root
->fs_info
->trans_lock
);
654 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
655 if (t
->transid
== transid
) {
657 atomic_inc(&cur_trans
->use_count
);
661 if (t
->transid
> transid
) {
666 spin_unlock(&root
->fs_info
->trans_lock
);
669 * The specified transaction doesn't exist, or we
670 * raced with btrfs_commit_transaction
673 if (transid
> root
->fs_info
->last_trans_committed
)
678 /* find newest transaction that is committing | committed */
679 spin_lock(&root
->fs_info
->trans_lock
);
680 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
682 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
683 if (t
->state
== TRANS_STATE_COMPLETED
)
686 atomic_inc(&cur_trans
->use_count
);
690 spin_unlock(&root
->fs_info
->trans_lock
);
692 goto out
; /* nothing committing|committed */
695 wait_for_commit(root
, cur_trans
);
696 btrfs_put_transaction(cur_trans
);
701 void btrfs_throttle(struct btrfs_root
*root
)
703 if (!atomic_read(&root
->fs_info
->open_ioctl_trans
))
704 wait_current_trans(root
);
707 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
708 struct btrfs_root
*root
)
710 if (root
->fs_info
->global_block_rsv
.space_info
->full
&&
711 btrfs_check_space_for_delayed_refs(trans
, root
))
714 return !!btrfs_block_rsv_check(root
, &root
->fs_info
->global_block_rsv
, 5);
717 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
718 struct btrfs_root
*root
)
720 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
725 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
||
726 cur_trans
->delayed_refs
.flushing
)
729 updates
= trans
->delayed_ref_updates
;
730 trans
->delayed_ref_updates
= 0;
732 err
= btrfs_run_delayed_refs(trans
, root
, updates
* 2);
733 if (err
) /* Error code will also eval true */
737 return should_end_transaction(trans
, root
);
740 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
741 struct btrfs_root
*root
, int throttle
)
743 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
744 struct btrfs_fs_info
*info
= root
->fs_info
;
745 unsigned long cur
= trans
->delayed_ref_updates
;
746 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
748 int must_run_delayed_refs
= 0;
750 if (trans
->use_count
> 1) {
752 trans
->block_rsv
= trans
->orig_rsv
;
756 btrfs_trans_release_metadata(trans
, root
);
757 trans
->block_rsv
= NULL
;
759 if (!list_empty(&trans
->new_bgs
))
760 btrfs_create_pending_block_groups(trans
, root
);
762 if (!list_empty(&trans
->ordered
)) {
763 spin_lock(&info
->trans_lock
);
764 list_splice_init(&trans
->ordered
, &cur_trans
->pending_ordered
);
765 spin_unlock(&info
->trans_lock
);
768 trans
->delayed_ref_updates
= 0;
770 must_run_delayed_refs
=
771 btrfs_should_throttle_delayed_refs(trans
, root
);
772 cur
= max_t(unsigned long, cur
, 32);
775 * don't make the caller wait if they are from a NOLOCK
776 * or ATTACH transaction, it will deadlock with commit
778 if (must_run_delayed_refs
== 1 &&
779 (trans
->type
& (__TRANS_JOIN_NOLOCK
| __TRANS_ATTACH
)))
780 must_run_delayed_refs
= 2;
783 if (trans
->qgroup_reserved
) {
785 * the same root has to be passed here between start_transaction
786 * and end_transaction. Subvolume quota depends on this.
788 btrfs_qgroup_free(trans
->root
, trans
->qgroup_reserved
);
789 trans
->qgroup_reserved
= 0;
792 btrfs_trans_release_metadata(trans
, root
);
793 trans
->block_rsv
= NULL
;
795 if (!list_empty(&trans
->new_bgs
))
796 btrfs_create_pending_block_groups(trans
, root
);
798 btrfs_trans_release_chunk_metadata(trans
);
800 if (lock
&& !atomic_read(&root
->fs_info
->open_ioctl_trans
) &&
801 should_end_transaction(trans
, root
) &&
802 ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_RUNNING
) {
803 spin_lock(&info
->trans_lock
);
804 if (cur_trans
->state
== TRANS_STATE_RUNNING
)
805 cur_trans
->state
= TRANS_STATE_BLOCKED
;
806 spin_unlock(&info
->trans_lock
);
809 if (lock
&& ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_BLOCKED
) {
811 return btrfs_commit_transaction(trans
, root
);
813 wake_up_process(info
->transaction_kthread
);
816 if (trans
->type
& __TRANS_FREEZABLE
)
817 sb_end_intwrite(root
->fs_info
->sb
);
819 WARN_ON(cur_trans
!= info
->running_transaction
);
820 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
821 atomic_dec(&cur_trans
->num_writers
);
822 extwriter_counter_dec(cur_trans
, trans
->type
);
825 if (waitqueue_active(&cur_trans
->writer_wait
))
826 wake_up(&cur_trans
->writer_wait
);
827 btrfs_put_transaction(cur_trans
);
829 if (current
->journal_info
== trans
)
830 current
->journal_info
= NULL
;
833 btrfs_run_delayed_iputs(root
);
835 if (trans
->aborted
||
836 test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
837 wake_up_process(info
->transaction_kthread
);
840 assert_qgroups_uptodate(trans
);
842 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
843 if (must_run_delayed_refs
) {
844 btrfs_async_run_delayed_refs(root
, cur
,
845 must_run_delayed_refs
== 1);
850 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
851 struct btrfs_root
*root
)
853 return __btrfs_end_transaction(trans
, root
, 0);
856 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
857 struct btrfs_root
*root
)
859 return __btrfs_end_transaction(trans
, root
, 1);
863 * when btree blocks are allocated, they have some corresponding bits set for
864 * them in one of two extent_io trees. This is used to make sure all of
865 * those extents are sent to disk but does not wait on them
867 int btrfs_write_marked_extents(struct btrfs_root
*root
,
868 struct extent_io_tree
*dirty_pages
, int mark
)
872 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
873 struct extent_state
*cached_state
= NULL
;
877 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
878 mark
, &cached_state
)) {
879 bool wait_writeback
= false;
881 err
= convert_extent_bit(dirty_pages
, start
, end
,
883 mark
, &cached_state
, GFP_NOFS
);
885 * convert_extent_bit can return -ENOMEM, which is most of the
886 * time a temporary error. So when it happens, ignore the error
887 * and wait for writeback of this range to finish - because we
888 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
889 * to btrfs_wait_marked_extents() would not know that writeback
890 * for this range started and therefore wouldn't wait for it to
891 * finish - we don't want to commit a superblock that points to
892 * btree nodes/leafs for which writeback hasn't finished yet
893 * (and without errors).
894 * We cleanup any entries left in the io tree when committing
895 * the transaction (through clear_btree_io_tree()).
897 if (err
== -ENOMEM
) {
899 wait_writeback
= true;
902 err
= filemap_fdatawrite_range(mapping
, start
, end
);
905 else if (wait_writeback
)
906 werr
= filemap_fdatawait_range(mapping
, start
, end
);
907 free_extent_state(cached_state
);
916 * when btree blocks are allocated, they have some corresponding bits set for
917 * them in one of two extent_io trees. This is used to make sure all of
918 * those extents are on disk for transaction or log commit. We wait
919 * on all the pages and clear them from the dirty pages state tree
921 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
922 struct extent_io_tree
*dirty_pages
, int mark
)
926 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
927 struct extent_state
*cached_state
= NULL
;
930 struct btrfs_inode
*btree_ino
= BTRFS_I(root
->fs_info
->btree_inode
);
933 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
934 EXTENT_NEED_WAIT
, &cached_state
)) {
936 * Ignore -ENOMEM errors returned by clear_extent_bit().
937 * When committing the transaction, we'll remove any entries
938 * left in the io tree. For a log commit, we don't remove them
939 * after committing the log because the tree can be accessed
940 * concurrently - we do it only at transaction commit time when
941 * it's safe to do it (through clear_btree_io_tree()).
943 err
= clear_extent_bit(dirty_pages
, start
, end
,
945 0, 0, &cached_state
, GFP_NOFS
);
949 err
= filemap_fdatawait_range(mapping
, start
, end
);
952 free_extent_state(cached_state
);
960 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
961 if ((mark
& EXTENT_DIRTY
) &&
962 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR
,
963 &btree_ino
->runtime_flags
))
966 if ((mark
& EXTENT_NEW
) &&
967 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR
,
968 &btree_ino
->runtime_flags
))
971 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR
,
972 &btree_ino
->runtime_flags
))
983 * when btree blocks are allocated, they have some corresponding bits set for
984 * them in one of two extent_io trees. This is used to make sure all of
985 * those extents are on disk for transaction or log commit
987 static int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
988 struct extent_io_tree
*dirty_pages
, int mark
)
992 struct blk_plug plug
;
994 blk_start_plug(&plug
);
995 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
996 blk_finish_plug(&plug
);
997 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
1006 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
1007 struct btrfs_root
*root
)
1011 ret
= btrfs_write_and_wait_marked_extents(root
,
1012 &trans
->transaction
->dirty_pages
,
1014 clear_btree_io_tree(&trans
->transaction
->dirty_pages
);
1020 * this is used to update the root pointer in the tree of tree roots.
1022 * But, in the case of the extent allocation tree, updating the root
1023 * pointer may allocate blocks which may change the root of the extent
1026 * So, this loops and repeats and makes sure the cowonly root didn't
1027 * change while the root pointer was being updated in the metadata.
1029 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
1030 struct btrfs_root
*root
)
1033 u64 old_root_bytenr
;
1035 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
1037 old_root_used
= btrfs_root_used(&root
->root_item
);
1040 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
1041 if (old_root_bytenr
== root
->node
->start
&&
1042 old_root_used
== btrfs_root_used(&root
->root_item
))
1045 btrfs_set_root_node(&root
->root_item
, root
->node
);
1046 ret
= btrfs_update_root(trans
, tree_root
,
1052 old_root_used
= btrfs_root_used(&root
->root_item
);
1059 * update all the cowonly tree roots on disk
1061 * The error handling in this function may not be obvious. Any of the
1062 * failures will cause the file system to go offline. We still need
1063 * to clean up the delayed refs.
1065 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
1066 struct btrfs_root
*root
)
1068 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1069 struct list_head
*dirty_bgs
= &trans
->transaction
->dirty_bgs
;
1070 struct list_head
*io_bgs
= &trans
->transaction
->io_bgs
;
1071 struct list_head
*next
;
1072 struct extent_buffer
*eb
;
1075 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
1076 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
1078 btrfs_tree_unlock(eb
);
1079 free_extent_buffer(eb
);
1084 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1088 ret
= btrfs_run_dev_stats(trans
, root
->fs_info
);
1091 ret
= btrfs_run_dev_replace(trans
, root
->fs_info
);
1094 ret
= btrfs_run_qgroups(trans
, root
->fs_info
);
1098 ret
= btrfs_setup_space_cache(trans
, root
);
1102 /* run_qgroups might have added some more refs */
1103 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1107 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
1108 next
= fs_info
->dirty_cowonly_roots
.next
;
1109 list_del_init(next
);
1110 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1111 clear_bit(BTRFS_ROOT_DIRTY
, &root
->state
);
1113 if (root
!= fs_info
->extent_root
)
1114 list_add_tail(&root
->dirty_list
,
1115 &trans
->transaction
->switch_commits
);
1116 ret
= update_cowonly_root(trans
, root
);
1119 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1124 while (!list_empty(dirty_bgs
) || !list_empty(io_bgs
)) {
1125 ret
= btrfs_write_dirty_block_groups(trans
, root
);
1128 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1133 if (!list_empty(&fs_info
->dirty_cowonly_roots
))
1136 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1137 &trans
->transaction
->switch_commits
);
1138 btrfs_after_dev_replace_commit(fs_info
);
1144 * dead roots are old snapshots that need to be deleted. This allocates
1145 * a dirty root struct and adds it into the list of dead roots that need to
1148 void btrfs_add_dead_root(struct btrfs_root
*root
)
1150 spin_lock(&root
->fs_info
->trans_lock
);
1151 if (list_empty(&root
->root_list
))
1152 list_add_tail(&root
->root_list
, &root
->fs_info
->dead_roots
);
1153 spin_unlock(&root
->fs_info
->trans_lock
);
1157 * update all the cowonly tree roots on disk
1159 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
1160 struct btrfs_root
*root
)
1162 struct btrfs_root
*gang
[8];
1163 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1168 spin_lock(&fs_info
->fs_roots_radix_lock
);
1170 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1173 BTRFS_ROOT_TRANS_TAG
);
1176 for (i
= 0; i
< ret
; i
++) {
1178 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1179 (unsigned long)root
->root_key
.objectid
,
1180 BTRFS_ROOT_TRANS_TAG
);
1181 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1183 btrfs_free_log(trans
, root
);
1184 btrfs_update_reloc_root(trans
, root
);
1185 btrfs_orphan_commit_root(trans
, root
);
1187 btrfs_save_ino_cache(root
, trans
);
1189 /* see comments in should_cow_block() */
1190 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1191 smp_mb__after_atomic();
1193 if (root
->commit_root
!= root
->node
) {
1194 list_add_tail(&root
->dirty_list
,
1195 &trans
->transaction
->switch_commits
);
1196 btrfs_set_root_node(&root
->root_item
,
1200 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1203 spin_lock(&fs_info
->fs_roots_radix_lock
);
1208 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1213 * defrag a given btree.
1214 * Every leaf in the btree is read and defragged.
1216 int btrfs_defrag_root(struct btrfs_root
*root
)
1218 struct btrfs_fs_info
*info
= root
->fs_info
;
1219 struct btrfs_trans_handle
*trans
;
1222 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1226 trans
= btrfs_start_transaction(root
, 0);
1228 return PTR_ERR(trans
);
1230 ret
= btrfs_defrag_leaves(trans
, root
);
1232 btrfs_end_transaction(trans
, root
);
1233 btrfs_btree_balance_dirty(info
->tree_root
);
1236 if (btrfs_fs_closing(root
->fs_info
) || ret
!= -EAGAIN
)
1239 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1240 pr_debug("BTRFS: defrag_root cancelled\n");
1245 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1250 * new snapshots need to be created at a very specific time in the
1251 * transaction commit. This does the actual creation.
1254 * If the error which may affect the commitment of the current transaction
1255 * happens, we should return the error number. If the error which just affect
1256 * the creation of the pending snapshots, just return 0.
1258 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1259 struct btrfs_fs_info
*fs_info
,
1260 struct btrfs_pending_snapshot
*pending
)
1262 struct btrfs_key key
;
1263 struct btrfs_root_item
*new_root_item
;
1264 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1265 struct btrfs_root
*root
= pending
->root
;
1266 struct btrfs_root
*parent_root
;
1267 struct btrfs_block_rsv
*rsv
;
1268 struct inode
*parent_inode
;
1269 struct btrfs_path
*path
;
1270 struct btrfs_dir_item
*dir_item
;
1271 struct dentry
*dentry
;
1272 struct extent_buffer
*tmp
;
1273 struct extent_buffer
*old
;
1274 struct timespec cur_time
= CURRENT_TIME
;
1282 path
= btrfs_alloc_path();
1284 pending
->error
= -ENOMEM
;
1288 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
1289 if (!new_root_item
) {
1290 pending
->error
= -ENOMEM
;
1291 goto root_item_alloc_fail
;
1294 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1296 goto no_free_objectid
;
1299 * Make qgroup to skip current new snapshot's qgroupid, as it is
1300 * accounted by later btrfs_qgroup_inherit().
1302 btrfs_set_skip_qgroup(trans
, objectid
);
1304 btrfs_reloc_pre_snapshot(trans
, pending
, &to_reserve
);
1306 if (to_reserve
> 0) {
1307 pending
->error
= btrfs_block_rsv_add(root
,
1308 &pending
->block_rsv
,
1310 BTRFS_RESERVE_NO_FLUSH
);
1312 goto clear_skip_qgroup
;
1315 key
.objectid
= objectid
;
1316 key
.offset
= (u64
)-1;
1317 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1319 rsv
= trans
->block_rsv
;
1320 trans
->block_rsv
= &pending
->block_rsv
;
1321 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1323 dentry
= pending
->dentry
;
1324 parent_inode
= pending
->dir
;
1325 parent_root
= BTRFS_I(parent_inode
)->root
;
1326 record_root_in_trans(trans
, parent_root
);
1329 * insert the directory item
1331 ret
= btrfs_set_inode_index(parent_inode
, &index
);
1332 BUG_ON(ret
); /* -ENOMEM */
1334 /* check if there is a file/dir which has the same name. */
1335 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1336 btrfs_ino(parent_inode
),
1337 dentry
->d_name
.name
,
1338 dentry
->d_name
.len
, 0);
1339 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1340 pending
->error
= -EEXIST
;
1341 goto dir_item_existed
;
1342 } else if (IS_ERR(dir_item
)) {
1343 ret
= PTR_ERR(dir_item
);
1344 btrfs_abort_transaction(trans
, root
, ret
);
1347 btrfs_release_path(path
);
1350 * pull in the delayed directory update
1351 * and the delayed inode item
1352 * otherwise we corrupt the FS during
1355 ret
= btrfs_run_delayed_items(trans
, root
);
1356 if (ret
) { /* Transaction aborted */
1357 btrfs_abort_transaction(trans
, root
, ret
);
1361 record_root_in_trans(trans
, root
);
1362 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1363 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1364 btrfs_check_and_init_root_item(new_root_item
);
1366 root_flags
= btrfs_root_flags(new_root_item
);
1367 if (pending
->readonly
)
1368 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1370 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1371 btrfs_set_root_flags(new_root_item
, root_flags
);
1373 btrfs_set_root_generation_v2(new_root_item
,
1375 uuid_le_gen(&new_uuid
);
1376 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1377 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1379 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1380 memset(new_root_item
->received_uuid
, 0,
1381 sizeof(new_root_item
->received_uuid
));
1382 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1383 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1384 btrfs_set_root_stransid(new_root_item
, 0);
1385 btrfs_set_root_rtransid(new_root_item
, 0);
1387 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1388 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1389 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1391 old
= btrfs_lock_root_node(root
);
1392 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1394 btrfs_tree_unlock(old
);
1395 free_extent_buffer(old
);
1396 btrfs_abort_transaction(trans
, root
, ret
);
1400 btrfs_set_lock_blocking(old
);
1402 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1403 /* clean up in any case */
1404 btrfs_tree_unlock(old
);
1405 free_extent_buffer(old
);
1407 btrfs_abort_transaction(trans
, root
, ret
);
1410 /* see comments in should_cow_block() */
1411 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1414 btrfs_set_root_node(new_root_item
, tmp
);
1415 /* record when the snapshot was created in key.offset */
1416 key
.offset
= trans
->transid
;
1417 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1418 btrfs_tree_unlock(tmp
);
1419 free_extent_buffer(tmp
);
1421 btrfs_abort_transaction(trans
, root
, ret
);
1426 * insert root back/forward references
1428 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
1429 parent_root
->root_key
.objectid
,
1430 btrfs_ino(parent_inode
), index
,
1431 dentry
->d_name
.name
, dentry
->d_name
.len
);
1433 btrfs_abort_transaction(trans
, root
, ret
);
1437 key
.offset
= (u64
)-1;
1438 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
1439 if (IS_ERR(pending
->snap
)) {
1440 ret
= PTR_ERR(pending
->snap
);
1441 btrfs_abort_transaction(trans
, root
, ret
);
1445 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1447 btrfs_abort_transaction(trans
, root
, ret
);
1451 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1453 btrfs_abort_transaction(trans
, root
, ret
);
1457 ret
= btrfs_insert_dir_item(trans
, parent_root
,
1458 dentry
->d_name
.name
, dentry
->d_name
.len
,
1460 BTRFS_FT_DIR
, index
);
1461 /* We have check then name at the beginning, so it is impossible. */
1462 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1464 btrfs_abort_transaction(trans
, root
, ret
);
1468 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
1469 dentry
->d_name
.len
* 2);
1470 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
1471 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1473 btrfs_abort_transaction(trans
, root
, ret
);
1476 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
, new_uuid
.b
,
1477 BTRFS_UUID_KEY_SUBVOL
, objectid
);
1479 btrfs_abort_transaction(trans
, root
, ret
);
1482 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1483 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
1484 new_root_item
->received_uuid
,
1485 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1487 if (ret
&& ret
!= -EEXIST
) {
1488 btrfs_abort_transaction(trans
, root
, ret
);
1493 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1495 btrfs_abort_transaction(trans
, root
, ret
);
1500 * account qgroup counters before qgroup_inherit()
1502 ret
= btrfs_qgroup_prepare_account_extents(trans
, fs_info
);
1505 ret
= btrfs_qgroup_account_extents(trans
, fs_info
);
1508 ret
= btrfs_qgroup_inherit(trans
, fs_info
,
1509 root
->root_key
.objectid
,
1510 objectid
, pending
->inherit
);
1512 btrfs_abort_transaction(trans
, root
, ret
);
1517 pending
->error
= ret
;
1519 trans
->block_rsv
= rsv
;
1520 trans
->bytes_reserved
= 0;
1522 btrfs_clear_skip_qgroup(trans
);
1524 kfree(new_root_item
);
1525 root_item_alloc_fail
:
1526 btrfs_free_path(path
);
1531 * create all the snapshots we've scheduled for creation
1533 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1534 struct btrfs_fs_info
*fs_info
)
1536 struct btrfs_pending_snapshot
*pending
, *next
;
1537 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1540 list_for_each_entry_safe(pending
, next
, head
, list
) {
1541 list_del(&pending
->list
);
1542 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
1549 static void update_super_roots(struct btrfs_root
*root
)
1551 struct btrfs_root_item
*root_item
;
1552 struct btrfs_super_block
*super
;
1554 super
= root
->fs_info
->super_copy
;
1556 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1557 super
->chunk_root
= root_item
->bytenr
;
1558 super
->chunk_root_generation
= root_item
->generation
;
1559 super
->chunk_root_level
= root_item
->level
;
1561 root_item
= &root
->fs_info
->tree_root
->root_item
;
1562 super
->root
= root_item
->bytenr
;
1563 super
->generation
= root_item
->generation
;
1564 super
->root_level
= root_item
->level
;
1565 if (btrfs_test_opt(root
, SPACE_CACHE
))
1566 super
->cache_generation
= root_item
->generation
;
1567 if (root
->fs_info
->update_uuid_tree_gen
)
1568 super
->uuid_tree_generation
= root_item
->generation
;
1571 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1573 struct btrfs_transaction
*trans
;
1576 spin_lock(&info
->trans_lock
);
1577 trans
= info
->running_transaction
;
1579 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1580 spin_unlock(&info
->trans_lock
);
1584 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1586 struct btrfs_transaction
*trans
;
1589 spin_lock(&info
->trans_lock
);
1590 trans
= info
->running_transaction
;
1592 ret
= is_transaction_blocked(trans
);
1593 spin_unlock(&info
->trans_lock
);
1598 * wait for the current transaction commit to start and block subsequent
1601 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1602 struct btrfs_transaction
*trans
)
1604 wait_event(root
->fs_info
->transaction_blocked_wait
,
1605 trans
->state
>= TRANS_STATE_COMMIT_START
||
1610 * wait for the current transaction to start and then become unblocked.
1613 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1614 struct btrfs_transaction
*trans
)
1616 wait_event(root
->fs_info
->transaction_wait
,
1617 trans
->state
>= TRANS_STATE_UNBLOCKED
||
1622 * commit transactions asynchronously. once btrfs_commit_transaction_async
1623 * returns, any subsequent transaction will not be allowed to join.
1625 struct btrfs_async_commit
{
1626 struct btrfs_trans_handle
*newtrans
;
1627 struct btrfs_root
*root
;
1628 struct work_struct work
;
1631 static void do_async_commit(struct work_struct
*work
)
1633 struct btrfs_async_commit
*ac
=
1634 container_of(work
, struct btrfs_async_commit
, work
);
1637 * We've got freeze protection passed with the transaction.
1638 * Tell lockdep about it.
1640 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1642 &ac
->root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1645 current
->journal_info
= ac
->newtrans
;
1647 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1651 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1652 struct btrfs_root
*root
,
1653 int wait_for_unblock
)
1655 struct btrfs_async_commit
*ac
;
1656 struct btrfs_transaction
*cur_trans
;
1658 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1662 INIT_WORK(&ac
->work
, do_async_commit
);
1664 ac
->newtrans
= btrfs_join_transaction(root
);
1665 if (IS_ERR(ac
->newtrans
)) {
1666 int err
= PTR_ERR(ac
->newtrans
);
1671 /* take transaction reference */
1672 cur_trans
= trans
->transaction
;
1673 atomic_inc(&cur_trans
->use_count
);
1675 btrfs_end_transaction(trans
, root
);
1678 * Tell lockdep we've released the freeze rwsem, since the
1679 * async commit thread will be the one to unlock it.
1681 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1683 &root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1686 schedule_work(&ac
->work
);
1688 /* wait for transaction to start and unblock */
1689 if (wait_for_unblock
)
1690 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1692 wait_current_trans_commit_start(root
, cur_trans
);
1694 if (current
->journal_info
== trans
)
1695 current
->journal_info
= NULL
;
1697 btrfs_put_transaction(cur_trans
);
1702 static void cleanup_transaction(struct btrfs_trans_handle
*trans
,
1703 struct btrfs_root
*root
, int err
)
1705 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1708 WARN_ON(trans
->use_count
> 1);
1710 btrfs_abort_transaction(trans
, root
, err
);
1712 spin_lock(&root
->fs_info
->trans_lock
);
1715 * If the transaction is removed from the list, it means this
1716 * transaction has been committed successfully, so it is impossible
1717 * to call the cleanup function.
1719 BUG_ON(list_empty(&cur_trans
->list
));
1721 list_del_init(&cur_trans
->list
);
1722 if (cur_trans
== root
->fs_info
->running_transaction
) {
1723 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1724 spin_unlock(&root
->fs_info
->trans_lock
);
1725 wait_event(cur_trans
->writer_wait
,
1726 atomic_read(&cur_trans
->num_writers
) == 1);
1728 spin_lock(&root
->fs_info
->trans_lock
);
1730 spin_unlock(&root
->fs_info
->trans_lock
);
1732 btrfs_cleanup_one_transaction(trans
->transaction
, root
);
1734 spin_lock(&root
->fs_info
->trans_lock
);
1735 if (cur_trans
== root
->fs_info
->running_transaction
)
1736 root
->fs_info
->running_transaction
= NULL
;
1737 spin_unlock(&root
->fs_info
->trans_lock
);
1739 if (trans
->type
& __TRANS_FREEZABLE
)
1740 sb_end_intwrite(root
->fs_info
->sb
);
1741 btrfs_put_transaction(cur_trans
);
1742 btrfs_put_transaction(cur_trans
);
1744 trace_btrfs_transaction_commit(root
);
1746 if (current
->journal_info
== trans
)
1747 current
->journal_info
= NULL
;
1748 btrfs_scrub_cancel(root
->fs_info
);
1750 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1753 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1755 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1756 return btrfs_start_delalloc_roots(fs_info
, 1, -1);
1760 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1762 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1763 btrfs_wait_ordered_roots(fs_info
, -1);
1767 btrfs_wait_pending_ordered(struct btrfs_transaction
*cur_trans
,
1768 struct btrfs_fs_info
*fs_info
)
1770 struct btrfs_ordered_extent
*ordered
;
1772 spin_lock(&fs_info
->trans_lock
);
1773 while (!list_empty(&cur_trans
->pending_ordered
)) {
1774 ordered
= list_first_entry(&cur_trans
->pending_ordered
,
1775 struct btrfs_ordered_extent
,
1777 list_del_init(&ordered
->trans_list
);
1778 spin_unlock(&fs_info
->trans_lock
);
1780 wait_event(ordered
->wait
, test_bit(BTRFS_ORDERED_COMPLETE
,
1782 btrfs_put_ordered_extent(ordered
);
1783 spin_lock(&fs_info
->trans_lock
);
1785 spin_unlock(&fs_info
->trans_lock
);
1788 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1789 struct btrfs_root
*root
)
1791 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1792 struct btrfs_transaction
*prev_trans
= NULL
;
1793 struct btrfs_inode
*btree_ino
= BTRFS_I(root
->fs_info
->btree_inode
);
1796 /* Stop the commit early if ->aborted is set */
1797 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1798 ret
= cur_trans
->aborted
;
1799 btrfs_end_transaction(trans
, root
);
1803 /* make a pass through all the delayed refs we have so far
1804 * any runnings procs may add more while we are here
1806 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1808 btrfs_end_transaction(trans
, root
);
1812 btrfs_trans_release_metadata(trans
, root
);
1813 trans
->block_rsv
= NULL
;
1814 if (trans
->qgroup_reserved
) {
1815 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
1816 trans
->qgroup_reserved
= 0;
1819 cur_trans
= trans
->transaction
;
1822 * set the flushing flag so procs in this transaction have to
1823 * start sending their work down.
1825 cur_trans
->delayed_refs
.flushing
= 1;
1828 if (!list_empty(&trans
->new_bgs
))
1829 btrfs_create_pending_block_groups(trans
, root
);
1831 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1833 btrfs_end_transaction(trans
, root
);
1837 if (!cur_trans
->dirty_bg_run
) {
1840 /* this mutex is also taken before trying to set
1841 * block groups readonly. We need to make sure
1842 * that nobody has set a block group readonly
1843 * after a extents from that block group have been
1844 * allocated for cache files. btrfs_set_block_group_ro
1845 * will wait for the transaction to commit if it
1846 * finds dirty_bg_run = 1
1848 * The dirty_bg_run flag is also used to make sure only
1849 * one process starts all the block group IO. It wouldn't
1850 * hurt to have more than one go through, but there's no
1851 * real advantage to it either.
1853 mutex_lock(&root
->fs_info
->ro_block_group_mutex
);
1854 if (!cur_trans
->dirty_bg_run
) {
1856 cur_trans
->dirty_bg_run
= 1;
1858 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
1861 ret
= btrfs_start_dirty_block_groups(trans
, root
);
1864 btrfs_end_transaction(trans
, root
);
1868 spin_lock(&root
->fs_info
->trans_lock
);
1869 list_splice_init(&trans
->ordered
, &cur_trans
->pending_ordered
);
1870 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
1871 spin_unlock(&root
->fs_info
->trans_lock
);
1872 atomic_inc(&cur_trans
->use_count
);
1873 ret
= btrfs_end_transaction(trans
, root
);
1875 wait_for_commit(root
, cur_trans
);
1877 if (unlikely(cur_trans
->aborted
))
1878 ret
= cur_trans
->aborted
;
1880 btrfs_put_transaction(cur_trans
);
1885 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
1886 wake_up(&root
->fs_info
->transaction_blocked_wait
);
1888 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
1889 prev_trans
= list_entry(cur_trans
->list
.prev
,
1890 struct btrfs_transaction
, list
);
1891 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
1892 atomic_inc(&prev_trans
->use_count
);
1893 spin_unlock(&root
->fs_info
->trans_lock
);
1895 wait_for_commit(root
, prev_trans
);
1897 btrfs_put_transaction(prev_trans
);
1899 spin_unlock(&root
->fs_info
->trans_lock
);
1902 spin_unlock(&root
->fs_info
->trans_lock
);
1905 extwriter_counter_dec(cur_trans
, trans
->type
);
1907 ret
= btrfs_start_delalloc_flush(root
->fs_info
);
1909 goto cleanup_transaction
;
1911 ret
= btrfs_run_delayed_items(trans
, root
);
1913 goto cleanup_transaction
;
1915 wait_event(cur_trans
->writer_wait
,
1916 extwriter_counter_read(cur_trans
) == 0);
1918 /* some pending stuffs might be added after the previous flush. */
1919 ret
= btrfs_run_delayed_items(trans
, root
);
1921 goto cleanup_transaction
;
1923 btrfs_wait_delalloc_flush(root
->fs_info
);
1925 btrfs_wait_pending_ordered(cur_trans
, root
->fs_info
);
1927 btrfs_scrub_pause(root
);
1929 * Ok now we need to make sure to block out any other joins while we
1930 * commit the transaction. We could have started a join before setting
1931 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1933 spin_lock(&root
->fs_info
->trans_lock
);
1934 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1935 spin_unlock(&root
->fs_info
->trans_lock
);
1936 wait_event(cur_trans
->writer_wait
,
1937 atomic_read(&cur_trans
->num_writers
) == 1);
1939 /* ->aborted might be set after the previous check, so check it */
1940 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1941 ret
= cur_trans
->aborted
;
1942 goto scrub_continue
;
1945 * the reloc mutex makes sure that we stop
1946 * the balancing code from coming in and moving
1947 * extents around in the middle of the commit
1949 mutex_lock(&root
->fs_info
->reloc_mutex
);
1952 * We needn't worry about the delayed items because we will
1953 * deal with them in create_pending_snapshot(), which is the
1954 * core function of the snapshot creation.
1956 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1958 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1959 goto scrub_continue
;
1963 * We insert the dir indexes of the snapshots and update the inode
1964 * of the snapshots' parents after the snapshot creation, so there
1965 * are some delayed items which are not dealt with. Now deal with
1968 * We needn't worry that this operation will corrupt the snapshots,
1969 * because all the tree which are snapshoted will be forced to COW
1970 * the nodes and leaves.
1972 ret
= btrfs_run_delayed_items(trans
, root
);
1974 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1975 goto scrub_continue
;
1978 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1980 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1981 goto scrub_continue
;
1984 /* Reocrd old roots for later qgroup accounting */
1985 ret
= btrfs_qgroup_prepare_account_extents(trans
, root
->fs_info
);
1987 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1988 goto scrub_continue
;
1992 * make sure none of the code above managed to slip in a
1995 btrfs_assert_delayed_root_empty(root
);
1997 WARN_ON(cur_trans
!= trans
->transaction
);
1999 /* btrfs_commit_tree_roots is responsible for getting the
2000 * various roots consistent with each other. Every pointer
2001 * in the tree of tree roots has to point to the most up to date
2002 * root for every subvolume and other tree. So, we have to keep
2003 * the tree logging code from jumping in and changing any
2006 * At this point in the commit, there can't be any tree-log
2007 * writers, but a little lower down we drop the trans mutex
2008 * and let new people in. By holding the tree_log_mutex
2009 * from now until after the super is written, we avoid races
2010 * with the tree-log code.
2012 mutex_lock(&root
->fs_info
->tree_log_mutex
);
2014 ret
= commit_fs_roots(trans
, root
);
2016 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2017 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2018 goto scrub_continue
;
2022 * Since the transaction is done, we can apply the pending changes
2023 * before the next transaction.
2025 btrfs_apply_pending_changes(root
->fs_info
);
2027 /* commit_fs_roots gets rid of all the tree log roots, it is now
2028 * safe to free the root of tree log roots
2030 btrfs_free_log_root_tree(trans
, root
->fs_info
);
2033 * Since fs roots are all committed, we can get a quite accurate
2034 * new_roots. So let's do quota accounting.
2036 ret
= btrfs_qgroup_account_extents(trans
, root
->fs_info
);
2038 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2039 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2040 goto scrub_continue
;
2043 ret
= commit_cowonly_roots(trans
, root
);
2045 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2046 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2047 goto scrub_continue
;
2051 * The tasks which save the space cache and inode cache may also
2052 * update ->aborted, check it.
2054 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
2055 ret
= cur_trans
->aborted
;
2056 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2057 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2058 goto scrub_continue
;
2061 btrfs_prepare_extent_commit(trans
, root
);
2063 cur_trans
= root
->fs_info
->running_transaction
;
2065 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
2066 root
->fs_info
->tree_root
->node
);
2067 list_add_tail(&root
->fs_info
->tree_root
->dirty_list
,
2068 &cur_trans
->switch_commits
);
2070 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
2071 root
->fs_info
->chunk_root
->node
);
2072 list_add_tail(&root
->fs_info
->chunk_root
->dirty_list
,
2073 &cur_trans
->switch_commits
);
2075 switch_commit_roots(cur_trans
, root
->fs_info
);
2077 assert_qgroups_uptodate(trans
);
2078 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
2079 ASSERT(list_empty(&cur_trans
->io_bgs
));
2080 update_super_roots(root
);
2082 btrfs_set_super_log_root(root
->fs_info
->super_copy
, 0);
2083 btrfs_set_super_log_root_level(root
->fs_info
->super_copy
, 0);
2084 memcpy(root
->fs_info
->super_for_commit
, root
->fs_info
->super_copy
,
2085 sizeof(*root
->fs_info
->super_copy
));
2087 btrfs_update_commit_device_size(root
->fs_info
);
2088 btrfs_update_commit_device_bytes_used(root
, cur_trans
);
2090 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR
, &btree_ino
->runtime_flags
);
2091 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR
, &btree_ino
->runtime_flags
);
2093 btrfs_trans_release_chunk_metadata(trans
);
2095 spin_lock(&root
->fs_info
->trans_lock
);
2096 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
2097 root
->fs_info
->running_transaction
= NULL
;
2098 spin_unlock(&root
->fs_info
->trans_lock
);
2099 mutex_unlock(&root
->fs_info
->reloc_mutex
);
2101 wake_up(&root
->fs_info
->transaction_wait
);
2103 ret
= btrfs_write_and_wait_transaction(trans
, root
);
2105 btrfs_error(root
->fs_info
, ret
,
2106 "Error while writing out transaction");
2107 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2108 goto scrub_continue
;
2111 ret
= write_ctree_super(trans
, root
, 0);
2113 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2114 goto scrub_continue
;
2118 * the super is written, we can safely allow the tree-loggers
2119 * to go about their business
2121 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
2123 btrfs_finish_extent_commit(trans
, root
);
2125 if (cur_trans
->have_free_bgs
)
2126 btrfs_clear_space_info_full(root
->fs_info
);
2128 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
2130 * We needn't acquire the lock here because there is no other task
2131 * which can change it.
2133 cur_trans
->state
= TRANS_STATE_COMPLETED
;
2134 wake_up(&cur_trans
->commit_wait
);
2136 spin_lock(&root
->fs_info
->trans_lock
);
2137 list_del_init(&cur_trans
->list
);
2138 spin_unlock(&root
->fs_info
->trans_lock
);
2140 btrfs_put_transaction(cur_trans
);
2141 btrfs_put_transaction(cur_trans
);
2143 if (trans
->type
& __TRANS_FREEZABLE
)
2144 sb_end_intwrite(root
->fs_info
->sb
);
2146 trace_btrfs_transaction_commit(root
);
2148 btrfs_scrub_continue(root
);
2150 if (current
->journal_info
== trans
)
2151 current
->journal_info
= NULL
;
2153 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
2155 if (current
!= root
->fs_info
->transaction_kthread
&&
2156 current
!= root
->fs_info
->cleaner_kthread
)
2157 btrfs_run_delayed_iputs(root
);
2162 btrfs_scrub_continue(root
);
2163 cleanup_transaction
:
2164 btrfs_trans_release_metadata(trans
, root
);
2165 btrfs_trans_release_chunk_metadata(trans
);
2166 trans
->block_rsv
= NULL
;
2167 if (trans
->qgroup_reserved
) {
2168 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
2169 trans
->qgroup_reserved
= 0;
2171 btrfs_warn(root
->fs_info
, "Skipping commit of aborted transaction.");
2172 if (current
->journal_info
== trans
)
2173 current
->journal_info
= NULL
;
2174 cleanup_transaction(trans
, root
, ret
);
2180 * return < 0 if error
2181 * 0 if there are no more dead_roots at the time of call
2182 * 1 there are more to be processed, call me again
2184 * The return value indicates there are certainly more snapshots to delete, but
2185 * if there comes a new one during processing, it may return 0. We don't mind,
2186 * because btrfs_commit_super will poke cleaner thread and it will process it a
2187 * few seconds later.
2189 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
2192 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2194 spin_lock(&fs_info
->trans_lock
);
2195 if (list_empty(&fs_info
->dead_roots
)) {
2196 spin_unlock(&fs_info
->trans_lock
);
2199 root
= list_first_entry(&fs_info
->dead_roots
,
2200 struct btrfs_root
, root_list
);
2201 list_del_init(&root
->root_list
);
2202 spin_unlock(&fs_info
->trans_lock
);
2204 pr_debug("BTRFS: cleaner removing %llu\n", root
->objectid
);
2206 btrfs_kill_all_delayed_nodes(root
);
2208 if (btrfs_header_backref_rev(root
->node
) <
2209 BTRFS_MIXED_BACKREF_REV
)
2210 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
2212 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
2214 return (ret
< 0) ? 0 : 1;
2217 void btrfs_apply_pending_changes(struct btrfs_fs_info
*fs_info
)
2222 prev
= xchg(&fs_info
->pending_changes
, 0);
2226 bit
= 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE
;
2228 btrfs_set_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2231 bit
= 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE
;
2233 btrfs_clear_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2236 bit
= 1 << BTRFS_PENDING_COMMIT
;
2238 btrfs_debug(fs_info
, "pending commit done");
2243 "unknown pending changes left 0x%lx, ignoring", prev
);