ARM: rockchip: fix broken build
[linux/fpc-iii.git] / fs / kernfs / dir.c
blob2d48d28e164015668dcc8d04ff72148f07f28e38
1 /*
2 * fs/kernfs/dir.c - kernfs directory implementation
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 * This file is released under the GPLv2.
9 */
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
19 #include "kernfs-internal.h"
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27 static bool kernfs_active(struct kernfs_node *kn)
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
33 static bool kernfs_lockdep(struct kernfs_node *kn)
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37 #else
38 return false;
39 #endif
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 size_t buflen)
50 char *p = buf + buflen;
51 int len;
53 *--p = '\0';
55 do {
56 len = strlen(kn->name);
57 if (p - buf < len + 1) {
58 buf[0] = '\0';
59 p = NULL;
60 break;
62 p -= len;
63 memcpy(p, kn->name, len);
64 *--p = '/';
65 kn = kn->parent;
66 } while (kn && kn->parent);
68 return p;
71 /**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
78 * similar to strlcpy(). It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
81 * This function can be called from any context.
83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
85 unsigned long flags;
86 int ret;
88 spin_lock_irqsave(&kernfs_rename_lock, flags);
89 ret = kernfs_name_locked(kn, buf, buflen);
90 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 return ret;
94 /**
95 * kernfs_path - build full path of a given node
96 * @kn: kernfs_node of interest
97 * @buf: buffer to copy @kn's name into
98 * @buflen: size of @buf
100 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
101 * path is built from the end of @buf so the returned pointer usually
102 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
103 * and %NULL is returned.
105 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
107 unsigned long flags;
108 char *p;
110 spin_lock_irqsave(&kernfs_rename_lock, flags);
111 p = kernfs_path_locked(kn, buf, buflen);
112 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 return p;
115 EXPORT_SYMBOL_GPL(kernfs_path);
118 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
119 * @kn: kernfs_node of interest
121 * This function can be called from any context.
123 void pr_cont_kernfs_name(struct kernfs_node *kn)
125 unsigned long flags;
127 spin_lock_irqsave(&kernfs_rename_lock, flags);
129 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
130 pr_cont("%s", kernfs_pr_cont_buf);
132 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
136 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
137 * @kn: kernfs_node of interest
139 * This function can be called from any context.
141 void pr_cont_kernfs_path(struct kernfs_node *kn)
143 unsigned long flags;
144 char *p;
146 spin_lock_irqsave(&kernfs_rename_lock, flags);
148 p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
149 sizeof(kernfs_pr_cont_buf));
150 if (p)
151 pr_cont("%s", p);
152 else
153 pr_cont("<name too long>");
155 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
159 * kernfs_get_parent - determine the parent node and pin it
160 * @kn: kernfs_node of interest
162 * Determines @kn's parent, pins and returns it. This function can be
163 * called from any context.
165 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
167 struct kernfs_node *parent;
168 unsigned long flags;
170 spin_lock_irqsave(&kernfs_rename_lock, flags);
171 parent = kn->parent;
172 kernfs_get(parent);
173 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
175 return parent;
179 * kernfs_name_hash
180 * @name: Null terminated string to hash
181 * @ns: Namespace tag to hash
183 * Returns 31 bit hash of ns + name (so it fits in an off_t )
185 static unsigned int kernfs_name_hash(const char *name, const void *ns)
187 unsigned long hash = init_name_hash();
188 unsigned int len = strlen(name);
189 while (len--)
190 hash = partial_name_hash(*name++, hash);
191 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
192 hash &= 0x7fffffffU;
193 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
194 if (hash < 2)
195 hash += 2;
196 if (hash >= INT_MAX)
197 hash = INT_MAX - 1;
198 return hash;
201 static int kernfs_name_compare(unsigned int hash, const char *name,
202 const void *ns, const struct kernfs_node *kn)
204 if (hash < kn->hash)
205 return -1;
206 if (hash > kn->hash)
207 return 1;
208 if (ns < kn->ns)
209 return -1;
210 if (ns > kn->ns)
211 return 1;
212 return strcmp(name, kn->name);
215 static int kernfs_sd_compare(const struct kernfs_node *left,
216 const struct kernfs_node *right)
218 return kernfs_name_compare(left->hash, left->name, left->ns, right);
222 * kernfs_link_sibling - link kernfs_node into sibling rbtree
223 * @kn: kernfs_node of interest
225 * Link @kn into its sibling rbtree which starts from
226 * @kn->parent->dir.children.
228 * Locking:
229 * mutex_lock(kernfs_mutex)
231 * RETURNS:
232 * 0 on susccess -EEXIST on failure.
234 static int kernfs_link_sibling(struct kernfs_node *kn)
236 struct rb_node **node = &kn->parent->dir.children.rb_node;
237 struct rb_node *parent = NULL;
239 while (*node) {
240 struct kernfs_node *pos;
241 int result;
243 pos = rb_to_kn(*node);
244 parent = *node;
245 result = kernfs_sd_compare(kn, pos);
246 if (result < 0)
247 node = &pos->rb.rb_left;
248 else if (result > 0)
249 node = &pos->rb.rb_right;
250 else
251 return -EEXIST;
254 /* add new node and rebalance the tree */
255 rb_link_node(&kn->rb, parent, node);
256 rb_insert_color(&kn->rb, &kn->parent->dir.children);
258 /* successfully added, account subdir number */
259 if (kernfs_type(kn) == KERNFS_DIR)
260 kn->parent->dir.subdirs++;
262 return 0;
266 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
267 * @kn: kernfs_node of interest
269 * Try to unlink @kn from its sibling rbtree which starts from
270 * kn->parent->dir.children. Returns %true if @kn was actually
271 * removed, %false if @kn wasn't on the rbtree.
273 * Locking:
274 * mutex_lock(kernfs_mutex)
276 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
278 if (RB_EMPTY_NODE(&kn->rb))
279 return false;
281 if (kernfs_type(kn) == KERNFS_DIR)
282 kn->parent->dir.subdirs--;
284 rb_erase(&kn->rb, &kn->parent->dir.children);
285 RB_CLEAR_NODE(&kn->rb);
286 return true;
290 * kernfs_get_active - get an active reference to kernfs_node
291 * @kn: kernfs_node to get an active reference to
293 * Get an active reference of @kn. This function is noop if @kn
294 * is NULL.
296 * RETURNS:
297 * Pointer to @kn on success, NULL on failure.
299 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
301 if (unlikely(!kn))
302 return NULL;
304 if (!atomic_inc_unless_negative(&kn->active))
305 return NULL;
307 if (kernfs_lockdep(kn))
308 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
309 return kn;
313 * kernfs_put_active - put an active reference to kernfs_node
314 * @kn: kernfs_node to put an active reference to
316 * Put an active reference to @kn. This function is noop if @kn
317 * is NULL.
319 void kernfs_put_active(struct kernfs_node *kn)
321 struct kernfs_root *root = kernfs_root(kn);
322 int v;
324 if (unlikely(!kn))
325 return;
327 if (kernfs_lockdep(kn))
328 rwsem_release(&kn->dep_map, 1, _RET_IP_);
329 v = atomic_dec_return(&kn->active);
330 if (likely(v != KN_DEACTIVATED_BIAS))
331 return;
333 wake_up_all(&root->deactivate_waitq);
337 * kernfs_drain - drain kernfs_node
338 * @kn: kernfs_node to drain
340 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
341 * removers may invoke this function concurrently on @kn and all will
342 * return after draining is complete.
344 static void kernfs_drain(struct kernfs_node *kn)
345 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
347 struct kernfs_root *root = kernfs_root(kn);
349 lockdep_assert_held(&kernfs_mutex);
350 WARN_ON_ONCE(kernfs_active(kn));
352 mutex_unlock(&kernfs_mutex);
354 if (kernfs_lockdep(kn)) {
355 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
356 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
357 lock_contended(&kn->dep_map, _RET_IP_);
360 /* but everyone should wait for draining */
361 wait_event(root->deactivate_waitq,
362 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
364 if (kernfs_lockdep(kn)) {
365 lock_acquired(&kn->dep_map, _RET_IP_);
366 rwsem_release(&kn->dep_map, 1, _RET_IP_);
369 kernfs_unmap_bin_file(kn);
371 mutex_lock(&kernfs_mutex);
375 * kernfs_get - get a reference count on a kernfs_node
376 * @kn: the target kernfs_node
378 void kernfs_get(struct kernfs_node *kn)
380 if (kn) {
381 WARN_ON(!atomic_read(&kn->count));
382 atomic_inc(&kn->count);
385 EXPORT_SYMBOL_GPL(kernfs_get);
388 * kernfs_put - put a reference count on a kernfs_node
389 * @kn: the target kernfs_node
391 * Put a reference count of @kn and destroy it if it reached zero.
393 void kernfs_put(struct kernfs_node *kn)
395 struct kernfs_node *parent;
396 struct kernfs_root *root;
398 if (!kn || !atomic_dec_and_test(&kn->count))
399 return;
400 root = kernfs_root(kn);
401 repeat:
403 * Moving/renaming is always done while holding reference.
404 * kn->parent won't change beneath us.
406 parent = kn->parent;
408 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
409 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
410 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
412 if (kernfs_type(kn) == KERNFS_LINK)
413 kernfs_put(kn->symlink.target_kn);
415 kfree_const(kn->name);
417 if (kn->iattr) {
418 if (kn->iattr->ia_secdata)
419 security_release_secctx(kn->iattr->ia_secdata,
420 kn->iattr->ia_secdata_len);
421 simple_xattrs_free(&kn->iattr->xattrs);
423 kfree(kn->iattr);
424 ida_simple_remove(&root->ino_ida, kn->ino);
425 kmem_cache_free(kernfs_node_cache, kn);
427 kn = parent;
428 if (kn) {
429 if (atomic_dec_and_test(&kn->count))
430 goto repeat;
431 } else {
432 /* just released the root kn, free @root too */
433 ida_destroy(&root->ino_ida);
434 kfree(root);
437 EXPORT_SYMBOL_GPL(kernfs_put);
439 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
441 struct kernfs_node *kn;
443 if (flags & LOOKUP_RCU)
444 return -ECHILD;
446 /* Always perform fresh lookup for negatives */
447 if (d_really_is_negative(dentry))
448 goto out_bad_unlocked;
450 kn = dentry->d_fsdata;
451 mutex_lock(&kernfs_mutex);
453 /* The kernfs node has been deactivated */
454 if (!kernfs_active(kn))
455 goto out_bad;
457 /* The kernfs node has been moved? */
458 if (dentry->d_parent->d_fsdata != kn->parent)
459 goto out_bad;
461 /* The kernfs node has been renamed */
462 if (strcmp(dentry->d_name.name, kn->name) != 0)
463 goto out_bad;
465 /* The kernfs node has been moved to a different namespace */
466 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
467 kernfs_info(dentry->d_sb)->ns != kn->ns)
468 goto out_bad;
470 mutex_unlock(&kernfs_mutex);
471 return 1;
472 out_bad:
473 mutex_unlock(&kernfs_mutex);
474 out_bad_unlocked:
475 return 0;
478 static void kernfs_dop_release(struct dentry *dentry)
480 kernfs_put(dentry->d_fsdata);
483 const struct dentry_operations kernfs_dops = {
484 .d_revalidate = kernfs_dop_revalidate,
485 .d_release = kernfs_dop_release,
489 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
490 * @dentry: the dentry in question
492 * Return the kernfs_node associated with @dentry. If @dentry is not a
493 * kernfs one, %NULL is returned.
495 * While the returned kernfs_node will stay accessible as long as @dentry
496 * is accessible, the returned node can be in any state and the caller is
497 * fully responsible for determining what's accessible.
499 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
501 if (dentry->d_sb->s_op == &kernfs_sops)
502 return dentry->d_fsdata;
503 return NULL;
506 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
507 const char *name, umode_t mode,
508 unsigned flags)
510 struct kernfs_node *kn;
511 int ret;
513 name = kstrdup_const(name, GFP_KERNEL);
514 if (!name)
515 return NULL;
517 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
518 if (!kn)
519 goto err_out1;
522 * If the ino of the sysfs entry created for a kmem cache gets
523 * allocated from an ida layer, which is accounted to the memcg that
524 * owns the cache, the memcg will get pinned forever. So do not account
525 * ino ida allocations.
527 ret = ida_simple_get(&root->ino_ida, 1, 0,
528 GFP_KERNEL | __GFP_NOACCOUNT);
529 if (ret < 0)
530 goto err_out2;
531 kn->ino = ret;
533 atomic_set(&kn->count, 1);
534 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
535 RB_CLEAR_NODE(&kn->rb);
537 kn->name = name;
538 kn->mode = mode;
539 kn->flags = flags;
541 return kn;
543 err_out2:
544 kmem_cache_free(kernfs_node_cache, kn);
545 err_out1:
546 kfree_const(name);
547 return NULL;
550 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
551 const char *name, umode_t mode,
552 unsigned flags)
554 struct kernfs_node *kn;
556 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
557 if (kn) {
558 kernfs_get(parent);
559 kn->parent = parent;
561 return kn;
565 * kernfs_add_one - add kernfs_node to parent without warning
566 * @kn: kernfs_node to be added
568 * The caller must already have initialized @kn->parent. This
569 * function increments nlink of the parent's inode if @kn is a
570 * directory and link into the children list of the parent.
572 * RETURNS:
573 * 0 on success, -EEXIST if entry with the given name already
574 * exists.
576 int kernfs_add_one(struct kernfs_node *kn)
578 struct kernfs_node *parent = kn->parent;
579 struct kernfs_iattrs *ps_iattr;
580 bool has_ns;
581 int ret;
583 mutex_lock(&kernfs_mutex);
585 ret = -EINVAL;
586 has_ns = kernfs_ns_enabled(parent);
587 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
588 has_ns ? "required" : "invalid", parent->name, kn->name))
589 goto out_unlock;
591 if (kernfs_type(parent) != KERNFS_DIR)
592 goto out_unlock;
594 ret = -ENOENT;
595 if (parent->flags & KERNFS_EMPTY_DIR)
596 goto out_unlock;
598 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
599 goto out_unlock;
601 kn->hash = kernfs_name_hash(kn->name, kn->ns);
603 ret = kernfs_link_sibling(kn);
604 if (ret)
605 goto out_unlock;
607 /* Update timestamps on the parent */
608 ps_iattr = parent->iattr;
609 if (ps_iattr) {
610 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
611 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
614 mutex_unlock(&kernfs_mutex);
617 * Activate the new node unless CREATE_DEACTIVATED is requested.
618 * If not activated here, the kernfs user is responsible for
619 * activating the node with kernfs_activate(). A node which hasn't
620 * been activated is not visible to userland and its removal won't
621 * trigger deactivation.
623 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
624 kernfs_activate(kn);
625 return 0;
627 out_unlock:
628 mutex_unlock(&kernfs_mutex);
629 return ret;
633 * kernfs_find_ns - find kernfs_node with the given name
634 * @parent: kernfs_node to search under
635 * @name: name to look for
636 * @ns: the namespace tag to use
638 * Look for kernfs_node with name @name under @parent. Returns pointer to
639 * the found kernfs_node on success, %NULL on failure.
641 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
642 const unsigned char *name,
643 const void *ns)
645 struct rb_node *node = parent->dir.children.rb_node;
646 bool has_ns = kernfs_ns_enabled(parent);
647 unsigned int hash;
649 lockdep_assert_held(&kernfs_mutex);
651 if (has_ns != (bool)ns) {
652 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
653 has_ns ? "required" : "invalid", parent->name, name);
654 return NULL;
657 hash = kernfs_name_hash(name, ns);
658 while (node) {
659 struct kernfs_node *kn;
660 int result;
662 kn = rb_to_kn(node);
663 result = kernfs_name_compare(hash, name, ns, kn);
664 if (result < 0)
665 node = node->rb_left;
666 else if (result > 0)
667 node = node->rb_right;
668 else
669 return kn;
671 return NULL;
675 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
676 * @parent: kernfs_node to search under
677 * @name: name to look for
678 * @ns: the namespace tag to use
680 * Look for kernfs_node with name @name under @parent and get a reference
681 * if found. This function may sleep and returns pointer to the found
682 * kernfs_node on success, %NULL on failure.
684 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
685 const char *name, const void *ns)
687 struct kernfs_node *kn;
689 mutex_lock(&kernfs_mutex);
690 kn = kernfs_find_ns(parent, name, ns);
691 kernfs_get(kn);
692 mutex_unlock(&kernfs_mutex);
694 return kn;
696 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
699 * kernfs_create_root - create a new kernfs hierarchy
700 * @scops: optional syscall operations for the hierarchy
701 * @flags: KERNFS_ROOT_* flags
702 * @priv: opaque data associated with the new directory
704 * Returns the root of the new hierarchy on success, ERR_PTR() value on
705 * failure.
707 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
708 unsigned int flags, void *priv)
710 struct kernfs_root *root;
711 struct kernfs_node *kn;
713 root = kzalloc(sizeof(*root), GFP_KERNEL);
714 if (!root)
715 return ERR_PTR(-ENOMEM);
717 ida_init(&root->ino_ida);
718 INIT_LIST_HEAD(&root->supers);
720 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
721 KERNFS_DIR);
722 if (!kn) {
723 ida_destroy(&root->ino_ida);
724 kfree(root);
725 return ERR_PTR(-ENOMEM);
728 kn->priv = priv;
729 kn->dir.root = root;
731 root->syscall_ops = scops;
732 root->flags = flags;
733 root->kn = kn;
734 init_waitqueue_head(&root->deactivate_waitq);
736 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
737 kernfs_activate(kn);
739 return root;
743 * kernfs_destroy_root - destroy a kernfs hierarchy
744 * @root: root of the hierarchy to destroy
746 * Destroy the hierarchy anchored at @root by removing all existing
747 * directories and destroying @root.
749 void kernfs_destroy_root(struct kernfs_root *root)
751 kernfs_remove(root->kn); /* will also free @root */
755 * kernfs_create_dir_ns - create a directory
756 * @parent: parent in which to create a new directory
757 * @name: name of the new directory
758 * @mode: mode of the new directory
759 * @priv: opaque data associated with the new directory
760 * @ns: optional namespace tag of the directory
762 * Returns the created node on success, ERR_PTR() value on failure.
764 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
765 const char *name, umode_t mode,
766 void *priv, const void *ns)
768 struct kernfs_node *kn;
769 int rc;
771 /* allocate */
772 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
773 if (!kn)
774 return ERR_PTR(-ENOMEM);
776 kn->dir.root = parent->dir.root;
777 kn->ns = ns;
778 kn->priv = priv;
780 /* link in */
781 rc = kernfs_add_one(kn);
782 if (!rc)
783 return kn;
785 kernfs_put(kn);
786 return ERR_PTR(rc);
790 * kernfs_create_empty_dir - create an always empty directory
791 * @parent: parent in which to create a new directory
792 * @name: name of the new directory
794 * Returns the created node on success, ERR_PTR() value on failure.
796 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
797 const char *name)
799 struct kernfs_node *kn;
800 int rc;
802 /* allocate */
803 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
804 if (!kn)
805 return ERR_PTR(-ENOMEM);
807 kn->flags |= KERNFS_EMPTY_DIR;
808 kn->dir.root = parent->dir.root;
809 kn->ns = NULL;
810 kn->priv = NULL;
812 /* link in */
813 rc = kernfs_add_one(kn);
814 if (!rc)
815 return kn;
817 kernfs_put(kn);
818 return ERR_PTR(rc);
821 static struct dentry *kernfs_iop_lookup(struct inode *dir,
822 struct dentry *dentry,
823 unsigned int flags)
825 struct dentry *ret;
826 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
827 struct kernfs_node *kn;
828 struct inode *inode;
829 const void *ns = NULL;
831 mutex_lock(&kernfs_mutex);
833 if (kernfs_ns_enabled(parent))
834 ns = kernfs_info(dir->i_sb)->ns;
836 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
838 /* no such entry */
839 if (!kn || !kernfs_active(kn)) {
840 ret = NULL;
841 goto out_unlock;
843 kernfs_get(kn);
844 dentry->d_fsdata = kn;
846 /* attach dentry and inode */
847 inode = kernfs_get_inode(dir->i_sb, kn);
848 if (!inode) {
849 ret = ERR_PTR(-ENOMEM);
850 goto out_unlock;
853 /* instantiate and hash dentry */
854 ret = d_splice_alias(inode, dentry);
855 out_unlock:
856 mutex_unlock(&kernfs_mutex);
857 return ret;
860 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
861 umode_t mode)
863 struct kernfs_node *parent = dir->i_private;
864 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
865 int ret;
867 if (!scops || !scops->mkdir)
868 return -EPERM;
870 if (!kernfs_get_active(parent))
871 return -ENODEV;
873 ret = scops->mkdir(parent, dentry->d_name.name, mode);
875 kernfs_put_active(parent);
876 return ret;
879 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
881 struct kernfs_node *kn = dentry->d_fsdata;
882 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
883 int ret;
885 if (!scops || !scops->rmdir)
886 return -EPERM;
888 if (!kernfs_get_active(kn))
889 return -ENODEV;
891 ret = scops->rmdir(kn);
893 kernfs_put_active(kn);
894 return ret;
897 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
898 struct inode *new_dir, struct dentry *new_dentry)
900 struct kernfs_node *kn = old_dentry->d_fsdata;
901 struct kernfs_node *new_parent = new_dir->i_private;
902 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
903 int ret;
905 if (!scops || !scops->rename)
906 return -EPERM;
908 if (!kernfs_get_active(kn))
909 return -ENODEV;
911 if (!kernfs_get_active(new_parent)) {
912 kernfs_put_active(kn);
913 return -ENODEV;
916 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
918 kernfs_put_active(new_parent);
919 kernfs_put_active(kn);
920 return ret;
923 const struct inode_operations kernfs_dir_iops = {
924 .lookup = kernfs_iop_lookup,
925 .permission = kernfs_iop_permission,
926 .setattr = kernfs_iop_setattr,
927 .getattr = kernfs_iop_getattr,
928 .setxattr = kernfs_iop_setxattr,
929 .removexattr = kernfs_iop_removexattr,
930 .getxattr = kernfs_iop_getxattr,
931 .listxattr = kernfs_iop_listxattr,
933 .mkdir = kernfs_iop_mkdir,
934 .rmdir = kernfs_iop_rmdir,
935 .rename = kernfs_iop_rename,
938 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
940 struct kernfs_node *last;
942 while (true) {
943 struct rb_node *rbn;
945 last = pos;
947 if (kernfs_type(pos) != KERNFS_DIR)
948 break;
950 rbn = rb_first(&pos->dir.children);
951 if (!rbn)
952 break;
954 pos = rb_to_kn(rbn);
957 return last;
961 * kernfs_next_descendant_post - find the next descendant for post-order walk
962 * @pos: the current position (%NULL to initiate traversal)
963 * @root: kernfs_node whose descendants to walk
965 * Find the next descendant to visit for post-order traversal of @root's
966 * descendants. @root is included in the iteration and the last node to be
967 * visited.
969 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
970 struct kernfs_node *root)
972 struct rb_node *rbn;
974 lockdep_assert_held(&kernfs_mutex);
976 /* if first iteration, visit leftmost descendant which may be root */
977 if (!pos)
978 return kernfs_leftmost_descendant(root);
980 /* if we visited @root, we're done */
981 if (pos == root)
982 return NULL;
984 /* if there's an unvisited sibling, visit its leftmost descendant */
985 rbn = rb_next(&pos->rb);
986 if (rbn)
987 return kernfs_leftmost_descendant(rb_to_kn(rbn));
989 /* no sibling left, visit parent */
990 return pos->parent;
994 * kernfs_activate - activate a node which started deactivated
995 * @kn: kernfs_node whose subtree is to be activated
997 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
998 * needs to be explicitly activated. A node which hasn't been activated
999 * isn't visible to userland and deactivation is skipped during its
1000 * removal. This is useful to construct atomic init sequences where
1001 * creation of multiple nodes should either succeed or fail atomically.
1003 * The caller is responsible for ensuring that this function is not called
1004 * after kernfs_remove*() is invoked on @kn.
1006 void kernfs_activate(struct kernfs_node *kn)
1008 struct kernfs_node *pos;
1010 mutex_lock(&kernfs_mutex);
1012 pos = NULL;
1013 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1014 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1015 continue;
1017 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1018 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1020 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1021 pos->flags |= KERNFS_ACTIVATED;
1024 mutex_unlock(&kernfs_mutex);
1027 static void __kernfs_remove(struct kernfs_node *kn)
1029 struct kernfs_node *pos;
1031 lockdep_assert_held(&kernfs_mutex);
1034 * Short-circuit if non-root @kn has already finished removal.
1035 * This is for kernfs_remove_self() which plays with active ref
1036 * after removal.
1038 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1039 return;
1041 pr_debug("kernfs %s: removing\n", kn->name);
1043 /* prevent any new usage under @kn by deactivating all nodes */
1044 pos = NULL;
1045 while ((pos = kernfs_next_descendant_post(pos, kn)))
1046 if (kernfs_active(pos))
1047 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1049 /* deactivate and unlink the subtree node-by-node */
1050 do {
1051 pos = kernfs_leftmost_descendant(kn);
1054 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1055 * base ref could have been put by someone else by the time
1056 * the function returns. Make sure it doesn't go away
1057 * underneath us.
1059 kernfs_get(pos);
1062 * Drain iff @kn was activated. This avoids draining and
1063 * its lockdep annotations for nodes which have never been
1064 * activated and allows embedding kernfs_remove() in create
1065 * error paths without worrying about draining.
1067 if (kn->flags & KERNFS_ACTIVATED)
1068 kernfs_drain(pos);
1069 else
1070 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1073 * kernfs_unlink_sibling() succeeds once per node. Use it
1074 * to decide who's responsible for cleanups.
1076 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1077 struct kernfs_iattrs *ps_iattr =
1078 pos->parent ? pos->parent->iattr : NULL;
1080 /* update timestamps on the parent */
1081 if (ps_iattr) {
1082 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1083 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1086 kernfs_put(pos);
1089 kernfs_put(pos);
1090 } while (pos != kn);
1094 * kernfs_remove - remove a kernfs_node recursively
1095 * @kn: the kernfs_node to remove
1097 * Remove @kn along with all its subdirectories and files.
1099 void kernfs_remove(struct kernfs_node *kn)
1101 mutex_lock(&kernfs_mutex);
1102 __kernfs_remove(kn);
1103 mutex_unlock(&kernfs_mutex);
1107 * kernfs_break_active_protection - break out of active protection
1108 * @kn: the self kernfs_node
1110 * The caller must be running off of a kernfs operation which is invoked
1111 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1112 * this function must also be matched with an invocation of
1113 * kernfs_unbreak_active_protection().
1115 * This function releases the active reference of @kn the caller is
1116 * holding. Once this function is called, @kn may be removed at any point
1117 * and the caller is solely responsible for ensuring that the objects it
1118 * dereferences are accessible.
1120 void kernfs_break_active_protection(struct kernfs_node *kn)
1123 * Take out ourself out of the active ref dependency chain. If
1124 * we're called without an active ref, lockdep will complain.
1126 kernfs_put_active(kn);
1130 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1131 * @kn: the self kernfs_node
1133 * If kernfs_break_active_protection() was called, this function must be
1134 * invoked before finishing the kernfs operation. Note that while this
1135 * function restores the active reference, it doesn't and can't actually
1136 * restore the active protection - @kn may already or be in the process of
1137 * being removed. Once kernfs_break_active_protection() is invoked, that
1138 * protection is irreversibly gone for the kernfs operation instance.
1140 * While this function may be called at any point after
1141 * kernfs_break_active_protection() is invoked, its most useful location
1142 * would be right before the enclosing kernfs operation returns.
1144 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1147 * @kn->active could be in any state; however, the increment we do
1148 * here will be undone as soon as the enclosing kernfs operation
1149 * finishes and this temporary bump can't break anything. If @kn
1150 * is alive, nothing changes. If @kn is being deactivated, the
1151 * soon-to-follow put will either finish deactivation or restore
1152 * deactivated state. If @kn is already removed, the temporary
1153 * bump is guaranteed to be gone before @kn is released.
1155 atomic_inc(&kn->active);
1156 if (kernfs_lockdep(kn))
1157 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1161 * kernfs_remove_self - remove a kernfs_node from its own method
1162 * @kn: the self kernfs_node to remove
1164 * The caller must be running off of a kernfs operation which is invoked
1165 * with an active reference - e.g. one of kernfs_ops. This can be used to
1166 * implement a file operation which deletes itself.
1168 * For example, the "delete" file for a sysfs device directory can be
1169 * implemented by invoking kernfs_remove_self() on the "delete" file
1170 * itself. This function breaks the circular dependency of trying to
1171 * deactivate self while holding an active ref itself. It isn't necessary
1172 * to modify the usual removal path to use kernfs_remove_self(). The
1173 * "delete" implementation can simply invoke kernfs_remove_self() on self
1174 * before proceeding with the usual removal path. kernfs will ignore later
1175 * kernfs_remove() on self.
1177 * kernfs_remove_self() can be called multiple times concurrently on the
1178 * same kernfs_node. Only the first one actually performs removal and
1179 * returns %true. All others will wait until the kernfs operation which
1180 * won self-removal finishes and return %false. Note that the losers wait
1181 * for the completion of not only the winning kernfs_remove_self() but also
1182 * the whole kernfs_ops which won the arbitration. This can be used to
1183 * guarantee, for example, all concurrent writes to a "delete" file to
1184 * finish only after the whole operation is complete.
1186 bool kernfs_remove_self(struct kernfs_node *kn)
1188 bool ret;
1190 mutex_lock(&kernfs_mutex);
1191 kernfs_break_active_protection(kn);
1194 * SUICIDAL is used to arbitrate among competing invocations. Only
1195 * the first one will actually perform removal. When the removal
1196 * is complete, SUICIDED is set and the active ref is restored
1197 * while holding kernfs_mutex. The ones which lost arbitration
1198 * waits for SUICDED && drained which can happen only after the
1199 * enclosing kernfs operation which executed the winning instance
1200 * of kernfs_remove_self() finished.
1202 if (!(kn->flags & KERNFS_SUICIDAL)) {
1203 kn->flags |= KERNFS_SUICIDAL;
1204 __kernfs_remove(kn);
1205 kn->flags |= KERNFS_SUICIDED;
1206 ret = true;
1207 } else {
1208 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1209 DEFINE_WAIT(wait);
1211 while (true) {
1212 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1214 if ((kn->flags & KERNFS_SUICIDED) &&
1215 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1216 break;
1218 mutex_unlock(&kernfs_mutex);
1219 schedule();
1220 mutex_lock(&kernfs_mutex);
1222 finish_wait(waitq, &wait);
1223 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1224 ret = false;
1228 * This must be done while holding kernfs_mutex; otherwise, waiting
1229 * for SUICIDED && deactivated could finish prematurely.
1231 kernfs_unbreak_active_protection(kn);
1233 mutex_unlock(&kernfs_mutex);
1234 return ret;
1238 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1239 * @parent: parent of the target
1240 * @name: name of the kernfs_node to remove
1241 * @ns: namespace tag of the kernfs_node to remove
1243 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1244 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1246 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1247 const void *ns)
1249 struct kernfs_node *kn;
1251 if (!parent) {
1252 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1253 name);
1254 return -ENOENT;
1257 mutex_lock(&kernfs_mutex);
1259 kn = kernfs_find_ns(parent, name, ns);
1260 if (kn)
1261 __kernfs_remove(kn);
1263 mutex_unlock(&kernfs_mutex);
1265 if (kn)
1266 return 0;
1267 else
1268 return -ENOENT;
1272 * kernfs_rename_ns - move and rename a kernfs_node
1273 * @kn: target node
1274 * @new_parent: new parent to put @sd under
1275 * @new_name: new name
1276 * @new_ns: new namespace tag
1278 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1279 const char *new_name, const void *new_ns)
1281 struct kernfs_node *old_parent;
1282 const char *old_name = NULL;
1283 int error;
1285 /* can't move or rename root */
1286 if (!kn->parent)
1287 return -EINVAL;
1289 mutex_lock(&kernfs_mutex);
1291 error = -ENOENT;
1292 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1293 (new_parent->flags & KERNFS_EMPTY_DIR))
1294 goto out;
1296 error = 0;
1297 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1298 (strcmp(kn->name, new_name) == 0))
1299 goto out; /* nothing to rename */
1301 error = -EEXIST;
1302 if (kernfs_find_ns(new_parent, new_name, new_ns))
1303 goto out;
1305 /* rename kernfs_node */
1306 if (strcmp(kn->name, new_name) != 0) {
1307 error = -ENOMEM;
1308 new_name = kstrdup_const(new_name, GFP_KERNEL);
1309 if (!new_name)
1310 goto out;
1311 } else {
1312 new_name = NULL;
1316 * Move to the appropriate place in the appropriate directories rbtree.
1318 kernfs_unlink_sibling(kn);
1319 kernfs_get(new_parent);
1321 /* rename_lock protects ->parent and ->name accessors */
1322 spin_lock_irq(&kernfs_rename_lock);
1324 old_parent = kn->parent;
1325 kn->parent = new_parent;
1327 kn->ns = new_ns;
1328 if (new_name) {
1329 old_name = kn->name;
1330 kn->name = new_name;
1333 spin_unlock_irq(&kernfs_rename_lock);
1335 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1336 kernfs_link_sibling(kn);
1338 kernfs_put(old_parent);
1339 kfree_const(old_name);
1341 error = 0;
1342 out:
1343 mutex_unlock(&kernfs_mutex);
1344 return error;
1347 /* Relationship between s_mode and the DT_xxx types */
1348 static inline unsigned char dt_type(struct kernfs_node *kn)
1350 return (kn->mode >> 12) & 15;
1353 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1355 kernfs_put(filp->private_data);
1356 return 0;
1359 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1360 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1362 if (pos) {
1363 int valid = kernfs_active(pos) &&
1364 pos->parent == parent && hash == pos->hash;
1365 kernfs_put(pos);
1366 if (!valid)
1367 pos = NULL;
1369 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1370 struct rb_node *node = parent->dir.children.rb_node;
1371 while (node) {
1372 pos = rb_to_kn(node);
1374 if (hash < pos->hash)
1375 node = node->rb_left;
1376 else if (hash > pos->hash)
1377 node = node->rb_right;
1378 else
1379 break;
1382 /* Skip over entries which are dying/dead or in the wrong namespace */
1383 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1384 struct rb_node *node = rb_next(&pos->rb);
1385 if (!node)
1386 pos = NULL;
1387 else
1388 pos = rb_to_kn(node);
1390 return pos;
1393 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1394 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1396 pos = kernfs_dir_pos(ns, parent, ino, pos);
1397 if (pos) {
1398 do {
1399 struct rb_node *node = rb_next(&pos->rb);
1400 if (!node)
1401 pos = NULL;
1402 else
1403 pos = rb_to_kn(node);
1404 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1406 return pos;
1409 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1411 struct dentry *dentry = file->f_path.dentry;
1412 struct kernfs_node *parent = dentry->d_fsdata;
1413 struct kernfs_node *pos = file->private_data;
1414 const void *ns = NULL;
1416 if (!dir_emit_dots(file, ctx))
1417 return 0;
1418 mutex_lock(&kernfs_mutex);
1420 if (kernfs_ns_enabled(parent))
1421 ns = kernfs_info(dentry->d_sb)->ns;
1423 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1424 pos;
1425 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1426 const char *name = pos->name;
1427 unsigned int type = dt_type(pos);
1428 int len = strlen(name);
1429 ino_t ino = pos->ino;
1431 ctx->pos = pos->hash;
1432 file->private_data = pos;
1433 kernfs_get(pos);
1435 mutex_unlock(&kernfs_mutex);
1436 if (!dir_emit(ctx, name, len, ino, type))
1437 return 0;
1438 mutex_lock(&kernfs_mutex);
1440 mutex_unlock(&kernfs_mutex);
1441 file->private_data = NULL;
1442 ctx->pos = INT_MAX;
1443 return 0;
1446 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1447 int whence)
1449 struct inode *inode = file_inode(file);
1450 loff_t ret;
1452 mutex_lock(&inode->i_mutex);
1453 ret = generic_file_llseek(file, offset, whence);
1454 mutex_unlock(&inode->i_mutex);
1456 return ret;
1459 const struct file_operations kernfs_dir_fops = {
1460 .read = generic_read_dir,
1461 .iterate = kernfs_fop_readdir,
1462 .release = kernfs_dir_fop_release,
1463 .llseek = kernfs_dir_fop_llseek,