1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
35 #include <cluster/masklog.h>
40 #include "blockcheck.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
47 #include "localalloc.h"
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
59 DEFINE_SPINLOCK(trans_inc_lock
);
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
63 static int ocfs2_force_read_journal(struct inode
*inode
);
64 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
65 int node_num
, int slot_num
);
66 static int __ocfs2_recovery_thread(void *arg
);
67 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
70 int dirty
, int replayed
);
71 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
73 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
75 enum ocfs2_orphan_reco_type orphan_reco_type
);
76 static int ocfs2_commit_thread(void *arg
);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
79 struct ocfs2_dinode
*la_dinode
,
80 struct ocfs2_dinode
*tl_dinode
,
81 struct ocfs2_quota_recovery
*qrec
,
82 enum ocfs2_orphan_reco_type orphan_reco_type
);
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
86 return __ocfs2_wait_on_mount(osb
, 0);
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super
*osb
)
91 return __ocfs2_wait_on_mount(osb
, 1);
95 * This replay_map is to track online/offline slots, so we could recover
96 * offline slots during recovery and mount
99 enum ocfs2_replay_state
{
100 REPLAY_UNNEEDED
= 0, /* Replay is not needed, so ignore this map */
101 REPLAY_NEEDED
, /* Replay slots marked in rm_replay_slots */
102 REPLAY_DONE
/* Replay was already queued */
105 struct ocfs2_replay_map
{
106 unsigned int rm_slots
;
107 enum ocfs2_replay_state rm_state
;
108 unsigned char rm_replay_slots
[0];
111 static void ocfs2_replay_map_set_state(struct ocfs2_super
*osb
, int state
)
113 if (!osb
->replay_map
)
116 /* If we've already queued the replay, we don't have any more to do */
117 if (osb
->replay_map
->rm_state
== REPLAY_DONE
)
120 osb
->replay_map
->rm_state
= state
;
123 int ocfs2_compute_replay_slots(struct ocfs2_super
*osb
)
125 struct ocfs2_replay_map
*replay_map
;
128 /* If replay map is already set, we don't do it again */
132 replay_map
= kzalloc(sizeof(struct ocfs2_replay_map
) +
133 (osb
->max_slots
* sizeof(char)), GFP_KERNEL
);
140 spin_lock(&osb
->osb_lock
);
142 replay_map
->rm_slots
= osb
->max_slots
;
143 replay_map
->rm_state
= REPLAY_UNNEEDED
;
145 /* set rm_replay_slots for offline slot(s) */
146 for (i
= 0; i
< replay_map
->rm_slots
; i
++) {
147 if (ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
) == -ENOENT
)
148 replay_map
->rm_replay_slots
[i
] = 1;
151 osb
->replay_map
= replay_map
;
152 spin_unlock(&osb
->osb_lock
);
156 static void ocfs2_queue_replay_slots(struct ocfs2_super
*osb
,
157 enum ocfs2_orphan_reco_type orphan_reco_type
)
159 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
165 if (replay_map
->rm_state
!= REPLAY_NEEDED
)
168 for (i
= 0; i
< replay_map
->rm_slots
; i
++)
169 if (replay_map
->rm_replay_slots
[i
])
170 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
,
173 replay_map
->rm_state
= REPLAY_DONE
;
176 static void ocfs2_free_replay_slots(struct ocfs2_super
*osb
)
178 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
180 if (!osb
->replay_map
)
184 osb
->replay_map
= NULL
;
187 int ocfs2_recovery_init(struct ocfs2_super
*osb
)
189 struct ocfs2_recovery_map
*rm
;
191 mutex_init(&osb
->recovery_lock
);
192 osb
->disable_recovery
= 0;
193 osb
->recovery_thread_task
= NULL
;
194 init_waitqueue_head(&osb
->recovery_event
);
196 rm
= kzalloc(sizeof(struct ocfs2_recovery_map
) +
197 osb
->max_slots
* sizeof(unsigned int),
204 rm
->rm_entries
= (unsigned int *)((char *)rm
+
205 sizeof(struct ocfs2_recovery_map
));
206 osb
->recovery_map
= rm
;
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212 * memory barriers to make sure that we'll see the null task before
214 static int ocfs2_recovery_thread_running(struct ocfs2_super
*osb
)
217 return osb
->recovery_thread_task
!= NULL
;
220 void ocfs2_recovery_exit(struct ocfs2_super
*osb
)
222 struct ocfs2_recovery_map
*rm
;
224 /* disable any new recovery threads and wait for any currently
225 * running ones to exit. Do this before setting the vol_state. */
226 mutex_lock(&osb
->recovery_lock
);
227 osb
->disable_recovery
= 1;
228 mutex_unlock(&osb
->recovery_lock
);
229 wait_event(osb
->recovery_event
, !ocfs2_recovery_thread_running(osb
));
231 /* At this point, we know that no more recovery threads can be
232 * launched, so wait for any recovery completion work to
234 flush_workqueue(ocfs2_wq
);
237 * Now that recovery is shut down, and the osb is about to be
238 * freed, the osb_lock is not taken here.
240 rm
= osb
->recovery_map
;
241 /* XXX: Should we bug if there are dirty entries? */
246 static int __ocfs2_recovery_map_test(struct ocfs2_super
*osb
,
247 unsigned int node_num
)
250 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
252 assert_spin_locked(&osb
->osb_lock
);
254 for (i
= 0; i
< rm
->rm_used
; i
++) {
255 if (rm
->rm_entries
[i
] == node_num
)
262 /* Behaves like test-and-set. Returns the previous value */
263 static int ocfs2_recovery_map_set(struct ocfs2_super
*osb
,
264 unsigned int node_num
)
266 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
268 spin_lock(&osb
->osb_lock
);
269 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
270 spin_unlock(&osb
->osb_lock
);
274 /* XXX: Can this be exploited? Not from o2dlm... */
275 BUG_ON(rm
->rm_used
>= osb
->max_slots
);
277 rm
->rm_entries
[rm
->rm_used
] = node_num
;
279 spin_unlock(&osb
->osb_lock
);
284 static void ocfs2_recovery_map_clear(struct ocfs2_super
*osb
,
285 unsigned int node_num
)
288 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
290 spin_lock(&osb
->osb_lock
);
292 for (i
= 0; i
< rm
->rm_used
; i
++) {
293 if (rm
->rm_entries
[i
] == node_num
)
297 if (i
< rm
->rm_used
) {
298 /* XXX: be careful with the pointer math */
299 memmove(&(rm
->rm_entries
[i
]), &(rm
->rm_entries
[i
+ 1]),
300 (rm
->rm_used
- i
- 1) * sizeof(unsigned int));
304 spin_unlock(&osb
->osb_lock
);
307 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
310 unsigned int flushed
;
311 struct ocfs2_journal
*journal
= NULL
;
313 journal
= osb
->journal
;
315 /* Flush all pending commits and checkpoint the journal. */
316 down_write(&journal
->j_trans_barrier
);
318 flushed
= atomic_read(&journal
->j_num_trans
);
319 trace_ocfs2_commit_cache_begin(flushed
);
321 up_write(&journal
->j_trans_barrier
);
325 jbd2_journal_lock_updates(journal
->j_journal
);
326 status
= jbd2_journal_flush(journal
->j_journal
);
327 jbd2_journal_unlock_updates(journal
->j_journal
);
329 up_write(&journal
->j_trans_barrier
);
334 ocfs2_inc_trans_id(journal
);
336 flushed
= atomic_read(&journal
->j_num_trans
);
337 atomic_set(&journal
->j_num_trans
, 0);
338 up_write(&journal
->j_trans_barrier
);
340 trace_ocfs2_commit_cache_end(journal
->j_trans_id
, flushed
);
342 ocfs2_wake_downconvert_thread(osb
);
343 wake_up(&journal
->j_checkpointed
);
348 handle_t
*ocfs2_start_trans(struct ocfs2_super
*osb
, int max_buffs
)
350 journal_t
*journal
= osb
->journal
->j_journal
;
353 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
355 if (ocfs2_is_hard_readonly(osb
))
356 return ERR_PTR(-EROFS
);
358 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
359 BUG_ON(max_buffs
<= 0);
361 /* Nested transaction? Just return the handle... */
362 if (journal_current_handle())
363 return jbd2_journal_start(journal
, max_buffs
);
365 sb_start_intwrite(osb
->sb
);
367 down_read(&osb
->journal
->j_trans_barrier
);
369 handle
= jbd2_journal_start(journal
, max_buffs
);
370 if (IS_ERR(handle
)) {
371 up_read(&osb
->journal
->j_trans_barrier
);
372 sb_end_intwrite(osb
->sb
);
374 mlog_errno(PTR_ERR(handle
));
376 if (is_journal_aborted(journal
)) {
377 ocfs2_abort(osb
->sb
, "Detected aborted journal");
378 handle
= ERR_PTR(-EROFS
);
381 if (!ocfs2_mount_local(osb
))
382 atomic_inc(&(osb
->journal
->j_num_trans
));
388 int ocfs2_commit_trans(struct ocfs2_super
*osb
,
392 struct ocfs2_journal
*journal
= osb
->journal
;
396 nested
= handle
->h_ref
> 1;
397 ret
= jbd2_journal_stop(handle
);
402 up_read(&journal
->j_trans_barrier
);
403 sb_end_intwrite(osb
->sb
);
410 * 'nblocks' is what you want to add to the current transaction.
412 * This might call jbd2_journal_restart() which will commit dirty buffers
413 * and then restart the transaction. Before calling
414 * ocfs2_extend_trans(), any changed blocks should have been
415 * dirtied. After calling it, all blocks which need to be changed must
416 * go through another set of journal_access/journal_dirty calls.
418 * WARNING: This will not release any semaphores or disk locks taken
419 * during the transaction, so make sure they were taken *before*
420 * start_trans or we'll have ordering deadlocks.
422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423 * good because transaction ids haven't yet been recorded on the
424 * cluster locks associated with this handle.
426 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
428 int status
, old_nblocks
;
436 old_nblocks
= handle
->h_buffer_credits
;
438 trace_ocfs2_extend_trans(old_nblocks
, nblocks
);
440 #ifdef CONFIG_OCFS2_DEBUG_FS
443 status
= jbd2_journal_extend(handle
, nblocks
);
451 trace_ocfs2_extend_trans_restart(old_nblocks
+ nblocks
);
452 status
= jbd2_journal_restart(handle
,
453 old_nblocks
+ nblocks
);
466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467 * If that fails, restart the transaction & regain write access for the
468 * buffer head which is used for metadata modifications.
469 * Taken from Ext4: extend_or_restart_transaction()
471 int ocfs2_allocate_extend_trans(handle_t
*handle
, int thresh
)
473 int status
, old_nblks
;
477 old_nblks
= handle
->h_buffer_credits
;
478 trace_ocfs2_allocate_extend_trans(old_nblks
, thresh
);
480 if (old_nblks
< thresh
)
483 status
= jbd2_journal_extend(handle
, OCFS2_MAX_TRANS_DATA
);
490 status
= jbd2_journal_restart(handle
, OCFS2_MAX_TRANS_DATA
);
500 struct ocfs2_triggers
{
501 struct jbd2_buffer_trigger_type ot_triggers
;
505 static inline struct ocfs2_triggers
*to_ocfs2_trigger(struct jbd2_buffer_trigger_type
*triggers
)
507 return container_of(triggers
, struct ocfs2_triggers
, ot_triggers
);
510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
511 struct buffer_head
*bh
,
512 void *data
, size_t size
)
514 struct ocfs2_triggers
*ot
= to_ocfs2_trigger(triggers
);
517 * We aren't guaranteed to have the superblock here, so we
518 * must unconditionally compute the ecc data.
519 * __ocfs2_journal_access() will only set the triggers if
520 * metaecc is enabled.
522 ocfs2_block_check_compute(data
, size
, data
+ ot
->ot_offset
);
526 * Quota blocks have their own trigger because the struct ocfs2_block_check
527 * offset depends on the blocksize.
529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
530 struct buffer_head
*bh
,
531 void *data
, size_t size
)
533 struct ocfs2_disk_dqtrailer
*dqt
=
534 ocfs2_block_dqtrailer(size
, data
);
537 * We aren't guaranteed to have the superblock here, so we
538 * must unconditionally compute the ecc data.
539 * __ocfs2_journal_access() will only set the triggers if
540 * metaecc is enabled.
542 ocfs2_block_check_compute(data
, size
, &dqt
->dq_check
);
546 * Directory blocks also have their own trigger because the
547 * struct ocfs2_block_check offset depends on the blocksize.
549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
550 struct buffer_head
*bh
,
551 void *data
, size_t size
)
553 struct ocfs2_dir_block_trailer
*trailer
=
554 ocfs2_dir_trailer_from_size(size
, data
);
557 * We aren't guaranteed to have the superblock here, so we
558 * must unconditionally compute the ecc data.
559 * __ocfs2_journal_access() will only set the triggers if
560 * metaecc is enabled.
562 ocfs2_block_check_compute(data
, size
, &trailer
->db_check
);
565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type
*triggers
,
566 struct buffer_head
*bh
)
569 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
570 "bh->b_blocknr = %llu\n",
572 (unsigned long long)bh
->b_blocknr
);
574 ocfs2_error(bh
->b_bdev
->bd_super
,
575 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
578 static struct ocfs2_triggers di_triggers
= {
580 .t_frozen
= ocfs2_frozen_trigger
,
581 .t_abort
= ocfs2_abort_trigger
,
583 .ot_offset
= offsetof(struct ocfs2_dinode
, i_check
),
586 static struct ocfs2_triggers eb_triggers
= {
588 .t_frozen
= ocfs2_frozen_trigger
,
589 .t_abort
= ocfs2_abort_trigger
,
591 .ot_offset
= offsetof(struct ocfs2_extent_block
, h_check
),
594 static struct ocfs2_triggers rb_triggers
= {
596 .t_frozen
= ocfs2_frozen_trigger
,
597 .t_abort
= ocfs2_abort_trigger
,
599 .ot_offset
= offsetof(struct ocfs2_refcount_block
, rf_check
),
602 static struct ocfs2_triggers gd_triggers
= {
604 .t_frozen
= ocfs2_frozen_trigger
,
605 .t_abort
= ocfs2_abort_trigger
,
607 .ot_offset
= offsetof(struct ocfs2_group_desc
, bg_check
),
610 static struct ocfs2_triggers db_triggers
= {
612 .t_frozen
= ocfs2_db_frozen_trigger
,
613 .t_abort
= ocfs2_abort_trigger
,
617 static struct ocfs2_triggers xb_triggers
= {
619 .t_frozen
= ocfs2_frozen_trigger
,
620 .t_abort
= ocfs2_abort_trigger
,
622 .ot_offset
= offsetof(struct ocfs2_xattr_block
, xb_check
),
625 static struct ocfs2_triggers dq_triggers
= {
627 .t_frozen
= ocfs2_dq_frozen_trigger
,
628 .t_abort
= ocfs2_abort_trigger
,
632 static struct ocfs2_triggers dr_triggers
= {
634 .t_frozen
= ocfs2_frozen_trigger
,
635 .t_abort
= ocfs2_abort_trigger
,
637 .ot_offset
= offsetof(struct ocfs2_dx_root_block
, dr_check
),
640 static struct ocfs2_triggers dl_triggers
= {
642 .t_frozen
= ocfs2_frozen_trigger
,
643 .t_abort
= ocfs2_abort_trigger
,
645 .ot_offset
= offsetof(struct ocfs2_dx_leaf
, dl_check
),
648 static int __ocfs2_journal_access(handle_t
*handle
,
649 struct ocfs2_caching_info
*ci
,
650 struct buffer_head
*bh
,
651 struct ocfs2_triggers
*triggers
,
655 struct ocfs2_super
*osb
=
656 OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
658 BUG_ON(!ci
|| !ci
->ci_ops
);
662 trace_ocfs2_journal_access(
663 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
664 (unsigned long long)bh
->b_blocknr
, type
, bh
->b_size
);
666 /* we can safely remove this assertion after testing. */
667 if (!buffer_uptodate(bh
)) {
668 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
669 mlog(ML_ERROR
, "b_blocknr=%llu\n",
670 (unsigned long long)bh
->b_blocknr
);
674 /* Set the current transaction information on the ci so
675 * that the locking code knows whether it can drop it's locks
676 * on this ci or not. We're protected from the commit
677 * thread updating the current transaction id until
678 * ocfs2_commit_trans() because ocfs2_start_trans() took
679 * j_trans_barrier for us. */
680 ocfs2_set_ci_lock_trans(osb
->journal
, ci
);
682 ocfs2_metadata_cache_io_lock(ci
);
684 case OCFS2_JOURNAL_ACCESS_CREATE
:
685 case OCFS2_JOURNAL_ACCESS_WRITE
:
686 status
= jbd2_journal_get_write_access(handle
, bh
);
689 case OCFS2_JOURNAL_ACCESS_UNDO
:
690 status
= jbd2_journal_get_undo_access(handle
, bh
);
695 mlog(ML_ERROR
, "Unknown access type!\n");
697 if (!status
&& ocfs2_meta_ecc(osb
) && triggers
)
698 jbd2_journal_set_triggers(bh
, &triggers
->ot_triggers
);
699 ocfs2_metadata_cache_io_unlock(ci
);
702 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
708 int ocfs2_journal_access_di(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
709 struct buffer_head
*bh
, int type
)
711 return __ocfs2_journal_access(handle
, ci
, bh
, &di_triggers
, type
);
714 int ocfs2_journal_access_eb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
715 struct buffer_head
*bh
, int type
)
717 return __ocfs2_journal_access(handle
, ci
, bh
, &eb_triggers
, type
);
720 int ocfs2_journal_access_rb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
721 struct buffer_head
*bh
, int type
)
723 return __ocfs2_journal_access(handle
, ci
, bh
, &rb_triggers
,
727 int ocfs2_journal_access_gd(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
728 struct buffer_head
*bh
, int type
)
730 return __ocfs2_journal_access(handle
, ci
, bh
, &gd_triggers
, type
);
733 int ocfs2_journal_access_db(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
734 struct buffer_head
*bh
, int type
)
736 return __ocfs2_journal_access(handle
, ci
, bh
, &db_triggers
, type
);
739 int ocfs2_journal_access_xb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
740 struct buffer_head
*bh
, int type
)
742 return __ocfs2_journal_access(handle
, ci
, bh
, &xb_triggers
, type
);
745 int ocfs2_journal_access_dq(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
746 struct buffer_head
*bh
, int type
)
748 return __ocfs2_journal_access(handle
, ci
, bh
, &dq_triggers
, type
);
751 int ocfs2_journal_access_dr(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
752 struct buffer_head
*bh
, int type
)
754 return __ocfs2_journal_access(handle
, ci
, bh
, &dr_triggers
, type
);
757 int ocfs2_journal_access_dl(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
758 struct buffer_head
*bh
, int type
)
760 return __ocfs2_journal_access(handle
, ci
, bh
, &dl_triggers
, type
);
763 int ocfs2_journal_access(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
764 struct buffer_head
*bh
, int type
)
766 return __ocfs2_journal_access(handle
, ci
, bh
, NULL
, type
);
769 void ocfs2_journal_dirty(handle_t
*handle
, struct buffer_head
*bh
)
773 trace_ocfs2_journal_dirty((unsigned long long)bh
->b_blocknr
);
775 status
= jbd2_journal_dirty_metadata(handle
, bh
);
778 if (!is_handle_aborted(handle
)) {
779 journal_t
*journal
= handle
->h_transaction
->t_journal
;
780 struct super_block
*sb
= bh
->b_bdev
->bd_super
;
782 mlog(ML_ERROR
, "jbd2_journal_dirty_metadata failed. "
783 "Aborting transaction and journal.\n");
784 handle
->h_err
= status
;
785 jbd2_journal_abort_handle(handle
);
786 jbd2_journal_abort(journal
, status
);
787 ocfs2_abort(sb
, "Journal already aborted.\n");
792 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
794 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
796 journal_t
*journal
= osb
->journal
->j_journal
;
797 unsigned long commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
799 if (osb
->osb_commit_interval
)
800 commit_interval
= osb
->osb_commit_interval
;
802 write_lock(&journal
->j_state_lock
);
803 journal
->j_commit_interval
= commit_interval
;
804 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
805 journal
->j_flags
|= JBD2_BARRIER
;
807 journal
->j_flags
&= ~JBD2_BARRIER
;
808 write_unlock(&journal
->j_state_lock
);
811 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
814 struct inode
*inode
= NULL
; /* the journal inode */
815 journal_t
*j_journal
= NULL
;
816 struct ocfs2_dinode
*di
= NULL
;
817 struct buffer_head
*bh
= NULL
;
818 struct ocfs2_super
*osb
;
823 osb
= journal
->j_osb
;
825 /* already have the inode for our journal */
826 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
833 if (is_bad_inode(inode
)) {
834 mlog(ML_ERROR
, "access error (bad inode)\n");
841 SET_INODE_JOURNAL(inode
);
842 OCFS2_I(inode
)->ip_open_count
++;
844 /* Skip recovery waits here - journal inode metadata never
845 * changes in a live cluster so it can be considered an
846 * exception to the rule. */
847 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
849 if (status
!= -ERESTARTSYS
)
850 mlog(ML_ERROR
, "Could not get lock on journal!\n");
855 di
= (struct ocfs2_dinode
*)bh
->b_data
;
857 if (i_size_read(inode
) < OCFS2_MIN_JOURNAL_SIZE
) {
858 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
864 trace_ocfs2_journal_init(i_size_read(inode
),
865 (unsigned long long)inode
->i_blocks
,
866 OCFS2_I(inode
)->ip_clusters
);
868 /* call the kernels journal init function now */
869 j_journal
= jbd2_journal_init_inode(inode
);
870 if (j_journal
== NULL
) {
871 mlog(ML_ERROR
, "Linux journal layer error\n");
876 trace_ocfs2_journal_init_maxlen(j_journal
->j_maxlen
);
878 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
879 OCFS2_JOURNAL_DIRTY_FL
);
881 journal
->j_journal
= j_journal
;
882 journal
->j_inode
= inode
;
885 ocfs2_set_journal_params(osb
);
887 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
893 ocfs2_inode_unlock(inode
, 1);
896 OCFS2_I(inode
)->ip_open_count
--;
904 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode
*di
)
906 le32_add_cpu(&(di
->id1
.journal1
.ij_recovery_generation
), 1);
909 static u32
ocfs2_get_recovery_generation(struct ocfs2_dinode
*di
)
911 return le32_to_cpu(di
->id1
.journal1
.ij_recovery_generation
);
914 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
915 int dirty
, int replayed
)
919 struct ocfs2_journal
*journal
= osb
->journal
;
920 struct buffer_head
*bh
= journal
->j_bh
;
921 struct ocfs2_dinode
*fe
;
923 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
925 /* The journal bh on the osb always comes from ocfs2_journal_init()
926 * and was validated there inside ocfs2_inode_lock_full(). It's a
927 * code bug if we mess it up. */
928 BUG_ON(!OCFS2_IS_VALID_DINODE(fe
));
930 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
932 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
934 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
935 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
938 ocfs2_bump_recovery_generation(fe
);
940 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
941 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(journal
->j_inode
));
949 * If the journal has been kmalloc'd it needs to be freed after this
952 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
954 struct ocfs2_journal
*journal
= NULL
;
956 struct inode
*inode
= NULL
;
957 int num_running_trans
= 0;
961 journal
= osb
->journal
;
965 inode
= journal
->j_inode
;
967 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
970 /* need to inc inode use count - jbd2_journal_destroy will iput. */
974 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
975 trace_ocfs2_journal_shutdown(num_running_trans
);
977 /* Do a commit_cache here. It will flush our journal, *and*
978 * release any locks that are still held.
979 * set the SHUTDOWN flag and release the trans lock.
980 * the commit thread will take the trans lock for us below. */
981 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
983 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
984 * drop the trans_lock (which we want to hold until we
985 * completely destroy the journal. */
986 if (osb
->commit_task
) {
987 /* Wait for the commit thread */
988 trace_ocfs2_journal_shutdown_wait(osb
->commit_task
);
989 kthread_stop(osb
->commit_task
);
990 osb
->commit_task
= NULL
;
993 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
995 if (ocfs2_mount_local(osb
)) {
996 jbd2_journal_lock_updates(journal
->j_journal
);
997 status
= jbd2_journal_flush(journal
->j_journal
);
998 jbd2_journal_unlock_updates(journal
->j_journal
);
1005 * Do not toggle if flush was unsuccessful otherwise
1006 * will leave dirty metadata in a "clean" journal
1008 status
= ocfs2_journal_toggle_dirty(osb
, 0, 0);
1013 /* Shutdown the kernel journal system */
1014 jbd2_journal_destroy(journal
->j_journal
);
1015 journal
->j_journal
= NULL
;
1017 OCFS2_I(inode
)->ip_open_count
--;
1019 /* unlock our journal */
1020 ocfs2_inode_unlock(inode
, 1);
1022 brelse(journal
->j_bh
);
1023 journal
->j_bh
= NULL
;
1025 journal
->j_state
= OCFS2_JOURNAL_FREE
;
1027 // up_write(&journal->j_trans_barrier);
1033 static void ocfs2_clear_journal_error(struct super_block
*sb
,
1039 olderr
= jbd2_journal_errno(journal
);
1041 mlog(ML_ERROR
, "File system error %d recorded in "
1042 "journal %u.\n", olderr
, slot
);
1043 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
1046 jbd2_journal_ack_err(journal
);
1047 jbd2_journal_clear_err(journal
);
1051 int ocfs2_journal_load(struct ocfs2_journal
*journal
, int local
, int replayed
)
1054 struct ocfs2_super
*osb
;
1058 osb
= journal
->j_osb
;
1060 status
= jbd2_journal_load(journal
->j_journal
);
1062 mlog(ML_ERROR
, "Failed to load journal!\n");
1066 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
1068 status
= ocfs2_journal_toggle_dirty(osb
, 1, replayed
);
1074 /* Launch the commit thread */
1076 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
,
1078 if (IS_ERR(osb
->commit_task
)) {
1079 status
= PTR_ERR(osb
->commit_task
);
1080 osb
->commit_task
= NULL
;
1081 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, "
1082 "error=%d", status
);
1086 osb
->commit_task
= NULL
;
1093 /* 'full' flag tells us whether we clear out all blocks or if we just
1094 * mark the journal clean */
1095 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
1101 status
= jbd2_journal_wipe(journal
->j_journal
, full
);
1107 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0, 0);
1115 static int ocfs2_recovery_completed(struct ocfs2_super
*osb
)
1118 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1120 spin_lock(&osb
->osb_lock
);
1121 empty
= (rm
->rm_used
== 0);
1122 spin_unlock(&osb
->osb_lock
);
1127 void ocfs2_wait_for_recovery(struct ocfs2_super
*osb
)
1129 wait_event(osb
->recovery_event
, ocfs2_recovery_completed(osb
));
1133 * JBD Might read a cached version of another nodes journal file. We
1134 * don't want this as this file changes often and we get no
1135 * notification on those changes. The only way to be sure that we've
1136 * got the most up to date version of those blocks then is to force
1137 * read them off disk. Just searching through the buffer cache won't
1138 * work as there may be pages backing this file which are still marked
1139 * up to date. We know things can't change on this file underneath us
1140 * as we have the lock by now :)
1142 static int ocfs2_force_read_journal(struct inode
*inode
)
1146 u64 v_blkno
, p_blkno
, p_blocks
, num_blocks
;
1147 #define CONCURRENT_JOURNAL_FILL 32ULL
1148 struct buffer_head
*bhs
[CONCURRENT_JOURNAL_FILL
];
1150 memset(bhs
, 0, sizeof(struct buffer_head
*) * CONCURRENT_JOURNAL_FILL
);
1152 num_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
1154 while (v_blkno
< num_blocks
) {
1155 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
1156 &p_blkno
, &p_blocks
, NULL
);
1162 if (p_blocks
> CONCURRENT_JOURNAL_FILL
)
1163 p_blocks
= CONCURRENT_JOURNAL_FILL
;
1165 /* We are reading journal data which should not
1166 * be put in the uptodate cache */
1167 status
= ocfs2_read_blocks_sync(OCFS2_SB(inode
->i_sb
),
1168 p_blkno
, p_blocks
, bhs
);
1174 for(i
= 0; i
< p_blocks
; i
++) {
1179 v_blkno
+= p_blocks
;
1183 for(i
= 0; i
< CONCURRENT_JOURNAL_FILL
; i
++)
1188 struct ocfs2_la_recovery_item
{
1189 struct list_head lri_list
;
1191 struct ocfs2_dinode
*lri_la_dinode
;
1192 struct ocfs2_dinode
*lri_tl_dinode
;
1193 struct ocfs2_quota_recovery
*lri_qrec
;
1194 enum ocfs2_orphan_reco_type lri_orphan_reco_type
;
1197 /* Does the second half of the recovery process. By this point, the
1198 * node is marked clean and can actually be considered recovered,
1199 * hence it's no longer in the recovery map, but there's still some
1200 * cleanup we can do which shouldn't happen within the recovery thread
1201 * as locking in that context becomes very difficult if we are to take
1202 * recovering nodes into account.
1204 * NOTE: This function can and will sleep on recovery of other nodes
1205 * during cluster locking, just like any other ocfs2 process.
1207 void ocfs2_complete_recovery(struct work_struct
*work
)
1210 struct ocfs2_journal
*journal
=
1211 container_of(work
, struct ocfs2_journal
, j_recovery_work
);
1212 struct ocfs2_super
*osb
= journal
->j_osb
;
1213 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
1214 struct ocfs2_la_recovery_item
*item
, *n
;
1215 struct ocfs2_quota_recovery
*qrec
;
1216 enum ocfs2_orphan_reco_type orphan_reco_type
;
1217 LIST_HEAD(tmp_la_list
);
1219 trace_ocfs2_complete_recovery(
1220 (unsigned long long)OCFS2_I(journal
->j_inode
)->ip_blkno
);
1222 spin_lock(&journal
->j_lock
);
1223 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
1224 spin_unlock(&journal
->j_lock
);
1226 list_for_each_entry_safe(item
, n
, &tmp_la_list
, lri_list
) {
1227 list_del_init(&item
->lri_list
);
1229 ocfs2_wait_on_quotas(osb
);
1231 la_dinode
= item
->lri_la_dinode
;
1232 tl_dinode
= item
->lri_tl_dinode
;
1233 qrec
= item
->lri_qrec
;
1234 orphan_reco_type
= item
->lri_orphan_reco_type
;
1236 trace_ocfs2_complete_recovery_slot(item
->lri_slot
,
1237 la_dinode
? le64_to_cpu(la_dinode
->i_blkno
) : 0,
1238 tl_dinode
? le64_to_cpu(tl_dinode
->i_blkno
) : 0,
1242 ret
= ocfs2_complete_local_alloc_recovery(osb
,
1251 ret
= ocfs2_complete_truncate_log_recovery(osb
,
1259 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
,
1265 ret
= ocfs2_finish_quota_recovery(osb
, qrec
,
1269 /* Recovery info is already freed now */
1275 trace_ocfs2_complete_recovery_end(ret
);
1278 /* NOTE: This function always eats your references to la_dinode and
1279 * tl_dinode, either manually on error, or by passing them to
1280 * ocfs2_complete_recovery */
1281 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
1283 struct ocfs2_dinode
*la_dinode
,
1284 struct ocfs2_dinode
*tl_dinode
,
1285 struct ocfs2_quota_recovery
*qrec
,
1286 enum ocfs2_orphan_reco_type orphan_reco_type
)
1288 struct ocfs2_la_recovery_item
*item
;
1290 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
1292 /* Though we wish to avoid it, we are in fact safe in
1293 * skipping local alloc cleanup as fsck.ocfs2 is more
1294 * than capable of reclaiming unused space. */
1299 ocfs2_free_quota_recovery(qrec
);
1301 mlog_errno(-ENOMEM
);
1305 INIT_LIST_HEAD(&item
->lri_list
);
1306 item
->lri_la_dinode
= la_dinode
;
1307 item
->lri_slot
= slot_num
;
1308 item
->lri_tl_dinode
= tl_dinode
;
1309 item
->lri_qrec
= qrec
;
1310 item
->lri_orphan_reco_type
= orphan_reco_type
;
1312 spin_lock(&journal
->j_lock
);
1313 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
1314 queue_work(ocfs2_wq
, &journal
->j_recovery_work
);
1315 spin_unlock(&journal
->j_lock
);
1318 /* Called by the mount code to queue recovery the last part of
1319 * recovery for it's own and offline slot(s). */
1320 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
1322 struct ocfs2_journal
*journal
= osb
->journal
;
1324 if (ocfs2_is_hard_readonly(osb
))
1327 /* No need to queue up our truncate_log as regular cleanup will catch
1329 ocfs2_queue_recovery_completion(journal
, osb
->slot_num
,
1330 osb
->local_alloc_copy
, NULL
, NULL
,
1331 ORPHAN_NEED_TRUNCATE
);
1332 ocfs2_schedule_truncate_log_flush(osb
, 0);
1334 osb
->local_alloc_copy
= NULL
;
1337 /* queue to recover orphan slots for all offline slots */
1338 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1339 ocfs2_queue_replay_slots(osb
, ORPHAN_NEED_TRUNCATE
);
1340 ocfs2_free_replay_slots(osb
);
1343 void ocfs2_complete_quota_recovery(struct ocfs2_super
*osb
)
1345 if (osb
->quota_rec
) {
1346 ocfs2_queue_recovery_completion(osb
->journal
,
1351 ORPHAN_NEED_TRUNCATE
);
1352 osb
->quota_rec
= NULL
;
1356 static int __ocfs2_recovery_thread(void *arg
)
1358 int status
, node_num
, slot_num
;
1359 struct ocfs2_super
*osb
= arg
;
1360 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1361 int *rm_quota
= NULL
;
1362 int rm_quota_used
= 0, i
;
1363 struct ocfs2_quota_recovery
*qrec
;
1365 status
= ocfs2_wait_on_mount(osb
);
1370 rm_quota
= kzalloc(osb
->max_slots
* sizeof(int), GFP_NOFS
);
1376 status
= ocfs2_super_lock(osb
, 1);
1382 status
= ocfs2_compute_replay_slots(osb
);
1386 /* queue recovery for our own slot */
1387 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
1388 NULL
, NULL
, ORPHAN_NO_NEED_TRUNCATE
);
1390 spin_lock(&osb
->osb_lock
);
1391 while (rm
->rm_used
) {
1392 /* It's always safe to remove entry zero, as we won't
1393 * clear it until ocfs2_recover_node() has succeeded. */
1394 node_num
= rm
->rm_entries
[0];
1395 spin_unlock(&osb
->osb_lock
);
1396 slot_num
= ocfs2_node_num_to_slot(osb
, node_num
);
1397 trace_ocfs2_recovery_thread_node(node_num
, slot_num
);
1398 if (slot_num
== -ENOENT
) {
1403 /* It is a bit subtle with quota recovery. We cannot do it
1404 * immediately because we have to obtain cluster locks from
1405 * quota files and we also don't want to just skip it because
1406 * then quota usage would be out of sync until some node takes
1407 * the slot. So we remember which nodes need quota recovery
1408 * and when everything else is done, we recover quotas. */
1409 for (i
= 0; i
< rm_quota_used
&& rm_quota
[i
] != slot_num
; i
++);
1410 if (i
== rm_quota_used
)
1411 rm_quota
[rm_quota_used
++] = slot_num
;
1413 status
= ocfs2_recover_node(osb
, node_num
, slot_num
);
1416 ocfs2_recovery_map_clear(osb
, node_num
);
1419 "Error %d recovering node %d on device (%u,%u)!\n",
1421 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1422 mlog(ML_ERROR
, "Volume requires unmount.\n");
1425 spin_lock(&osb
->osb_lock
);
1427 spin_unlock(&osb
->osb_lock
);
1428 trace_ocfs2_recovery_thread_end(status
);
1430 /* Refresh all journal recovery generations from disk */
1431 status
= ocfs2_check_journals_nolocks(osb
);
1432 status
= (status
== -EROFS
) ? 0 : status
;
1436 /* Now it is right time to recover quotas... We have to do this under
1437 * superblock lock so that no one can start using the slot (and crash)
1438 * before we recover it */
1439 for (i
= 0; i
< rm_quota_used
; i
++) {
1440 qrec
= ocfs2_begin_quota_recovery(osb
, rm_quota
[i
]);
1442 status
= PTR_ERR(qrec
);
1446 ocfs2_queue_recovery_completion(osb
->journal
, rm_quota
[i
],
1448 ORPHAN_NEED_TRUNCATE
);
1451 ocfs2_super_unlock(osb
, 1);
1453 /* queue recovery for offline slots */
1454 ocfs2_queue_replay_slots(osb
, ORPHAN_NEED_TRUNCATE
);
1457 mutex_lock(&osb
->recovery_lock
);
1458 if (!status
&& !ocfs2_recovery_completed(osb
)) {
1459 mutex_unlock(&osb
->recovery_lock
);
1463 ocfs2_free_replay_slots(osb
);
1464 osb
->recovery_thread_task
= NULL
;
1465 mb(); /* sync with ocfs2_recovery_thread_running */
1466 wake_up(&osb
->recovery_event
);
1468 mutex_unlock(&osb
->recovery_lock
);
1472 /* no one is callint kthread_stop() for us so the kthread() api
1473 * requires that we call do_exit(). And it isn't exported, but
1474 * complete_and_exit() seems to be a minimal wrapper around it. */
1475 complete_and_exit(NULL
, status
);
1478 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
1480 mutex_lock(&osb
->recovery_lock
);
1482 trace_ocfs2_recovery_thread(node_num
, osb
->node_num
,
1483 osb
->disable_recovery
, osb
->recovery_thread_task
,
1484 osb
->disable_recovery
?
1485 -1 : ocfs2_recovery_map_set(osb
, node_num
));
1487 if (osb
->disable_recovery
)
1490 if (osb
->recovery_thread_task
)
1493 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
1495 if (IS_ERR(osb
->recovery_thread_task
)) {
1496 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
1497 osb
->recovery_thread_task
= NULL
;
1501 mutex_unlock(&osb
->recovery_lock
);
1502 wake_up(&osb
->recovery_event
);
1505 static int ocfs2_read_journal_inode(struct ocfs2_super
*osb
,
1507 struct buffer_head
**bh
,
1508 struct inode
**ret_inode
)
1510 int status
= -EACCES
;
1511 struct inode
*inode
= NULL
;
1513 BUG_ON(slot_num
>= osb
->max_slots
);
1515 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1517 if (!inode
|| is_bad_inode(inode
)) {
1521 SET_INODE_JOURNAL(inode
);
1523 status
= ocfs2_read_inode_block_full(inode
, bh
, OCFS2_BH_IGNORE_CACHE
);
1533 if (status
|| !ret_inode
)
1541 /* Does the actual journal replay and marks the journal inode as
1542 * clean. Will only replay if the journal inode is marked dirty. */
1543 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
1550 struct inode
*inode
= NULL
;
1551 struct ocfs2_dinode
*fe
;
1552 journal_t
*journal
= NULL
;
1553 struct buffer_head
*bh
= NULL
;
1556 status
= ocfs2_read_journal_inode(osb
, slot_num
, &bh
, &inode
);
1562 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
1563 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1568 * As the fs recovery is asynchronous, there is a small chance that
1569 * another node mounted (and recovered) the slot before the recovery
1570 * thread could get the lock. To handle that, we dirty read the journal
1571 * inode for that slot to get the recovery generation. If it is
1572 * different than what we expected, the slot has been recovered.
1573 * If not, it needs recovery.
1575 if (osb
->slot_recovery_generations
[slot_num
] != slot_reco_gen
) {
1576 trace_ocfs2_replay_journal_recovered(slot_num
,
1577 osb
->slot_recovery_generations
[slot_num
], slot_reco_gen
);
1578 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1583 /* Continue with recovery as the journal has not yet been recovered */
1585 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
1587 trace_ocfs2_replay_journal_lock_err(status
);
1588 if (status
!= -ERESTARTSYS
)
1589 mlog(ML_ERROR
, "Could not lock journal!\n");
1594 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
1596 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1597 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1599 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
1600 trace_ocfs2_replay_journal_skip(node_num
);
1601 /* Refresh recovery generation for the slot */
1602 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1606 /* we need to run complete recovery for offline orphan slots */
1607 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1609 printk(KERN_NOTICE
"ocfs2: Begin replay journal (node %d, slot %d) on "\
1610 "device (%u,%u)\n", node_num
, slot_num
, MAJOR(osb
->sb
->s_dev
),
1611 MINOR(osb
->sb
->s_dev
));
1613 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1615 status
= ocfs2_force_read_journal(inode
);
1621 journal
= jbd2_journal_init_inode(inode
);
1622 if (journal
== NULL
) {
1623 mlog(ML_ERROR
, "Linux journal layer error\n");
1628 status
= jbd2_journal_load(journal
);
1633 jbd2_journal_destroy(journal
);
1637 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1639 /* wipe the journal */
1640 jbd2_journal_lock_updates(journal
);
1641 status
= jbd2_journal_flush(journal
);
1642 jbd2_journal_unlock_updates(journal
);
1646 /* This will mark the node clean */
1647 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1648 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1649 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1651 /* Increment recovery generation to indicate successful recovery */
1652 ocfs2_bump_recovery_generation(fe
);
1653 osb
->slot_recovery_generations
[slot_num
] =
1654 ocfs2_get_recovery_generation(fe
);
1656 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
1657 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(inode
));
1664 jbd2_journal_destroy(journal
);
1666 printk(KERN_NOTICE
"ocfs2: End replay journal (node %d, slot %d) on "\
1667 "device (%u,%u)\n", node_num
, slot_num
, MAJOR(osb
->sb
->s_dev
),
1668 MINOR(osb
->sb
->s_dev
));
1670 /* drop the lock on this nodes journal */
1672 ocfs2_inode_unlock(inode
, 1);
1683 * Do the most important parts of node recovery:
1684 * - Replay it's journal
1685 * - Stamp a clean local allocator file
1686 * - Stamp a clean truncate log
1687 * - Mark the node clean
1689 * If this function completes without error, a node in OCFS2 can be
1690 * said to have been safely recovered. As a result, failure during the
1691 * second part of a nodes recovery process (local alloc recovery) is
1692 * far less concerning.
1694 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1695 int node_num
, int slot_num
)
1698 struct ocfs2_dinode
*la_copy
= NULL
;
1699 struct ocfs2_dinode
*tl_copy
= NULL
;
1701 trace_ocfs2_recover_node(node_num
, slot_num
, osb
->node_num
);
1703 /* Should not ever be called to recover ourselves -- in that
1704 * case we should've called ocfs2_journal_load instead. */
1705 BUG_ON(osb
->node_num
== node_num
);
1707 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1709 if (status
== -EBUSY
) {
1710 trace_ocfs2_recover_node_skip(slot_num
, node_num
);
1718 /* Stamp a clean local alloc file AFTER recovering the journal... */
1719 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1725 /* An error from begin_truncate_log_recovery is not
1726 * serious enough to warrant halting the rest of
1728 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1732 /* Likewise, this would be a strange but ultimately not so
1733 * harmful place to get an error... */
1734 status
= ocfs2_clear_slot(osb
, slot_num
);
1738 /* This will kfree the memory pointed to by la_copy and tl_copy */
1739 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1740 tl_copy
, NULL
, ORPHAN_NEED_TRUNCATE
);
1748 /* Test node liveness by trylocking his journal. If we get the lock,
1749 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1750 * still alive (we couldn't get the lock) and < 0 on error. */
1751 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1755 struct inode
*inode
= NULL
;
1757 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1759 if (inode
== NULL
) {
1760 mlog(ML_ERROR
, "access error\n");
1764 if (is_bad_inode(inode
)) {
1765 mlog(ML_ERROR
, "access error (bad inode)\n");
1771 SET_INODE_JOURNAL(inode
);
1773 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1774 status
= ocfs2_inode_lock_full(inode
, NULL
, 1, flags
);
1776 if (status
!= -EAGAIN
)
1781 ocfs2_inode_unlock(inode
, 1);
1789 /* Call this underneath ocfs2_super_lock. It also assumes that the
1790 * slot info struct has been updated from disk. */
1791 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1793 unsigned int node_num
;
1796 struct buffer_head
*bh
= NULL
;
1797 struct ocfs2_dinode
*di
;
1799 /* This is called with the super block cluster lock, so we
1800 * know that the slot map can't change underneath us. */
1802 for (i
= 0; i
< osb
->max_slots
; i
++) {
1803 /* Read journal inode to get the recovery generation */
1804 status
= ocfs2_read_journal_inode(osb
, i
, &bh
, NULL
);
1809 di
= (struct ocfs2_dinode
*)bh
->b_data
;
1810 gen
= ocfs2_get_recovery_generation(di
);
1814 spin_lock(&osb
->osb_lock
);
1815 osb
->slot_recovery_generations
[i
] = gen
;
1817 trace_ocfs2_mark_dead_nodes(i
,
1818 osb
->slot_recovery_generations
[i
]);
1820 if (i
== osb
->slot_num
) {
1821 spin_unlock(&osb
->osb_lock
);
1825 status
= ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
);
1826 if (status
== -ENOENT
) {
1827 spin_unlock(&osb
->osb_lock
);
1831 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
1832 spin_unlock(&osb
->osb_lock
);
1835 spin_unlock(&osb
->osb_lock
);
1837 /* Ok, we have a slot occupied by another node which
1838 * is not in the recovery map. We trylock his journal
1839 * file here to test if he's alive. */
1840 status
= ocfs2_trylock_journal(osb
, i
);
1842 /* Since we're called from mount, we know that
1843 * the recovery thread can't race us on
1844 * setting / checking the recovery bits. */
1845 ocfs2_recovery_thread(osb
, node_num
);
1846 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1858 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1859 * randomness to the timeout to minimize multple nodes firing the timer at the
1862 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1866 get_random_bytes(&time
, sizeof(time
));
1867 time
= ORPHAN_SCAN_SCHEDULE_TIMEOUT
+ (time
% 5000);
1868 return msecs_to_jiffies(time
);
1872 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1873 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1874 * is done to catch any orphans that are left over in orphan directories.
1876 * It scans all slots, even ones that are in use. It does so to handle the
1877 * case described below:
1879 * Node 1 has an inode it was using. The dentry went away due to memory
1880 * pressure. Node 1 closes the inode, but it's on the free list. The node
1881 * has the open lock.
1882 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1883 * but node 1 has no dentry and doesn't get the message. It trylocks the
1884 * open lock, sees that another node has a PR, and does nothing.
1885 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1886 * open lock, sees the PR still, and does nothing.
1887 * Basically, we have to trigger an orphan iput on node 1. The only way
1888 * for this to happen is if node 1 runs node 2's orphan dir.
1890 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1891 * seconds. It gets an EX lock on os_lockres and checks sequence number
1892 * stored in LVB. If the sequence number has changed, it means some other
1893 * node has done the scan. This node skips the scan and tracks the
1894 * sequence number. If the sequence number didn't change, it means a scan
1895 * hasn't happened. The node queues a scan and increments the
1896 * sequence number in the LVB.
1898 static void ocfs2_queue_orphan_scan(struct ocfs2_super
*osb
)
1900 struct ocfs2_orphan_scan
*os
;
1904 os
= &osb
->osb_orphan_scan
;
1906 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1909 trace_ocfs2_queue_orphan_scan_begin(os
->os_count
, os
->os_seqno
,
1910 atomic_read(&os
->os_state
));
1912 status
= ocfs2_orphan_scan_lock(osb
, &seqno
);
1914 if (status
!= -EAGAIN
)
1919 /* Do no queue the tasks if the volume is being umounted */
1920 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1923 if (os
->os_seqno
!= seqno
) {
1924 os
->os_seqno
= seqno
;
1928 for (i
= 0; i
< osb
->max_slots
; i
++)
1929 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
, NULL
,
1930 NULL
, ORPHAN_NO_NEED_TRUNCATE
);
1932 * We queued a recovery on orphan slots, increment the sequence
1933 * number and update LVB so other node will skip the scan for a while
1937 os
->os_scantime
= CURRENT_TIME
;
1939 ocfs2_orphan_scan_unlock(osb
, seqno
);
1941 trace_ocfs2_queue_orphan_scan_end(os
->os_count
, os
->os_seqno
,
1942 atomic_read(&os
->os_state
));
1946 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1947 static void ocfs2_orphan_scan_work(struct work_struct
*work
)
1949 struct ocfs2_orphan_scan
*os
;
1950 struct ocfs2_super
*osb
;
1952 os
= container_of(work
, struct ocfs2_orphan_scan
,
1953 os_orphan_scan_work
.work
);
1956 mutex_lock(&os
->os_lock
);
1957 ocfs2_queue_orphan_scan(osb
);
1958 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
)
1959 queue_delayed_work(ocfs2_wq
, &os
->os_orphan_scan_work
,
1960 ocfs2_orphan_scan_timeout());
1961 mutex_unlock(&os
->os_lock
);
1964 void ocfs2_orphan_scan_stop(struct ocfs2_super
*osb
)
1966 struct ocfs2_orphan_scan
*os
;
1968 os
= &osb
->osb_orphan_scan
;
1969 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
) {
1970 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1971 mutex_lock(&os
->os_lock
);
1972 cancel_delayed_work(&os
->os_orphan_scan_work
);
1973 mutex_unlock(&os
->os_lock
);
1977 void ocfs2_orphan_scan_init(struct ocfs2_super
*osb
)
1979 struct ocfs2_orphan_scan
*os
;
1981 os
= &osb
->osb_orphan_scan
;
1985 mutex_init(&os
->os_lock
);
1986 INIT_DELAYED_WORK(&os
->os_orphan_scan_work
, ocfs2_orphan_scan_work
);
1989 void ocfs2_orphan_scan_start(struct ocfs2_super
*osb
)
1991 struct ocfs2_orphan_scan
*os
;
1993 os
= &osb
->osb_orphan_scan
;
1994 os
->os_scantime
= CURRENT_TIME
;
1995 if (ocfs2_is_hard_readonly(osb
) || ocfs2_mount_local(osb
))
1996 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1998 atomic_set(&os
->os_state
, ORPHAN_SCAN_ACTIVE
);
1999 queue_delayed_work(ocfs2_wq
, &os
->os_orphan_scan_work
,
2000 ocfs2_orphan_scan_timeout());
2004 struct ocfs2_orphan_filldir_priv
{
2005 struct dir_context ctx
;
2007 struct ocfs2_super
*osb
;
2010 static int ocfs2_orphan_filldir(struct dir_context
*ctx
, const char *name
,
2011 int name_len
, loff_t pos
, u64 ino
,
2014 struct ocfs2_orphan_filldir_priv
*p
=
2015 container_of(ctx
, struct ocfs2_orphan_filldir_priv
, ctx
);
2018 if (name_len
== 1 && !strncmp(".", name
, 1))
2020 if (name_len
== 2 && !strncmp("..", name
, 2))
2023 /* Skip bad inodes so that recovery can continue */
2024 iter
= ocfs2_iget(p
->osb
, ino
,
2025 OCFS2_FI_FLAG_ORPHAN_RECOVERY
, 0);
2029 /* Skip inodes which are already added to recover list, since dio may
2030 * happen concurrently with unlink/rename */
2031 if (OCFS2_I(iter
)->ip_next_orphan
) {
2036 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter
)->ip_blkno
);
2037 /* No locking is required for the next_orphan queue as there
2038 * is only ever a single process doing orphan recovery. */
2039 OCFS2_I(iter
)->ip_next_orphan
= p
->head
;
2045 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
2047 struct inode
**head
)
2050 struct inode
*orphan_dir_inode
= NULL
;
2051 struct ocfs2_orphan_filldir_priv priv
= {
2052 .ctx
.actor
= ocfs2_orphan_filldir
,
2057 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
2058 ORPHAN_DIR_SYSTEM_INODE
,
2060 if (!orphan_dir_inode
) {
2066 mutex_lock(&orphan_dir_inode
->i_mutex
);
2067 status
= ocfs2_inode_lock(orphan_dir_inode
, NULL
, 0);
2073 status
= ocfs2_dir_foreach(orphan_dir_inode
, &priv
.ctx
);
2082 ocfs2_inode_unlock(orphan_dir_inode
, 0);
2084 mutex_unlock(&orphan_dir_inode
->i_mutex
);
2085 iput(orphan_dir_inode
);
2089 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
2094 spin_lock(&osb
->osb_lock
);
2095 ret
= !osb
->osb_orphan_wipes
[slot
];
2096 spin_unlock(&osb
->osb_lock
);
2100 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
2103 spin_lock(&osb
->osb_lock
);
2104 /* Mark ourselves such that new processes in delete_inode()
2105 * know to quit early. */
2106 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2107 while (osb
->osb_orphan_wipes
[slot
]) {
2108 /* If any processes are already in the middle of an
2109 * orphan wipe on this dir, then we need to wait for
2111 spin_unlock(&osb
->osb_lock
);
2112 wait_event_interruptible(osb
->osb_wipe_event
,
2113 ocfs2_orphan_recovery_can_continue(osb
, slot
));
2114 spin_lock(&osb
->osb_lock
);
2116 spin_unlock(&osb
->osb_lock
);
2119 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
2122 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2126 * Orphan recovery. Each mounted node has it's own orphan dir which we
2127 * must run during recovery. Our strategy here is to build a list of
2128 * the inodes in the orphan dir and iget/iput them. The VFS does
2129 * (most) of the rest of the work.
2131 * Orphan recovery can happen at any time, not just mount so we have a
2132 * couple of extra considerations.
2134 * - We grab as many inodes as we can under the orphan dir lock -
2135 * doing iget() outside the orphan dir risks getting a reference on
2137 * - We must be sure not to deadlock with other processes on the
2138 * system wanting to run delete_inode(). This can happen when they go
2139 * to lock the orphan dir and the orphan recovery process attempts to
2140 * iget() inside the orphan dir lock. This can be avoided by
2141 * advertising our state to ocfs2_delete_inode().
2143 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
2145 enum ocfs2_orphan_reco_type orphan_reco_type
)
2148 struct inode
*inode
= NULL
;
2150 struct ocfs2_inode_info
*oi
;
2151 struct buffer_head
*di_bh
= NULL
;
2152 struct ocfs2_dinode
*di
= NULL
;
2154 trace_ocfs2_recover_orphans(slot
);
2156 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
2157 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
);
2158 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
2160 /* Error here should be noted, but we want to continue with as
2161 * many queued inodes as we've got. */
2166 oi
= OCFS2_I(inode
);
2167 trace_ocfs2_recover_orphans_iput(
2168 (unsigned long long)oi
->ip_blkno
);
2170 iter
= oi
->ip_next_orphan
;
2171 oi
->ip_next_orphan
= NULL
;
2173 ret
= ocfs2_rw_lock(inode
, 1);
2179 * We need to take and drop the inode lock to
2180 * force read inode from disk.
2182 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2188 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
2190 if (inode
->i_nlink
== 0) {
2191 spin_lock(&oi
->ip_lock
);
2192 /* Set the proper information to get us going into
2193 * ocfs2_delete_inode. */
2194 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
2195 spin_unlock(&oi
->ip_lock
);
2196 } else if ((orphan_reco_type
== ORPHAN_NEED_TRUNCATE
) &&
2197 (di
->i_flags
& cpu_to_le32(OCFS2_DIO_ORPHANED_FL
))) {
2198 ret
= ocfs2_truncate_file(inode
, di_bh
,
2199 i_size_read(inode
));
2206 ret
= ocfs2_del_inode_from_orphan(osb
, inode
, di_bh
, 0, 0);
2210 wake_up(&OCFS2_I(inode
)->append_dio_wq
);
2211 } /* else if ORPHAN_NO_NEED_TRUNCATE, do nothing */
2213 ocfs2_inode_unlock(inode
, 1);
2215 ocfs2_rw_unlock(inode
, 1);
2226 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
)
2228 /* This check is good because ocfs2 will wait on our recovery
2229 * thread before changing it to something other than MOUNTED
2231 wait_event(osb
->osb_mount_event
,
2232 (!quota
&& atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
) ||
2233 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED_QUOTAS
||
2234 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
2236 /* If there's an error on mount, then we may never get to the
2237 * MOUNTED flag, but this is set right before
2238 * dismount_volume() so we can trust it. */
2239 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
2240 trace_ocfs2_wait_on_mount(VOLUME_DISABLED
);
2241 mlog(0, "mount error, exiting!\n");
2248 static int ocfs2_commit_thread(void *arg
)
2251 struct ocfs2_super
*osb
= arg
;
2252 struct ocfs2_journal
*journal
= osb
->journal
;
2254 /* we can trust j_num_trans here because _should_stop() is only set in
2255 * shutdown and nobody other than ourselves should be able to start
2256 * transactions. committing on shutdown might take a few iterations
2257 * as final transactions put deleted inodes on the list */
2258 while (!(kthread_should_stop() &&
2259 atomic_read(&journal
->j_num_trans
) == 0)) {
2261 wait_event_interruptible(osb
->checkpoint_event
,
2262 atomic_read(&journal
->j_num_trans
)
2263 || kthread_should_stop());
2265 status
= ocfs2_commit_cache(osb
);
2267 static unsigned long abort_warn_time
;
2269 /* Warn about this once per minute */
2270 if (printk_timed_ratelimit(&abort_warn_time
, 60*HZ
))
2271 mlog(ML_ERROR
, "status = %d, journal is "
2272 "already aborted.\n", status
);
2274 * After ocfs2_commit_cache() fails, j_num_trans has a
2275 * non-zero value. Sleep here to avoid a busy-wait
2278 msleep_interruptible(1000);
2281 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
2283 "commit_thread: %u transactions pending on "
2285 atomic_read(&journal
->j_num_trans
));
2292 /* Reads all the journal inodes without taking any cluster locks. Used
2293 * for hard readonly access to determine whether any journal requires
2294 * recovery. Also used to refresh the recovery generation numbers after
2295 * a journal has been recovered by another node.
2297 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
2301 struct buffer_head
*di_bh
= NULL
;
2302 struct ocfs2_dinode
*di
;
2303 int journal_dirty
= 0;
2305 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
2306 ret
= ocfs2_read_journal_inode(osb
, slot
, &di_bh
, NULL
);
2312 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
2314 osb
->slot_recovery_generations
[slot
] =
2315 ocfs2_get_recovery_generation(di
);
2317 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
2318 OCFS2_JOURNAL_DIRTY_FL
)