ARM: rockchip: fix broken build
[linux/fpc-iii.git] / kernel / futex.c
blobc4a182f5357eb4372685f9524cf18b0bedfaf7ca
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
68 #include <asm/futex.h>
70 #include "locking/rtmutex_common.h"
73 * READ this before attempting to hack on futexes!
75 * Basic futex operation and ordering guarantees
76 * =============================================
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
85 * The waker side modifies the user space value of the futex and calls
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
120 * CPU 0 CPU 1
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
125 * waiters++; (a)
126 * mb(); (A) <-- paired with -.
128 * lock(hash_bucket(futex)); |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
135 * `-------> mb(); (B)
136 * if (uval == val)
137 * queue();
138 * unlock(hash_bucket(futex));
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers for both
147 * shared and private futexes in get_futex_key_refs().
149 * This yields the following case (where X:=waiters, Y:=futex):
151 * X = Y = 0
153 * w[X]=1 w[Y]=1
154 * MB MB
155 * r[Y]=y r[X]=x
157 * Which guarantees that x==0 && y==0 is impossible; which translates back into
158 * the guarantee that we cannot both miss the futex variable change and the
159 * enqueue.
161 * Note that a new waiter is accounted for in (a) even when it is possible that
162 * the wait call can return error, in which case we backtrack from it in (b).
163 * Refer to the comment in queue_lock().
165 * Similarly, in order to account for waiters being requeued on another
166 * address we always increment the waiters for the destination bucket before
167 * acquiring the lock. It then decrements them again after releasing it -
168 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
169 * will do the additional required waiter count housekeeping. This is done for
170 * double_lock_hb() and double_unlock_hb(), respectively.
173 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
174 int __read_mostly futex_cmpxchg_enabled;
175 #endif
178 * Futex flags used to encode options to functions and preserve them across
179 * restarts.
181 #define FLAGS_SHARED 0x01
182 #define FLAGS_CLOCKRT 0x02
183 #define FLAGS_HAS_TIMEOUT 0x04
186 * Priority Inheritance state:
188 struct futex_pi_state {
190 * list of 'owned' pi_state instances - these have to be
191 * cleaned up in do_exit() if the task exits prematurely:
193 struct list_head list;
196 * The PI object:
198 struct rt_mutex pi_mutex;
200 struct task_struct *owner;
201 atomic_t refcount;
203 union futex_key key;
207 * struct futex_q - The hashed futex queue entry, one per waiting task
208 * @list: priority-sorted list of tasks waiting on this futex
209 * @task: the task waiting on the futex
210 * @lock_ptr: the hash bucket lock
211 * @key: the key the futex is hashed on
212 * @pi_state: optional priority inheritance state
213 * @rt_waiter: rt_waiter storage for use with requeue_pi
214 * @requeue_pi_key: the requeue_pi target futex key
215 * @bitset: bitset for the optional bitmasked wakeup
217 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
218 * we can wake only the relevant ones (hashed queues may be shared).
220 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
221 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
222 * The order of wakeup is always to make the first condition true, then
223 * the second.
225 * PI futexes are typically woken before they are removed from the hash list via
226 * the rt_mutex code. See unqueue_me_pi().
228 struct futex_q {
229 struct plist_node list;
231 struct task_struct *task;
232 spinlock_t *lock_ptr;
233 union futex_key key;
234 struct futex_pi_state *pi_state;
235 struct rt_mutex_waiter *rt_waiter;
236 union futex_key *requeue_pi_key;
237 u32 bitset;
240 static const struct futex_q futex_q_init = {
241 /* list gets initialized in queue_me()*/
242 .key = FUTEX_KEY_INIT,
243 .bitset = FUTEX_BITSET_MATCH_ANY
247 * Hash buckets are shared by all the futex_keys that hash to the same
248 * location. Each key may have multiple futex_q structures, one for each task
249 * waiting on a futex.
251 struct futex_hash_bucket {
252 atomic_t waiters;
253 spinlock_t lock;
254 struct plist_head chain;
255 } ____cacheline_aligned_in_smp;
257 static unsigned long __read_mostly futex_hashsize;
259 static struct futex_hash_bucket *futex_queues;
261 static inline void futex_get_mm(union futex_key *key)
263 atomic_inc(&key->private.mm->mm_count);
265 * Ensure futex_get_mm() implies a full barrier such that
266 * get_futex_key() implies a full barrier. This is relied upon
267 * as full barrier (B), see the ordering comment above.
269 smp_mb__after_atomic();
273 * Reflects a new waiter being added to the waitqueue.
275 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
277 #ifdef CONFIG_SMP
278 atomic_inc(&hb->waiters);
280 * Full barrier (A), see the ordering comment above.
282 smp_mb__after_atomic();
283 #endif
287 * Reflects a waiter being removed from the waitqueue by wakeup
288 * paths.
290 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292 #ifdef CONFIG_SMP
293 atomic_dec(&hb->waiters);
294 #endif
297 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299 #ifdef CONFIG_SMP
300 return atomic_read(&hb->waiters);
301 #else
302 return 1;
303 #endif
307 * We hash on the keys returned from get_futex_key (see below).
309 static struct futex_hash_bucket *hash_futex(union futex_key *key)
311 u32 hash = jhash2((u32*)&key->both.word,
312 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
313 key->both.offset);
314 return &futex_queues[hash & (futex_hashsize - 1)];
318 * Return 1 if two futex_keys are equal, 0 otherwise.
320 static inline int match_futex(union futex_key *key1, union futex_key *key2)
322 return (key1 && key2
323 && key1->both.word == key2->both.word
324 && key1->both.ptr == key2->both.ptr
325 && key1->both.offset == key2->both.offset);
329 * Take a reference to the resource addressed by a key.
330 * Can be called while holding spinlocks.
333 static void get_futex_key_refs(union futex_key *key)
335 if (!key->both.ptr)
336 return;
338 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
339 case FUT_OFF_INODE:
340 ihold(key->shared.inode); /* implies MB (B) */
341 break;
342 case FUT_OFF_MMSHARED:
343 futex_get_mm(key); /* implies MB (B) */
344 break;
345 default:
347 * Private futexes do not hold reference on an inode or
348 * mm, therefore the only purpose of calling get_futex_key_refs
349 * is because we need the barrier for the lockless waiter check.
351 smp_mb(); /* explicit MB (B) */
356 * Drop a reference to the resource addressed by a key.
357 * The hash bucket spinlock must not be held. This is
358 * a no-op for private futexes, see comment in the get
359 * counterpart.
361 static void drop_futex_key_refs(union futex_key *key)
363 if (!key->both.ptr) {
364 /* If we're here then we tried to put a key we failed to get */
365 WARN_ON_ONCE(1);
366 return;
369 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
370 case FUT_OFF_INODE:
371 iput(key->shared.inode);
372 break;
373 case FUT_OFF_MMSHARED:
374 mmdrop(key->private.mm);
375 break;
380 * get_futex_key() - Get parameters which are the keys for a futex
381 * @uaddr: virtual address of the futex
382 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
383 * @key: address where result is stored.
384 * @rw: mapping needs to be read/write (values: VERIFY_READ,
385 * VERIFY_WRITE)
387 * Return: a negative error code or 0
389 * The key words are stored in *key on success.
391 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
392 * offset_within_page). For private mappings, it's (uaddr, current->mm).
393 * We can usually work out the index without swapping in the page.
395 * lock_page() might sleep, the caller should not hold a spinlock.
397 static int
398 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
400 unsigned long address = (unsigned long)uaddr;
401 struct mm_struct *mm = current->mm;
402 struct page *page, *page_head;
403 int err, ro = 0;
406 * The futex address must be "naturally" aligned.
408 key->both.offset = address % PAGE_SIZE;
409 if (unlikely((address % sizeof(u32)) != 0))
410 return -EINVAL;
411 address -= key->both.offset;
413 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
414 return -EFAULT;
417 * PROCESS_PRIVATE futexes are fast.
418 * As the mm cannot disappear under us and the 'key' only needs
419 * virtual address, we dont even have to find the underlying vma.
420 * Note : We do have to check 'uaddr' is a valid user address,
421 * but access_ok() should be faster than find_vma()
423 if (!fshared) {
424 key->private.mm = mm;
425 key->private.address = address;
426 get_futex_key_refs(key); /* implies MB (B) */
427 return 0;
430 again:
431 err = get_user_pages_fast(address, 1, 1, &page);
433 * If write access is not required (eg. FUTEX_WAIT), try
434 * and get read-only access.
436 if (err == -EFAULT && rw == VERIFY_READ) {
437 err = get_user_pages_fast(address, 1, 0, &page);
438 ro = 1;
440 if (err < 0)
441 return err;
442 else
443 err = 0;
445 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
446 page_head = page;
447 if (unlikely(PageTail(page))) {
448 put_page(page);
449 /* serialize against __split_huge_page_splitting() */
450 local_irq_disable();
451 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
452 page_head = compound_head(page);
454 * page_head is valid pointer but we must pin
455 * it before taking the PG_lock and/or
456 * PG_compound_lock. The moment we re-enable
457 * irqs __split_huge_page_splitting() can
458 * return and the head page can be freed from
459 * under us. We can't take the PG_lock and/or
460 * PG_compound_lock on a page that could be
461 * freed from under us.
463 if (page != page_head) {
464 get_page(page_head);
465 put_page(page);
467 local_irq_enable();
468 } else {
469 local_irq_enable();
470 goto again;
473 #else
474 page_head = compound_head(page);
475 if (page != page_head) {
476 get_page(page_head);
477 put_page(page);
479 #endif
481 lock_page(page_head);
484 * If page_head->mapping is NULL, then it cannot be a PageAnon
485 * page; but it might be the ZERO_PAGE or in the gate area or
486 * in a special mapping (all cases which we are happy to fail);
487 * or it may have been a good file page when get_user_pages_fast
488 * found it, but truncated or holepunched or subjected to
489 * invalidate_complete_page2 before we got the page lock (also
490 * cases which we are happy to fail). And we hold a reference,
491 * so refcount care in invalidate_complete_page's remove_mapping
492 * prevents drop_caches from setting mapping to NULL beneath us.
494 * The case we do have to guard against is when memory pressure made
495 * shmem_writepage move it from filecache to swapcache beneath us:
496 * an unlikely race, but we do need to retry for page_head->mapping.
498 if (!page_head->mapping) {
499 int shmem_swizzled = PageSwapCache(page_head);
500 unlock_page(page_head);
501 put_page(page_head);
502 if (shmem_swizzled)
503 goto again;
504 return -EFAULT;
508 * Private mappings are handled in a simple way.
510 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
511 * it's a read-only handle, it's expected that futexes attach to
512 * the object not the particular process.
514 if (PageAnon(page_head)) {
516 * A RO anonymous page will never change and thus doesn't make
517 * sense for futex operations.
519 if (ro) {
520 err = -EFAULT;
521 goto out;
524 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
525 key->private.mm = mm;
526 key->private.address = address;
527 } else {
528 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
529 key->shared.inode = page_head->mapping->host;
530 key->shared.pgoff = basepage_index(page);
533 get_futex_key_refs(key); /* implies MB (B) */
535 out:
536 unlock_page(page_head);
537 put_page(page_head);
538 return err;
541 static inline void put_futex_key(union futex_key *key)
543 drop_futex_key_refs(key);
547 * fault_in_user_writeable() - Fault in user address and verify RW access
548 * @uaddr: pointer to faulting user space address
550 * Slow path to fixup the fault we just took in the atomic write
551 * access to @uaddr.
553 * We have no generic implementation of a non-destructive write to the
554 * user address. We know that we faulted in the atomic pagefault
555 * disabled section so we can as well avoid the #PF overhead by
556 * calling get_user_pages() right away.
558 static int fault_in_user_writeable(u32 __user *uaddr)
560 struct mm_struct *mm = current->mm;
561 int ret;
563 down_read(&mm->mmap_sem);
564 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
565 FAULT_FLAG_WRITE);
566 up_read(&mm->mmap_sem);
568 return ret < 0 ? ret : 0;
572 * futex_top_waiter() - Return the highest priority waiter on a futex
573 * @hb: the hash bucket the futex_q's reside in
574 * @key: the futex key (to distinguish it from other futex futex_q's)
576 * Must be called with the hb lock held.
578 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
579 union futex_key *key)
581 struct futex_q *this;
583 plist_for_each_entry(this, &hb->chain, list) {
584 if (match_futex(&this->key, key))
585 return this;
587 return NULL;
590 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
591 u32 uval, u32 newval)
593 int ret;
595 pagefault_disable();
596 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
597 pagefault_enable();
599 return ret;
602 static int get_futex_value_locked(u32 *dest, u32 __user *from)
604 int ret;
606 pagefault_disable();
607 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
608 pagefault_enable();
610 return ret ? -EFAULT : 0;
615 * PI code:
617 static int refill_pi_state_cache(void)
619 struct futex_pi_state *pi_state;
621 if (likely(current->pi_state_cache))
622 return 0;
624 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
626 if (!pi_state)
627 return -ENOMEM;
629 INIT_LIST_HEAD(&pi_state->list);
630 /* pi_mutex gets initialized later */
631 pi_state->owner = NULL;
632 atomic_set(&pi_state->refcount, 1);
633 pi_state->key = FUTEX_KEY_INIT;
635 current->pi_state_cache = pi_state;
637 return 0;
640 static struct futex_pi_state * alloc_pi_state(void)
642 struct futex_pi_state *pi_state = current->pi_state_cache;
644 WARN_ON(!pi_state);
645 current->pi_state_cache = NULL;
647 return pi_state;
651 * Must be called with the hb lock held.
653 static void free_pi_state(struct futex_pi_state *pi_state)
655 if (!pi_state)
656 return;
658 if (!atomic_dec_and_test(&pi_state->refcount))
659 return;
662 * If pi_state->owner is NULL, the owner is most probably dying
663 * and has cleaned up the pi_state already
665 if (pi_state->owner) {
666 raw_spin_lock_irq(&pi_state->owner->pi_lock);
667 list_del_init(&pi_state->list);
668 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
670 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
673 if (current->pi_state_cache)
674 kfree(pi_state);
675 else {
677 * pi_state->list is already empty.
678 * clear pi_state->owner.
679 * refcount is at 0 - put it back to 1.
681 pi_state->owner = NULL;
682 atomic_set(&pi_state->refcount, 1);
683 current->pi_state_cache = pi_state;
688 * Look up the task based on what TID userspace gave us.
689 * We dont trust it.
691 static struct task_struct * futex_find_get_task(pid_t pid)
693 struct task_struct *p;
695 rcu_read_lock();
696 p = find_task_by_vpid(pid);
697 if (p)
698 get_task_struct(p);
700 rcu_read_unlock();
702 return p;
706 * This task is holding PI mutexes at exit time => bad.
707 * Kernel cleans up PI-state, but userspace is likely hosed.
708 * (Robust-futex cleanup is separate and might save the day for userspace.)
710 void exit_pi_state_list(struct task_struct *curr)
712 struct list_head *next, *head = &curr->pi_state_list;
713 struct futex_pi_state *pi_state;
714 struct futex_hash_bucket *hb;
715 union futex_key key = FUTEX_KEY_INIT;
717 if (!futex_cmpxchg_enabled)
718 return;
720 * We are a ZOMBIE and nobody can enqueue itself on
721 * pi_state_list anymore, but we have to be careful
722 * versus waiters unqueueing themselves:
724 raw_spin_lock_irq(&curr->pi_lock);
725 while (!list_empty(head)) {
727 next = head->next;
728 pi_state = list_entry(next, struct futex_pi_state, list);
729 key = pi_state->key;
730 hb = hash_futex(&key);
731 raw_spin_unlock_irq(&curr->pi_lock);
733 spin_lock(&hb->lock);
735 raw_spin_lock_irq(&curr->pi_lock);
737 * We dropped the pi-lock, so re-check whether this
738 * task still owns the PI-state:
740 if (head->next != next) {
741 spin_unlock(&hb->lock);
742 continue;
745 WARN_ON(pi_state->owner != curr);
746 WARN_ON(list_empty(&pi_state->list));
747 list_del_init(&pi_state->list);
748 pi_state->owner = NULL;
749 raw_spin_unlock_irq(&curr->pi_lock);
751 rt_mutex_unlock(&pi_state->pi_mutex);
753 spin_unlock(&hb->lock);
755 raw_spin_lock_irq(&curr->pi_lock);
757 raw_spin_unlock_irq(&curr->pi_lock);
761 * We need to check the following states:
763 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
765 * [1] NULL | --- | --- | 0 | 0/1 | Valid
766 * [2] NULL | --- | --- | >0 | 0/1 | Valid
768 * [3] Found | NULL | -- | Any | 0/1 | Invalid
770 * [4] Found | Found | NULL | 0 | 1 | Valid
771 * [5] Found | Found | NULL | >0 | 1 | Invalid
773 * [6] Found | Found | task | 0 | 1 | Valid
775 * [7] Found | Found | NULL | Any | 0 | Invalid
777 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
778 * [9] Found | Found | task | 0 | 0 | Invalid
779 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
781 * [1] Indicates that the kernel can acquire the futex atomically. We
782 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
784 * [2] Valid, if TID does not belong to a kernel thread. If no matching
785 * thread is found then it indicates that the owner TID has died.
787 * [3] Invalid. The waiter is queued on a non PI futex
789 * [4] Valid state after exit_robust_list(), which sets the user space
790 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
792 * [5] The user space value got manipulated between exit_robust_list()
793 * and exit_pi_state_list()
795 * [6] Valid state after exit_pi_state_list() which sets the new owner in
796 * the pi_state but cannot access the user space value.
798 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
800 * [8] Owner and user space value match
802 * [9] There is no transient state which sets the user space TID to 0
803 * except exit_robust_list(), but this is indicated by the
804 * FUTEX_OWNER_DIED bit. See [4]
806 * [10] There is no transient state which leaves owner and user space
807 * TID out of sync.
811 * Validate that the existing waiter has a pi_state and sanity check
812 * the pi_state against the user space value. If correct, attach to
813 * it.
815 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
816 struct futex_pi_state **ps)
818 pid_t pid = uval & FUTEX_TID_MASK;
821 * Userspace might have messed up non-PI and PI futexes [3]
823 if (unlikely(!pi_state))
824 return -EINVAL;
826 WARN_ON(!atomic_read(&pi_state->refcount));
829 * Handle the owner died case:
831 if (uval & FUTEX_OWNER_DIED) {
833 * exit_pi_state_list sets owner to NULL and wakes the
834 * topmost waiter. The task which acquires the
835 * pi_state->rt_mutex will fixup owner.
837 if (!pi_state->owner) {
839 * No pi state owner, but the user space TID
840 * is not 0. Inconsistent state. [5]
842 if (pid)
843 return -EINVAL;
845 * Take a ref on the state and return success. [4]
847 goto out_state;
851 * If TID is 0, then either the dying owner has not
852 * yet executed exit_pi_state_list() or some waiter
853 * acquired the rtmutex in the pi state, but did not
854 * yet fixup the TID in user space.
856 * Take a ref on the state and return success. [6]
858 if (!pid)
859 goto out_state;
860 } else {
862 * If the owner died bit is not set, then the pi_state
863 * must have an owner. [7]
865 if (!pi_state->owner)
866 return -EINVAL;
870 * Bail out if user space manipulated the futex value. If pi
871 * state exists then the owner TID must be the same as the
872 * user space TID. [9/10]
874 if (pid != task_pid_vnr(pi_state->owner))
875 return -EINVAL;
876 out_state:
877 atomic_inc(&pi_state->refcount);
878 *ps = pi_state;
879 return 0;
883 * Lookup the task for the TID provided from user space and attach to
884 * it after doing proper sanity checks.
886 static int attach_to_pi_owner(u32 uval, union futex_key *key,
887 struct futex_pi_state **ps)
889 pid_t pid = uval & FUTEX_TID_MASK;
890 struct futex_pi_state *pi_state;
891 struct task_struct *p;
894 * We are the first waiter - try to look up the real owner and attach
895 * the new pi_state to it, but bail out when TID = 0 [1]
897 if (!pid)
898 return -ESRCH;
899 p = futex_find_get_task(pid);
900 if (!p)
901 return -ESRCH;
903 if (unlikely(p->flags & PF_KTHREAD)) {
904 put_task_struct(p);
905 return -EPERM;
909 * We need to look at the task state flags to figure out,
910 * whether the task is exiting. To protect against the do_exit
911 * change of the task flags, we do this protected by
912 * p->pi_lock:
914 raw_spin_lock_irq(&p->pi_lock);
915 if (unlikely(p->flags & PF_EXITING)) {
917 * The task is on the way out. When PF_EXITPIDONE is
918 * set, we know that the task has finished the
919 * cleanup:
921 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
923 raw_spin_unlock_irq(&p->pi_lock);
924 put_task_struct(p);
925 return ret;
929 * No existing pi state. First waiter. [2]
931 pi_state = alloc_pi_state();
934 * Initialize the pi_mutex in locked state and make @p
935 * the owner of it:
937 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
939 /* Store the key for possible exit cleanups: */
940 pi_state->key = *key;
942 WARN_ON(!list_empty(&pi_state->list));
943 list_add(&pi_state->list, &p->pi_state_list);
944 pi_state->owner = p;
945 raw_spin_unlock_irq(&p->pi_lock);
947 put_task_struct(p);
949 *ps = pi_state;
951 return 0;
954 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
955 union futex_key *key, struct futex_pi_state **ps)
957 struct futex_q *match = futex_top_waiter(hb, key);
960 * If there is a waiter on that futex, validate it and
961 * attach to the pi_state when the validation succeeds.
963 if (match)
964 return attach_to_pi_state(uval, match->pi_state, ps);
967 * We are the first waiter - try to look up the owner based on
968 * @uval and attach to it.
970 return attach_to_pi_owner(uval, key, ps);
973 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
975 u32 uninitialized_var(curval);
977 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
978 return -EFAULT;
980 /*If user space value changed, let the caller retry */
981 return curval != uval ? -EAGAIN : 0;
985 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
986 * @uaddr: the pi futex user address
987 * @hb: the pi futex hash bucket
988 * @key: the futex key associated with uaddr and hb
989 * @ps: the pi_state pointer where we store the result of the
990 * lookup
991 * @task: the task to perform the atomic lock work for. This will
992 * be "current" except in the case of requeue pi.
993 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
995 * Return:
996 * 0 - ready to wait;
997 * 1 - acquired the lock;
998 * <0 - error
1000 * The hb->lock and futex_key refs shall be held by the caller.
1002 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1003 union futex_key *key,
1004 struct futex_pi_state **ps,
1005 struct task_struct *task, int set_waiters)
1007 u32 uval, newval, vpid = task_pid_vnr(task);
1008 struct futex_q *match;
1009 int ret;
1012 * Read the user space value first so we can validate a few
1013 * things before proceeding further.
1015 if (get_futex_value_locked(&uval, uaddr))
1016 return -EFAULT;
1019 * Detect deadlocks.
1021 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1022 return -EDEADLK;
1025 * Lookup existing state first. If it exists, try to attach to
1026 * its pi_state.
1028 match = futex_top_waiter(hb, key);
1029 if (match)
1030 return attach_to_pi_state(uval, match->pi_state, ps);
1033 * No waiter and user TID is 0. We are here because the
1034 * waiters or the owner died bit is set or called from
1035 * requeue_cmp_pi or for whatever reason something took the
1036 * syscall.
1038 if (!(uval & FUTEX_TID_MASK)) {
1040 * We take over the futex. No other waiters and the user space
1041 * TID is 0. We preserve the owner died bit.
1043 newval = uval & FUTEX_OWNER_DIED;
1044 newval |= vpid;
1046 /* The futex requeue_pi code can enforce the waiters bit */
1047 if (set_waiters)
1048 newval |= FUTEX_WAITERS;
1050 ret = lock_pi_update_atomic(uaddr, uval, newval);
1051 /* If the take over worked, return 1 */
1052 return ret < 0 ? ret : 1;
1056 * First waiter. Set the waiters bit before attaching ourself to
1057 * the owner. If owner tries to unlock, it will be forced into
1058 * the kernel and blocked on hb->lock.
1060 newval = uval | FUTEX_WAITERS;
1061 ret = lock_pi_update_atomic(uaddr, uval, newval);
1062 if (ret)
1063 return ret;
1065 * If the update of the user space value succeeded, we try to
1066 * attach to the owner. If that fails, no harm done, we only
1067 * set the FUTEX_WAITERS bit in the user space variable.
1069 return attach_to_pi_owner(uval, key, ps);
1073 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1074 * @q: The futex_q to unqueue
1076 * The q->lock_ptr must not be NULL and must be held by the caller.
1078 static void __unqueue_futex(struct futex_q *q)
1080 struct futex_hash_bucket *hb;
1082 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1083 || WARN_ON(plist_node_empty(&q->list)))
1084 return;
1086 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1087 plist_del(&q->list, &hb->chain);
1088 hb_waiters_dec(hb);
1092 * The hash bucket lock must be held when this is called.
1093 * Afterwards, the futex_q must not be accessed. Callers
1094 * must ensure to later call wake_up_q() for the actual
1095 * wakeups to occur.
1097 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1099 struct task_struct *p = q->task;
1101 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1102 return;
1105 * Queue the task for later wakeup for after we've released
1106 * the hb->lock. wake_q_add() grabs reference to p.
1108 wake_q_add(wake_q, p);
1109 __unqueue_futex(q);
1111 * The waiting task can free the futex_q as soon as
1112 * q->lock_ptr = NULL is written, without taking any locks. A
1113 * memory barrier is required here to prevent the following
1114 * store to lock_ptr from getting ahead of the plist_del.
1116 smp_wmb();
1117 q->lock_ptr = NULL;
1120 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1121 struct futex_hash_bucket *hb)
1123 struct task_struct *new_owner;
1124 struct futex_pi_state *pi_state = this->pi_state;
1125 u32 uninitialized_var(curval), newval;
1126 WAKE_Q(wake_q);
1127 bool deboost;
1128 int ret = 0;
1130 if (!pi_state)
1131 return -EINVAL;
1134 * If current does not own the pi_state then the futex is
1135 * inconsistent and user space fiddled with the futex value.
1137 if (pi_state->owner != current)
1138 return -EINVAL;
1140 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1141 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1144 * It is possible that the next waiter (the one that brought
1145 * this owner to the kernel) timed out and is no longer
1146 * waiting on the lock.
1148 if (!new_owner)
1149 new_owner = this->task;
1152 * We pass it to the next owner. The WAITERS bit is always
1153 * kept enabled while there is PI state around. We cleanup the
1154 * owner died bit, because we are the owner.
1156 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1158 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1159 ret = -EFAULT;
1160 else if (curval != uval)
1161 ret = -EINVAL;
1162 if (ret) {
1163 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1164 return ret;
1167 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1168 WARN_ON(list_empty(&pi_state->list));
1169 list_del_init(&pi_state->list);
1170 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1172 raw_spin_lock_irq(&new_owner->pi_lock);
1173 WARN_ON(!list_empty(&pi_state->list));
1174 list_add(&pi_state->list, &new_owner->pi_state_list);
1175 pi_state->owner = new_owner;
1176 raw_spin_unlock_irq(&new_owner->pi_lock);
1178 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1180 deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1183 * First unlock HB so the waiter does not spin on it once he got woken
1184 * up. Second wake up the waiter before the priority is adjusted. If we
1185 * deboost first (and lose our higher priority), then the task might get
1186 * scheduled away before the wake up can take place.
1188 spin_unlock(&hb->lock);
1189 wake_up_q(&wake_q);
1190 if (deboost)
1191 rt_mutex_adjust_prio(current);
1193 return 0;
1197 * Express the locking dependencies for lockdep:
1199 static inline void
1200 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1202 if (hb1 <= hb2) {
1203 spin_lock(&hb1->lock);
1204 if (hb1 < hb2)
1205 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1206 } else { /* hb1 > hb2 */
1207 spin_lock(&hb2->lock);
1208 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1212 static inline void
1213 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1215 spin_unlock(&hb1->lock);
1216 if (hb1 != hb2)
1217 spin_unlock(&hb2->lock);
1221 * Wake up waiters matching bitset queued on this futex (uaddr).
1223 static int
1224 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1226 struct futex_hash_bucket *hb;
1227 struct futex_q *this, *next;
1228 union futex_key key = FUTEX_KEY_INIT;
1229 int ret;
1230 WAKE_Q(wake_q);
1232 if (!bitset)
1233 return -EINVAL;
1235 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1236 if (unlikely(ret != 0))
1237 goto out;
1239 hb = hash_futex(&key);
1241 /* Make sure we really have tasks to wakeup */
1242 if (!hb_waiters_pending(hb))
1243 goto out_put_key;
1245 spin_lock(&hb->lock);
1247 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1248 if (match_futex (&this->key, &key)) {
1249 if (this->pi_state || this->rt_waiter) {
1250 ret = -EINVAL;
1251 break;
1254 /* Check if one of the bits is set in both bitsets */
1255 if (!(this->bitset & bitset))
1256 continue;
1258 mark_wake_futex(&wake_q, this);
1259 if (++ret >= nr_wake)
1260 break;
1264 spin_unlock(&hb->lock);
1265 wake_up_q(&wake_q);
1266 out_put_key:
1267 put_futex_key(&key);
1268 out:
1269 return ret;
1273 * Wake up all waiters hashed on the physical page that is mapped
1274 * to this virtual address:
1276 static int
1277 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1278 int nr_wake, int nr_wake2, int op)
1280 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1281 struct futex_hash_bucket *hb1, *hb2;
1282 struct futex_q *this, *next;
1283 int ret, op_ret;
1284 WAKE_Q(wake_q);
1286 retry:
1287 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1288 if (unlikely(ret != 0))
1289 goto out;
1290 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1291 if (unlikely(ret != 0))
1292 goto out_put_key1;
1294 hb1 = hash_futex(&key1);
1295 hb2 = hash_futex(&key2);
1297 retry_private:
1298 double_lock_hb(hb1, hb2);
1299 op_ret = futex_atomic_op_inuser(op, uaddr2);
1300 if (unlikely(op_ret < 0)) {
1302 double_unlock_hb(hb1, hb2);
1304 #ifndef CONFIG_MMU
1306 * we don't get EFAULT from MMU faults if we don't have an MMU,
1307 * but we might get them from range checking
1309 ret = op_ret;
1310 goto out_put_keys;
1311 #endif
1313 if (unlikely(op_ret != -EFAULT)) {
1314 ret = op_ret;
1315 goto out_put_keys;
1318 ret = fault_in_user_writeable(uaddr2);
1319 if (ret)
1320 goto out_put_keys;
1322 if (!(flags & FLAGS_SHARED))
1323 goto retry_private;
1325 put_futex_key(&key2);
1326 put_futex_key(&key1);
1327 goto retry;
1330 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1331 if (match_futex (&this->key, &key1)) {
1332 if (this->pi_state || this->rt_waiter) {
1333 ret = -EINVAL;
1334 goto out_unlock;
1336 mark_wake_futex(&wake_q, this);
1337 if (++ret >= nr_wake)
1338 break;
1342 if (op_ret > 0) {
1343 op_ret = 0;
1344 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1345 if (match_futex (&this->key, &key2)) {
1346 if (this->pi_state || this->rt_waiter) {
1347 ret = -EINVAL;
1348 goto out_unlock;
1350 mark_wake_futex(&wake_q, this);
1351 if (++op_ret >= nr_wake2)
1352 break;
1355 ret += op_ret;
1358 out_unlock:
1359 double_unlock_hb(hb1, hb2);
1360 wake_up_q(&wake_q);
1361 out_put_keys:
1362 put_futex_key(&key2);
1363 out_put_key1:
1364 put_futex_key(&key1);
1365 out:
1366 return ret;
1370 * requeue_futex() - Requeue a futex_q from one hb to another
1371 * @q: the futex_q to requeue
1372 * @hb1: the source hash_bucket
1373 * @hb2: the target hash_bucket
1374 * @key2: the new key for the requeued futex_q
1376 static inline
1377 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1378 struct futex_hash_bucket *hb2, union futex_key *key2)
1382 * If key1 and key2 hash to the same bucket, no need to
1383 * requeue.
1385 if (likely(&hb1->chain != &hb2->chain)) {
1386 plist_del(&q->list, &hb1->chain);
1387 hb_waiters_dec(hb1);
1388 plist_add(&q->list, &hb2->chain);
1389 hb_waiters_inc(hb2);
1390 q->lock_ptr = &hb2->lock;
1392 get_futex_key_refs(key2);
1393 q->key = *key2;
1397 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1398 * @q: the futex_q
1399 * @key: the key of the requeue target futex
1400 * @hb: the hash_bucket of the requeue target futex
1402 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1403 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1404 * to the requeue target futex so the waiter can detect the wakeup on the right
1405 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1406 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1407 * to protect access to the pi_state to fixup the owner later. Must be called
1408 * with both q->lock_ptr and hb->lock held.
1410 static inline
1411 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1412 struct futex_hash_bucket *hb)
1414 get_futex_key_refs(key);
1415 q->key = *key;
1417 __unqueue_futex(q);
1419 WARN_ON(!q->rt_waiter);
1420 q->rt_waiter = NULL;
1422 q->lock_ptr = &hb->lock;
1424 wake_up_state(q->task, TASK_NORMAL);
1428 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1429 * @pifutex: the user address of the to futex
1430 * @hb1: the from futex hash bucket, must be locked by the caller
1431 * @hb2: the to futex hash bucket, must be locked by the caller
1432 * @key1: the from futex key
1433 * @key2: the to futex key
1434 * @ps: address to store the pi_state pointer
1435 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1437 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1438 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1439 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1440 * hb1 and hb2 must be held by the caller.
1442 * Return:
1443 * 0 - failed to acquire the lock atomically;
1444 * >0 - acquired the lock, return value is vpid of the top_waiter
1445 * <0 - error
1447 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1448 struct futex_hash_bucket *hb1,
1449 struct futex_hash_bucket *hb2,
1450 union futex_key *key1, union futex_key *key2,
1451 struct futex_pi_state **ps, int set_waiters)
1453 struct futex_q *top_waiter = NULL;
1454 u32 curval;
1455 int ret, vpid;
1457 if (get_futex_value_locked(&curval, pifutex))
1458 return -EFAULT;
1461 * Find the top_waiter and determine if there are additional waiters.
1462 * If the caller intends to requeue more than 1 waiter to pifutex,
1463 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1464 * as we have means to handle the possible fault. If not, don't set
1465 * the bit unecessarily as it will force the subsequent unlock to enter
1466 * the kernel.
1468 top_waiter = futex_top_waiter(hb1, key1);
1470 /* There are no waiters, nothing for us to do. */
1471 if (!top_waiter)
1472 return 0;
1474 /* Ensure we requeue to the expected futex. */
1475 if (!match_futex(top_waiter->requeue_pi_key, key2))
1476 return -EINVAL;
1479 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1480 * the contended case or if set_waiters is 1. The pi_state is returned
1481 * in ps in contended cases.
1483 vpid = task_pid_vnr(top_waiter->task);
1484 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1485 set_waiters);
1486 if (ret == 1) {
1487 requeue_pi_wake_futex(top_waiter, key2, hb2);
1488 return vpid;
1490 return ret;
1494 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1495 * @uaddr1: source futex user address
1496 * @flags: futex flags (FLAGS_SHARED, etc.)
1497 * @uaddr2: target futex user address
1498 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1499 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1500 * @cmpval: @uaddr1 expected value (or %NULL)
1501 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1502 * pi futex (pi to pi requeue is not supported)
1504 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1505 * uaddr2 atomically on behalf of the top waiter.
1507 * Return:
1508 * >=0 - on success, the number of tasks requeued or woken;
1509 * <0 - on error
1511 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1512 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1513 u32 *cmpval, int requeue_pi)
1515 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1516 int drop_count = 0, task_count = 0, ret;
1517 struct futex_pi_state *pi_state = NULL;
1518 struct futex_hash_bucket *hb1, *hb2;
1519 struct futex_q *this, *next;
1520 WAKE_Q(wake_q);
1522 if (requeue_pi) {
1524 * Requeue PI only works on two distinct uaddrs. This
1525 * check is only valid for private futexes. See below.
1527 if (uaddr1 == uaddr2)
1528 return -EINVAL;
1531 * requeue_pi requires a pi_state, try to allocate it now
1532 * without any locks in case it fails.
1534 if (refill_pi_state_cache())
1535 return -ENOMEM;
1537 * requeue_pi must wake as many tasks as it can, up to nr_wake
1538 * + nr_requeue, since it acquires the rt_mutex prior to
1539 * returning to userspace, so as to not leave the rt_mutex with
1540 * waiters and no owner. However, second and third wake-ups
1541 * cannot be predicted as they involve race conditions with the
1542 * first wake and a fault while looking up the pi_state. Both
1543 * pthread_cond_signal() and pthread_cond_broadcast() should
1544 * use nr_wake=1.
1546 if (nr_wake != 1)
1547 return -EINVAL;
1550 retry:
1551 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1552 if (unlikely(ret != 0))
1553 goto out;
1554 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1555 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1556 if (unlikely(ret != 0))
1557 goto out_put_key1;
1560 * The check above which compares uaddrs is not sufficient for
1561 * shared futexes. We need to compare the keys:
1563 if (requeue_pi && match_futex(&key1, &key2)) {
1564 ret = -EINVAL;
1565 goto out_put_keys;
1568 hb1 = hash_futex(&key1);
1569 hb2 = hash_futex(&key2);
1571 retry_private:
1572 hb_waiters_inc(hb2);
1573 double_lock_hb(hb1, hb2);
1575 if (likely(cmpval != NULL)) {
1576 u32 curval;
1578 ret = get_futex_value_locked(&curval, uaddr1);
1580 if (unlikely(ret)) {
1581 double_unlock_hb(hb1, hb2);
1582 hb_waiters_dec(hb2);
1584 ret = get_user(curval, uaddr1);
1585 if (ret)
1586 goto out_put_keys;
1588 if (!(flags & FLAGS_SHARED))
1589 goto retry_private;
1591 put_futex_key(&key2);
1592 put_futex_key(&key1);
1593 goto retry;
1595 if (curval != *cmpval) {
1596 ret = -EAGAIN;
1597 goto out_unlock;
1601 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1603 * Attempt to acquire uaddr2 and wake the top waiter. If we
1604 * intend to requeue waiters, force setting the FUTEX_WAITERS
1605 * bit. We force this here where we are able to easily handle
1606 * faults rather in the requeue loop below.
1608 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1609 &key2, &pi_state, nr_requeue);
1612 * At this point the top_waiter has either taken uaddr2 or is
1613 * waiting on it. If the former, then the pi_state will not
1614 * exist yet, look it up one more time to ensure we have a
1615 * reference to it. If the lock was taken, ret contains the
1616 * vpid of the top waiter task.
1618 if (ret > 0) {
1619 WARN_ON(pi_state);
1620 drop_count++;
1621 task_count++;
1623 * If we acquired the lock, then the user
1624 * space value of uaddr2 should be vpid. It
1625 * cannot be changed by the top waiter as it
1626 * is blocked on hb2 lock if it tries to do
1627 * so. If something fiddled with it behind our
1628 * back the pi state lookup might unearth
1629 * it. So we rather use the known value than
1630 * rereading and handing potential crap to
1631 * lookup_pi_state.
1633 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1636 switch (ret) {
1637 case 0:
1638 break;
1639 case -EFAULT:
1640 free_pi_state(pi_state);
1641 pi_state = NULL;
1642 double_unlock_hb(hb1, hb2);
1643 hb_waiters_dec(hb2);
1644 put_futex_key(&key2);
1645 put_futex_key(&key1);
1646 ret = fault_in_user_writeable(uaddr2);
1647 if (!ret)
1648 goto retry;
1649 goto out;
1650 case -EAGAIN:
1652 * Two reasons for this:
1653 * - Owner is exiting and we just wait for the
1654 * exit to complete.
1655 * - The user space value changed.
1657 free_pi_state(pi_state);
1658 pi_state = NULL;
1659 double_unlock_hb(hb1, hb2);
1660 hb_waiters_dec(hb2);
1661 put_futex_key(&key2);
1662 put_futex_key(&key1);
1663 cond_resched();
1664 goto retry;
1665 default:
1666 goto out_unlock;
1670 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1671 if (task_count - nr_wake >= nr_requeue)
1672 break;
1674 if (!match_futex(&this->key, &key1))
1675 continue;
1678 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1679 * be paired with each other and no other futex ops.
1681 * We should never be requeueing a futex_q with a pi_state,
1682 * which is awaiting a futex_unlock_pi().
1684 if ((requeue_pi && !this->rt_waiter) ||
1685 (!requeue_pi && this->rt_waiter) ||
1686 this->pi_state) {
1687 ret = -EINVAL;
1688 break;
1692 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1693 * lock, we already woke the top_waiter. If not, it will be
1694 * woken by futex_unlock_pi().
1696 if (++task_count <= nr_wake && !requeue_pi) {
1697 mark_wake_futex(&wake_q, this);
1698 continue;
1701 /* Ensure we requeue to the expected futex for requeue_pi. */
1702 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1703 ret = -EINVAL;
1704 break;
1708 * Requeue nr_requeue waiters and possibly one more in the case
1709 * of requeue_pi if we couldn't acquire the lock atomically.
1711 if (requeue_pi) {
1712 /* Prepare the waiter to take the rt_mutex. */
1713 atomic_inc(&pi_state->refcount);
1714 this->pi_state = pi_state;
1715 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1716 this->rt_waiter,
1717 this->task);
1718 if (ret == 1) {
1719 /* We got the lock. */
1720 requeue_pi_wake_futex(this, &key2, hb2);
1721 drop_count++;
1722 continue;
1723 } else if (ret) {
1724 /* -EDEADLK */
1725 this->pi_state = NULL;
1726 free_pi_state(pi_state);
1727 goto out_unlock;
1730 requeue_futex(this, hb1, hb2, &key2);
1731 drop_count++;
1734 out_unlock:
1735 free_pi_state(pi_state);
1736 double_unlock_hb(hb1, hb2);
1737 wake_up_q(&wake_q);
1738 hb_waiters_dec(hb2);
1741 * drop_futex_key_refs() must be called outside the spinlocks. During
1742 * the requeue we moved futex_q's from the hash bucket at key1 to the
1743 * one at key2 and updated their key pointer. We no longer need to
1744 * hold the references to key1.
1746 while (--drop_count >= 0)
1747 drop_futex_key_refs(&key1);
1749 out_put_keys:
1750 put_futex_key(&key2);
1751 out_put_key1:
1752 put_futex_key(&key1);
1753 out:
1754 return ret ? ret : task_count;
1757 /* The key must be already stored in q->key. */
1758 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1759 __acquires(&hb->lock)
1761 struct futex_hash_bucket *hb;
1763 hb = hash_futex(&q->key);
1766 * Increment the counter before taking the lock so that
1767 * a potential waker won't miss a to-be-slept task that is
1768 * waiting for the spinlock. This is safe as all queue_lock()
1769 * users end up calling queue_me(). Similarly, for housekeeping,
1770 * decrement the counter at queue_unlock() when some error has
1771 * occurred and we don't end up adding the task to the list.
1773 hb_waiters_inc(hb);
1775 q->lock_ptr = &hb->lock;
1777 spin_lock(&hb->lock); /* implies MB (A) */
1778 return hb;
1781 static inline void
1782 queue_unlock(struct futex_hash_bucket *hb)
1783 __releases(&hb->lock)
1785 spin_unlock(&hb->lock);
1786 hb_waiters_dec(hb);
1790 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1791 * @q: The futex_q to enqueue
1792 * @hb: The destination hash bucket
1794 * The hb->lock must be held by the caller, and is released here. A call to
1795 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1796 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1797 * or nothing if the unqueue is done as part of the wake process and the unqueue
1798 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1799 * an example).
1801 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1802 __releases(&hb->lock)
1804 int prio;
1807 * The priority used to register this element is
1808 * - either the real thread-priority for the real-time threads
1809 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1810 * - or MAX_RT_PRIO for non-RT threads.
1811 * Thus, all RT-threads are woken first in priority order, and
1812 * the others are woken last, in FIFO order.
1814 prio = min(current->normal_prio, MAX_RT_PRIO);
1816 plist_node_init(&q->list, prio);
1817 plist_add(&q->list, &hb->chain);
1818 q->task = current;
1819 spin_unlock(&hb->lock);
1823 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1824 * @q: The futex_q to unqueue
1826 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1827 * be paired with exactly one earlier call to queue_me().
1829 * Return:
1830 * 1 - if the futex_q was still queued (and we removed unqueued it);
1831 * 0 - if the futex_q was already removed by the waking thread
1833 static int unqueue_me(struct futex_q *q)
1835 spinlock_t *lock_ptr;
1836 int ret = 0;
1838 /* In the common case we don't take the spinlock, which is nice. */
1839 retry:
1840 lock_ptr = q->lock_ptr;
1841 barrier();
1842 if (lock_ptr != NULL) {
1843 spin_lock(lock_ptr);
1845 * q->lock_ptr can change between reading it and
1846 * spin_lock(), causing us to take the wrong lock. This
1847 * corrects the race condition.
1849 * Reasoning goes like this: if we have the wrong lock,
1850 * q->lock_ptr must have changed (maybe several times)
1851 * between reading it and the spin_lock(). It can
1852 * change again after the spin_lock() but only if it was
1853 * already changed before the spin_lock(). It cannot,
1854 * however, change back to the original value. Therefore
1855 * we can detect whether we acquired the correct lock.
1857 if (unlikely(lock_ptr != q->lock_ptr)) {
1858 spin_unlock(lock_ptr);
1859 goto retry;
1861 __unqueue_futex(q);
1863 BUG_ON(q->pi_state);
1865 spin_unlock(lock_ptr);
1866 ret = 1;
1869 drop_futex_key_refs(&q->key);
1870 return ret;
1874 * PI futexes can not be requeued and must remove themself from the
1875 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1876 * and dropped here.
1878 static void unqueue_me_pi(struct futex_q *q)
1879 __releases(q->lock_ptr)
1881 __unqueue_futex(q);
1883 BUG_ON(!q->pi_state);
1884 free_pi_state(q->pi_state);
1885 q->pi_state = NULL;
1887 spin_unlock(q->lock_ptr);
1891 * Fixup the pi_state owner with the new owner.
1893 * Must be called with hash bucket lock held and mm->sem held for non
1894 * private futexes.
1896 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1897 struct task_struct *newowner)
1899 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1900 struct futex_pi_state *pi_state = q->pi_state;
1901 struct task_struct *oldowner = pi_state->owner;
1902 u32 uval, uninitialized_var(curval), newval;
1903 int ret;
1905 /* Owner died? */
1906 if (!pi_state->owner)
1907 newtid |= FUTEX_OWNER_DIED;
1910 * We are here either because we stole the rtmutex from the
1911 * previous highest priority waiter or we are the highest priority
1912 * waiter but failed to get the rtmutex the first time.
1913 * We have to replace the newowner TID in the user space variable.
1914 * This must be atomic as we have to preserve the owner died bit here.
1916 * Note: We write the user space value _before_ changing the pi_state
1917 * because we can fault here. Imagine swapped out pages or a fork
1918 * that marked all the anonymous memory readonly for cow.
1920 * Modifying pi_state _before_ the user space value would
1921 * leave the pi_state in an inconsistent state when we fault
1922 * here, because we need to drop the hash bucket lock to
1923 * handle the fault. This might be observed in the PID check
1924 * in lookup_pi_state.
1926 retry:
1927 if (get_futex_value_locked(&uval, uaddr))
1928 goto handle_fault;
1930 while (1) {
1931 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1933 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1934 goto handle_fault;
1935 if (curval == uval)
1936 break;
1937 uval = curval;
1941 * We fixed up user space. Now we need to fix the pi_state
1942 * itself.
1944 if (pi_state->owner != NULL) {
1945 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1946 WARN_ON(list_empty(&pi_state->list));
1947 list_del_init(&pi_state->list);
1948 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1951 pi_state->owner = newowner;
1953 raw_spin_lock_irq(&newowner->pi_lock);
1954 WARN_ON(!list_empty(&pi_state->list));
1955 list_add(&pi_state->list, &newowner->pi_state_list);
1956 raw_spin_unlock_irq(&newowner->pi_lock);
1957 return 0;
1960 * To handle the page fault we need to drop the hash bucket
1961 * lock here. That gives the other task (either the highest priority
1962 * waiter itself or the task which stole the rtmutex) the
1963 * chance to try the fixup of the pi_state. So once we are
1964 * back from handling the fault we need to check the pi_state
1965 * after reacquiring the hash bucket lock and before trying to
1966 * do another fixup. When the fixup has been done already we
1967 * simply return.
1969 handle_fault:
1970 spin_unlock(q->lock_ptr);
1972 ret = fault_in_user_writeable(uaddr);
1974 spin_lock(q->lock_ptr);
1977 * Check if someone else fixed it for us:
1979 if (pi_state->owner != oldowner)
1980 return 0;
1982 if (ret)
1983 return ret;
1985 goto retry;
1988 static long futex_wait_restart(struct restart_block *restart);
1991 * fixup_owner() - Post lock pi_state and corner case management
1992 * @uaddr: user address of the futex
1993 * @q: futex_q (contains pi_state and access to the rt_mutex)
1994 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1996 * After attempting to lock an rt_mutex, this function is called to cleanup
1997 * the pi_state owner as well as handle race conditions that may allow us to
1998 * acquire the lock. Must be called with the hb lock held.
2000 * Return:
2001 * 1 - success, lock taken;
2002 * 0 - success, lock not taken;
2003 * <0 - on error (-EFAULT)
2005 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2007 struct task_struct *owner;
2008 int ret = 0;
2010 if (locked) {
2012 * Got the lock. We might not be the anticipated owner if we
2013 * did a lock-steal - fix up the PI-state in that case:
2015 if (q->pi_state->owner != current)
2016 ret = fixup_pi_state_owner(uaddr, q, current);
2017 goto out;
2021 * Catch the rare case, where the lock was released when we were on the
2022 * way back before we locked the hash bucket.
2024 if (q->pi_state->owner == current) {
2026 * Try to get the rt_mutex now. This might fail as some other
2027 * task acquired the rt_mutex after we removed ourself from the
2028 * rt_mutex waiters list.
2030 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2031 locked = 1;
2032 goto out;
2036 * pi_state is incorrect, some other task did a lock steal and
2037 * we returned due to timeout or signal without taking the
2038 * rt_mutex. Too late.
2040 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2041 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2042 if (!owner)
2043 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2044 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2045 ret = fixup_pi_state_owner(uaddr, q, owner);
2046 goto out;
2050 * Paranoia check. If we did not take the lock, then we should not be
2051 * the owner of the rt_mutex.
2053 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2054 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2055 "pi-state %p\n", ret,
2056 q->pi_state->pi_mutex.owner,
2057 q->pi_state->owner);
2059 out:
2060 return ret ? ret : locked;
2064 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2065 * @hb: the futex hash bucket, must be locked by the caller
2066 * @q: the futex_q to queue up on
2067 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2069 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2070 struct hrtimer_sleeper *timeout)
2073 * The task state is guaranteed to be set before another task can
2074 * wake it. set_current_state() is implemented using smp_store_mb() and
2075 * queue_me() calls spin_unlock() upon completion, both serializing
2076 * access to the hash list and forcing another memory barrier.
2078 set_current_state(TASK_INTERRUPTIBLE);
2079 queue_me(q, hb);
2081 /* Arm the timer */
2082 if (timeout)
2083 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2086 * If we have been removed from the hash list, then another task
2087 * has tried to wake us, and we can skip the call to schedule().
2089 if (likely(!plist_node_empty(&q->list))) {
2091 * If the timer has already expired, current will already be
2092 * flagged for rescheduling. Only call schedule if there
2093 * is no timeout, or if it has yet to expire.
2095 if (!timeout || timeout->task)
2096 freezable_schedule();
2098 __set_current_state(TASK_RUNNING);
2102 * futex_wait_setup() - Prepare to wait on a futex
2103 * @uaddr: the futex userspace address
2104 * @val: the expected value
2105 * @flags: futex flags (FLAGS_SHARED, etc.)
2106 * @q: the associated futex_q
2107 * @hb: storage for hash_bucket pointer to be returned to caller
2109 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2110 * compare it with the expected value. Handle atomic faults internally.
2111 * Return with the hb lock held and a q.key reference on success, and unlocked
2112 * with no q.key reference on failure.
2114 * Return:
2115 * 0 - uaddr contains val and hb has been locked;
2116 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2118 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2119 struct futex_q *q, struct futex_hash_bucket **hb)
2121 u32 uval;
2122 int ret;
2125 * Access the page AFTER the hash-bucket is locked.
2126 * Order is important:
2128 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2129 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2131 * The basic logical guarantee of a futex is that it blocks ONLY
2132 * if cond(var) is known to be true at the time of blocking, for
2133 * any cond. If we locked the hash-bucket after testing *uaddr, that
2134 * would open a race condition where we could block indefinitely with
2135 * cond(var) false, which would violate the guarantee.
2137 * On the other hand, we insert q and release the hash-bucket only
2138 * after testing *uaddr. This guarantees that futex_wait() will NOT
2139 * absorb a wakeup if *uaddr does not match the desired values
2140 * while the syscall executes.
2142 retry:
2143 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2144 if (unlikely(ret != 0))
2145 return ret;
2147 retry_private:
2148 *hb = queue_lock(q);
2150 ret = get_futex_value_locked(&uval, uaddr);
2152 if (ret) {
2153 queue_unlock(*hb);
2155 ret = get_user(uval, uaddr);
2156 if (ret)
2157 goto out;
2159 if (!(flags & FLAGS_SHARED))
2160 goto retry_private;
2162 put_futex_key(&q->key);
2163 goto retry;
2166 if (uval != val) {
2167 queue_unlock(*hb);
2168 ret = -EWOULDBLOCK;
2171 out:
2172 if (ret)
2173 put_futex_key(&q->key);
2174 return ret;
2177 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2178 ktime_t *abs_time, u32 bitset)
2180 struct hrtimer_sleeper timeout, *to = NULL;
2181 struct restart_block *restart;
2182 struct futex_hash_bucket *hb;
2183 struct futex_q q = futex_q_init;
2184 int ret;
2186 if (!bitset)
2187 return -EINVAL;
2188 q.bitset = bitset;
2190 if (abs_time) {
2191 to = &timeout;
2193 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2194 CLOCK_REALTIME : CLOCK_MONOTONIC,
2195 HRTIMER_MODE_ABS);
2196 hrtimer_init_sleeper(to, current);
2197 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2198 current->timer_slack_ns);
2201 retry:
2203 * Prepare to wait on uaddr. On success, holds hb lock and increments
2204 * q.key refs.
2206 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2207 if (ret)
2208 goto out;
2210 /* queue_me and wait for wakeup, timeout, or a signal. */
2211 futex_wait_queue_me(hb, &q, to);
2213 /* If we were woken (and unqueued), we succeeded, whatever. */
2214 ret = 0;
2215 /* unqueue_me() drops q.key ref */
2216 if (!unqueue_me(&q))
2217 goto out;
2218 ret = -ETIMEDOUT;
2219 if (to && !to->task)
2220 goto out;
2223 * We expect signal_pending(current), but we might be the
2224 * victim of a spurious wakeup as well.
2226 if (!signal_pending(current))
2227 goto retry;
2229 ret = -ERESTARTSYS;
2230 if (!abs_time)
2231 goto out;
2233 restart = &current->restart_block;
2234 restart->fn = futex_wait_restart;
2235 restart->futex.uaddr = uaddr;
2236 restart->futex.val = val;
2237 restart->futex.time = abs_time->tv64;
2238 restart->futex.bitset = bitset;
2239 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2241 ret = -ERESTART_RESTARTBLOCK;
2243 out:
2244 if (to) {
2245 hrtimer_cancel(&to->timer);
2246 destroy_hrtimer_on_stack(&to->timer);
2248 return ret;
2252 static long futex_wait_restart(struct restart_block *restart)
2254 u32 __user *uaddr = restart->futex.uaddr;
2255 ktime_t t, *tp = NULL;
2257 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2258 t.tv64 = restart->futex.time;
2259 tp = &t;
2261 restart->fn = do_no_restart_syscall;
2263 return (long)futex_wait(uaddr, restart->futex.flags,
2264 restart->futex.val, tp, restart->futex.bitset);
2269 * Userspace tried a 0 -> TID atomic transition of the futex value
2270 * and failed. The kernel side here does the whole locking operation:
2271 * if there are waiters then it will block, it does PI, etc. (Due to
2272 * races the kernel might see a 0 value of the futex too.)
2274 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2275 ktime_t *time, int trylock)
2277 struct hrtimer_sleeper timeout, *to = NULL;
2278 struct futex_hash_bucket *hb;
2279 struct futex_q q = futex_q_init;
2280 int res, ret;
2282 if (refill_pi_state_cache())
2283 return -ENOMEM;
2285 if (time) {
2286 to = &timeout;
2287 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2288 HRTIMER_MODE_ABS);
2289 hrtimer_init_sleeper(to, current);
2290 hrtimer_set_expires(&to->timer, *time);
2293 retry:
2294 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2295 if (unlikely(ret != 0))
2296 goto out;
2298 retry_private:
2299 hb = queue_lock(&q);
2301 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2302 if (unlikely(ret)) {
2303 switch (ret) {
2304 case 1:
2305 /* We got the lock. */
2306 ret = 0;
2307 goto out_unlock_put_key;
2308 case -EFAULT:
2309 goto uaddr_faulted;
2310 case -EAGAIN:
2312 * Two reasons for this:
2313 * - Task is exiting and we just wait for the
2314 * exit to complete.
2315 * - The user space value changed.
2317 queue_unlock(hb);
2318 put_futex_key(&q.key);
2319 cond_resched();
2320 goto retry;
2321 default:
2322 goto out_unlock_put_key;
2327 * Only actually queue now that the atomic ops are done:
2329 queue_me(&q, hb);
2331 WARN_ON(!q.pi_state);
2333 * Block on the PI mutex:
2335 if (!trylock) {
2336 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2337 } else {
2338 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2339 /* Fixup the trylock return value: */
2340 ret = ret ? 0 : -EWOULDBLOCK;
2343 spin_lock(q.lock_ptr);
2345 * Fixup the pi_state owner and possibly acquire the lock if we
2346 * haven't already.
2348 res = fixup_owner(uaddr, &q, !ret);
2350 * If fixup_owner() returned an error, proprogate that. If it acquired
2351 * the lock, clear our -ETIMEDOUT or -EINTR.
2353 if (res)
2354 ret = (res < 0) ? res : 0;
2357 * If fixup_owner() faulted and was unable to handle the fault, unlock
2358 * it and return the fault to userspace.
2360 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2361 rt_mutex_unlock(&q.pi_state->pi_mutex);
2363 /* Unqueue and drop the lock */
2364 unqueue_me_pi(&q);
2366 goto out_put_key;
2368 out_unlock_put_key:
2369 queue_unlock(hb);
2371 out_put_key:
2372 put_futex_key(&q.key);
2373 out:
2374 if (to)
2375 destroy_hrtimer_on_stack(&to->timer);
2376 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2378 uaddr_faulted:
2379 queue_unlock(hb);
2381 ret = fault_in_user_writeable(uaddr);
2382 if (ret)
2383 goto out_put_key;
2385 if (!(flags & FLAGS_SHARED))
2386 goto retry_private;
2388 put_futex_key(&q.key);
2389 goto retry;
2393 * Userspace attempted a TID -> 0 atomic transition, and failed.
2394 * This is the in-kernel slowpath: we look up the PI state (if any),
2395 * and do the rt-mutex unlock.
2397 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2399 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2400 union futex_key key = FUTEX_KEY_INIT;
2401 struct futex_hash_bucket *hb;
2402 struct futex_q *match;
2403 int ret;
2405 retry:
2406 if (get_user(uval, uaddr))
2407 return -EFAULT;
2409 * We release only a lock we actually own:
2411 if ((uval & FUTEX_TID_MASK) != vpid)
2412 return -EPERM;
2414 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2415 if (ret)
2416 return ret;
2418 hb = hash_futex(&key);
2419 spin_lock(&hb->lock);
2422 * Check waiters first. We do not trust user space values at
2423 * all and we at least want to know if user space fiddled
2424 * with the futex value instead of blindly unlocking.
2426 match = futex_top_waiter(hb, &key);
2427 if (match) {
2428 ret = wake_futex_pi(uaddr, uval, match, hb);
2430 * In case of success wake_futex_pi dropped the hash
2431 * bucket lock.
2433 if (!ret)
2434 goto out_putkey;
2436 * The atomic access to the futex value generated a
2437 * pagefault, so retry the user-access and the wakeup:
2439 if (ret == -EFAULT)
2440 goto pi_faulted;
2442 * wake_futex_pi has detected invalid state. Tell user
2443 * space.
2445 goto out_unlock;
2449 * We have no kernel internal state, i.e. no waiters in the
2450 * kernel. Waiters which are about to queue themselves are stuck
2451 * on hb->lock. So we can safely ignore them. We do neither
2452 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2453 * owner.
2455 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2456 goto pi_faulted;
2459 * If uval has changed, let user space handle it.
2461 ret = (curval == uval) ? 0 : -EAGAIN;
2463 out_unlock:
2464 spin_unlock(&hb->lock);
2465 out_putkey:
2466 put_futex_key(&key);
2467 return ret;
2469 pi_faulted:
2470 spin_unlock(&hb->lock);
2471 put_futex_key(&key);
2473 ret = fault_in_user_writeable(uaddr);
2474 if (!ret)
2475 goto retry;
2477 return ret;
2481 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2482 * @hb: the hash_bucket futex_q was original enqueued on
2483 * @q: the futex_q woken while waiting to be requeued
2484 * @key2: the futex_key of the requeue target futex
2485 * @timeout: the timeout associated with the wait (NULL if none)
2487 * Detect if the task was woken on the initial futex as opposed to the requeue
2488 * target futex. If so, determine if it was a timeout or a signal that caused
2489 * the wakeup and return the appropriate error code to the caller. Must be
2490 * called with the hb lock held.
2492 * Return:
2493 * 0 = no early wakeup detected;
2494 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2496 static inline
2497 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2498 struct futex_q *q, union futex_key *key2,
2499 struct hrtimer_sleeper *timeout)
2501 int ret = 0;
2504 * With the hb lock held, we avoid races while we process the wakeup.
2505 * We only need to hold hb (and not hb2) to ensure atomicity as the
2506 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2507 * It can't be requeued from uaddr2 to something else since we don't
2508 * support a PI aware source futex for requeue.
2510 if (!match_futex(&q->key, key2)) {
2511 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2513 * We were woken prior to requeue by a timeout or a signal.
2514 * Unqueue the futex_q and determine which it was.
2516 plist_del(&q->list, &hb->chain);
2517 hb_waiters_dec(hb);
2519 /* Handle spurious wakeups gracefully */
2520 ret = -EWOULDBLOCK;
2521 if (timeout && !timeout->task)
2522 ret = -ETIMEDOUT;
2523 else if (signal_pending(current))
2524 ret = -ERESTARTNOINTR;
2526 return ret;
2530 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2531 * @uaddr: the futex we initially wait on (non-pi)
2532 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2533 * the same type, no requeueing from private to shared, etc.
2534 * @val: the expected value of uaddr
2535 * @abs_time: absolute timeout
2536 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2537 * @uaddr2: the pi futex we will take prior to returning to user-space
2539 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2540 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2541 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2542 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2543 * without one, the pi logic would not know which task to boost/deboost, if
2544 * there was a need to.
2546 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2547 * via the following--
2548 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2549 * 2) wakeup on uaddr2 after a requeue
2550 * 3) signal
2551 * 4) timeout
2553 * If 3, cleanup and return -ERESTARTNOINTR.
2555 * If 2, we may then block on trying to take the rt_mutex and return via:
2556 * 5) successful lock
2557 * 6) signal
2558 * 7) timeout
2559 * 8) other lock acquisition failure
2561 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2563 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2565 * Return:
2566 * 0 - On success;
2567 * <0 - On error
2569 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2570 u32 val, ktime_t *abs_time, u32 bitset,
2571 u32 __user *uaddr2)
2573 struct hrtimer_sleeper timeout, *to = NULL;
2574 struct rt_mutex_waiter rt_waiter;
2575 struct rt_mutex *pi_mutex = NULL;
2576 struct futex_hash_bucket *hb;
2577 union futex_key key2 = FUTEX_KEY_INIT;
2578 struct futex_q q = futex_q_init;
2579 int res, ret;
2581 if (uaddr == uaddr2)
2582 return -EINVAL;
2584 if (!bitset)
2585 return -EINVAL;
2587 if (abs_time) {
2588 to = &timeout;
2589 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2590 CLOCK_REALTIME : CLOCK_MONOTONIC,
2591 HRTIMER_MODE_ABS);
2592 hrtimer_init_sleeper(to, current);
2593 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2594 current->timer_slack_ns);
2598 * The waiter is allocated on our stack, manipulated by the requeue
2599 * code while we sleep on uaddr.
2601 debug_rt_mutex_init_waiter(&rt_waiter);
2602 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2603 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2604 rt_waiter.task = NULL;
2606 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2607 if (unlikely(ret != 0))
2608 goto out;
2610 q.bitset = bitset;
2611 q.rt_waiter = &rt_waiter;
2612 q.requeue_pi_key = &key2;
2615 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2616 * count.
2618 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2619 if (ret)
2620 goto out_key2;
2623 * The check above which compares uaddrs is not sufficient for
2624 * shared futexes. We need to compare the keys:
2626 if (match_futex(&q.key, &key2)) {
2627 queue_unlock(hb);
2628 ret = -EINVAL;
2629 goto out_put_keys;
2632 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2633 futex_wait_queue_me(hb, &q, to);
2635 spin_lock(&hb->lock);
2636 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2637 spin_unlock(&hb->lock);
2638 if (ret)
2639 goto out_put_keys;
2642 * In order for us to be here, we know our q.key == key2, and since
2643 * we took the hb->lock above, we also know that futex_requeue() has
2644 * completed and we no longer have to concern ourselves with a wakeup
2645 * race with the atomic proxy lock acquisition by the requeue code. The
2646 * futex_requeue dropped our key1 reference and incremented our key2
2647 * reference count.
2650 /* Check if the requeue code acquired the second futex for us. */
2651 if (!q.rt_waiter) {
2653 * Got the lock. We might not be the anticipated owner if we
2654 * did a lock-steal - fix up the PI-state in that case.
2656 if (q.pi_state && (q.pi_state->owner != current)) {
2657 spin_lock(q.lock_ptr);
2658 ret = fixup_pi_state_owner(uaddr2, &q, current);
2659 spin_unlock(q.lock_ptr);
2661 } else {
2663 * We have been woken up by futex_unlock_pi(), a timeout, or a
2664 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2665 * the pi_state.
2667 WARN_ON(!q.pi_state);
2668 pi_mutex = &q.pi_state->pi_mutex;
2669 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2670 debug_rt_mutex_free_waiter(&rt_waiter);
2672 spin_lock(q.lock_ptr);
2674 * Fixup the pi_state owner and possibly acquire the lock if we
2675 * haven't already.
2677 res = fixup_owner(uaddr2, &q, !ret);
2679 * If fixup_owner() returned an error, proprogate that. If it
2680 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2682 if (res)
2683 ret = (res < 0) ? res : 0;
2685 /* Unqueue and drop the lock. */
2686 unqueue_me_pi(&q);
2690 * If fixup_pi_state_owner() faulted and was unable to handle the
2691 * fault, unlock the rt_mutex and return the fault to userspace.
2693 if (ret == -EFAULT) {
2694 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2695 rt_mutex_unlock(pi_mutex);
2696 } else if (ret == -EINTR) {
2698 * We've already been requeued, but cannot restart by calling
2699 * futex_lock_pi() directly. We could restart this syscall, but
2700 * it would detect that the user space "val" changed and return
2701 * -EWOULDBLOCK. Save the overhead of the restart and return
2702 * -EWOULDBLOCK directly.
2704 ret = -EWOULDBLOCK;
2707 out_put_keys:
2708 put_futex_key(&q.key);
2709 out_key2:
2710 put_futex_key(&key2);
2712 out:
2713 if (to) {
2714 hrtimer_cancel(&to->timer);
2715 destroy_hrtimer_on_stack(&to->timer);
2717 return ret;
2721 * Support for robust futexes: the kernel cleans up held futexes at
2722 * thread exit time.
2724 * Implementation: user-space maintains a per-thread list of locks it
2725 * is holding. Upon do_exit(), the kernel carefully walks this list,
2726 * and marks all locks that are owned by this thread with the
2727 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2728 * always manipulated with the lock held, so the list is private and
2729 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2730 * field, to allow the kernel to clean up if the thread dies after
2731 * acquiring the lock, but just before it could have added itself to
2732 * the list. There can only be one such pending lock.
2736 * sys_set_robust_list() - Set the robust-futex list head of a task
2737 * @head: pointer to the list-head
2738 * @len: length of the list-head, as userspace expects
2740 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2741 size_t, len)
2743 if (!futex_cmpxchg_enabled)
2744 return -ENOSYS;
2746 * The kernel knows only one size for now:
2748 if (unlikely(len != sizeof(*head)))
2749 return -EINVAL;
2751 current->robust_list = head;
2753 return 0;
2757 * sys_get_robust_list() - Get the robust-futex list head of a task
2758 * @pid: pid of the process [zero for current task]
2759 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2760 * @len_ptr: pointer to a length field, the kernel fills in the header size
2762 SYSCALL_DEFINE3(get_robust_list, int, pid,
2763 struct robust_list_head __user * __user *, head_ptr,
2764 size_t __user *, len_ptr)
2766 struct robust_list_head __user *head;
2767 unsigned long ret;
2768 struct task_struct *p;
2770 if (!futex_cmpxchg_enabled)
2771 return -ENOSYS;
2773 rcu_read_lock();
2775 ret = -ESRCH;
2776 if (!pid)
2777 p = current;
2778 else {
2779 p = find_task_by_vpid(pid);
2780 if (!p)
2781 goto err_unlock;
2784 ret = -EPERM;
2785 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2786 goto err_unlock;
2788 head = p->robust_list;
2789 rcu_read_unlock();
2791 if (put_user(sizeof(*head), len_ptr))
2792 return -EFAULT;
2793 return put_user(head, head_ptr);
2795 err_unlock:
2796 rcu_read_unlock();
2798 return ret;
2802 * Process a futex-list entry, check whether it's owned by the
2803 * dying task, and do notification if so:
2805 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2807 u32 uval, uninitialized_var(nval), mval;
2809 retry:
2810 if (get_user(uval, uaddr))
2811 return -1;
2813 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2815 * Ok, this dying thread is truly holding a futex
2816 * of interest. Set the OWNER_DIED bit atomically
2817 * via cmpxchg, and if the value had FUTEX_WAITERS
2818 * set, wake up a waiter (if any). (We have to do a
2819 * futex_wake() even if OWNER_DIED is already set -
2820 * to handle the rare but possible case of recursive
2821 * thread-death.) The rest of the cleanup is done in
2822 * userspace.
2824 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2826 * We are not holding a lock here, but we want to have
2827 * the pagefault_disable/enable() protection because
2828 * we want to handle the fault gracefully. If the
2829 * access fails we try to fault in the futex with R/W
2830 * verification via get_user_pages. get_user() above
2831 * does not guarantee R/W access. If that fails we
2832 * give up and leave the futex locked.
2834 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2835 if (fault_in_user_writeable(uaddr))
2836 return -1;
2837 goto retry;
2839 if (nval != uval)
2840 goto retry;
2843 * Wake robust non-PI futexes here. The wakeup of
2844 * PI futexes happens in exit_pi_state():
2846 if (!pi && (uval & FUTEX_WAITERS))
2847 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2849 return 0;
2853 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2855 static inline int fetch_robust_entry(struct robust_list __user **entry,
2856 struct robust_list __user * __user *head,
2857 unsigned int *pi)
2859 unsigned long uentry;
2861 if (get_user(uentry, (unsigned long __user *)head))
2862 return -EFAULT;
2864 *entry = (void __user *)(uentry & ~1UL);
2865 *pi = uentry & 1;
2867 return 0;
2871 * Walk curr->robust_list (very carefully, it's a userspace list!)
2872 * and mark any locks found there dead, and notify any waiters.
2874 * We silently return on any sign of list-walking problem.
2876 void exit_robust_list(struct task_struct *curr)
2878 struct robust_list_head __user *head = curr->robust_list;
2879 struct robust_list __user *entry, *next_entry, *pending;
2880 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2881 unsigned int uninitialized_var(next_pi);
2882 unsigned long futex_offset;
2883 int rc;
2885 if (!futex_cmpxchg_enabled)
2886 return;
2889 * Fetch the list head (which was registered earlier, via
2890 * sys_set_robust_list()):
2892 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2893 return;
2895 * Fetch the relative futex offset:
2897 if (get_user(futex_offset, &head->futex_offset))
2898 return;
2900 * Fetch any possibly pending lock-add first, and handle it
2901 * if it exists:
2903 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2904 return;
2906 next_entry = NULL; /* avoid warning with gcc */
2907 while (entry != &head->list) {
2909 * Fetch the next entry in the list before calling
2910 * handle_futex_death:
2912 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2914 * A pending lock might already be on the list, so
2915 * don't process it twice:
2917 if (entry != pending)
2918 if (handle_futex_death((void __user *)entry + futex_offset,
2919 curr, pi))
2920 return;
2921 if (rc)
2922 return;
2923 entry = next_entry;
2924 pi = next_pi;
2926 * Avoid excessively long or circular lists:
2928 if (!--limit)
2929 break;
2931 cond_resched();
2934 if (pending)
2935 handle_futex_death((void __user *)pending + futex_offset,
2936 curr, pip);
2939 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2940 u32 __user *uaddr2, u32 val2, u32 val3)
2942 int cmd = op & FUTEX_CMD_MASK;
2943 unsigned int flags = 0;
2945 if (!(op & FUTEX_PRIVATE_FLAG))
2946 flags |= FLAGS_SHARED;
2948 if (op & FUTEX_CLOCK_REALTIME) {
2949 flags |= FLAGS_CLOCKRT;
2950 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2951 return -ENOSYS;
2954 switch (cmd) {
2955 case FUTEX_LOCK_PI:
2956 case FUTEX_UNLOCK_PI:
2957 case FUTEX_TRYLOCK_PI:
2958 case FUTEX_WAIT_REQUEUE_PI:
2959 case FUTEX_CMP_REQUEUE_PI:
2960 if (!futex_cmpxchg_enabled)
2961 return -ENOSYS;
2964 switch (cmd) {
2965 case FUTEX_WAIT:
2966 val3 = FUTEX_BITSET_MATCH_ANY;
2967 case FUTEX_WAIT_BITSET:
2968 return futex_wait(uaddr, flags, val, timeout, val3);
2969 case FUTEX_WAKE:
2970 val3 = FUTEX_BITSET_MATCH_ANY;
2971 case FUTEX_WAKE_BITSET:
2972 return futex_wake(uaddr, flags, val, val3);
2973 case FUTEX_REQUEUE:
2974 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2975 case FUTEX_CMP_REQUEUE:
2976 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2977 case FUTEX_WAKE_OP:
2978 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2979 case FUTEX_LOCK_PI:
2980 return futex_lock_pi(uaddr, flags, timeout, 0);
2981 case FUTEX_UNLOCK_PI:
2982 return futex_unlock_pi(uaddr, flags);
2983 case FUTEX_TRYLOCK_PI:
2984 return futex_lock_pi(uaddr, flags, NULL, 1);
2985 case FUTEX_WAIT_REQUEUE_PI:
2986 val3 = FUTEX_BITSET_MATCH_ANY;
2987 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2988 uaddr2);
2989 case FUTEX_CMP_REQUEUE_PI:
2990 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2992 return -ENOSYS;
2996 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2997 struct timespec __user *, utime, u32 __user *, uaddr2,
2998 u32, val3)
3000 struct timespec ts;
3001 ktime_t t, *tp = NULL;
3002 u32 val2 = 0;
3003 int cmd = op & FUTEX_CMD_MASK;
3005 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3006 cmd == FUTEX_WAIT_BITSET ||
3007 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3008 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3009 return -EFAULT;
3010 if (!timespec_valid(&ts))
3011 return -EINVAL;
3013 t = timespec_to_ktime(ts);
3014 if (cmd == FUTEX_WAIT)
3015 t = ktime_add_safe(ktime_get(), t);
3016 tp = &t;
3019 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3020 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3022 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3023 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3024 val2 = (u32) (unsigned long) utime;
3026 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3029 static void __init futex_detect_cmpxchg(void)
3031 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3032 u32 curval;
3035 * This will fail and we want it. Some arch implementations do
3036 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3037 * functionality. We want to know that before we call in any
3038 * of the complex code paths. Also we want to prevent
3039 * registration of robust lists in that case. NULL is
3040 * guaranteed to fault and we get -EFAULT on functional
3041 * implementation, the non-functional ones will return
3042 * -ENOSYS.
3044 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3045 futex_cmpxchg_enabled = 1;
3046 #endif
3049 static int __init futex_init(void)
3051 unsigned int futex_shift;
3052 unsigned long i;
3054 #if CONFIG_BASE_SMALL
3055 futex_hashsize = 16;
3056 #else
3057 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3058 #endif
3060 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3061 futex_hashsize, 0,
3062 futex_hashsize < 256 ? HASH_SMALL : 0,
3063 &futex_shift, NULL,
3064 futex_hashsize, futex_hashsize);
3065 futex_hashsize = 1UL << futex_shift;
3067 futex_detect_cmpxchg();
3069 for (i = 0; i < futex_hashsize; i++) {
3070 atomic_set(&futex_queues[i].waiters, 0);
3071 plist_head_init(&futex_queues[i].chain);
3072 spin_lock_init(&futex_queues[i].lock);
3075 return 0;
3077 __initcall(futex_init);