ARM: rockchip: fix broken build
[linux/fpc-iii.git] / kernel / sched / deadline.c
blob0a17af35670a6d4ba3fb69404f29d1ade28fdfe6
1 /*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
17 #include "sched.h"
19 #include <linux/slab.h>
21 struct dl_bandwidth def_dl_bandwidth;
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
25 return container_of(dl_se, struct task_struct, dl);
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
30 return container_of(dl_rq, struct rq, dl);
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
38 return &rq->dl;
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
48 struct sched_dl_entity *dl_se = &p->dl;
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
60 void init_dl_bw(struct dl_bw *dl_b)
62 raw_spin_lock_init(&dl_b->lock);
63 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
64 if (global_rt_runtime() == RUNTIME_INF)
65 dl_b->bw = -1;
66 else
67 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
68 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
69 dl_b->total_bw = 0;
72 void init_dl_rq(struct dl_rq *dl_rq)
74 dl_rq->rb_root = RB_ROOT;
76 #ifdef CONFIG_SMP
77 /* zero means no -deadline tasks */
78 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
80 dl_rq->dl_nr_migratory = 0;
81 dl_rq->overloaded = 0;
82 dl_rq->pushable_dl_tasks_root = RB_ROOT;
83 #else
84 init_dl_bw(&dl_rq->dl_bw);
85 #endif
88 #ifdef CONFIG_SMP
90 static inline int dl_overloaded(struct rq *rq)
92 return atomic_read(&rq->rd->dlo_count);
95 static inline void dl_set_overload(struct rq *rq)
97 if (!rq->online)
98 return;
100 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
102 * Must be visible before the overload count is
103 * set (as in sched_rt.c).
105 * Matched by the barrier in pull_dl_task().
107 smp_wmb();
108 atomic_inc(&rq->rd->dlo_count);
111 static inline void dl_clear_overload(struct rq *rq)
113 if (!rq->online)
114 return;
116 atomic_dec(&rq->rd->dlo_count);
117 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
120 static void update_dl_migration(struct dl_rq *dl_rq)
122 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
123 if (!dl_rq->overloaded) {
124 dl_set_overload(rq_of_dl_rq(dl_rq));
125 dl_rq->overloaded = 1;
127 } else if (dl_rq->overloaded) {
128 dl_clear_overload(rq_of_dl_rq(dl_rq));
129 dl_rq->overloaded = 0;
133 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
135 struct task_struct *p = dl_task_of(dl_se);
137 if (p->nr_cpus_allowed > 1)
138 dl_rq->dl_nr_migratory++;
140 update_dl_migration(dl_rq);
143 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
145 struct task_struct *p = dl_task_of(dl_se);
147 if (p->nr_cpus_allowed > 1)
148 dl_rq->dl_nr_migratory--;
150 update_dl_migration(dl_rq);
154 * The list of pushable -deadline task is not a plist, like in
155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
157 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
159 struct dl_rq *dl_rq = &rq->dl;
160 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
161 struct rb_node *parent = NULL;
162 struct task_struct *entry;
163 int leftmost = 1;
165 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
167 while (*link) {
168 parent = *link;
169 entry = rb_entry(parent, struct task_struct,
170 pushable_dl_tasks);
171 if (dl_entity_preempt(&p->dl, &entry->dl))
172 link = &parent->rb_left;
173 else {
174 link = &parent->rb_right;
175 leftmost = 0;
179 if (leftmost)
180 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
182 rb_link_node(&p->pushable_dl_tasks, parent, link);
183 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
186 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
188 struct dl_rq *dl_rq = &rq->dl;
190 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
191 return;
193 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
194 struct rb_node *next_node;
196 next_node = rb_next(&p->pushable_dl_tasks);
197 dl_rq->pushable_dl_tasks_leftmost = next_node;
200 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
201 RB_CLEAR_NODE(&p->pushable_dl_tasks);
204 static inline int has_pushable_dl_tasks(struct rq *rq)
206 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
209 static int push_dl_task(struct rq *rq);
211 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
213 return dl_task(prev);
216 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
217 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
219 static void push_dl_tasks(struct rq *);
220 static void pull_dl_task(struct rq *);
222 static inline void queue_push_tasks(struct rq *rq)
224 if (!has_pushable_dl_tasks(rq))
225 return;
227 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
230 static inline void queue_pull_task(struct rq *rq)
232 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
235 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
237 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
239 struct rq *later_rq = NULL;
240 bool fallback = false;
242 later_rq = find_lock_later_rq(p, rq);
244 if (!later_rq) {
245 int cpu;
248 * If we cannot preempt any rq, fall back to pick any
249 * online cpu.
251 fallback = true;
252 cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
253 if (cpu >= nr_cpu_ids) {
255 * Fail to find any suitable cpu.
256 * The task will never come back!
258 BUG_ON(dl_bandwidth_enabled());
261 * If admission control is disabled we
262 * try a little harder to let the task
263 * run.
265 cpu = cpumask_any(cpu_active_mask);
267 later_rq = cpu_rq(cpu);
268 double_lock_balance(rq, later_rq);
272 * By now the task is replenished and enqueued; migrate it.
274 deactivate_task(rq, p, 0);
275 set_task_cpu(p, later_rq->cpu);
276 activate_task(later_rq, p, 0);
278 if (!fallback)
279 resched_curr(later_rq);
281 double_unlock_balance(later_rq, rq);
283 return later_rq;
286 #else
288 static inline
289 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
293 static inline
294 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
298 static inline
299 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
303 static inline
304 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
308 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
310 return false;
313 static inline void pull_dl_task(struct rq *rq)
317 static inline void queue_push_tasks(struct rq *rq)
321 static inline void queue_pull_task(struct rq *rq)
324 #endif /* CONFIG_SMP */
326 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
327 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
328 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
329 int flags);
332 * We are being explicitly informed that a new instance is starting,
333 * and this means that:
334 * - the absolute deadline of the entity has to be placed at
335 * current time + relative deadline;
336 * - the runtime of the entity has to be set to the maximum value.
338 * The capability of specifying such event is useful whenever a -deadline
339 * entity wants to (try to!) synchronize its behaviour with the scheduler's
340 * one, and to (try to!) reconcile itself with its own scheduling
341 * parameters.
343 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
344 struct sched_dl_entity *pi_se)
346 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
347 struct rq *rq = rq_of_dl_rq(dl_rq);
349 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
352 * We use the regular wall clock time to set deadlines in the
353 * future; in fact, we must consider execution overheads (time
354 * spent on hardirq context, etc.).
356 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
357 dl_se->runtime = pi_se->dl_runtime;
358 dl_se->dl_new = 0;
362 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
363 * possibility of a entity lasting more than what it declared, and thus
364 * exhausting its runtime.
366 * Here we are interested in making runtime overrun possible, but we do
367 * not want a entity which is misbehaving to affect the scheduling of all
368 * other entities.
369 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
370 * is used, in order to confine each entity within its own bandwidth.
372 * This function deals exactly with that, and ensures that when the runtime
373 * of a entity is replenished, its deadline is also postponed. That ensures
374 * the overrunning entity can't interfere with other entity in the system and
375 * can't make them miss their deadlines. Reasons why this kind of overruns
376 * could happen are, typically, a entity voluntarily trying to overcome its
377 * runtime, or it just underestimated it during sched_setattr().
379 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
380 struct sched_dl_entity *pi_se)
382 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
383 struct rq *rq = rq_of_dl_rq(dl_rq);
385 BUG_ON(pi_se->dl_runtime <= 0);
388 * This could be the case for a !-dl task that is boosted.
389 * Just go with full inherited parameters.
391 if (dl_se->dl_deadline == 0) {
392 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
393 dl_se->runtime = pi_se->dl_runtime;
397 * We keep moving the deadline away until we get some
398 * available runtime for the entity. This ensures correct
399 * handling of situations where the runtime overrun is
400 * arbitrary large.
402 while (dl_se->runtime <= 0) {
403 dl_se->deadline += pi_se->dl_period;
404 dl_se->runtime += pi_se->dl_runtime;
408 * At this point, the deadline really should be "in
409 * the future" with respect to rq->clock. If it's
410 * not, we are, for some reason, lagging too much!
411 * Anyway, after having warn userspace abut that,
412 * we still try to keep the things running by
413 * resetting the deadline and the budget of the
414 * entity.
416 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
417 printk_deferred_once("sched: DL replenish lagged to much\n");
418 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
419 dl_se->runtime = pi_se->dl_runtime;
422 if (dl_se->dl_yielded)
423 dl_se->dl_yielded = 0;
424 if (dl_se->dl_throttled)
425 dl_se->dl_throttled = 0;
429 * Here we check if --at time t-- an entity (which is probably being
430 * [re]activated or, in general, enqueued) can use its remaining runtime
431 * and its current deadline _without_ exceeding the bandwidth it is
432 * assigned (function returns true if it can't). We are in fact applying
433 * one of the CBS rules: when a task wakes up, if the residual runtime
434 * over residual deadline fits within the allocated bandwidth, then we
435 * can keep the current (absolute) deadline and residual budget without
436 * disrupting the schedulability of the system. Otherwise, we should
437 * refill the runtime and set the deadline a period in the future,
438 * because keeping the current (absolute) deadline of the task would
439 * result in breaking guarantees promised to other tasks (refer to
440 * Documentation/scheduler/sched-deadline.txt for more informations).
442 * This function returns true if:
444 * runtime / (deadline - t) > dl_runtime / dl_period ,
446 * IOW we can't recycle current parameters.
448 * Notice that the bandwidth check is done against the period. For
449 * task with deadline equal to period this is the same of using
450 * dl_deadline instead of dl_period in the equation above.
452 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
453 struct sched_dl_entity *pi_se, u64 t)
455 u64 left, right;
458 * left and right are the two sides of the equation above,
459 * after a bit of shuffling to use multiplications instead
460 * of divisions.
462 * Note that none of the time values involved in the two
463 * multiplications are absolute: dl_deadline and dl_runtime
464 * are the relative deadline and the maximum runtime of each
465 * instance, runtime is the runtime left for the last instance
466 * and (deadline - t), since t is rq->clock, is the time left
467 * to the (absolute) deadline. Even if overflowing the u64 type
468 * is very unlikely to occur in both cases, here we scale down
469 * as we want to avoid that risk at all. Scaling down by 10
470 * means that we reduce granularity to 1us. We are fine with it,
471 * since this is only a true/false check and, anyway, thinking
472 * of anything below microseconds resolution is actually fiction
473 * (but still we want to give the user that illusion >;).
475 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
476 right = ((dl_se->deadline - t) >> DL_SCALE) *
477 (pi_se->dl_runtime >> DL_SCALE);
479 return dl_time_before(right, left);
483 * When a -deadline entity is queued back on the runqueue, its runtime and
484 * deadline might need updating.
486 * The policy here is that we update the deadline of the entity only if:
487 * - the current deadline is in the past,
488 * - using the remaining runtime with the current deadline would make
489 * the entity exceed its bandwidth.
491 static void update_dl_entity(struct sched_dl_entity *dl_se,
492 struct sched_dl_entity *pi_se)
494 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
495 struct rq *rq = rq_of_dl_rq(dl_rq);
498 * The arrival of a new instance needs special treatment, i.e.,
499 * the actual scheduling parameters have to be "renewed".
501 if (dl_se->dl_new) {
502 setup_new_dl_entity(dl_se, pi_se);
503 return;
506 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
507 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
508 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
509 dl_se->runtime = pi_se->dl_runtime;
514 * If the entity depleted all its runtime, and if we want it to sleep
515 * while waiting for some new execution time to become available, we
516 * set the bandwidth enforcement timer to the replenishment instant
517 * and try to activate it.
519 * Notice that it is important for the caller to know if the timer
520 * actually started or not (i.e., the replenishment instant is in
521 * the future or in the past).
523 static int start_dl_timer(struct task_struct *p)
525 struct sched_dl_entity *dl_se = &p->dl;
526 struct hrtimer *timer = &dl_se->dl_timer;
527 struct rq *rq = task_rq(p);
528 ktime_t now, act;
529 s64 delta;
531 lockdep_assert_held(&rq->lock);
534 * We want the timer to fire at the deadline, but considering
535 * that it is actually coming from rq->clock and not from
536 * hrtimer's time base reading.
538 act = ns_to_ktime(dl_se->deadline);
539 now = hrtimer_cb_get_time(timer);
540 delta = ktime_to_ns(now) - rq_clock(rq);
541 act = ktime_add_ns(act, delta);
544 * If the expiry time already passed, e.g., because the value
545 * chosen as the deadline is too small, don't even try to
546 * start the timer in the past!
548 if (ktime_us_delta(act, now) < 0)
549 return 0;
552 * !enqueued will guarantee another callback; even if one is already in
553 * progress. This ensures a balanced {get,put}_task_struct().
555 * The race against __run_timer() clearing the enqueued state is
556 * harmless because we're holding task_rq()->lock, therefore the timer
557 * expiring after we've done the check will wait on its task_rq_lock()
558 * and observe our state.
560 if (!hrtimer_is_queued(timer)) {
561 get_task_struct(p);
562 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
565 return 1;
569 * This is the bandwidth enforcement timer callback. If here, we know
570 * a task is not on its dl_rq, since the fact that the timer was running
571 * means the task is throttled and needs a runtime replenishment.
573 * However, what we actually do depends on the fact the task is active,
574 * (it is on its rq) or has been removed from there by a call to
575 * dequeue_task_dl(). In the former case we must issue the runtime
576 * replenishment and add the task back to the dl_rq; in the latter, we just
577 * do nothing but clearing dl_throttled, so that runtime and deadline
578 * updating (and the queueing back to dl_rq) will be done by the
579 * next call to enqueue_task_dl().
581 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
583 struct sched_dl_entity *dl_se = container_of(timer,
584 struct sched_dl_entity,
585 dl_timer);
586 struct task_struct *p = dl_task_of(dl_se);
587 unsigned long flags;
588 struct rq *rq;
590 rq = task_rq_lock(p, &flags);
593 * The task might have changed its scheduling policy to something
594 * different than SCHED_DEADLINE (through switched_fromd_dl()).
596 if (!dl_task(p)) {
597 __dl_clear_params(p);
598 goto unlock;
602 * This is possible if switched_from_dl() raced against a running
603 * callback that took the above !dl_task() path and we've since then
604 * switched back into SCHED_DEADLINE.
606 * There's nothing to do except drop our task reference.
608 if (dl_se->dl_new)
609 goto unlock;
612 * The task might have been boosted by someone else and might be in the
613 * boosting/deboosting path, its not throttled.
615 if (dl_se->dl_boosted)
616 goto unlock;
619 * Spurious timer due to start_dl_timer() race; or we already received
620 * a replenishment from rt_mutex_setprio().
622 if (!dl_se->dl_throttled)
623 goto unlock;
625 sched_clock_tick();
626 update_rq_clock(rq);
629 * If the throttle happened during sched-out; like:
631 * schedule()
632 * deactivate_task()
633 * dequeue_task_dl()
634 * update_curr_dl()
635 * start_dl_timer()
636 * __dequeue_task_dl()
637 * prev->on_rq = 0;
639 * We can be both throttled and !queued. Replenish the counter
640 * but do not enqueue -- wait for our wakeup to do that.
642 if (!task_on_rq_queued(p)) {
643 replenish_dl_entity(dl_se, dl_se);
644 goto unlock;
647 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
648 if (dl_task(rq->curr))
649 check_preempt_curr_dl(rq, p, 0);
650 else
651 resched_curr(rq);
653 #ifdef CONFIG_SMP
655 * Perform balancing operations here; after the replenishments. We
656 * cannot drop rq->lock before this, otherwise the assertion in
657 * start_dl_timer() about not missing updates is not true.
659 * If we find that the rq the task was on is no longer available, we
660 * need to select a new rq.
662 * XXX figure out if select_task_rq_dl() deals with offline cpus.
664 if (unlikely(!rq->online))
665 rq = dl_task_offline_migration(rq, p);
668 * Queueing this task back might have overloaded rq, check if we need
669 * to kick someone away.
671 if (has_pushable_dl_tasks(rq))
672 push_dl_task(rq);
673 #endif
675 unlock:
676 task_rq_unlock(rq, p, &flags);
679 * This can free the task_struct, including this hrtimer, do not touch
680 * anything related to that after this.
682 put_task_struct(p);
684 return HRTIMER_NORESTART;
687 void init_dl_task_timer(struct sched_dl_entity *dl_se)
689 struct hrtimer *timer = &dl_se->dl_timer;
691 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
692 timer->function = dl_task_timer;
695 static
696 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
698 return (dl_se->runtime <= 0);
701 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
704 * Update the current task's runtime statistics (provided it is still
705 * a -deadline task and has not been removed from the dl_rq).
707 static void update_curr_dl(struct rq *rq)
709 struct task_struct *curr = rq->curr;
710 struct sched_dl_entity *dl_se = &curr->dl;
711 u64 delta_exec;
713 if (!dl_task(curr) || !on_dl_rq(dl_se))
714 return;
717 * Consumed budget is computed considering the time as
718 * observed by schedulable tasks (excluding time spent
719 * in hardirq context, etc.). Deadlines are instead
720 * computed using hard walltime. This seems to be the more
721 * natural solution, but the full ramifications of this
722 * approach need further study.
724 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
725 if (unlikely((s64)delta_exec <= 0))
726 return;
728 schedstat_set(curr->se.statistics.exec_max,
729 max(curr->se.statistics.exec_max, delta_exec));
731 curr->se.sum_exec_runtime += delta_exec;
732 account_group_exec_runtime(curr, delta_exec);
734 curr->se.exec_start = rq_clock_task(rq);
735 cpuacct_charge(curr, delta_exec);
737 sched_rt_avg_update(rq, delta_exec);
739 dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
740 if (dl_runtime_exceeded(dl_se)) {
741 dl_se->dl_throttled = 1;
742 __dequeue_task_dl(rq, curr, 0);
743 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
744 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
746 if (!is_leftmost(curr, &rq->dl))
747 resched_curr(rq);
751 * Because -- for now -- we share the rt bandwidth, we need to
752 * account our runtime there too, otherwise actual rt tasks
753 * would be able to exceed the shared quota.
755 * Account to the root rt group for now.
757 * The solution we're working towards is having the RT groups scheduled
758 * using deadline servers -- however there's a few nasties to figure
759 * out before that can happen.
761 if (rt_bandwidth_enabled()) {
762 struct rt_rq *rt_rq = &rq->rt;
764 raw_spin_lock(&rt_rq->rt_runtime_lock);
766 * We'll let actual RT tasks worry about the overflow here, we
767 * have our own CBS to keep us inline; only account when RT
768 * bandwidth is relevant.
770 if (sched_rt_bandwidth_account(rt_rq))
771 rt_rq->rt_time += delta_exec;
772 raw_spin_unlock(&rt_rq->rt_runtime_lock);
776 #ifdef CONFIG_SMP
778 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
780 static inline u64 next_deadline(struct rq *rq)
782 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
784 if (next && dl_prio(next->prio))
785 return next->dl.deadline;
786 else
787 return 0;
790 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
792 struct rq *rq = rq_of_dl_rq(dl_rq);
794 if (dl_rq->earliest_dl.curr == 0 ||
795 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
797 * If the dl_rq had no -deadline tasks, or if the new task
798 * has shorter deadline than the current one on dl_rq, we
799 * know that the previous earliest becomes our next earliest,
800 * as the new task becomes the earliest itself.
802 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
803 dl_rq->earliest_dl.curr = deadline;
804 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
805 } else if (dl_rq->earliest_dl.next == 0 ||
806 dl_time_before(deadline, dl_rq->earliest_dl.next)) {
808 * On the other hand, if the new -deadline task has a
809 * a later deadline than the earliest one on dl_rq, but
810 * it is earlier than the next (if any), we must
811 * recompute the next-earliest.
813 dl_rq->earliest_dl.next = next_deadline(rq);
817 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
819 struct rq *rq = rq_of_dl_rq(dl_rq);
822 * Since we may have removed our earliest (and/or next earliest)
823 * task we must recompute them.
825 if (!dl_rq->dl_nr_running) {
826 dl_rq->earliest_dl.curr = 0;
827 dl_rq->earliest_dl.next = 0;
828 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
829 } else {
830 struct rb_node *leftmost = dl_rq->rb_leftmost;
831 struct sched_dl_entity *entry;
833 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
834 dl_rq->earliest_dl.curr = entry->deadline;
835 dl_rq->earliest_dl.next = next_deadline(rq);
836 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
840 #else
842 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
843 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
845 #endif /* CONFIG_SMP */
847 static inline
848 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
850 int prio = dl_task_of(dl_se)->prio;
851 u64 deadline = dl_se->deadline;
853 WARN_ON(!dl_prio(prio));
854 dl_rq->dl_nr_running++;
855 add_nr_running(rq_of_dl_rq(dl_rq), 1);
857 inc_dl_deadline(dl_rq, deadline);
858 inc_dl_migration(dl_se, dl_rq);
861 static inline
862 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
864 int prio = dl_task_of(dl_se)->prio;
866 WARN_ON(!dl_prio(prio));
867 WARN_ON(!dl_rq->dl_nr_running);
868 dl_rq->dl_nr_running--;
869 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
871 dec_dl_deadline(dl_rq, dl_se->deadline);
872 dec_dl_migration(dl_se, dl_rq);
875 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
877 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
878 struct rb_node **link = &dl_rq->rb_root.rb_node;
879 struct rb_node *parent = NULL;
880 struct sched_dl_entity *entry;
881 int leftmost = 1;
883 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
885 while (*link) {
886 parent = *link;
887 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
888 if (dl_time_before(dl_se->deadline, entry->deadline))
889 link = &parent->rb_left;
890 else {
891 link = &parent->rb_right;
892 leftmost = 0;
896 if (leftmost)
897 dl_rq->rb_leftmost = &dl_se->rb_node;
899 rb_link_node(&dl_se->rb_node, parent, link);
900 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
902 inc_dl_tasks(dl_se, dl_rq);
905 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
907 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
909 if (RB_EMPTY_NODE(&dl_se->rb_node))
910 return;
912 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
913 struct rb_node *next_node;
915 next_node = rb_next(&dl_se->rb_node);
916 dl_rq->rb_leftmost = next_node;
919 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
920 RB_CLEAR_NODE(&dl_se->rb_node);
922 dec_dl_tasks(dl_se, dl_rq);
925 static void
926 enqueue_dl_entity(struct sched_dl_entity *dl_se,
927 struct sched_dl_entity *pi_se, int flags)
929 BUG_ON(on_dl_rq(dl_se));
932 * If this is a wakeup or a new instance, the scheduling
933 * parameters of the task might need updating. Otherwise,
934 * we want a replenishment of its runtime.
936 if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
937 update_dl_entity(dl_se, pi_se);
938 else if (flags & ENQUEUE_REPLENISH)
939 replenish_dl_entity(dl_se, pi_se);
941 __enqueue_dl_entity(dl_se);
944 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
946 __dequeue_dl_entity(dl_se);
949 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
951 struct task_struct *pi_task = rt_mutex_get_top_task(p);
952 struct sched_dl_entity *pi_se = &p->dl;
955 * Use the scheduling parameters of the top pi-waiter
956 * task if we have one and its (relative) deadline is
957 * smaller than our one... OTW we keep our runtime and
958 * deadline.
960 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
961 pi_se = &pi_task->dl;
962 } else if (!dl_prio(p->normal_prio)) {
964 * Special case in which we have a !SCHED_DEADLINE task
965 * that is going to be deboosted, but exceedes its
966 * runtime while doing so. No point in replenishing
967 * it, as it's going to return back to its original
968 * scheduling class after this.
970 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
971 return;
975 * If p is throttled, we do nothing. In fact, if it exhausted
976 * its budget it needs a replenishment and, since it now is on
977 * its rq, the bandwidth timer callback (which clearly has not
978 * run yet) will take care of this.
980 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
981 return;
983 enqueue_dl_entity(&p->dl, pi_se, flags);
985 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
986 enqueue_pushable_dl_task(rq, p);
989 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
991 dequeue_dl_entity(&p->dl);
992 dequeue_pushable_dl_task(rq, p);
995 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
997 update_curr_dl(rq);
998 __dequeue_task_dl(rq, p, flags);
1002 * Yield task semantic for -deadline tasks is:
1004 * get off from the CPU until our next instance, with
1005 * a new runtime. This is of little use now, since we
1006 * don't have a bandwidth reclaiming mechanism. Anyway,
1007 * bandwidth reclaiming is planned for the future, and
1008 * yield_task_dl will indicate that some spare budget
1009 * is available for other task instances to use it.
1011 static void yield_task_dl(struct rq *rq)
1013 struct task_struct *p = rq->curr;
1016 * We make the task go to sleep until its current deadline by
1017 * forcing its runtime to zero. This way, update_curr_dl() stops
1018 * it and the bandwidth timer will wake it up and will give it
1019 * new scheduling parameters (thanks to dl_yielded=1).
1021 if (p->dl.runtime > 0) {
1022 rq->curr->dl.dl_yielded = 1;
1023 p->dl.runtime = 0;
1025 update_rq_clock(rq);
1026 update_curr_dl(rq);
1028 * Tell update_rq_clock() that we've just updated,
1029 * so we don't do microscopic update in schedule()
1030 * and double the fastpath cost.
1032 rq_clock_skip_update(rq, true);
1035 #ifdef CONFIG_SMP
1037 static int find_later_rq(struct task_struct *task);
1039 static int
1040 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1042 struct task_struct *curr;
1043 struct rq *rq;
1045 if (sd_flag != SD_BALANCE_WAKE)
1046 goto out;
1048 rq = cpu_rq(cpu);
1050 rcu_read_lock();
1051 curr = READ_ONCE(rq->curr); /* unlocked access */
1054 * If we are dealing with a -deadline task, we must
1055 * decide where to wake it up.
1056 * If it has a later deadline and the current task
1057 * on this rq can't move (provided the waking task
1058 * can!) we prefer to send it somewhere else. On the
1059 * other hand, if it has a shorter deadline, we
1060 * try to make it stay here, it might be important.
1062 if (unlikely(dl_task(curr)) &&
1063 (curr->nr_cpus_allowed < 2 ||
1064 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1065 (p->nr_cpus_allowed > 1)) {
1066 int target = find_later_rq(p);
1068 if (target != -1 &&
1069 dl_time_before(p->dl.deadline,
1070 cpu_rq(target)->dl.earliest_dl.curr))
1071 cpu = target;
1073 rcu_read_unlock();
1075 out:
1076 return cpu;
1079 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1082 * Current can't be migrated, useless to reschedule,
1083 * let's hope p can move out.
1085 if (rq->curr->nr_cpus_allowed == 1 ||
1086 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1087 return;
1090 * p is migratable, so let's not schedule it and
1091 * see if it is pushed or pulled somewhere else.
1093 if (p->nr_cpus_allowed != 1 &&
1094 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1095 return;
1097 resched_curr(rq);
1100 #endif /* CONFIG_SMP */
1103 * Only called when both the current and waking task are -deadline
1104 * tasks.
1106 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1107 int flags)
1109 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1110 resched_curr(rq);
1111 return;
1114 #ifdef CONFIG_SMP
1116 * In the unlikely case current and p have the same deadline
1117 * let us try to decide what's the best thing to do...
1119 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1120 !test_tsk_need_resched(rq->curr))
1121 check_preempt_equal_dl(rq, p);
1122 #endif /* CONFIG_SMP */
1125 #ifdef CONFIG_SCHED_HRTICK
1126 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1128 hrtick_start(rq, p->dl.runtime);
1130 #else /* !CONFIG_SCHED_HRTICK */
1131 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1134 #endif
1136 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1137 struct dl_rq *dl_rq)
1139 struct rb_node *left = dl_rq->rb_leftmost;
1141 if (!left)
1142 return NULL;
1144 return rb_entry(left, struct sched_dl_entity, rb_node);
1147 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1149 struct sched_dl_entity *dl_se;
1150 struct task_struct *p;
1151 struct dl_rq *dl_rq;
1153 dl_rq = &rq->dl;
1155 if (need_pull_dl_task(rq, prev)) {
1157 * This is OK, because current is on_cpu, which avoids it being
1158 * picked for load-balance and preemption/IRQs are still
1159 * disabled avoiding further scheduler activity on it and we're
1160 * being very careful to re-start the picking loop.
1162 lockdep_unpin_lock(&rq->lock);
1163 pull_dl_task(rq);
1164 lockdep_pin_lock(&rq->lock);
1166 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1167 * means a stop task can slip in, in which case we need to
1168 * re-start task selection.
1170 if (rq->stop && task_on_rq_queued(rq->stop))
1171 return RETRY_TASK;
1175 * When prev is DL, we may throttle it in put_prev_task().
1176 * So, we update time before we check for dl_nr_running.
1178 if (prev->sched_class == &dl_sched_class)
1179 update_curr_dl(rq);
1181 if (unlikely(!dl_rq->dl_nr_running))
1182 return NULL;
1184 put_prev_task(rq, prev);
1186 dl_se = pick_next_dl_entity(rq, dl_rq);
1187 BUG_ON(!dl_se);
1189 p = dl_task_of(dl_se);
1190 p->se.exec_start = rq_clock_task(rq);
1192 /* Running task will never be pushed. */
1193 dequeue_pushable_dl_task(rq, p);
1195 if (hrtick_enabled(rq))
1196 start_hrtick_dl(rq, p);
1198 queue_push_tasks(rq);
1200 return p;
1203 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1205 update_curr_dl(rq);
1207 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1208 enqueue_pushable_dl_task(rq, p);
1211 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1213 update_curr_dl(rq);
1216 * Even when we have runtime, update_curr_dl() might have resulted in us
1217 * not being the leftmost task anymore. In that case NEED_RESCHED will
1218 * be set and schedule() will start a new hrtick for the next task.
1220 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1221 is_leftmost(p, &rq->dl))
1222 start_hrtick_dl(rq, p);
1225 static void task_fork_dl(struct task_struct *p)
1228 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1229 * sched_fork()
1233 static void task_dead_dl(struct task_struct *p)
1235 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1238 * Since we are TASK_DEAD we won't slip out of the domain!
1240 raw_spin_lock_irq(&dl_b->lock);
1241 /* XXX we should retain the bw until 0-lag */
1242 dl_b->total_bw -= p->dl.dl_bw;
1243 raw_spin_unlock_irq(&dl_b->lock);
1246 static void set_curr_task_dl(struct rq *rq)
1248 struct task_struct *p = rq->curr;
1250 p->se.exec_start = rq_clock_task(rq);
1252 /* You can't push away the running task */
1253 dequeue_pushable_dl_task(rq, p);
1256 #ifdef CONFIG_SMP
1258 /* Only try algorithms three times */
1259 #define DL_MAX_TRIES 3
1261 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1263 if (!task_running(rq, p) &&
1264 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1265 return 1;
1266 return 0;
1269 /* Returns the second earliest -deadline task, NULL otherwise */
1270 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1272 struct rb_node *next_node = rq->dl.rb_leftmost;
1273 struct sched_dl_entity *dl_se;
1274 struct task_struct *p = NULL;
1276 next_node:
1277 next_node = rb_next(next_node);
1278 if (next_node) {
1279 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1280 p = dl_task_of(dl_se);
1282 if (pick_dl_task(rq, p, cpu))
1283 return p;
1285 goto next_node;
1288 return NULL;
1292 * Return the earliest pushable rq's task, which is suitable to be executed
1293 * on the CPU, NULL otherwise:
1295 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1297 struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1298 struct task_struct *p = NULL;
1300 if (!has_pushable_dl_tasks(rq))
1301 return NULL;
1303 next_node:
1304 if (next_node) {
1305 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1307 if (pick_dl_task(rq, p, cpu))
1308 return p;
1310 next_node = rb_next(next_node);
1311 goto next_node;
1314 return NULL;
1317 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1319 static int find_later_rq(struct task_struct *task)
1321 struct sched_domain *sd;
1322 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1323 int this_cpu = smp_processor_id();
1324 int best_cpu, cpu = task_cpu(task);
1326 /* Make sure the mask is initialized first */
1327 if (unlikely(!later_mask))
1328 return -1;
1330 if (task->nr_cpus_allowed == 1)
1331 return -1;
1334 * We have to consider system topology and task affinity
1335 * first, then we can look for a suitable cpu.
1337 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1338 task, later_mask);
1339 if (best_cpu == -1)
1340 return -1;
1343 * If we are here, some target has been found,
1344 * the most suitable of which is cached in best_cpu.
1345 * This is, among the runqueues where the current tasks
1346 * have later deadlines than the task's one, the rq
1347 * with the latest possible one.
1349 * Now we check how well this matches with task's
1350 * affinity and system topology.
1352 * The last cpu where the task run is our first
1353 * guess, since it is most likely cache-hot there.
1355 if (cpumask_test_cpu(cpu, later_mask))
1356 return cpu;
1358 * Check if this_cpu is to be skipped (i.e., it is
1359 * not in the mask) or not.
1361 if (!cpumask_test_cpu(this_cpu, later_mask))
1362 this_cpu = -1;
1364 rcu_read_lock();
1365 for_each_domain(cpu, sd) {
1366 if (sd->flags & SD_WAKE_AFFINE) {
1369 * If possible, preempting this_cpu is
1370 * cheaper than migrating.
1372 if (this_cpu != -1 &&
1373 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1374 rcu_read_unlock();
1375 return this_cpu;
1379 * Last chance: if best_cpu is valid and is
1380 * in the mask, that becomes our choice.
1382 if (best_cpu < nr_cpu_ids &&
1383 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1384 rcu_read_unlock();
1385 return best_cpu;
1389 rcu_read_unlock();
1392 * At this point, all our guesses failed, we just return
1393 * 'something', and let the caller sort the things out.
1395 if (this_cpu != -1)
1396 return this_cpu;
1398 cpu = cpumask_any(later_mask);
1399 if (cpu < nr_cpu_ids)
1400 return cpu;
1402 return -1;
1405 /* Locks the rq it finds */
1406 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1408 struct rq *later_rq = NULL;
1409 int tries;
1410 int cpu;
1412 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1413 cpu = find_later_rq(task);
1415 if ((cpu == -1) || (cpu == rq->cpu))
1416 break;
1418 later_rq = cpu_rq(cpu);
1420 if (!dl_time_before(task->dl.deadline,
1421 later_rq->dl.earliest_dl.curr)) {
1423 * Target rq has tasks of equal or earlier deadline,
1424 * retrying does not release any lock and is unlikely
1425 * to yield a different result.
1427 later_rq = NULL;
1428 break;
1431 /* Retry if something changed. */
1432 if (double_lock_balance(rq, later_rq)) {
1433 if (unlikely(task_rq(task) != rq ||
1434 !cpumask_test_cpu(later_rq->cpu,
1435 &task->cpus_allowed) ||
1436 task_running(rq, task) ||
1437 !task_on_rq_queued(task))) {
1438 double_unlock_balance(rq, later_rq);
1439 later_rq = NULL;
1440 break;
1445 * If the rq we found has no -deadline task, or
1446 * its earliest one has a later deadline than our
1447 * task, the rq is a good one.
1449 if (!later_rq->dl.dl_nr_running ||
1450 dl_time_before(task->dl.deadline,
1451 later_rq->dl.earliest_dl.curr))
1452 break;
1454 /* Otherwise we try again. */
1455 double_unlock_balance(rq, later_rq);
1456 later_rq = NULL;
1459 return later_rq;
1462 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1464 struct task_struct *p;
1466 if (!has_pushable_dl_tasks(rq))
1467 return NULL;
1469 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1470 struct task_struct, pushable_dl_tasks);
1472 BUG_ON(rq->cpu != task_cpu(p));
1473 BUG_ON(task_current(rq, p));
1474 BUG_ON(p->nr_cpus_allowed <= 1);
1476 BUG_ON(!task_on_rq_queued(p));
1477 BUG_ON(!dl_task(p));
1479 return p;
1483 * See if the non running -deadline tasks on this rq
1484 * can be sent to some other CPU where they can preempt
1485 * and start executing.
1487 static int push_dl_task(struct rq *rq)
1489 struct task_struct *next_task;
1490 struct rq *later_rq;
1491 int ret = 0;
1493 if (!rq->dl.overloaded)
1494 return 0;
1496 next_task = pick_next_pushable_dl_task(rq);
1497 if (!next_task)
1498 return 0;
1500 retry:
1501 if (unlikely(next_task == rq->curr)) {
1502 WARN_ON(1);
1503 return 0;
1507 * If next_task preempts rq->curr, and rq->curr
1508 * can move away, it makes sense to just reschedule
1509 * without going further in pushing next_task.
1511 if (dl_task(rq->curr) &&
1512 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1513 rq->curr->nr_cpus_allowed > 1) {
1514 resched_curr(rq);
1515 return 0;
1518 /* We might release rq lock */
1519 get_task_struct(next_task);
1521 /* Will lock the rq it'll find */
1522 later_rq = find_lock_later_rq(next_task, rq);
1523 if (!later_rq) {
1524 struct task_struct *task;
1527 * We must check all this again, since
1528 * find_lock_later_rq releases rq->lock and it is
1529 * then possible that next_task has migrated.
1531 task = pick_next_pushable_dl_task(rq);
1532 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1534 * The task is still there. We don't try
1535 * again, some other cpu will pull it when ready.
1537 goto out;
1540 if (!task)
1541 /* No more tasks */
1542 goto out;
1544 put_task_struct(next_task);
1545 next_task = task;
1546 goto retry;
1549 deactivate_task(rq, next_task, 0);
1550 set_task_cpu(next_task, later_rq->cpu);
1551 activate_task(later_rq, next_task, 0);
1552 ret = 1;
1554 resched_curr(later_rq);
1556 double_unlock_balance(rq, later_rq);
1558 out:
1559 put_task_struct(next_task);
1561 return ret;
1564 static void push_dl_tasks(struct rq *rq)
1566 /* Terminates as it moves a -deadline task */
1567 while (push_dl_task(rq))
1571 static void pull_dl_task(struct rq *this_rq)
1573 int this_cpu = this_rq->cpu, cpu;
1574 struct task_struct *p;
1575 bool resched = false;
1576 struct rq *src_rq;
1577 u64 dmin = LONG_MAX;
1579 if (likely(!dl_overloaded(this_rq)))
1580 return;
1583 * Match the barrier from dl_set_overloaded; this guarantees that if we
1584 * see overloaded we must also see the dlo_mask bit.
1586 smp_rmb();
1588 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1589 if (this_cpu == cpu)
1590 continue;
1592 src_rq = cpu_rq(cpu);
1595 * It looks racy, abd it is! However, as in sched_rt.c,
1596 * we are fine with this.
1598 if (this_rq->dl.dl_nr_running &&
1599 dl_time_before(this_rq->dl.earliest_dl.curr,
1600 src_rq->dl.earliest_dl.next))
1601 continue;
1603 /* Might drop this_rq->lock */
1604 double_lock_balance(this_rq, src_rq);
1607 * If there are no more pullable tasks on the
1608 * rq, we're done with it.
1610 if (src_rq->dl.dl_nr_running <= 1)
1611 goto skip;
1613 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1616 * We found a task to be pulled if:
1617 * - it preempts our current (if there's one),
1618 * - it will preempt the last one we pulled (if any).
1620 if (p && dl_time_before(p->dl.deadline, dmin) &&
1621 (!this_rq->dl.dl_nr_running ||
1622 dl_time_before(p->dl.deadline,
1623 this_rq->dl.earliest_dl.curr))) {
1624 WARN_ON(p == src_rq->curr);
1625 WARN_ON(!task_on_rq_queued(p));
1628 * Then we pull iff p has actually an earlier
1629 * deadline than the current task of its runqueue.
1631 if (dl_time_before(p->dl.deadline,
1632 src_rq->curr->dl.deadline))
1633 goto skip;
1635 resched = true;
1637 deactivate_task(src_rq, p, 0);
1638 set_task_cpu(p, this_cpu);
1639 activate_task(this_rq, p, 0);
1640 dmin = p->dl.deadline;
1642 /* Is there any other task even earlier? */
1644 skip:
1645 double_unlock_balance(this_rq, src_rq);
1648 if (resched)
1649 resched_curr(this_rq);
1653 * Since the task is not running and a reschedule is not going to happen
1654 * anytime soon on its runqueue, we try pushing it away now.
1656 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1658 if (!task_running(rq, p) &&
1659 !test_tsk_need_resched(rq->curr) &&
1660 has_pushable_dl_tasks(rq) &&
1661 p->nr_cpus_allowed > 1 &&
1662 dl_task(rq->curr) &&
1663 (rq->curr->nr_cpus_allowed < 2 ||
1664 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1665 push_dl_tasks(rq);
1669 static void set_cpus_allowed_dl(struct task_struct *p,
1670 const struct cpumask *new_mask)
1672 struct rq *rq;
1673 struct root_domain *src_rd;
1674 int weight;
1676 BUG_ON(!dl_task(p));
1678 rq = task_rq(p);
1679 src_rd = rq->rd;
1681 * Migrating a SCHED_DEADLINE task between exclusive
1682 * cpusets (different root_domains) entails a bandwidth
1683 * update. We already made space for us in the destination
1684 * domain (see cpuset_can_attach()).
1686 if (!cpumask_intersects(src_rd->span, new_mask)) {
1687 struct dl_bw *src_dl_b;
1689 src_dl_b = dl_bw_of(cpu_of(rq));
1691 * We now free resources of the root_domain we are migrating
1692 * off. In the worst case, sched_setattr() may temporary fail
1693 * until we complete the update.
1695 raw_spin_lock(&src_dl_b->lock);
1696 __dl_clear(src_dl_b, p->dl.dl_bw);
1697 raw_spin_unlock(&src_dl_b->lock);
1701 * Update only if the task is actually running (i.e.,
1702 * it is on the rq AND it is not throttled).
1704 if (!on_dl_rq(&p->dl))
1705 return;
1707 weight = cpumask_weight(new_mask);
1710 * Only update if the process changes its state from whether it
1711 * can migrate or not.
1713 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1714 return;
1717 * The process used to be able to migrate OR it can now migrate
1719 if (weight <= 1) {
1720 if (!task_current(rq, p))
1721 dequeue_pushable_dl_task(rq, p);
1722 BUG_ON(!rq->dl.dl_nr_migratory);
1723 rq->dl.dl_nr_migratory--;
1724 } else {
1725 if (!task_current(rq, p))
1726 enqueue_pushable_dl_task(rq, p);
1727 rq->dl.dl_nr_migratory++;
1730 update_dl_migration(&rq->dl);
1733 /* Assumes rq->lock is held */
1734 static void rq_online_dl(struct rq *rq)
1736 if (rq->dl.overloaded)
1737 dl_set_overload(rq);
1739 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1740 if (rq->dl.dl_nr_running > 0)
1741 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1744 /* Assumes rq->lock is held */
1745 static void rq_offline_dl(struct rq *rq)
1747 if (rq->dl.overloaded)
1748 dl_clear_overload(rq);
1750 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1751 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1754 void __init init_sched_dl_class(void)
1756 unsigned int i;
1758 for_each_possible_cpu(i)
1759 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1760 GFP_KERNEL, cpu_to_node(i));
1763 #endif /* CONFIG_SMP */
1765 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1768 * Start the deadline timer; if we switch back to dl before this we'll
1769 * continue consuming our current CBS slice. If we stay outside of
1770 * SCHED_DEADLINE until the deadline passes, the timer will reset the
1771 * task.
1773 if (!start_dl_timer(p))
1774 __dl_clear_params(p);
1777 * Since this might be the only -deadline task on the rq,
1778 * this is the right place to try to pull some other one
1779 * from an overloaded cpu, if any.
1781 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1782 return;
1784 queue_pull_task(rq);
1788 * When switching to -deadline, we may overload the rq, then
1789 * we try to push someone off, if possible.
1791 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1793 if (task_on_rq_queued(p) && rq->curr != p) {
1794 #ifdef CONFIG_SMP
1795 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
1796 queue_push_tasks(rq);
1797 #else
1798 if (dl_task(rq->curr))
1799 check_preempt_curr_dl(rq, p, 0);
1800 else
1801 resched_curr(rq);
1802 #endif
1807 * If the scheduling parameters of a -deadline task changed,
1808 * a push or pull operation might be needed.
1810 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1811 int oldprio)
1813 if (task_on_rq_queued(p) || rq->curr == p) {
1814 #ifdef CONFIG_SMP
1816 * This might be too much, but unfortunately
1817 * we don't have the old deadline value, and
1818 * we can't argue if the task is increasing
1819 * or lowering its prio, so...
1821 if (!rq->dl.overloaded)
1822 queue_pull_task(rq);
1825 * If we now have a earlier deadline task than p,
1826 * then reschedule, provided p is still on this
1827 * runqueue.
1829 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1830 resched_curr(rq);
1831 #else
1833 * Again, we don't know if p has a earlier
1834 * or later deadline, so let's blindly set a
1835 * (maybe not needed) rescheduling point.
1837 resched_curr(rq);
1838 #endif /* CONFIG_SMP */
1839 } else
1840 switched_to_dl(rq, p);
1843 const struct sched_class dl_sched_class = {
1844 .next = &rt_sched_class,
1845 .enqueue_task = enqueue_task_dl,
1846 .dequeue_task = dequeue_task_dl,
1847 .yield_task = yield_task_dl,
1849 .check_preempt_curr = check_preempt_curr_dl,
1851 .pick_next_task = pick_next_task_dl,
1852 .put_prev_task = put_prev_task_dl,
1854 #ifdef CONFIG_SMP
1855 .select_task_rq = select_task_rq_dl,
1856 .set_cpus_allowed = set_cpus_allowed_dl,
1857 .rq_online = rq_online_dl,
1858 .rq_offline = rq_offline_dl,
1859 .task_woken = task_woken_dl,
1860 #endif
1862 .set_curr_task = set_curr_task_dl,
1863 .task_tick = task_tick_dl,
1864 .task_fork = task_fork_dl,
1865 .task_dead = task_dead_dl,
1867 .prio_changed = prio_changed_dl,
1868 .switched_from = switched_from_dl,
1869 .switched_to = switched_to_dl,
1871 .update_curr = update_curr_dl,
1874 #ifdef CONFIG_SCHED_DEBUG
1875 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1877 void print_dl_stats(struct seq_file *m, int cpu)
1879 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1881 #endif /* CONFIG_SCHED_DEBUG */