2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/irq_work.h>
10 #include <linux/tick.h>
11 #include <linux/slab.h>
14 #include "cpudeadline.h"
20 /* task_struct::on_rq states: */
21 #define TASK_ON_RQ_QUEUED 1
22 #define TASK_ON_RQ_MIGRATING 2
24 extern __read_mostly
int scheduler_running
;
26 extern unsigned long calc_load_update
;
27 extern atomic_long_t calc_load_tasks
;
29 extern void calc_global_load_tick(struct rq
*this_rq
);
30 extern long calc_load_fold_active(struct rq
*this_rq
);
33 extern void update_cpu_load_active(struct rq
*this_rq
);
35 static inline void update_cpu_load_active(struct rq
*this_rq
) { }
39 * Helpers for converting nanosecond timing to jiffy resolution
41 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
44 * Increase resolution of nice-level calculations for 64-bit architectures.
45 * The extra resolution improves shares distribution and load balancing of
46 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
47 * hierarchies, especially on larger systems. This is not a user-visible change
48 * and does not change the user-interface for setting shares/weights.
50 * We increase resolution only if we have enough bits to allow this increased
51 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
52 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
55 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
56 # define SCHED_LOAD_RESOLUTION 10
57 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
58 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
60 # define SCHED_LOAD_RESOLUTION 0
61 # define scale_load(w) (w)
62 # define scale_load_down(w) (w)
65 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
66 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
68 #define NICE_0_LOAD SCHED_LOAD_SCALE
69 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
72 * Single value that decides SCHED_DEADLINE internal math precision.
73 * 10 -> just above 1us
74 * 9 -> just above 0.5us
79 * These are the 'tuning knobs' of the scheduler:
83 * single value that denotes runtime == period, ie unlimited time.
85 #define RUNTIME_INF ((u64)~0ULL)
87 static inline int fair_policy(int policy
)
89 return policy
== SCHED_NORMAL
|| policy
== SCHED_BATCH
;
92 static inline int rt_policy(int policy
)
94 return policy
== SCHED_FIFO
|| policy
== SCHED_RR
;
97 static inline int dl_policy(int policy
)
99 return policy
== SCHED_DEADLINE
;
102 static inline int task_has_rt_policy(struct task_struct
*p
)
104 return rt_policy(p
->policy
);
107 static inline int task_has_dl_policy(struct task_struct
*p
)
109 return dl_policy(p
->policy
);
112 static inline bool dl_time_before(u64 a
, u64 b
)
114 return (s64
)(a
- b
) < 0;
118 * Tells if entity @a should preempt entity @b.
121 dl_entity_preempt(struct sched_dl_entity
*a
, struct sched_dl_entity
*b
)
123 return dl_time_before(a
->deadline
, b
->deadline
);
127 * This is the priority-queue data structure of the RT scheduling class:
129 struct rt_prio_array
{
130 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
131 struct list_head queue
[MAX_RT_PRIO
];
134 struct rt_bandwidth
{
135 /* nests inside the rq lock: */
136 raw_spinlock_t rt_runtime_lock
;
139 struct hrtimer rt_period_timer
;
140 unsigned int rt_period_active
;
143 void __dl_clear_params(struct task_struct
*p
);
146 * To keep the bandwidth of -deadline tasks and groups under control
147 * we need some place where:
148 * - store the maximum -deadline bandwidth of the system (the group);
149 * - cache the fraction of that bandwidth that is currently allocated.
151 * This is all done in the data structure below. It is similar to the
152 * one used for RT-throttling (rt_bandwidth), with the main difference
153 * that, since here we are only interested in admission control, we
154 * do not decrease any runtime while the group "executes", neither we
155 * need a timer to replenish it.
157 * With respect to SMP, the bandwidth is given on a per-CPU basis,
159 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
160 * - dl_total_bw array contains, in the i-eth element, the currently
161 * allocated bandwidth on the i-eth CPU.
162 * Moreover, groups consume bandwidth on each CPU, while tasks only
163 * consume bandwidth on the CPU they're running on.
164 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
165 * that will be shown the next time the proc or cgroup controls will
166 * be red. It on its turn can be changed by writing on its own
169 struct dl_bandwidth
{
170 raw_spinlock_t dl_runtime_lock
;
175 static inline int dl_bandwidth_enabled(void)
177 return sysctl_sched_rt_runtime
>= 0;
180 extern struct dl_bw
*dl_bw_of(int i
);
188 void __dl_clear(struct dl_bw
*dl_b
, u64 tsk_bw
)
190 dl_b
->total_bw
-= tsk_bw
;
194 void __dl_add(struct dl_bw
*dl_b
, u64 tsk_bw
)
196 dl_b
->total_bw
+= tsk_bw
;
200 bool __dl_overflow(struct dl_bw
*dl_b
, int cpus
, u64 old_bw
, u64 new_bw
)
202 return dl_b
->bw
!= -1 &&
203 dl_b
->bw
* cpus
< dl_b
->total_bw
- old_bw
+ new_bw
;
206 extern struct mutex sched_domains_mutex
;
208 #ifdef CONFIG_CGROUP_SCHED
210 #include <linux/cgroup.h>
215 extern struct list_head task_groups
;
217 struct cfs_bandwidth
{
218 #ifdef CONFIG_CFS_BANDWIDTH
222 s64 hierarchical_quota
;
225 int idle
, period_active
;
226 struct hrtimer period_timer
, slack_timer
;
227 struct list_head throttled_cfs_rq
;
230 int nr_periods
, nr_throttled
;
235 /* task group related information */
237 struct cgroup_subsys_state css
;
239 #ifdef CONFIG_FAIR_GROUP_SCHED
240 /* schedulable entities of this group on each cpu */
241 struct sched_entity
**se
;
242 /* runqueue "owned" by this group on each cpu */
243 struct cfs_rq
**cfs_rq
;
244 unsigned long shares
;
247 atomic_long_t load_avg
;
248 atomic_t runnable_avg
;
252 #ifdef CONFIG_RT_GROUP_SCHED
253 struct sched_rt_entity
**rt_se
;
254 struct rt_rq
**rt_rq
;
256 struct rt_bandwidth rt_bandwidth
;
260 struct list_head list
;
262 struct task_group
*parent
;
263 struct list_head siblings
;
264 struct list_head children
;
266 #ifdef CONFIG_SCHED_AUTOGROUP
267 struct autogroup
*autogroup
;
270 struct cfs_bandwidth cfs_bandwidth
;
273 #ifdef CONFIG_FAIR_GROUP_SCHED
274 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
277 * A weight of 0 or 1 can cause arithmetics problems.
278 * A weight of a cfs_rq is the sum of weights of which entities
279 * are queued on this cfs_rq, so a weight of a entity should not be
280 * too large, so as the shares value of a task group.
281 * (The default weight is 1024 - so there's no practical
282 * limitation from this.)
284 #define MIN_SHARES (1UL << 1)
285 #define MAX_SHARES (1UL << 18)
288 typedef int (*tg_visitor
)(struct task_group
*, void *);
290 extern int walk_tg_tree_from(struct task_group
*from
,
291 tg_visitor down
, tg_visitor up
, void *data
);
294 * Iterate the full tree, calling @down when first entering a node and @up when
295 * leaving it for the final time.
297 * Caller must hold rcu_lock or sufficient equivalent.
299 static inline int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
301 return walk_tg_tree_from(&root_task_group
, down
, up
, data
);
304 extern int tg_nop(struct task_group
*tg
, void *data
);
306 extern void free_fair_sched_group(struct task_group
*tg
);
307 extern int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
);
308 extern void unregister_fair_sched_group(struct task_group
*tg
, int cpu
);
309 extern void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
310 struct sched_entity
*se
, int cpu
,
311 struct sched_entity
*parent
);
312 extern void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
313 extern int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
);
315 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
);
316 extern void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
317 extern void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
);
319 extern void free_rt_sched_group(struct task_group
*tg
);
320 extern int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
);
321 extern void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
322 struct sched_rt_entity
*rt_se
, int cpu
,
323 struct sched_rt_entity
*parent
);
325 extern struct task_group
*sched_create_group(struct task_group
*parent
);
326 extern void sched_online_group(struct task_group
*tg
,
327 struct task_group
*parent
);
328 extern void sched_destroy_group(struct task_group
*tg
);
329 extern void sched_offline_group(struct task_group
*tg
);
331 extern void sched_move_task(struct task_struct
*tsk
);
333 #ifdef CONFIG_FAIR_GROUP_SCHED
334 extern int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
);
337 #else /* CONFIG_CGROUP_SCHED */
339 struct cfs_bandwidth
{ };
341 #endif /* CONFIG_CGROUP_SCHED */
343 /* CFS-related fields in a runqueue */
345 struct load_weight load
;
346 unsigned int nr_running
, h_nr_running
;
351 u64 min_vruntime_copy
;
354 struct rb_root tasks_timeline
;
355 struct rb_node
*rb_leftmost
;
358 * 'curr' points to currently running entity on this cfs_rq.
359 * It is set to NULL otherwise (i.e when none are currently running).
361 struct sched_entity
*curr
, *next
, *last
, *skip
;
363 #ifdef CONFIG_SCHED_DEBUG
364 unsigned int nr_spread_over
;
370 * Under CFS, load is tracked on a per-entity basis and aggregated up.
371 * This allows for the description of both thread and group usage (in
372 * the FAIR_GROUP_SCHED case).
373 * runnable_load_avg is the sum of the load_avg_contrib of the
374 * sched_entities on the rq.
375 * blocked_load_avg is similar to runnable_load_avg except that its
376 * the blocked sched_entities on the rq.
377 * utilization_load_avg is the sum of the average running time of the
378 * sched_entities on the rq.
380 unsigned long runnable_load_avg
, blocked_load_avg
, utilization_load_avg
;
381 atomic64_t decay_counter
;
383 atomic_long_t removed_load
;
385 #ifdef CONFIG_FAIR_GROUP_SCHED
386 /* Required to track per-cpu representation of a task_group */
387 u32 tg_runnable_contrib
;
388 unsigned long tg_load_contrib
;
391 * h_load = weight * f(tg)
393 * Where f(tg) is the recursive weight fraction assigned to
396 unsigned long h_load
;
397 u64 last_h_load_update
;
398 struct sched_entity
*h_load_next
;
399 #endif /* CONFIG_FAIR_GROUP_SCHED */
400 #endif /* CONFIG_SMP */
402 #ifdef CONFIG_FAIR_GROUP_SCHED
403 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
406 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
407 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
408 * (like users, containers etc.)
410 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
411 * list is used during load balance.
414 struct list_head leaf_cfs_rq_list
;
415 struct task_group
*tg
; /* group that "owns" this runqueue */
417 #ifdef CONFIG_CFS_BANDWIDTH
420 s64 runtime_remaining
;
422 u64 throttled_clock
, throttled_clock_task
;
423 u64 throttled_clock_task_time
;
424 int throttled
, throttle_count
;
425 struct list_head throttled_list
;
426 #endif /* CONFIG_CFS_BANDWIDTH */
427 #endif /* CONFIG_FAIR_GROUP_SCHED */
430 static inline int rt_bandwidth_enabled(void)
432 return sysctl_sched_rt_runtime
>= 0;
435 /* RT IPI pull logic requires IRQ_WORK */
436 #ifdef CONFIG_IRQ_WORK
437 # define HAVE_RT_PUSH_IPI
440 /* Real-Time classes' related field in a runqueue: */
442 struct rt_prio_array active
;
443 unsigned int rt_nr_running
;
444 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
446 int curr
; /* highest queued rt task prio */
448 int next
; /* next highest */
453 unsigned long rt_nr_migratory
;
454 unsigned long rt_nr_total
;
456 struct plist_head pushable_tasks
;
457 #ifdef HAVE_RT_PUSH_IPI
460 struct irq_work push_work
;
461 raw_spinlock_t push_lock
;
463 #endif /* CONFIG_SMP */
469 /* Nests inside the rq lock: */
470 raw_spinlock_t rt_runtime_lock
;
472 #ifdef CONFIG_RT_GROUP_SCHED
473 unsigned long rt_nr_boosted
;
476 struct task_group
*tg
;
480 /* Deadline class' related fields in a runqueue */
482 /* runqueue is an rbtree, ordered by deadline */
483 struct rb_root rb_root
;
484 struct rb_node
*rb_leftmost
;
486 unsigned long dl_nr_running
;
490 * Deadline values of the currently executing and the
491 * earliest ready task on this rq. Caching these facilitates
492 * the decision wether or not a ready but not running task
493 * should migrate somewhere else.
500 unsigned long dl_nr_migratory
;
504 * Tasks on this rq that can be pushed away. They are kept in
505 * an rb-tree, ordered by tasks' deadlines, with caching
506 * of the leftmost (earliest deadline) element.
508 struct rb_root pushable_dl_tasks_root
;
509 struct rb_node
*pushable_dl_tasks_leftmost
;
518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain
530 cpumask_var_t online
;
532 /* Indicate more than one runnable task for any CPU */
536 * The bit corresponding to a CPU gets set here if such CPU has more
537 * than one runnable -deadline task (as it is below for RT tasks).
539 cpumask_var_t dlo_mask
;
545 * The "RT overload" flag: it gets set if a CPU has more than
546 * one runnable RT task.
548 cpumask_var_t rto_mask
;
549 struct cpupri cpupri
;
552 extern struct root_domain def_root_domain
;
554 #endif /* CONFIG_SMP */
557 * This is the main, per-CPU runqueue data structure.
559 * Locking rule: those places that want to lock multiple runqueues
560 * (such as the load balancing or the thread migration code), lock
561 * acquire operations must be ordered by ascending &runqueue.
568 * nr_running and cpu_load should be in the same cacheline because
569 * remote CPUs use both these fields when doing load calculation.
571 unsigned int nr_running
;
572 #ifdef CONFIG_NUMA_BALANCING
573 unsigned int nr_numa_running
;
574 unsigned int nr_preferred_running
;
576 #define CPU_LOAD_IDX_MAX 5
577 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
578 unsigned long last_load_update_tick
;
579 #ifdef CONFIG_NO_HZ_COMMON
581 unsigned long nohz_flags
;
583 #ifdef CONFIG_NO_HZ_FULL
584 unsigned long last_sched_tick
;
586 /* capture load from *all* tasks on this cpu: */
587 struct load_weight load
;
588 unsigned long nr_load_updates
;
595 #ifdef CONFIG_FAIR_GROUP_SCHED
596 /* list of leaf cfs_rq on this cpu: */
597 struct list_head leaf_cfs_rq_list
;
599 struct sched_avg avg
;
600 #endif /* CONFIG_FAIR_GROUP_SCHED */
603 * This is part of a global counter where only the total sum
604 * over all CPUs matters. A task can increase this counter on
605 * one CPU and if it got migrated afterwards it may decrease
606 * it on another CPU. Always updated under the runqueue lock:
608 unsigned long nr_uninterruptible
;
610 struct task_struct
*curr
, *idle
, *stop
;
611 unsigned long next_balance
;
612 struct mm_struct
*prev_mm
;
614 unsigned int clock_skip_update
;
621 struct root_domain
*rd
;
622 struct sched_domain
*sd
;
624 unsigned long cpu_capacity
;
625 unsigned long cpu_capacity_orig
;
627 struct callback_head
*balance_callback
;
629 unsigned char idle_balance
;
630 /* For active balancing */
633 struct cpu_stop_work active_balance_work
;
634 /* cpu of this runqueue: */
638 struct list_head cfs_tasks
;
645 /* This is used to determine avg_idle's max value */
646 u64 max_idle_balance_cost
;
649 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
652 #ifdef CONFIG_PARAVIRT
655 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
656 u64 prev_steal_time_rq
;
659 /* calc_load related fields */
660 unsigned long calc_load_update
;
661 long calc_load_active
;
663 #ifdef CONFIG_SCHED_HRTICK
665 int hrtick_csd_pending
;
666 struct call_single_data hrtick_csd
;
668 struct hrtimer hrtick_timer
;
671 #ifdef CONFIG_SCHEDSTATS
673 struct sched_info rq_sched_info
;
674 unsigned long long rq_cpu_time
;
675 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
677 /* sys_sched_yield() stats */
678 unsigned int yld_count
;
680 /* schedule() stats */
681 unsigned int sched_count
;
682 unsigned int sched_goidle
;
684 /* try_to_wake_up() stats */
685 unsigned int ttwu_count
;
686 unsigned int ttwu_local
;
690 struct llist_head wake_list
;
693 #ifdef CONFIG_CPU_IDLE
694 /* Must be inspected within a rcu lock section */
695 struct cpuidle_state
*idle_state
;
699 static inline int cpu_of(struct rq
*rq
)
708 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
710 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
711 #define this_rq() this_cpu_ptr(&runqueues)
712 #define task_rq(p) cpu_rq(task_cpu(p))
713 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
714 #define raw_rq() raw_cpu_ptr(&runqueues)
716 static inline u64
__rq_clock_broken(struct rq
*rq
)
718 return READ_ONCE(rq
->clock
);
721 static inline u64
rq_clock(struct rq
*rq
)
723 lockdep_assert_held(&rq
->lock
);
727 static inline u64
rq_clock_task(struct rq
*rq
)
729 lockdep_assert_held(&rq
->lock
);
730 return rq
->clock_task
;
733 #define RQCF_REQ_SKIP 0x01
734 #define RQCF_ACT_SKIP 0x02
736 static inline void rq_clock_skip_update(struct rq
*rq
, bool skip
)
738 lockdep_assert_held(&rq
->lock
);
740 rq
->clock_skip_update
|= RQCF_REQ_SKIP
;
742 rq
->clock_skip_update
&= ~RQCF_REQ_SKIP
;
746 enum numa_topology_type
{
751 extern enum numa_topology_type sched_numa_topology_type
;
752 extern int sched_max_numa_distance
;
753 extern bool find_numa_distance(int distance
);
756 #ifdef CONFIG_NUMA_BALANCING
757 /* The regions in numa_faults array from task_struct */
758 enum numa_faults_stats
{
764 extern void sched_setnuma(struct task_struct
*p
, int node
);
765 extern int migrate_task_to(struct task_struct
*p
, int cpu
);
766 extern int migrate_swap(struct task_struct
*, struct task_struct
*);
767 #endif /* CONFIG_NUMA_BALANCING */
772 queue_balance_callback(struct rq
*rq
,
773 struct callback_head
*head
,
774 void (*func
)(struct rq
*rq
))
776 lockdep_assert_held(&rq
->lock
);
778 if (unlikely(head
->next
))
781 head
->func
= (void (*)(struct callback_head
*))func
;
782 head
->next
= rq
->balance_callback
;
783 rq
->balance_callback
= head
;
786 extern void sched_ttwu_pending(void);
788 #define rcu_dereference_check_sched_domain(p) \
789 rcu_dereference_check((p), \
790 lockdep_is_held(&sched_domains_mutex))
793 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
794 * See detach_destroy_domains: synchronize_sched for details.
796 * The domain tree of any CPU may only be accessed from within
797 * preempt-disabled sections.
799 #define for_each_domain(cpu, __sd) \
800 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
801 __sd; __sd = __sd->parent)
803 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
806 * highest_flag_domain - Return highest sched_domain containing flag.
807 * @cpu: The cpu whose highest level of sched domain is to
809 * @flag: The flag to check for the highest sched_domain
812 * Returns the highest sched_domain of a cpu which contains the given flag.
814 static inline struct sched_domain
*highest_flag_domain(int cpu
, int flag
)
816 struct sched_domain
*sd
, *hsd
= NULL
;
818 for_each_domain(cpu
, sd
) {
819 if (!(sd
->flags
& flag
))
827 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
829 struct sched_domain
*sd
;
831 for_each_domain(cpu
, sd
) {
832 if (sd
->flags
& flag
)
839 DECLARE_PER_CPU(struct sched_domain
*, sd_llc
);
840 DECLARE_PER_CPU(int, sd_llc_size
);
841 DECLARE_PER_CPU(int, sd_llc_id
);
842 DECLARE_PER_CPU(struct sched_domain
*, sd_numa
);
843 DECLARE_PER_CPU(struct sched_domain
*, sd_busy
);
844 DECLARE_PER_CPU(struct sched_domain
*, sd_asym
);
846 struct sched_group_capacity
{
849 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
852 unsigned int capacity
;
853 unsigned long next_update
;
854 int imbalance
; /* XXX unrelated to capacity but shared group state */
856 * Number of busy cpus in this group.
858 atomic_t nr_busy_cpus
;
860 unsigned long cpumask
[0]; /* iteration mask */
864 struct sched_group
*next
; /* Must be a circular list */
867 unsigned int group_weight
;
868 struct sched_group_capacity
*sgc
;
871 * The CPUs this group covers.
873 * NOTE: this field is variable length. (Allocated dynamically
874 * by attaching extra space to the end of the structure,
875 * depending on how many CPUs the kernel has booted up with)
877 unsigned long cpumask
[0];
880 static inline struct cpumask
*sched_group_cpus(struct sched_group
*sg
)
882 return to_cpumask(sg
->cpumask
);
886 * cpumask masking which cpus in the group are allowed to iterate up the domain
889 static inline struct cpumask
*sched_group_mask(struct sched_group
*sg
)
891 return to_cpumask(sg
->sgc
->cpumask
);
895 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
896 * @group: The group whose first cpu is to be returned.
898 static inline unsigned int group_first_cpu(struct sched_group
*group
)
900 return cpumask_first(sched_group_cpus(group
));
903 extern int group_balance_cpu(struct sched_group
*sg
);
907 static inline void sched_ttwu_pending(void) { }
909 #endif /* CONFIG_SMP */
912 #include "auto_group.h"
914 #ifdef CONFIG_CGROUP_SCHED
917 * Return the group to which this tasks belongs.
919 * We cannot use task_css() and friends because the cgroup subsystem
920 * changes that value before the cgroup_subsys::attach() method is called,
921 * therefore we cannot pin it and might observe the wrong value.
923 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
924 * core changes this before calling sched_move_task().
926 * Instead we use a 'copy' which is updated from sched_move_task() while
927 * holding both task_struct::pi_lock and rq::lock.
929 static inline struct task_group
*task_group(struct task_struct
*p
)
931 return p
->sched_task_group
;
934 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
935 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
937 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
938 struct task_group
*tg
= task_group(p
);
941 #ifdef CONFIG_FAIR_GROUP_SCHED
942 p
->se
.cfs_rq
= tg
->cfs_rq
[cpu
];
943 p
->se
.parent
= tg
->se
[cpu
];
946 #ifdef CONFIG_RT_GROUP_SCHED
947 p
->rt
.rt_rq
= tg
->rt_rq
[cpu
];
948 p
->rt
.parent
= tg
->rt_se
[cpu
];
952 #else /* CONFIG_CGROUP_SCHED */
954 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
955 static inline struct task_group
*task_group(struct task_struct
*p
)
960 #endif /* CONFIG_CGROUP_SCHED */
962 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
967 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
968 * successfuly executed on another CPU. We must ensure that updates of
969 * per-task data have been completed by this moment.
972 task_thread_info(p
)->cpu
= cpu
;
978 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
980 #ifdef CONFIG_SCHED_DEBUG
981 # include <linux/static_key.h>
982 # define const_debug __read_mostly
984 # define const_debug const
987 extern const_debug
unsigned int sysctl_sched_features
;
989 #define SCHED_FEAT(name, enabled) \
990 __SCHED_FEAT_##name ,
993 #include "features.h"
999 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1000 #define SCHED_FEAT(name, enabled) \
1001 static __always_inline bool static_branch_##name(struct static_key *key) \
1003 return static_key_##enabled(key); \
1006 #include "features.h"
1010 extern struct static_key sched_feat_keys
[__SCHED_FEAT_NR
];
1011 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1012 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1013 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1014 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1016 #ifdef CONFIG_NUMA_BALANCING
1017 #define sched_feat_numa(x) sched_feat(x)
1018 #ifdef CONFIG_SCHED_DEBUG
1019 #define numabalancing_enabled sched_feat_numa(NUMA)
1021 extern bool numabalancing_enabled
;
1022 #endif /* CONFIG_SCHED_DEBUG */
1024 #define sched_feat_numa(x) (0)
1025 #define numabalancing_enabled (0)
1026 #endif /* CONFIG_NUMA_BALANCING */
1028 static inline u64
global_rt_period(void)
1030 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
1033 static inline u64
global_rt_runtime(void)
1035 if (sysctl_sched_rt_runtime
< 0)
1038 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
1041 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
1043 return rq
->curr
== p
;
1046 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
1051 return task_current(rq
, p
);
1055 static inline int task_on_rq_queued(struct task_struct
*p
)
1057 return p
->on_rq
== TASK_ON_RQ_QUEUED
;
1060 static inline int task_on_rq_migrating(struct task_struct
*p
)
1062 return p
->on_rq
== TASK_ON_RQ_MIGRATING
;
1065 #ifndef prepare_arch_switch
1066 # define prepare_arch_switch(next) do { } while (0)
1068 #ifndef finish_arch_switch
1069 # define finish_arch_switch(prev) do { } while (0)
1071 #ifndef finish_arch_post_lock_switch
1072 # define finish_arch_post_lock_switch() do { } while (0)
1075 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
1079 * We can optimise this out completely for !SMP, because the
1080 * SMP rebalancing from interrupt is the only thing that cares
1087 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
1091 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1092 * We must ensure this doesn't happen until the switch is completely
1098 #ifdef CONFIG_DEBUG_SPINLOCK
1099 /* this is a valid case when another task releases the spinlock */
1100 rq
->lock
.owner
= current
;
1103 * If we are tracking spinlock dependencies then we have to
1104 * fix up the runqueue lock - which gets 'carried over' from
1105 * prev into current:
1107 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
1109 raw_spin_unlock_irq(&rq
->lock
);
1115 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1116 #define WF_FORK 0x02 /* child wakeup after fork */
1117 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1120 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1121 * of tasks with abnormal "nice" values across CPUs the contribution that
1122 * each task makes to its run queue's load is weighted according to its
1123 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1124 * scaled version of the new time slice allocation that they receive on time
1128 #define WEIGHT_IDLEPRIO 3
1129 #define WMULT_IDLEPRIO 1431655765
1132 * Nice levels are multiplicative, with a gentle 10% change for every
1133 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1134 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1135 * that remained on nice 0.
1137 * The "10% effect" is relative and cumulative: from _any_ nice level,
1138 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1139 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1140 * If a task goes up by ~10% and another task goes down by ~10% then
1141 * the relative distance between them is ~25%.)
1143 static const int prio_to_weight
[40] = {
1144 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1145 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1146 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1147 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1148 /* 0 */ 1024, 820, 655, 526, 423,
1149 /* 5 */ 335, 272, 215, 172, 137,
1150 /* 10 */ 110, 87, 70, 56, 45,
1151 /* 15 */ 36, 29, 23, 18, 15,
1155 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1157 * In cases where the weight does not change often, we can use the
1158 * precalculated inverse to speed up arithmetics by turning divisions
1159 * into multiplications:
1161 static const u32 prio_to_wmult
[40] = {
1162 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1163 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1164 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1165 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1166 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1167 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1168 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1169 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1172 #define ENQUEUE_WAKEUP 1
1173 #define ENQUEUE_HEAD 2
1175 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1177 #define ENQUEUE_WAKING 0
1179 #define ENQUEUE_REPLENISH 8
1181 #define DEQUEUE_SLEEP 1
1183 #define RETRY_TASK ((void *)-1UL)
1185 struct sched_class
{
1186 const struct sched_class
*next
;
1188 void (*enqueue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1189 void (*dequeue_task
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1190 void (*yield_task
) (struct rq
*rq
);
1191 bool (*yield_to_task
) (struct rq
*rq
, struct task_struct
*p
, bool preempt
);
1193 void (*check_preempt_curr
) (struct rq
*rq
, struct task_struct
*p
, int flags
);
1196 * It is the responsibility of the pick_next_task() method that will
1197 * return the next task to call put_prev_task() on the @prev task or
1198 * something equivalent.
1200 * May return RETRY_TASK when it finds a higher prio class has runnable
1203 struct task_struct
* (*pick_next_task
) (struct rq
*rq
,
1204 struct task_struct
*prev
);
1205 void (*put_prev_task
) (struct rq
*rq
, struct task_struct
*p
);
1208 int (*select_task_rq
)(struct task_struct
*p
, int task_cpu
, int sd_flag
, int flags
);
1209 void (*migrate_task_rq
)(struct task_struct
*p
, int next_cpu
);
1211 void (*task_waking
) (struct task_struct
*task
);
1212 void (*task_woken
) (struct rq
*this_rq
, struct task_struct
*task
);
1214 void (*set_cpus_allowed
)(struct task_struct
*p
,
1215 const struct cpumask
*newmask
);
1217 void (*rq_online
)(struct rq
*rq
);
1218 void (*rq_offline
)(struct rq
*rq
);
1221 void (*set_curr_task
) (struct rq
*rq
);
1222 void (*task_tick
) (struct rq
*rq
, struct task_struct
*p
, int queued
);
1223 void (*task_fork
) (struct task_struct
*p
);
1224 void (*task_dead
) (struct task_struct
*p
);
1227 * The switched_from() call is allowed to drop rq->lock, therefore we
1228 * cannot assume the switched_from/switched_to pair is serliazed by
1229 * rq->lock. They are however serialized by p->pi_lock.
1231 void (*switched_from
) (struct rq
*this_rq
, struct task_struct
*task
);
1232 void (*switched_to
) (struct rq
*this_rq
, struct task_struct
*task
);
1233 void (*prio_changed
) (struct rq
*this_rq
, struct task_struct
*task
,
1236 unsigned int (*get_rr_interval
) (struct rq
*rq
,
1237 struct task_struct
*task
);
1239 void (*update_curr
) (struct rq
*rq
);
1241 #ifdef CONFIG_FAIR_GROUP_SCHED
1242 void (*task_move_group
) (struct task_struct
*p
, int on_rq
);
1246 static inline void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
1248 prev
->sched_class
->put_prev_task(rq
, prev
);
1251 #define sched_class_highest (&stop_sched_class)
1252 #define for_each_class(class) \
1253 for (class = sched_class_highest; class; class = class->next)
1255 extern const struct sched_class stop_sched_class
;
1256 extern const struct sched_class dl_sched_class
;
1257 extern const struct sched_class rt_sched_class
;
1258 extern const struct sched_class fair_sched_class
;
1259 extern const struct sched_class idle_sched_class
;
1264 extern void update_group_capacity(struct sched_domain
*sd
, int cpu
);
1266 extern void trigger_load_balance(struct rq
*rq
);
1268 extern void idle_enter_fair(struct rq
*this_rq
);
1269 extern void idle_exit_fair(struct rq
*this_rq
);
1273 static inline void idle_enter_fair(struct rq
*rq
) { }
1274 static inline void idle_exit_fair(struct rq
*rq
) { }
1278 #ifdef CONFIG_CPU_IDLE
1279 static inline void idle_set_state(struct rq
*rq
,
1280 struct cpuidle_state
*idle_state
)
1282 rq
->idle_state
= idle_state
;
1285 static inline struct cpuidle_state
*idle_get_state(struct rq
*rq
)
1287 WARN_ON(!rcu_read_lock_held());
1288 return rq
->idle_state
;
1291 static inline void idle_set_state(struct rq
*rq
,
1292 struct cpuidle_state
*idle_state
)
1296 static inline struct cpuidle_state
*idle_get_state(struct rq
*rq
)
1302 extern void sysrq_sched_debug_show(void);
1303 extern void sched_init_granularity(void);
1304 extern void update_max_interval(void);
1306 extern void init_sched_dl_class(void);
1307 extern void init_sched_rt_class(void);
1308 extern void init_sched_fair_class(void);
1310 extern void resched_curr(struct rq
*rq
);
1311 extern void resched_cpu(int cpu
);
1313 extern struct rt_bandwidth def_rt_bandwidth
;
1314 extern void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
);
1316 extern struct dl_bandwidth def_dl_bandwidth
;
1317 extern void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
);
1318 extern void init_dl_task_timer(struct sched_dl_entity
*dl_se
);
1320 unsigned long to_ratio(u64 period
, u64 runtime
);
1322 extern void init_task_runnable_average(struct task_struct
*p
);
1324 static inline void add_nr_running(struct rq
*rq
, unsigned count
)
1326 unsigned prev_nr
= rq
->nr_running
;
1328 rq
->nr_running
= prev_nr
+ count
;
1330 if (prev_nr
< 2 && rq
->nr_running
>= 2) {
1332 if (!rq
->rd
->overload
)
1333 rq
->rd
->overload
= true;
1336 #ifdef CONFIG_NO_HZ_FULL
1337 if (tick_nohz_full_cpu(rq
->cpu
)) {
1339 * Tick is needed if more than one task runs on a CPU.
1340 * Send the target an IPI to kick it out of nohz mode.
1342 * We assume that IPI implies full memory barrier and the
1343 * new value of rq->nr_running is visible on reception
1346 tick_nohz_full_kick_cpu(rq
->cpu
);
1352 static inline void sub_nr_running(struct rq
*rq
, unsigned count
)
1354 rq
->nr_running
-= count
;
1357 static inline void rq_last_tick_reset(struct rq
*rq
)
1359 #ifdef CONFIG_NO_HZ_FULL
1360 rq
->last_sched_tick
= jiffies
;
1364 extern void update_rq_clock(struct rq
*rq
);
1366 extern void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
1367 extern void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
1369 extern void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
1371 extern const_debug
unsigned int sysctl_sched_time_avg
;
1372 extern const_debug
unsigned int sysctl_sched_nr_migrate
;
1373 extern const_debug
unsigned int sysctl_sched_migration_cost
;
1375 static inline u64
sched_avg_period(void)
1377 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1380 #ifdef CONFIG_SCHED_HRTICK
1384 * - enabled by features
1385 * - hrtimer is actually high res
1387 static inline int hrtick_enabled(struct rq
*rq
)
1389 if (!sched_feat(HRTICK
))
1391 if (!cpu_active(cpu_of(rq
)))
1393 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1396 void hrtick_start(struct rq
*rq
, u64 delay
);
1400 static inline int hrtick_enabled(struct rq
*rq
)
1405 #endif /* CONFIG_SCHED_HRTICK */
1408 extern void sched_avg_update(struct rq
*rq
);
1410 #ifndef arch_scale_freq_capacity
1411 static __always_inline
1412 unsigned long arch_scale_freq_capacity(struct sched_domain
*sd
, int cpu
)
1414 return SCHED_CAPACITY_SCALE
;
1418 static inline void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1420 rq
->rt_avg
+= rt_delta
* arch_scale_freq_capacity(NULL
, cpu_of(rq
));
1421 sched_avg_update(rq
);
1424 static inline void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
) { }
1425 static inline void sched_avg_update(struct rq
*rq
) { }
1429 * __task_rq_lock - lock the rq @p resides on.
1431 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
1432 __acquires(rq
->lock
)
1436 lockdep_assert_held(&p
->pi_lock
);
1440 raw_spin_lock(&rq
->lock
);
1441 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
))) {
1442 lockdep_pin_lock(&rq
->lock
);
1445 raw_spin_unlock(&rq
->lock
);
1447 while (unlikely(task_on_rq_migrating(p
)))
1453 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1455 static inline struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
1456 __acquires(p
->pi_lock
)
1457 __acquires(rq
->lock
)
1462 raw_spin_lock_irqsave(&p
->pi_lock
, *flags
);
1464 raw_spin_lock(&rq
->lock
);
1466 * move_queued_task() task_rq_lock()
1468 * ACQUIRE (rq->lock)
1469 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1470 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1471 * [S] ->cpu = new_cpu [L] task_rq()
1473 * RELEASE (rq->lock)
1475 * If we observe the old cpu in task_rq_lock, the acquire of
1476 * the old rq->lock will fully serialize against the stores.
1478 * If we observe the new cpu in task_rq_lock, the acquire will
1479 * pair with the WMB to ensure we must then also see migrating.
1481 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
))) {
1482 lockdep_pin_lock(&rq
->lock
);
1485 raw_spin_unlock(&rq
->lock
);
1486 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
1488 while (unlikely(task_on_rq_migrating(p
)))
1493 static inline void __task_rq_unlock(struct rq
*rq
)
1494 __releases(rq
->lock
)
1496 lockdep_unpin_lock(&rq
->lock
);
1497 raw_spin_unlock(&rq
->lock
);
1501 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, unsigned long *flags
)
1502 __releases(rq
->lock
)
1503 __releases(p
->pi_lock
)
1505 lockdep_unpin_lock(&rq
->lock
);
1506 raw_spin_unlock(&rq
->lock
);
1507 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
1511 #ifdef CONFIG_PREEMPT
1513 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1516 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1517 * way at the expense of forcing extra atomic operations in all
1518 * invocations. This assures that the double_lock is acquired using the
1519 * same underlying policy as the spinlock_t on this architecture, which
1520 * reduces latency compared to the unfair variant below. However, it
1521 * also adds more overhead and therefore may reduce throughput.
1523 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1524 __releases(this_rq
->lock
)
1525 __acquires(busiest
->lock
)
1526 __acquires(this_rq
->lock
)
1528 raw_spin_unlock(&this_rq
->lock
);
1529 double_rq_lock(this_rq
, busiest
);
1536 * Unfair double_lock_balance: Optimizes throughput at the expense of
1537 * latency by eliminating extra atomic operations when the locks are
1538 * already in proper order on entry. This favors lower cpu-ids and will
1539 * grant the double lock to lower cpus over higher ids under contention,
1540 * regardless of entry order into the function.
1542 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1543 __releases(this_rq
->lock
)
1544 __acquires(busiest
->lock
)
1545 __acquires(this_rq
->lock
)
1549 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1550 if (busiest
< this_rq
) {
1551 raw_spin_unlock(&this_rq
->lock
);
1552 raw_spin_lock(&busiest
->lock
);
1553 raw_spin_lock_nested(&this_rq
->lock
,
1554 SINGLE_DEPTH_NESTING
);
1557 raw_spin_lock_nested(&busiest
->lock
,
1558 SINGLE_DEPTH_NESTING
);
1563 #endif /* CONFIG_PREEMPT */
1566 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1568 static inline int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1570 if (unlikely(!irqs_disabled())) {
1571 /* printk() doesn't work good under rq->lock */
1572 raw_spin_unlock(&this_rq
->lock
);
1576 return _double_lock_balance(this_rq
, busiest
);
1579 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1580 __releases(busiest
->lock
)
1582 raw_spin_unlock(&busiest
->lock
);
1583 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1586 static inline void double_lock(spinlock_t
*l1
, spinlock_t
*l2
)
1592 spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1595 static inline void double_lock_irq(spinlock_t
*l1
, spinlock_t
*l2
)
1601 spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1604 static inline void double_raw_lock(raw_spinlock_t
*l1
, raw_spinlock_t
*l2
)
1610 raw_spin_lock_nested(l2
, SINGLE_DEPTH_NESTING
);
1614 * double_rq_lock - safely lock two runqueues
1616 * Note this does not disable interrupts like task_rq_lock,
1617 * you need to do so manually before calling.
1619 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1620 __acquires(rq1
->lock
)
1621 __acquires(rq2
->lock
)
1623 BUG_ON(!irqs_disabled());
1625 raw_spin_lock(&rq1
->lock
);
1626 __acquire(rq2
->lock
); /* Fake it out ;) */
1629 raw_spin_lock(&rq1
->lock
);
1630 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1632 raw_spin_lock(&rq2
->lock
);
1633 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1639 * double_rq_unlock - safely unlock two runqueues
1641 * Note this does not restore interrupts like task_rq_unlock,
1642 * you need to do so manually after calling.
1644 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1645 __releases(rq1
->lock
)
1646 __releases(rq2
->lock
)
1648 raw_spin_unlock(&rq1
->lock
);
1650 raw_spin_unlock(&rq2
->lock
);
1652 __release(rq2
->lock
);
1655 #else /* CONFIG_SMP */
1658 * double_rq_lock - safely lock two runqueues
1660 * Note this does not disable interrupts like task_rq_lock,
1661 * you need to do so manually before calling.
1663 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1664 __acquires(rq1
->lock
)
1665 __acquires(rq2
->lock
)
1667 BUG_ON(!irqs_disabled());
1669 raw_spin_lock(&rq1
->lock
);
1670 __acquire(rq2
->lock
); /* Fake it out ;) */
1674 * double_rq_unlock - safely unlock two runqueues
1676 * Note this does not restore interrupts like task_rq_unlock,
1677 * you need to do so manually after calling.
1679 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1680 __releases(rq1
->lock
)
1681 __releases(rq2
->lock
)
1684 raw_spin_unlock(&rq1
->lock
);
1685 __release(rq2
->lock
);
1690 extern struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
);
1691 extern struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
);
1693 #ifdef CONFIG_SCHED_DEBUG
1694 extern void print_cfs_stats(struct seq_file
*m
, int cpu
);
1695 extern void print_rt_stats(struct seq_file
*m
, int cpu
);
1696 extern void print_dl_stats(struct seq_file
*m
, int cpu
);
1698 print_cfs_rq(struct seq_file
*m
, int cpu
, struct cfs_rq
*cfs_rq
);
1700 #ifdef CONFIG_NUMA_BALANCING
1702 show_numa_stats(struct task_struct
*p
, struct seq_file
*m
);
1704 print_numa_stats(struct seq_file
*m
, int node
, unsigned long tsf
,
1705 unsigned long tpf
, unsigned long gsf
, unsigned long gpf
);
1706 #endif /* CONFIG_NUMA_BALANCING */
1707 #endif /* CONFIG_SCHED_DEBUG */
1709 extern void init_cfs_rq(struct cfs_rq
*cfs_rq
);
1710 extern void init_rt_rq(struct rt_rq
*rt_rq
);
1711 extern void init_dl_rq(struct dl_rq
*dl_rq
);
1713 extern void cfs_bandwidth_usage_inc(void);
1714 extern void cfs_bandwidth_usage_dec(void);
1716 #ifdef CONFIG_NO_HZ_COMMON
1717 enum rq_nohz_flag_bits
{
1722 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1725 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1727 DECLARE_PER_CPU(u64
, cpu_hardirq_time
);
1728 DECLARE_PER_CPU(u64
, cpu_softirq_time
);
1730 #ifndef CONFIG_64BIT
1731 DECLARE_PER_CPU(seqcount_t
, irq_time_seq
);
1733 static inline void irq_time_write_begin(void)
1735 __this_cpu_inc(irq_time_seq
.sequence
);
1739 static inline void irq_time_write_end(void)
1742 __this_cpu_inc(irq_time_seq
.sequence
);
1745 static inline u64
irq_time_read(int cpu
)
1751 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
1752 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
1753 per_cpu(cpu_hardirq_time
, cpu
);
1754 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
1758 #else /* CONFIG_64BIT */
1759 static inline void irq_time_write_begin(void)
1763 static inline void irq_time_write_end(void)
1767 static inline u64
irq_time_read(int cpu
)
1769 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1771 #endif /* CONFIG_64BIT */
1772 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */