2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
53 #include <asm/uaccess.h>
55 #include <trace/events/timer.h>
57 #include "tick-internal.h"
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
67 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
69 .lock
= __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases
.lock
),
70 .seq
= SEQCNT_ZERO(hrtimer_bases
.seq
),
74 .index
= HRTIMER_BASE_MONOTONIC
,
75 .clockid
= CLOCK_MONOTONIC
,
76 .get_time
= &ktime_get
,
79 .index
= HRTIMER_BASE_REALTIME
,
80 .clockid
= CLOCK_REALTIME
,
81 .get_time
= &ktime_get_real
,
84 .index
= HRTIMER_BASE_BOOTTIME
,
85 .clockid
= CLOCK_BOOTTIME
,
86 .get_time
= &ktime_get_boottime
,
89 .index
= HRTIMER_BASE_TAI
,
91 .get_time
= &ktime_get_clocktai
,
96 static const int hrtimer_clock_to_base_table
[MAX_CLOCKS
] = {
97 [CLOCK_REALTIME
] = HRTIMER_BASE_REALTIME
,
98 [CLOCK_MONOTONIC
] = HRTIMER_BASE_MONOTONIC
,
99 [CLOCK_BOOTTIME
] = HRTIMER_BASE_BOOTTIME
,
100 [CLOCK_TAI
] = HRTIMER_BASE_TAI
,
103 static inline int hrtimer_clockid_to_base(clockid_t clock_id
)
105 return hrtimer_clock_to_base_table
[clock_id
];
109 * Functions and macros which are different for UP/SMP systems are kept in a
115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116 * such that hrtimer_callback_running() can unconditionally dereference
117 * timer->base->cpu_base
119 static struct hrtimer_cpu_base migration_cpu_base
= {
120 .seq
= SEQCNT_ZERO(migration_cpu_base
),
121 .clock_base
= { { .cpu_base
= &migration_cpu_base
, }, },
124 #define migration_base migration_cpu_base.clock_base[0]
127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128 * means that all timers which are tied to this base via timer->base are
129 * locked, and the base itself is locked too.
131 * So __run_timers/migrate_timers can safely modify all timers which could
132 * be found on the lists/queues.
134 * When the timer's base is locked, and the timer removed from list, it is
135 * possible to set timer->base = &migration_base and drop the lock: the timer
139 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
140 unsigned long *flags
)
142 struct hrtimer_clock_base
*base
;
146 if (likely(base
!= &migration_base
)) {
147 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
148 if (likely(base
== timer
->base
))
150 /* The timer has migrated to another CPU: */
151 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
162 * Called with cpu_base->lock of target cpu held.
165 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
167 #ifdef CONFIG_HIGH_RES_TIMERS
170 if (!new_base
->cpu_base
->hres_active
)
173 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
174 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
180 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
182 struct hrtimer_cpu_base
*get_target_base(struct hrtimer_cpu_base
*base
,
185 if (pinned
|| !base
->migration_enabled
)
186 return this_cpu_ptr(&hrtimer_bases
);
187 return &per_cpu(hrtimer_bases
, get_nohz_timer_target());
191 struct hrtimer_cpu_base
*get_target_base(struct hrtimer_cpu_base
*base
,
194 return this_cpu_ptr(&hrtimer_bases
);
199 * Switch the timer base to the current CPU when possible.
201 static inline struct hrtimer_clock_base
*
202 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
205 struct hrtimer_cpu_base
*new_cpu_base
, *this_base
;
206 struct hrtimer_clock_base
*new_base
;
207 int basenum
= base
->index
;
209 this_base
= this_cpu_ptr(&hrtimer_bases
);
210 new_cpu_base
= get_target_base(this_base
, pinned
);
212 new_base
= &new_cpu_base
->clock_base
[basenum
];
214 if (base
!= new_base
) {
216 * We are trying to move timer to new_base.
217 * However we can't change timer's base while it is running,
218 * so we keep it on the same CPU. No hassle vs. reprogramming
219 * the event source in the high resolution case. The softirq
220 * code will take care of this when the timer function has
221 * completed. There is no conflict as we hold the lock until
222 * the timer is enqueued.
224 if (unlikely(hrtimer_callback_running(timer
)))
227 /* See the comment in lock_hrtimer_base() */
228 timer
->base
= &migration_base
;
229 raw_spin_unlock(&base
->cpu_base
->lock
);
230 raw_spin_lock(&new_base
->cpu_base
->lock
);
232 if (new_cpu_base
!= this_base
&&
233 hrtimer_check_target(timer
, new_base
)) {
234 raw_spin_unlock(&new_base
->cpu_base
->lock
);
235 raw_spin_lock(&base
->cpu_base
->lock
);
236 new_cpu_base
= this_base
;
240 timer
->base
= new_base
;
242 if (new_cpu_base
!= this_base
&&
243 hrtimer_check_target(timer
, new_base
)) {
244 new_cpu_base
= this_base
;
251 #else /* CONFIG_SMP */
253 static inline struct hrtimer_clock_base
*
254 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
256 struct hrtimer_clock_base
*base
= timer
->base
;
258 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
263 # define switch_hrtimer_base(t, b, p) (b)
265 #endif /* !CONFIG_SMP */
268 * Functions for the union type storage format of ktime_t which are
269 * too large for inlining:
271 #if BITS_PER_LONG < 64
273 * Divide a ktime value by a nanosecond value
275 s64
__ktime_divns(const ktime_t kt
, s64 div
)
281 dclc
= ktime_to_ns(kt
);
282 tmp
= dclc
< 0 ? -dclc
: dclc
;
284 /* Make sure the divisor is less than 2^32: */
290 do_div(tmp
, (unsigned long) div
);
291 return dclc
< 0 ? -tmp
: tmp
;
293 EXPORT_SYMBOL_GPL(__ktime_divns
);
294 #endif /* BITS_PER_LONG >= 64 */
297 * Add two ktime values and do a safety check for overflow:
299 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
301 ktime_t res
= ktime_add(lhs
, rhs
);
304 * We use KTIME_SEC_MAX here, the maximum timeout which we can
305 * return to user space in a timespec:
307 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
308 res
= ktime_set(KTIME_SEC_MAX
, 0);
313 EXPORT_SYMBOL_GPL(ktime_add_safe
);
315 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
317 static struct debug_obj_descr hrtimer_debug_descr
;
319 static void *hrtimer_debug_hint(void *addr
)
321 return ((struct hrtimer
*) addr
)->function
;
325 * fixup_init is called when:
326 * - an active object is initialized
328 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
330 struct hrtimer
*timer
= addr
;
333 case ODEBUG_STATE_ACTIVE
:
334 hrtimer_cancel(timer
);
335 debug_object_init(timer
, &hrtimer_debug_descr
);
343 * fixup_activate is called when:
344 * - an active object is activated
345 * - an unknown object is activated (might be a statically initialized object)
347 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
351 case ODEBUG_STATE_NOTAVAILABLE
:
355 case ODEBUG_STATE_ACTIVE
:
364 * fixup_free is called when:
365 * - an active object is freed
367 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
369 struct hrtimer
*timer
= addr
;
372 case ODEBUG_STATE_ACTIVE
:
373 hrtimer_cancel(timer
);
374 debug_object_free(timer
, &hrtimer_debug_descr
);
381 static struct debug_obj_descr hrtimer_debug_descr
= {
383 .debug_hint
= hrtimer_debug_hint
,
384 .fixup_init
= hrtimer_fixup_init
,
385 .fixup_activate
= hrtimer_fixup_activate
,
386 .fixup_free
= hrtimer_fixup_free
,
389 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
391 debug_object_init(timer
, &hrtimer_debug_descr
);
394 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
396 debug_object_activate(timer
, &hrtimer_debug_descr
);
399 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
401 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
404 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
406 debug_object_free(timer
, &hrtimer_debug_descr
);
409 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
410 enum hrtimer_mode mode
);
412 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
413 enum hrtimer_mode mode
)
415 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
416 __hrtimer_init(timer
, clock_id
, mode
);
418 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
420 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
422 debug_object_free(timer
, &hrtimer_debug_descr
);
426 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
427 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
428 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
432 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
433 enum hrtimer_mode mode
)
435 debug_hrtimer_init(timer
);
436 trace_hrtimer_init(timer
, clockid
, mode
);
439 static inline void debug_activate(struct hrtimer
*timer
)
441 debug_hrtimer_activate(timer
);
442 trace_hrtimer_start(timer
);
445 static inline void debug_deactivate(struct hrtimer
*timer
)
447 debug_hrtimer_deactivate(timer
);
448 trace_hrtimer_cancel(timer
);
451 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
452 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base
*cpu_base
,
453 struct hrtimer
*timer
)
455 #ifdef CONFIG_HIGH_RES_TIMERS
456 cpu_base
->next_timer
= timer
;
460 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base
*cpu_base
)
462 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
463 ktime_t expires
, expires_next
= { .tv64
= KTIME_MAX
};
464 unsigned int active
= cpu_base
->active_bases
;
466 hrtimer_update_next_timer(cpu_base
, NULL
);
467 for (; active
; base
++, active
>>= 1) {
468 struct timerqueue_node
*next
;
469 struct hrtimer
*timer
;
471 if (!(active
& 0x01))
474 next
= timerqueue_getnext(&base
->active
);
475 timer
= container_of(next
, struct hrtimer
, node
);
476 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
477 if (expires
.tv64
< expires_next
.tv64
) {
478 expires_next
= expires
;
479 hrtimer_update_next_timer(cpu_base
, timer
);
483 * clock_was_set() might have changed base->offset of any of
484 * the clock bases so the result might be negative. Fix it up
485 * to prevent a false positive in clockevents_program_event().
487 if (expires_next
.tv64
< 0)
488 expires_next
.tv64
= 0;
493 static inline ktime_t
hrtimer_update_base(struct hrtimer_cpu_base
*base
)
495 ktime_t
*offs_real
= &base
->clock_base
[HRTIMER_BASE_REALTIME
].offset
;
496 ktime_t
*offs_boot
= &base
->clock_base
[HRTIMER_BASE_BOOTTIME
].offset
;
497 ktime_t
*offs_tai
= &base
->clock_base
[HRTIMER_BASE_TAI
].offset
;
499 return ktime_get_update_offsets_now(&base
->clock_was_set_seq
,
500 offs_real
, offs_boot
, offs_tai
);
503 /* High resolution timer related functions */
504 #ifdef CONFIG_HIGH_RES_TIMERS
507 * High resolution timer enabled ?
509 static int hrtimer_hres_enabled __read_mostly
= 1;
510 unsigned int hrtimer_resolution __read_mostly
= LOW_RES_NSEC
;
511 EXPORT_SYMBOL_GPL(hrtimer_resolution
);
514 * Enable / Disable high resolution mode
516 static int __init
setup_hrtimer_hres(char *str
)
518 if (!strcmp(str
, "off"))
519 hrtimer_hres_enabled
= 0;
520 else if (!strcmp(str
, "on"))
521 hrtimer_hres_enabled
= 1;
527 __setup("highres=", setup_hrtimer_hres
);
530 * hrtimer_high_res_enabled - query, if the highres mode is enabled
532 static inline int hrtimer_is_hres_enabled(void)
534 return hrtimer_hres_enabled
;
538 * Is the high resolution mode active ?
540 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base
*cpu_base
)
542 return cpu_base
->hres_active
;
545 static inline int hrtimer_hres_active(void)
547 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases
));
551 * Reprogram the event source with checking both queues for the
553 * Called with interrupts disabled and base->lock held
556 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
558 ktime_t expires_next
;
560 if (!cpu_base
->hres_active
)
563 expires_next
= __hrtimer_get_next_event(cpu_base
);
565 if (skip_equal
&& expires_next
.tv64
== cpu_base
->expires_next
.tv64
)
568 cpu_base
->expires_next
.tv64
= expires_next
.tv64
;
571 * If a hang was detected in the last timer interrupt then we
572 * leave the hang delay active in the hardware. We want the
573 * system to make progress. That also prevents the following
575 * T1 expires 50ms from now
576 * T2 expires 5s from now
578 * T1 is removed, so this code is called and would reprogram
579 * the hardware to 5s from now. Any hrtimer_start after that
580 * will not reprogram the hardware due to hang_detected being
581 * set. So we'd effectivly block all timers until the T2 event
584 if (cpu_base
->hang_detected
)
587 tick_program_event(cpu_base
->expires_next
, 1);
591 * When a timer is enqueued and expires earlier than the already enqueued
592 * timers, we have to check, whether it expires earlier than the timer for
593 * which the clock event device was armed.
595 * Called with interrupts disabled and base->cpu_base.lock held
597 static void hrtimer_reprogram(struct hrtimer
*timer
,
598 struct hrtimer_clock_base
*base
)
600 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
601 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
603 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
606 * If the timer is not on the current cpu, we cannot reprogram
607 * the other cpus clock event device.
609 if (base
->cpu_base
!= cpu_base
)
613 * If the hrtimer interrupt is running, then it will
614 * reevaluate the clock bases and reprogram the clock event
615 * device. The callbacks are always executed in hard interrupt
616 * context so we don't need an extra check for a running
619 if (cpu_base
->in_hrtirq
)
623 * CLOCK_REALTIME timer might be requested with an absolute
624 * expiry time which is less than base->offset. Set it to 0.
626 if (expires
.tv64
< 0)
629 if (expires
.tv64
>= cpu_base
->expires_next
.tv64
)
632 /* Update the pointer to the next expiring timer */
633 cpu_base
->next_timer
= timer
;
636 * If a hang was detected in the last timer interrupt then we
637 * do not schedule a timer which is earlier than the expiry
638 * which we enforced in the hang detection. We want the system
641 if (cpu_base
->hang_detected
)
645 * Program the timer hardware. We enforce the expiry for
646 * events which are already in the past.
648 cpu_base
->expires_next
= expires
;
649 tick_program_event(expires
, 1);
653 * Initialize the high resolution related parts of cpu_base
655 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
657 base
->expires_next
.tv64
= KTIME_MAX
;
658 base
->hres_active
= 0;
662 * Retrigger next event is called after clock was set
664 * Called with interrupts disabled via on_each_cpu()
666 static void retrigger_next_event(void *arg
)
668 struct hrtimer_cpu_base
*base
= this_cpu_ptr(&hrtimer_bases
);
670 if (!base
->hres_active
)
673 raw_spin_lock(&base
->lock
);
674 hrtimer_update_base(base
);
675 hrtimer_force_reprogram(base
, 0);
676 raw_spin_unlock(&base
->lock
);
680 * Switch to high resolution mode
682 static int hrtimer_switch_to_hres(void)
684 struct hrtimer_cpu_base
*base
= this_cpu_ptr(&hrtimer_bases
);
686 if (tick_init_highres()) {
687 printk(KERN_WARNING
"Could not switch to high resolution "
688 "mode on CPU %d\n", base
->cpu
);
691 base
->hres_active
= 1;
692 hrtimer_resolution
= HIGH_RES_NSEC
;
694 tick_setup_sched_timer();
695 /* "Retrigger" the interrupt to get things going */
696 retrigger_next_event(NULL
);
700 static void clock_was_set_work(struct work_struct
*work
)
705 static DECLARE_WORK(hrtimer_work
, clock_was_set_work
);
708 * Called from timekeeping and resume code to reprogramm the hrtimer
709 * interrupt device on all cpus.
711 void clock_was_set_delayed(void)
713 schedule_work(&hrtimer_work
);
718 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base
*b
) { return 0; }
719 static inline int hrtimer_hres_active(void) { return 0; }
720 static inline int hrtimer_is_hres_enabled(void) { return 0; }
721 static inline int hrtimer_switch_to_hres(void) { return 0; }
723 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
724 static inline int hrtimer_reprogram(struct hrtimer
*timer
,
725 struct hrtimer_clock_base
*base
)
729 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
730 static inline void retrigger_next_event(void *arg
) { }
732 #endif /* CONFIG_HIGH_RES_TIMERS */
735 * Clock realtime was set
737 * Change the offset of the realtime clock vs. the monotonic
740 * We might have to reprogram the high resolution timer interrupt. On
741 * SMP we call the architecture specific code to retrigger _all_ high
742 * resolution timer interrupts. On UP we just disable interrupts and
743 * call the high resolution interrupt code.
745 void clock_was_set(void)
747 #ifdef CONFIG_HIGH_RES_TIMERS
748 /* Retrigger the CPU local events everywhere */
749 on_each_cpu(retrigger_next_event
, NULL
, 1);
751 timerfd_clock_was_set();
755 * During resume we might have to reprogram the high resolution timer
756 * interrupt on all online CPUs. However, all other CPUs will be
757 * stopped with IRQs interrupts disabled so the clock_was_set() call
760 void hrtimers_resume(void)
762 WARN_ONCE(!irqs_disabled(),
763 KERN_INFO
"hrtimers_resume() called with IRQs enabled!");
765 /* Retrigger on the local CPU */
766 retrigger_next_event(NULL
);
767 /* And schedule a retrigger for all others */
768 clock_was_set_delayed();
771 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
)
773 #ifdef CONFIG_TIMER_STATS
774 if (timer
->start_site
)
776 timer
->start_site
= __builtin_return_address(0);
777 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
778 timer
->start_pid
= current
->pid
;
782 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer
*timer
)
784 #ifdef CONFIG_TIMER_STATS
785 timer
->start_site
= NULL
;
789 static inline void timer_stats_account_hrtimer(struct hrtimer
*timer
)
791 #ifdef CONFIG_TIMER_STATS
792 if (likely(!timer_stats_active
))
794 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
795 timer
->function
, timer
->start_comm
, 0);
800 * Counterpart to lock_hrtimer_base above:
803 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
805 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
809 * hrtimer_forward - forward the timer expiry
810 * @timer: hrtimer to forward
811 * @now: forward past this time
812 * @interval: the interval to forward
814 * Forward the timer expiry so it will expire in the future.
815 * Returns the number of overruns.
817 * Can be safely called from the callback function of @timer. If
818 * called from other contexts @timer must neither be enqueued nor
819 * running the callback and the caller needs to take care of
822 * Note: This only updates the timer expiry value and does not requeue
825 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
830 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
835 if (WARN_ON(timer
->state
& HRTIMER_STATE_ENQUEUED
))
838 if (interval
.tv64
< hrtimer_resolution
)
839 interval
.tv64
= hrtimer_resolution
;
841 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
842 s64 incr
= ktime_to_ns(interval
);
844 orun
= ktime_divns(delta
, incr
);
845 hrtimer_add_expires_ns(timer
, incr
* orun
);
846 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
849 * This (and the ktime_add() below) is the
850 * correction for exact:
854 hrtimer_add_expires(timer
, interval
);
858 EXPORT_SYMBOL_GPL(hrtimer_forward
);
861 * enqueue_hrtimer - internal function to (re)start a timer
863 * The timer is inserted in expiry order. Insertion into the
864 * red black tree is O(log(n)). Must hold the base lock.
866 * Returns 1 when the new timer is the leftmost timer in the tree.
868 static int enqueue_hrtimer(struct hrtimer
*timer
,
869 struct hrtimer_clock_base
*base
)
871 debug_activate(timer
);
873 base
->cpu_base
->active_bases
|= 1 << base
->index
;
875 timer
->state
= HRTIMER_STATE_ENQUEUED
;
877 return timerqueue_add(&base
->active
, &timer
->node
);
881 * __remove_hrtimer - internal function to remove a timer
883 * Caller must hold the base lock.
885 * High resolution timer mode reprograms the clock event device when the
886 * timer is the one which expires next. The caller can disable this by setting
887 * reprogram to zero. This is useful, when the context does a reprogramming
888 * anyway (e.g. timer interrupt)
890 static void __remove_hrtimer(struct hrtimer
*timer
,
891 struct hrtimer_clock_base
*base
,
892 unsigned long newstate
, int reprogram
)
894 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
895 unsigned int state
= timer
->state
;
897 timer
->state
= newstate
;
898 if (!(state
& HRTIMER_STATE_ENQUEUED
))
901 if (!timerqueue_del(&base
->active
, &timer
->node
))
902 cpu_base
->active_bases
&= ~(1 << base
->index
);
904 #ifdef CONFIG_HIGH_RES_TIMERS
906 * Note: If reprogram is false we do not update
907 * cpu_base->next_timer. This happens when we remove the first
908 * timer on a remote cpu. No harm as we never dereference
909 * cpu_base->next_timer. So the worst thing what can happen is
910 * an superflous call to hrtimer_force_reprogram() on the
911 * remote cpu later on if the same timer gets enqueued again.
913 if (reprogram
&& timer
== cpu_base
->next_timer
)
914 hrtimer_force_reprogram(cpu_base
, 1);
919 * remove hrtimer, called with base lock held
922 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
, bool restart
)
924 if (hrtimer_is_queued(timer
)) {
925 unsigned long state
= timer
->state
;
929 * Remove the timer and force reprogramming when high
930 * resolution mode is active and the timer is on the current
931 * CPU. If we remove a timer on another CPU, reprogramming is
932 * skipped. The interrupt event on this CPU is fired and
933 * reprogramming happens in the interrupt handler. This is a
934 * rare case and less expensive than a smp call.
936 debug_deactivate(timer
);
937 timer_stats_hrtimer_clear_start_info(timer
);
938 reprogram
= base
->cpu_base
== this_cpu_ptr(&hrtimer_bases
);
941 state
= HRTIMER_STATE_INACTIVE
;
943 __remove_hrtimer(timer
, base
, state
, reprogram
);
950 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
951 * @timer: the timer to be added
953 * @delta_ns: "slack" range for the timer
954 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
955 * relative (HRTIMER_MODE_REL)
957 void hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
958 unsigned long delta_ns
, const enum hrtimer_mode mode
)
960 struct hrtimer_clock_base
*base
, *new_base
;
964 base
= lock_hrtimer_base(timer
, &flags
);
966 /* Remove an active timer from the queue: */
967 remove_hrtimer(timer
, base
, true);
969 if (mode
& HRTIMER_MODE_REL
) {
970 tim
= ktime_add_safe(tim
, base
->get_time());
972 * CONFIG_TIME_LOW_RES is a temporary way for architectures
973 * to signal that they simply return xtime in
974 * do_gettimeoffset(). In this case we want to round up by
975 * resolution when starting a relative timer, to avoid short
976 * timeouts. This will go away with the GTOD framework.
978 #ifdef CONFIG_TIME_LOW_RES
979 tim
= ktime_add_safe(tim
, ktime_set(0, hrtimer_resolution
));
983 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
985 /* Switch the timer base, if necessary: */
986 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
988 timer_stats_hrtimer_set_start_info(timer
);
990 leftmost
= enqueue_hrtimer(timer
, new_base
);
994 if (!hrtimer_is_hres_active(timer
)) {
996 * Kick to reschedule the next tick to handle the new timer
997 * on dynticks target.
999 if (new_base
->cpu_base
->nohz_active
)
1000 wake_up_nohz_cpu(new_base
->cpu_base
->cpu
);
1002 hrtimer_reprogram(timer
, new_base
);
1005 unlock_hrtimer_base(timer
, &flags
);
1007 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1010 * hrtimer_try_to_cancel - try to deactivate a timer
1011 * @timer: hrtimer to stop
1014 * 0 when the timer was not active
1015 * 1 when the timer was active
1016 * -1 when the timer is currently excuting the callback function and
1019 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1021 struct hrtimer_clock_base
*base
;
1022 unsigned long flags
;
1026 * Check lockless first. If the timer is not active (neither
1027 * enqueued nor running the callback, nothing to do here. The
1028 * base lock does not serialize against a concurrent enqueue,
1029 * so we can avoid taking it.
1031 if (!hrtimer_active(timer
))
1034 base
= lock_hrtimer_base(timer
, &flags
);
1036 if (!hrtimer_callback_running(timer
))
1037 ret
= remove_hrtimer(timer
, base
, false);
1039 unlock_hrtimer_base(timer
, &flags
);
1044 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1047 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1048 * @timer: the timer to be cancelled
1051 * 0 when the timer was not active
1052 * 1 when the timer was active
1054 int hrtimer_cancel(struct hrtimer
*timer
)
1057 int ret
= hrtimer_try_to_cancel(timer
);
1064 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1067 * hrtimer_get_remaining - get remaining time for the timer
1068 * @timer: the timer to read
1070 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1072 unsigned long flags
;
1075 lock_hrtimer_base(timer
, &flags
);
1076 rem
= hrtimer_expires_remaining(timer
);
1077 unlock_hrtimer_base(timer
, &flags
);
1081 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1083 #ifdef CONFIG_NO_HZ_COMMON
1085 * hrtimer_get_next_event - get the time until next expiry event
1087 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1089 u64
hrtimer_get_next_event(void)
1091 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1092 u64 expires
= KTIME_MAX
;
1093 unsigned long flags
;
1095 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1097 if (!__hrtimer_hres_active(cpu_base
))
1098 expires
= __hrtimer_get_next_event(cpu_base
).tv64
;
1100 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1106 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1107 enum hrtimer_mode mode
)
1109 struct hrtimer_cpu_base
*cpu_base
;
1112 memset(timer
, 0, sizeof(struct hrtimer
));
1114 cpu_base
= raw_cpu_ptr(&hrtimer_bases
);
1116 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1117 clock_id
= CLOCK_MONOTONIC
;
1119 base
= hrtimer_clockid_to_base(clock_id
);
1120 timer
->base
= &cpu_base
->clock_base
[base
];
1121 timerqueue_init(&timer
->node
);
1123 #ifdef CONFIG_TIMER_STATS
1124 timer
->start_site
= NULL
;
1125 timer
->start_pid
= -1;
1126 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1131 * hrtimer_init - initialize a timer to the given clock
1132 * @timer: the timer to be initialized
1133 * @clock_id: the clock to be used
1134 * @mode: timer mode abs/rel
1136 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1137 enum hrtimer_mode mode
)
1139 debug_init(timer
, clock_id
, mode
);
1140 __hrtimer_init(timer
, clock_id
, mode
);
1142 EXPORT_SYMBOL_GPL(hrtimer_init
);
1145 * A timer is active, when it is enqueued into the rbtree or the
1146 * callback function is running or it's in the state of being migrated
1149 * It is important for this function to not return a false negative.
1151 bool hrtimer_active(const struct hrtimer
*timer
)
1153 struct hrtimer_cpu_base
*cpu_base
;
1157 cpu_base
= READ_ONCE(timer
->base
->cpu_base
);
1158 seq
= raw_read_seqcount_begin(&cpu_base
->seq
);
1160 if (timer
->state
!= HRTIMER_STATE_INACTIVE
||
1161 cpu_base
->running
== timer
)
1164 } while (read_seqcount_retry(&cpu_base
->seq
, seq
) ||
1165 cpu_base
!= READ_ONCE(timer
->base
->cpu_base
));
1169 EXPORT_SYMBOL_GPL(hrtimer_active
);
1172 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1173 * distinct sections:
1175 * - queued: the timer is queued
1176 * - callback: the timer is being ran
1177 * - post: the timer is inactive or (re)queued
1179 * On the read side we ensure we observe timer->state and cpu_base->running
1180 * from the same section, if anything changed while we looked at it, we retry.
1181 * This includes timer->base changing because sequence numbers alone are
1182 * insufficient for that.
1184 * The sequence numbers are required because otherwise we could still observe
1185 * a false negative if the read side got smeared over multiple consequtive
1186 * __run_hrtimer() invocations.
1189 static void __run_hrtimer(struct hrtimer_cpu_base
*cpu_base
,
1190 struct hrtimer_clock_base
*base
,
1191 struct hrtimer
*timer
, ktime_t
*now
)
1193 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1196 lockdep_assert_held(&cpu_base
->lock
);
1198 debug_deactivate(timer
);
1199 cpu_base
->running
= timer
;
1202 * Separate the ->running assignment from the ->state assignment.
1204 * As with a regular write barrier, this ensures the read side in
1205 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1206 * timer->state == INACTIVE.
1208 raw_write_seqcount_barrier(&cpu_base
->seq
);
1210 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
, 0);
1211 timer_stats_account_hrtimer(timer
);
1212 fn
= timer
->function
;
1215 * Because we run timers from hardirq context, there is no chance
1216 * they get migrated to another cpu, therefore its safe to unlock
1219 raw_spin_unlock(&cpu_base
->lock
);
1220 trace_hrtimer_expire_entry(timer
, now
);
1221 restart
= fn(timer
);
1222 trace_hrtimer_expire_exit(timer
);
1223 raw_spin_lock(&cpu_base
->lock
);
1226 * Note: We clear the running state after enqueue_hrtimer and
1227 * we do not reprogramm the event hardware. Happens either in
1228 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1230 * Note: Because we dropped the cpu_base->lock above,
1231 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1234 if (restart
!= HRTIMER_NORESTART
&&
1235 !(timer
->state
& HRTIMER_STATE_ENQUEUED
))
1236 enqueue_hrtimer(timer
, base
);
1239 * Separate the ->running assignment from the ->state assignment.
1241 * As with a regular write barrier, this ensures the read side in
1242 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1243 * timer->state == INACTIVE.
1245 raw_write_seqcount_barrier(&cpu_base
->seq
);
1247 WARN_ON_ONCE(cpu_base
->running
!= timer
);
1248 cpu_base
->running
= NULL
;
1251 static void __hrtimer_run_queues(struct hrtimer_cpu_base
*cpu_base
, ktime_t now
)
1253 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1254 unsigned int active
= cpu_base
->active_bases
;
1256 for (; active
; base
++, active
>>= 1) {
1257 struct timerqueue_node
*node
;
1260 if (!(active
& 0x01))
1263 basenow
= ktime_add(now
, base
->offset
);
1265 while ((node
= timerqueue_getnext(&base
->active
))) {
1266 struct hrtimer
*timer
;
1268 timer
= container_of(node
, struct hrtimer
, node
);
1271 * The immediate goal for using the softexpires is
1272 * minimizing wakeups, not running timers at the
1273 * earliest interrupt after their soft expiration.
1274 * This allows us to avoid using a Priority Search
1275 * Tree, which can answer a stabbing querry for
1276 * overlapping intervals and instead use the simple
1277 * BST we already have.
1278 * We don't add extra wakeups by delaying timers that
1279 * are right-of a not yet expired timer, because that
1280 * timer will have to trigger a wakeup anyway.
1282 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
))
1285 __run_hrtimer(cpu_base
, base
, timer
, &basenow
);
1290 #ifdef CONFIG_HIGH_RES_TIMERS
1293 * High resolution timer interrupt
1294 * Called with interrupts disabled
1296 void hrtimer_interrupt(struct clock_event_device
*dev
)
1298 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1299 ktime_t expires_next
, now
, entry_time
, delta
;
1302 BUG_ON(!cpu_base
->hres_active
);
1303 cpu_base
->nr_events
++;
1304 dev
->next_event
.tv64
= KTIME_MAX
;
1306 raw_spin_lock(&cpu_base
->lock
);
1307 entry_time
= now
= hrtimer_update_base(cpu_base
);
1309 cpu_base
->in_hrtirq
= 1;
1311 * We set expires_next to KTIME_MAX here with cpu_base->lock
1312 * held to prevent that a timer is enqueued in our queue via
1313 * the migration code. This does not affect enqueueing of
1314 * timers which run their callback and need to be requeued on
1317 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1319 __hrtimer_run_queues(cpu_base
, now
);
1321 /* Reevaluate the clock bases for the next expiry */
1322 expires_next
= __hrtimer_get_next_event(cpu_base
);
1324 * Store the new expiry value so the migration code can verify
1327 cpu_base
->expires_next
= expires_next
;
1328 cpu_base
->in_hrtirq
= 0;
1329 raw_spin_unlock(&cpu_base
->lock
);
1331 /* Reprogramming necessary ? */
1332 if (!tick_program_event(expires_next
, 0)) {
1333 cpu_base
->hang_detected
= 0;
1338 * The next timer was already expired due to:
1340 * - long lasting callbacks
1341 * - being scheduled away when running in a VM
1343 * We need to prevent that we loop forever in the hrtimer
1344 * interrupt routine. We give it 3 attempts to avoid
1345 * overreacting on some spurious event.
1347 * Acquire base lock for updating the offsets and retrieving
1350 raw_spin_lock(&cpu_base
->lock
);
1351 now
= hrtimer_update_base(cpu_base
);
1352 cpu_base
->nr_retries
++;
1356 * Give the system a chance to do something else than looping
1357 * here. We stored the entry time, so we know exactly how long
1358 * we spent here. We schedule the next event this amount of
1361 cpu_base
->nr_hangs
++;
1362 cpu_base
->hang_detected
= 1;
1363 raw_spin_unlock(&cpu_base
->lock
);
1364 delta
= ktime_sub(now
, entry_time
);
1365 if ((unsigned int)delta
.tv64
> cpu_base
->max_hang_time
)
1366 cpu_base
->max_hang_time
= (unsigned int) delta
.tv64
;
1368 * Limit it to a sensible value as we enforce a longer
1369 * delay. Give the CPU at least 100ms to catch up.
1371 if (delta
.tv64
> 100 * NSEC_PER_MSEC
)
1372 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1374 expires_next
= ktime_add(now
, delta
);
1375 tick_program_event(expires_next
, 1);
1376 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1377 ktime_to_ns(delta
));
1381 * local version of hrtimer_peek_ahead_timers() called with interrupts
1384 static inline void __hrtimer_peek_ahead_timers(void)
1386 struct tick_device
*td
;
1388 if (!hrtimer_hres_active())
1391 td
= this_cpu_ptr(&tick_cpu_device
);
1392 if (td
&& td
->evtdev
)
1393 hrtimer_interrupt(td
->evtdev
);
1396 #else /* CONFIG_HIGH_RES_TIMERS */
1398 static inline void __hrtimer_peek_ahead_timers(void) { }
1400 #endif /* !CONFIG_HIGH_RES_TIMERS */
1403 * Called from run_local_timers in hardirq context every jiffy
1405 void hrtimer_run_queues(void)
1407 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1410 if (__hrtimer_hres_active(cpu_base
))
1414 * This _is_ ugly: We have to check periodically, whether we
1415 * can switch to highres and / or nohz mode. The clocksource
1416 * switch happens with xtime_lock held. Notification from
1417 * there only sets the check bit in the tick_oneshot code,
1418 * otherwise we might deadlock vs. xtime_lock.
1420 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1421 hrtimer_switch_to_hres();
1425 raw_spin_lock(&cpu_base
->lock
);
1426 now
= hrtimer_update_base(cpu_base
);
1427 __hrtimer_run_queues(cpu_base
, now
);
1428 raw_spin_unlock(&cpu_base
->lock
);
1432 * Sleep related functions:
1434 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1436 struct hrtimer_sleeper
*t
=
1437 container_of(timer
, struct hrtimer_sleeper
, timer
);
1438 struct task_struct
*task
= t
->task
;
1442 wake_up_process(task
);
1444 return HRTIMER_NORESTART
;
1447 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1449 sl
->timer
.function
= hrtimer_wakeup
;
1452 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1454 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1456 hrtimer_init_sleeper(t
, current
);
1459 set_current_state(TASK_INTERRUPTIBLE
);
1460 hrtimer_start_expires(&t
->timer
, mode
);
1462 if (likely(t
->task
))
1463 freezable_schedule();
1465 hrtimer_cancel(&t
->timer
);
1466 mode
= HRTIMER_MODE_ABS
;
1468 } while (t
->task
&& !signal_pending(current
));
1470 __set_current_state(TASK_RUNNING
);
1472 return t
->task
== NULL
;
1475 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1477 struct timespec rmt
;
1480 rem
= hrtimer_expires_remaining(timer
);
1483 rmt
= ktime_to_timespec(rem
);
1485 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1491 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1493 struct hrtimer_sleeper t
;
1494 struct timespec __user
*rmtp
;
1497 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.clockid
,
1499 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1501 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1504 rmtp
= restart
->nanosleep
.rmtp
;
1506 ret
= update_rmtp(&t
.timer
, rmtp
);
1511 /* The other values in restart are already filled in */
1512 ret
= -ERESTART_RESTARTBLOCK
;
1514 destroy_hrtimer_on_stack(&t
.timer
);
1518 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1519 const enum hrtimer_mode mode
, const clockid_t clockid
)
1521 struct restart_block
*restart
;
1522 struct hrtimer_sleeper t
;
1524 unsigned long slack
;
1526 slack
= current
->timer_slack_ns
;
1527 if (dl_task(current
) || rt_task(current
))
1530 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1531 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1532 if (do_nanosleep(&t
, mode
))
1535 /* Absolute timers do not update the rmtp value and restart: */
1536 if (mode
== HRTIMER_MODE_ABS
) {
1537 ret
= -ERESTARTNOHAND
;
1542 ret
= update_rmtp(&t
.timer
, rmtp
);
1547 restart
= ¤t
->restart_block
;
1548 restart
->fn
= hrtimer_nanosleep_restart
;
1549 restart
->nanosleep
.clockid
= t
.timer
.base
->clockid
;
1550 restart
->nanosleep
.rmtp
= rmtp
;
1551 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1553 ret
= -ERESTART_RESTARTBLOCK
;
1555 destroy_hrtimer_on_stack(&t
.timer
);
1559 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1560 struct timespec __user
*, rmtp
)
1564 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1567 if (!timespec_valid(&tu
))
1570 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1574 * Functions related to boot-time initialization:
1576 static void init_hrtimers_cpu(int cpu
)
1578 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1581 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1582 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1583 timerqueue_init_head(&cpu_base
->clock_base
[i
].active
);
1586 cpu_base
->cpu
= cpu
;
1587 hrtimer_init_hres(cpu_base
);
1590 #ifdef CONFIG_HOTPLUG_CPU
1592 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1593 struct hrtimer_clock_base
*new_base
)
1595 struct hrtimer
*timer
;
1596 struct timerqueue_node
*node
;
1598 while ((node
= timerqueue_getnext(&old_base
->active
))) {
1599 timer
= container_of(node
, struct hrtimer
, node
);
1600 BUG_ON(hrtimer_callback_running(timer
));
1601 debug_deactivate(timer
);
1604 * Mark it as ENQUEUED not INACTIVE otherwise the
1605 * timer could be seen as !active and just vanish away
1606 * under us on another CPU
1608 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_ENQUEUED
, 0);
1609 timer
->base
= new_base
;
1611 * Enqueue the timers on the new cpu. This does not
1612 * reprogram the event device in case the timer
1613 * expires before the earliest on this CPU, but we run
1614 * hrtimer_interrupt after we migrated everything to
1615 * sort out already expired timers and reprogram the
1618 enqueue_hrtimer(timer
, new_base
);
1622 static void migrate_hrtimers(int scpu
)
1624 struct hrtimer_cpu_base
*old_base
, *new_base
;
1627 BUG_ON(cpu_online(scpu
));
1628 tick_cancel_sched_timer(scpu
);
1630 local_irq_disable();
1631 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1632 new_base
= this_cpu_ptr(&hrtimer_bases
);
1634 * The caller is globally serialized and nobody else
1635 * takes two locks at once, deadlock is not possible.
1637 raw_spin_lock(&new_base
->lock
);
1638 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1640 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1641 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1642 &new_base
->clock_base
[i
]);
1645 raw_spin_unlock(&old_base
->lock
);
1646 raw_spin_unlock(&new_base
->lock
);
1648 /* Check, if we got expired work to do */
1649 __hrtimer_peek_ahead_timers();
1653 #endif /* CONFIG_HOTPLUG_CPU */
1655 static int hrtimer_cpu_notify(struct notifier_block
*self
,
1656 unsigned long action
, void *hcpu
)
1658 int scpu
= (long)hcpu
;
1662 case CPU_UP_PREPARE
:
1663 case CPU_UP_PREPARE_FROZEN
:
1664 init_hrtimers_cpu(scpu
);
1667 #ifdef CONFIG_HOTPLUG_CPU
1669 case CPU_DEAD_FROZEN
:
1670 migrate_hrtimers(scpu
);
1681 static struct notifier_block hrtimers_nb
= {
1682 .notifier_call
= hrtimer_cpu_notify
,
1685 void __init
hrtimers_init(void)
1687 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1688 (void *)(long)smp_processor_id());
1689 register_cpu_notifier(&hrtimers_nb
);
1693 * schedule_hrtimeout_range_clock - sleep until timeout
1694 * @expires: timeout value (ktime_t)
1695 * @delta: slack in expires timeout (ktime_t)
1696 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1697 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1700 schedule_hrtimeout_range_clock(ktime_t
*expires
, unsigned long delta
,
1701 const enum hrtimer_mode mode
, int clock
)
1703 struct hrtimer_sleeper t
;
1706 * Optimize when a zero timeout value is given. It does not
1707 * matter whether this is an absolute or a relative time.
1709 if (expires
&& !expires
->tv64
) {
1710 __set_current_state(TASK_RUNNING
);
1715 * A NULL parameter means "infinite"
1722 hrtimer_init_on_stack(&t
.timer
, clock
, mode
);
1723 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1725 hrtimer_init_sleeper(&t
, current
);
1727 hrtimer_start_expires(&t
.timer
, mode
);
1732 hrtimer_cancel(&t
.timer
);
1733 destroy_hrtimer_on_stack(&t
.timer
);
1735 __set_current_state(TASK_RUNNING
);
1737 return !t
.task
? 0 : -EINTR
;
1741 * schedule_hrtimeout_range - sleep until timeout
1742 * @expires: timeout value (ktime_t)
1743 * @delta: slack in expires timeout (ktime_t)
1744 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1746 * Make the current task sleep until the given expiry time has
1747 * elapsed. The routine will return immediately unless
1748 * the current task state has been set (see set_current_state()).
1750 * The @delta argument gives the kernel the freedom to schedule the
1751 * actual wakeup to a time that is both power and performance friendly.
1752 * The kernel give the normal best effort behavior for "@expires+@delta",
1753 * but may decide to fire the timer earlier, but no earlier than @expires.
1755 * You can set the task state as follows -
1757 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1758 * pass before the routine returns.
1760 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1761 * delivered to the current task.
1763 * The current task state is guaranteed to be TASK_RUNNING when this
1766 * Returns 0 when the timer has expired otherwise -EINTR
1768 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1769 const enum hrtimer_mode mode
)
1771 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
1774 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1777 * schedule_hrtimeout - sleep until timeout
1778 * @expires: timeout value (ktime_t)
1779 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1781 * Make the current task sleep until the given expiry time has
1782 * elapsed. The routine will return immediately unless
1783 * the current task state has been set (see set_current_state()).
1785 * You can set the task state as follows -
1787 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1788 * pass before the routine returns.
1790 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1791 * delivered to the current task.
1793 * The current task state is guaranteed to be TASK_RUNNING when this
1796 * Returns 0 when the timer has expired otherwise -EINTR
1798 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1799 const enum hrtimer_mode mode
)
1801 return schedule_hrtimeout_range(expires
, 0, mode
);
1803 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);