ARM: rockchip: fix broken build
[linux/fpc-iii.git] / kernel / time / tick-sched.c
blobc792429e98c6de3ffb75f95f745d6cca9724585b
1 /*
2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
28 #include <asm/irq_regs.h>
30 #include "tick-internal.h"
32 #include <trace/events/timer.h>
35 * Per cpu nohz control structure
37 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
42 static ktime_t last_jiffies_update;
44 struct tick_sched *tick_get_tick_sched(int cpu)
46 return &per_cpu(tick_cpu_sched, cpu);
50 * Must be called with interrupts disabled !
52 static void tick_do_update_jiffies64(ktime_t now)
54 unsigned long ticks = 0;
55 ktime_t delta;
58 * Do a quick check without holding jiffies_lock:
60 delta = ktime_sub(now, last_jiffies_update);
61 if (delta.tv64 < tick_period.tv64)
62 return;
64 /* Reevalute with jiffies_lock held */
65 write_seqlock(&jiffies_lock);
67 delta = ktime_sub(now, last_jiffies_update);
68 if (delta.tv64 >= tick_period.tv64) {
70 delta = ktime_sub(delta, tick_period);
71 last_jiffies_update = ktime_add(last_jiffies_update,
72 tick_period);
74 /* Slow path for long timeouts */
75 if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 s64 incr = ktime_to_ns(tick_period);
78 ticks = ktime_divns(delta, incr);
80 last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 incr * ticks);
83 do_timer(++ticks);
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 } else {
88 write_sequnlock(&jiffies_lock);
89 return;
91 write_sequnlock(&jiffies_lock);
92 update_wall_time();
96 * Initialize and return retrieve the jiffies update.
98 static ktime_t tick_init_jiffy_update(void)
100 ktime_t period;
102 write_seqlock(&jiffies_lock);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update.tv64 == 0)
105 last_jiffies_update = tick_next_period;
106 period = last_jiffies_update;
107 write_sequnlock(&jiffies_lock);
108 return period;
112 static void tick_sched_do_timer(ktime_t now)
114 int cpu = smp_processor_id();
116 #ifdef CONFIG_NO_HZ_COMMON
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the cpu in charge went
120 * into a long sleep. If two cpus happen to assign themself to
121 * this duty, then the jiffies update is still serialized by
122 * jiffies_lock.
124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 && !tick_nohz_full_cpu(cpu))
126 tick_do_timer_cpu = cpu;
127 #endif
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu == cpu)
131 tick_do_update_jiffies64(now);
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
136 #ifdef CONFIG_NO_HZ_COMMON
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
145 if (ts->tick_stopped) {
146 touch_softlockup_watchdog();
147 if (is_idle_task(current))
148 ts->idle_jiffies++;
150 #endif
151 update_process_times(user_mode(regs));
152 profile_tick(CPU_PROFILING);
155 #ifdef CONFIG_NO_HZ_FULL
156 cpumask_var_t tick_nohz_full_mask;
157 cpumask_var_t housekeeping_mask;
158 bool tick_nohz_full_running;
160 static bool can_stop_full_tick(void)
162 WARN_ON_ONCE(!irqs_disabled());
164 if (!sched_can_stop_tick()) {
165 trace_tick_stop(0, "more than 1 task in runqueue\n");
166 return false;
169 if (!posix_cpu_timers_can_stop_tick(current)) {
170 trace_tick_stop(0, "posix timers running\n");
171 return false;
174 if (!perf_event_can_stop_tick()) {
175 trace_tick_stop(0, "perf events running\n");
176 return false;
179 /* sched_clock_tick() needs us? */
180 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
182 * TODO: kick full dynticks CPUs when
183 * sched_clock_stable is set.
185 if (!sched_clock_stable()) {
186 trace_tick_stop(0, "unstable sched clock\n");
188 * Don't allow the user to think they can get
189 * full NO_HZ with this machine.
191 WARN_ONCE(tick_nohz_full_running,
192 "NO_HZ FULL will not work with unstable sched clock");
193 return false;
195 #endif
197 return true;
200 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
203 * Re-evaluate the need for the tick on the current CPU
204 * and restart it if necessary.
206 void __tick_nohz_full_check(void)
208 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
210 if (tick_nohz_full_cpu(smp_processor_id())) {
211 if (ts->tick_stopped && !is_idle_task(current)) {
212 if (!can_stop_full_tick())
213 tick_nohz_restart_sched_tick(ts, ktime_get());
218 static void nohz_full_kick_work_func(struct irq_work *work)
220 __tick_nohz_full_check();
223 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
224 .func = nohz_full_kick_work_func,
228 * Kick this CPU if it's full dynticks in order to force it to
229 * re-evaluate its dependency on the tick and restart it if necessary.
230 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
231 * is NMI safe.
233 void tick_nohz_full_kick(void)
235 if (!tick_nohz_full_cpu(smp_processor_id()))
236 return;
238 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
242 * Kick the CPU if it's full dynticks in order to force it to
243 * re-evaluate its dependency on the tick and restart it if necessary.
245 void tick_nohz_full_kick_cpu(int cpu)
247 if (!tick_nohz_full_cpu(cpu))
248 return;
250 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
253 static void nohz_full_kick_ipi(void *info)
255 __tick_nohz_full_check();
259 * Kick all full dynticks CPUs in order to force these to re-evaluate
260 * their dependency on the tick and restart it if necessary.
262 void tick_nohz_full_kick_all(void)
264 if (!tick_nohz_full_running)
265 return;
267 preempt_disable();
268 smp_call_function_many(tick_nohz_full_mask,
269 nohz_full_kick_ipi, NULL, false);
270 tick_nohz_full_kick();
271 preempt_enable();
275 * Re-evaluate the need for the tick as we switch the current task.
276 * It might need the tick due to per task/process properties:
277 * perf events, posix cpu timers, ...
279 void __tick_nohz_task_switch(struct task_struct *tsk)
281 unsigned long flags;
283 local_irq_save(flags);
285 if (!tick_nohz_full_cpu(smp_processor_id()))
286 goto out;
288 if (tick_nohz_tick_stopped() && !can_stop_full_tick())
289 tick_nohz_full_kick();
291 out:
292 local_irq_restore(flags);
295 /* Parse the boot-time nohz CPU list from the kernel parameters. */
296 static int __init tick_nohz_full_setup(char *str)
298 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
299 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
300 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
301 free_bootmem_cpumask_var(tick_nohz_full_mask);
302 return 1;
304 tick_nohz_full_running = true;
306 return 1;
308 __setup("nohz_full=", tick_nohz_full_setup);
310 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
311 unsigned long action,
312 void *hcpu)
314 unsigned int cpu = (unsigned long)hcpu;
316 switch (action & ~CPU_TASKS_FROZEN) {
317 case CPU_DOWN_PREPARE:
319 * If we handle the timekeeping duty for full dynticks CPUs,
320 * we can't safely shutdown that CPU.
322 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
323 return NOTIFY_BAD;
324 break;
326 return NOTIFY_OK;
329 static int tick_nohz_init_all(void)
331 int err = -1;
333 #ifdef CONFIG_NO_HZ_FULL_ALL
334 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
335 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
336 return err;
338 err = 0;
339 cpumask_setall(tick_nohz_full_mask);
340 tick_nohz_full_running = true;
341 #endif
342 return err;
345 void __init tick_nohz_init(void)
347 int cpu;
349 if (!tick_nohz_full_running) {
350 if (tick_nohz_init_all() < 0)
351 return;
354 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
355 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
356 cpumask_clear(tick_nohz_full_mask);
357 tick_nohz_full_running = false;
358 return;
362 * Full dynticks uses irq work to drive the tick rescheduling on safe
363 * locking contexts. But then we need irq work to raise its own
364 * interrupts to avoid circular dependency on the tick
366 if (!arch_irq_work_has_interrupt()) {
367 pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
368 "support irq work self-IPIs\n");
369 cpumask_clear(tick_nohz_full_mask);
370 cpumask_copy(housekeeping_mask, cpu_possible_mask);
371 tick_nohz_full_running = false;
372 return;
375 cpu = smp_processor_id();
377 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
378 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
379 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
382 cpumask_andnot(housekeeping_mask,
383 cpu_possible_mask, tick_nohz_full_mask);
385 for_each_cpu(cpu, tick_nohz_full_mask)
386 context_tracking_cpu_set(cpu);
388 cpu_notifier(tick_nohz_cpu_down_callback, 0);
389 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
390 cpumask_pr_args(tick_nohz_full_mask));
392 #endif
395 * NOHZ - aka dynamic tick functionality
397 #ifdef CONFIG_NO_HZ_COMMON
399 * NO HZ enabled ?
401 static int tick_nohz_enabled __read_mostly = 1;
402 unsigned long tick_nohz_active __read_mostly;
404 * Enable / Disable tickless mode
406 static int __init setup_tick_nohz(char *str)
408 if (!strcmp(str, "off"))
409 tick_nohz_enabled = 0;
410 else if (!strcmp(str, "on"))
411 tick_nohz_enabled = 1;
412 else
413 return 0;
414 return 1;
417 __setup("nohz=", setup_tick_nohz);
419 int tick_nohz_tick_stopped(void)
421 return __this_cpu_read(tick_cpu_sched.tick_stopped);
425 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
427 * Called from interrupt entry when the CPU was idle
429 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
430 * must be updated. Otherwise an interrupt handler could use a stale jiffy
431 * value. We do this unconditionally on any cpu, as we don't know whether the
432 * cpu, which has the update task assigned is in a long sleep.
434 static void tick_nohz_update_jiffies(ktime_t now)
436 unsigned long flags;
438 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
440 local_irq_save(flags);
441 tick_do_update_jiffies64(now);
442 local_irq_restore(flags);
444 touch_softlockup_watchdog();
448 * Updates the per cpu time idle statistics counters
450 static void
451 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
453 ktime_t delta;
455 if (ts->idle_active) {
456 delta = ktime_sub(now, ts->idle_entrytime);
457 if (nr_iowait_cpu(cpu) > 0)
458 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
459 else
460 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
461 ts->idle_entrytime = now;
464 if (last_update_time)
465 *last_update_time = ktime_to_us(now);
469 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
471 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
472 ts->idle_active = 0;
474 sched_clock_idle_wakeup_event(0);
477 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
479 ktime_t now = ktime_get();
481 ts->idle_entrytime = now;
482 ts->idle_active = 1;
483 sched_clock_idle_sleep_event();
484 return now;
488 * get_cpu_idle_time_us - get the total idle time of a cpu
489 * @cpu: CPU number to query
490 * @last_update_time: variable to store update time in. Do not update
491 * counters if NULL.
493 * Return the cummulative idle time (since boot) for a given
494 * CPU, in microseconds.
496 * This time is measured via accounting rather than sampling,
497 * and is as accurate as ktime_get() is.
499 * This function returns -1 if NOHZ is not enabled.
501 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
503 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
504 ktime_t now, idle;
506 if (!tick_nohz_active)
507 return -1;
509 now = ktime_get();
510 if (last_update_time) {
511 update_ts_time_stats(cpu, ts, now, last_update_time);
512 idle = ts->idle_sleeptime;
513 } else {
514 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
515 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
517 idle = ktime_add(ts->idle_sleeptime, delta);
518 } else {
519 idle = ts->idle_sleeptime;
523 return ktime_to_us(idle);
526 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
529 * get_cpu_iowait_time_us - get the total iowait time of a cpu
530 * @cpu: CPU number to query
531 * @last_update_time: variable to store update time in. Do not update
532 * counters if NULL.
534 * Return the cummulative iowait time (since boot) for a given
535 * CPU, in microseconds.
537 * This time is measured via accounting rather than sampling,
538 * and is as accurate as ktime_get() is.
540 * This function returns -1 if NOHZ is not enabled.
542 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
544 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
545 ktime_t now, iowait;
547 if (!tick_nohz_active)
548 return -1;
550 now = ktime_get();
551 if (last_update_time) {
552 update_ts_time_stats(cpu, ts, now, last_update_time);
553 iowait = ts->iowait_sleeptime;
554 } else {
555 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
556 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
558 iowait = ktime_add(ts->iowait_sleeptime, delta);
559 } else {
560 iowait = ts->iowait_sleeptime;
564 return ktime_to_us(iowait);
566 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
568 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
570 hrtimer_cancel(&ts->sched_timer);
571 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
573 /* Forward the time to expire in the future */
574 hrtimer_forward(&ts->sched_timer, now, tick_period);
576 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
577 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
578 else
579 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
582 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
583 ktime_t now, int cpu)
585 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
586 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
587 unsigned long seq, basejiff;
588 ktime_t tick;
590 /* Read jiffies and the time when jiffies were updated last */
591 do {
592 seq = read_seqbegin(&jiffies_lock);
593 basemono = last_jiffies_update.tv64;
594 basejiff = jiffies;
595 } while (read_seqretry(&jiffies_lock, seq));
596 ts->last_jiffies = basejiff;
598 if (rcu_needs_cpu(basemono, &next_rcu) ||
599 arch_needs_cpu() || irq_work_needs_cpu()) {
600 next_tick = basemono + TICK_NSEC;
601 } else {
603 * Get the next pending timer. If high resolution
604 * timers are enabled this only takes the timer wheel
605 * timers into account. If high resolution timers are
606 * disabled this also looks at the next expiring
607 * hrtimer.
609 next_tmr = get_next_timer_interrupt(basejiff, basemono);
610 ts->next_timer = next_tmr;
611 /* Take the next rcu event into account */
612 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
616 * If the tick is due in the next period, keep it ticking or
617 * restart it proper.
619 delta = next_tick - basemono;
620 if (delta <= (u64)TICK_NSEC) {
621 tick.tv64 = 0;
622 if (!ts->tick_stopped)
623 goto out;
624 if (delta == 0) {
625 /* Tick is stopped, but required now. Enforce it */
626 tick_nohz_restart(ts, now);
627 goto out;
632 * If this cpu is the one which updates jiffies, then give up
633 * the assignment and let it be taken by the cpu which runs
634 * the tick timer next, which might be this cpu as well. If we
635 * don't drop this here the jiffies might be stale and
636 * do_timer() never invoked. Keep track of the fact that it
637 * was the one which had the do_timer() duty last. If this cpu
638 * is the one which had the do_timer() duty last, we limit the
639 * sleep time to the timekeeping max_deferement value.
640 * Otherwise we can sleep as long as we want.
642 delta = timekeeping_max_deferment();
643 if (cpu == tick_do_timer_cpu) {
644 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
645 ts->do_timer_last = 1;
646 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
647 delta = KTIME_MAX;
648 ts->do_timer_last = 0;
649 } else if (!ts->do_timer_last) {
650 delta = KTIME_MAX;
653 #ifdef CONFIG_NO_HZ_FULL
654 /* Limit the tick delta to the maximum scheduler deferment */
655 if (!ts->inidle)
656 delta = min(delta, scheduler_tick_max_deferment());
657 #endif
659 /* Calculate the next expiry time */
660 if (delta < (KTIME_MAX - basemono))
661 expires = basemono + delta;
662 else
663 expires = KTIME_MAX;
665 expires = min_t(u64, expires, next_tick);
666 tick.tv64 = expires;
668 /* Skip reprogram of event if its not changed */
669 if (ts->tick_stopped && (expires == dev->next_event.tv64))
670 goto out;
673 * nohz_stop_sched_tick can be called several times before
674 * the nohz_restart_sched_tick is called. This happens when
675 * interrupts arrive which do not cause a reschedule. In the
676 * first call we save the current tick time, so we can restart
677 * the scheduler tick in nohz_restart_sched_tick.
679 if (!ts->tick_stopped) {
680 nohz_balance_enter_idle(cpu);
681 calc_load_enter_idle();
683 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
684 ts->tick_stopped = 1;
685 trace_tick_stop(1, " ");
689 * If the expiration time == KTIME_MAX, then we simply stop
690 * the tick timer.
692 if (unlikely(expires == KTIME_MAX)) {
693 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
694 hrtimer_cancel(&ts->sched_timer);
695 goto out;
698 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
699 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
700 else
701 tick_program_event(tick, 1);
702 out:
703 /* Update the estimated sleep length */
704 ts->sleep_length = ktime_sub(dev->next_event, now);
705 return tick;
708 static void tick_nohz_full_stop_tick(struct tick_sched *ts)
710 #ifdef CONFIG_NO_HZ_FULL
711 int cpu = smp_processor_id();
713 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
714 return;
716 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
717 return;
719 if (!can_stop_full_tick())
720 return;
722 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
723 #endif
726 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
729 * If this cpu is offline and it is the one which updates
730 * jiffies, then give up the assignment and let it be taken by
731 * the cpu which runs the tick timer next. If we don't drop
732 * this here the jiffies might be stale and do_timer() never
733 * invoked.
735 if (unlikely(!cpu_online(cpu))) {
736 if (cpu == tick_do_timer_cpu)
737 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
738 return false;
741 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
742 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
743 return false;
746 if (need_resched())
747 return false;
749 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
750 static int ratelimit;
752 if (ratelimit < 10 &&
753 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
754 pr_warn("NOHZ: local_softirq_pending %02x\n",
755 (unsigned int) local_softirq_pending());
756 ratelimit++;
758 return false;
761 if (tick_nohz_full_enabled()) {
763 * Keep the tick alive to guarantee timekeeping progression
764 * if there are full dynticks CPUs around
766 if (tick_do_timer_cpu == cpu)
767 return false;
769 * Boot safety: make sure the timekeeping duty has been
770 * assigned before entering dyntick-idle mode,
772 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
773 return false;
776 return true;
779 static void __tick_nohz_idle_enter(struct tick_sched *ts)
781 ktime_t now, expires;
782 int cpu = smp_processor_id();
784 now = tick_nohz_start_idle(ts);
786 if (can_stop_idle_tick(cpu, ts)) {
787 int was_stopped = ts->tick_stopped;
789 ts->idle_calls++;
791 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
792 if (expires.tv64 > 0LL) {
793 ts->idle_sleeps++;
794 ts->idle_expires = expires;
797 if (!was_stopped && ts->tick_stopped)
798 ts->idle_jiffies = ts->last_jiffies;
803 * tick_nohz_idle_enter - stop the idle tick from the idle task
805 * When the next event is more than a tick into the future, stop the idle tick
806 * Called when we start the idle loop.
808 * The arch is responsible of calling:
810 * - rcu_idle_enter() after its last use of RCU before the CPU is put
811 * to sleep.
812 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
814 void tick_nohz_idle_enter(void)
816 struct tick_sched *ts;
818 WARN_ON_ONCE(irqs_disabled());
821 * Update the idle state in the scheduler domain hierarchy
822 * when tick_nohz_stop_sched_tick() is called from the idle loop.
823 * State will be updated to busy during the first busy tick after
824 * exiting idle.
826 set_cpu_sd_state_idle();
828 local_irq_disable();
830 ts = this_cpu_ptr(&tick_cpu_sched);
831 ts->inidle = 1;
832 __tick_nohz_idle_enter(ts);
834 local_irq_enable();
838 * tick_nohz_irq_exit - update next tick event from interrupt exit
840 * When an interrupt fires while we are idle and it doesn't cause
841 * a reschedule, it may still add, modify or delete a timer, enqueue
842 * an RCU callback, etc...
843 * So we need to re-calculate and reprogram the next tick event.
845 void tick_nohz_irq_exit(void)
847 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
849 if (ts->inidle)
850 __tick_nohz_idle_enter(ts);
851 else
852 tick_nohz_full_stop_tick(ts);
856 * tick_nohz_get_sleep_length - return the length of the current sleep
858 * Called from power state control code with interrupts disabled
860 ktime_t tick_nohz_get_sleep_length(void)
862 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
864 return ts->sleep_length;
867 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
869 /* Update jiffies first */
870 tick_do_update_jiffies64(now);
871 update_cpu_load_nohz();
873 calc_load_exit_idle();
874 touch_softlockup_watchdog();
876 * Cancel the scheduled timer and restore the tick
878 ts->tick_stopped = 0;
879 ts->idle_exittime = now;
881 tick_nohz_restart(ts, now);
884 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
886 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
887 unsigned long ticks;
889 if (vtime_accounting_enabled())
890 return;
892 * We stopped the tick in idle. Update process times would miss the
893 * time we slept as update_process_times does only a 1 tick
894 * accounting. Enforce that this is accounted to idle !
896 ticks = jiffies - ts->idle_jiffies;
898 * We might be one off. Do not randomly account a huge number of ticks!
900 if (ticks && ticks < LONG_MAX)
901 account_idle_ticks(ticks);
902 #endif
906 * tick_nohz_idle_exit - restart the idle tick from the idle task
908 * Restart the idle tick when the CPU is woken up from idle
909 * This also exit the RCU extended quiescent state. The CPU
910 * can use RCU again after this function is called.
912 void tick_nohz_idle_exit(void)
914 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
915 ktime_t now;
917 local_irq_disable();
919 WARN_ON_ONCE(!ts->inidle);
921 ts->inidle = 0;
923 if (ts->idle_active || ts->tick_stopped)
924 now = ktime_get();
926 if (ts->idle_active)
927 tick_nohz_stop_idle(ts, now);
929 if (ts->tick_stopped) {
930 tick_nohz_restart_sched_tick(ts, now);
931 tick_nohz_account_idle_ticks(ts);
934 local_irq_enable();
938 * The nohz low res interrupt handler
940 static void tick_nohz_handler(struct clock_event_device *dev)
942 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
943 struct pt_regs *regs = get_irq_regs();
944 ktime_t now = ktime_get();
946 dev->next_event.tv64 = KTIME_MAX;
948 tick_sched_do_timer(now);
949 tick_sched_handle(ts, regs);
951 /* No need to reprogram if we are running tickless */
952 if (unlikely(ts->tick_stopped))
953 return;
955 hrtimer_forward(&ts->sched_timer, now, tick_period);
956 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
959 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
961 if (!tick_nohz_enabled)
962 return;
963 ts->nohz_mode = mode;
964 /* One update is enough */
965 if (!test_and_set_bit(0, &tick_nohz_active))
966 timers_update_migration(true);
970 * tick_nohz_switch_to_nohz - switch to nohz mode
972 static void tick_nohz_switch_to_nohz(void)
974 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
975 ktime_t next;
977 if (!tick_nohz_enabled)
978 return;
980 if (tick_switch_to_oneshot(tick_nohz_handler))
981 return;
984 * Recycle the hrtimer in ts, so we can share the
985 * hrtimer_forward with the highres code.
987 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
988 /* Get the next period */
989 next = tick_init_jiffy_update();
991 hrtimer_forward_now(&ts->sched_timer, tick_period);
992 hrtimer_set_expires(&ts->sched_timer, next);
993 tick_program_event(next, 1);
994 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
998 * When NOHZ is enabled and the tick is stopped, we need to kick the
999 * tick timer from irq_enter() so that the jiffies update is kept
1000 * alive during long running softirqs. That's ugly as hell, but
1001 * correctness is key even if we need to fix the offending softirq in
1002 * the first place.
1004 * Note, this is different to tick_nohz_restart. We just kick the
1005 * timer and do not touch the other magic bits which need to be done
1006 * when idle is left.
1008 static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1010 #if 0
1011 /* Switch back to 2.6.27 behaviour */
1012 ktime_t delta;
1015 * Do not touch the tick device, when the next expiry is either
1016 * already reached or less/equal than the tick period.
1018 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1019 if (delta.tv64 <= tick_period.tv64)
1020 return;
1022 tick_nohz_restart(ts, now);
1023 #endif
1026 static inline void tick_nohz_irq_enter(void)
1028 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1029 ktime_t now;
1031 if (!ts->idle_active && !ts->tick_stopped)
1032 return;
1033 now = ktime_get();
1034 if (ts->idle_active)
1035 tick_nohz_stop_idle(ts, now);
1036 if (ts->tick_stopped) {
1037 tick_nohz_update_jiffies(now);
1038 tick_nohz_kick_tick(ts, now);
1042 #else
1044 static inline void tick_nohz_switch_to_nohz(void) { }
1045 static inline void tick_nohz_irq_enter(void) { }
1046 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1048 #endif /* CONFIG_NO_HZ_COMMON */
1051 * Called from irq_enter to notify about the possible interruption of idle()
1053 void tick_irq_enter(void)
1055 tick_check_oneshot_broadcast_this_cpu();
1056 tick_nohz_irq_enter();
1060 * High resolution timer specific code
1062 #ifdef CONFIG_HIGH_RES_TIMERS
1064 * We rearm the timer until we get disabled by the idle code.
1065 * Called with interrupts disabled.
1067 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1069 struct tick_sched *ts =
1070 container_of(timer, struct tick_sched, sched_timer);
1071 struct pt_regs *regs = get_irq_regs();
1072 ktime_t now = ktime_get();
1074 tick_sched_do_timer(now);
1077 * Do not call, when we are not in irq context and have
1078 * no valid regs pointer
1080 if (regs)
1081 tick_sched_handle(ts, regs);
1083 /* No need to reprogram if we are in idle or full dynticks mode */
1084 if (unlikely(ts->tick_stopped))
1085 return HRTIMER_NORESTART;
1087 hrtimer_forward(timer, now, tick_period);
1089 return HRTIMER_RESTART;
1092 static int sched_skew_tick;
1094 static int __init skew_tick(char *str)
1096 get_option(&str, &sched_skew_tick);
1098 return 0;
1100 early_param("skew_tick", skew_tick);
1103 * tick_setup_sched_timer - setup the tick emulation timer
1105 void tick_setup_sched_timer(void)
1107 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1108 ktime_t now = ktime_get();
1111 * Emulate tick processing via per-CPU hrtimers:
1113 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1114 ts->sched_timer.function = tick_sched_timer;
1116 /* Get the next period (per cpu) */
1117 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1119 /* Offset the tick to avert jiffies_lock contention. */
1120 if (sched_skew_tick) {
1121 u64 offset = ktime_to_ns(tick_period) >> 1;
1122 do_div(offset, num_possible_cpus());
1123 offset *= smp_processor_id();
1124 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1127 hrtimer_forward(&ts->sched_timer, now, tick_period);
1128 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1129 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1131 #endif /* HIGH_RES_TIMERS */
1133 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1134 void tick_cancel_sched_timer(int cpu)
1136 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1138 # ifdef CONFIG_HIGH_RES_TIMERS
1139 if (ts->sched_timer.base)
1140 hrtimer_cancel(&ts->sched_timer);
1141 # endif
1143 memset(ts, 0, sizeof(*ts));
1145 #endif
1148 * Async notification about clocksource changes
1150 void tick_clock_notify(void)
1152 int cpu;
1154 for_each_possible_cpu(cpu)
1155 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1159 * Async notification about clock event changes
1161 void tick_oneshot_notify(void)
1163 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1165 set_bit(0, &ts->check_clocks);
1169 * Check, if a change happened, which makes oneshot possible.
1171 * Called cyclic from the hrtimer softirq (driven by the timer
1172 * softirq) allow_nohz signals, that we can switch into low-res nohz
1173 * mode, because high resolution timers are disabled (either compile
1174 * or runtime). Called with interrupts disabled.
1176 int tick_check_oneshot_change(int allow_nohz)
1178 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1180 if (!test_and_clear_bit(0, &ts->check_clocks))
1181 return 0;
1183 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1184 return 0;
1186 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1187 return 0;
1189 if (!allow_nohz)
1190 return 1;
1192 tick_nohz_switch_to_nohz();
1193 return 0;