2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
36 * The most important data for readout fits into a single 64 byte
41 struct timekeeper timekeeper
;
42 } tk_core ____cacheline_aligned
;
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock
);
45 static struct timekeeper shadow_timekeeper
;
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
54 * See @update_fast_timekeeper() below.
58 struct tk_read_base base
[2];
61 static struct tk_fast tk_fast_mono ____cacheline_aligned
;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned
;
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended
;
67 static inline void tk_normalize_xtime(struct timekeeper
*tk
)
69 while (tk
->tkr_mono
.xtime_nsec
>= ((u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
)) {
70 tk
->tkr_mono
.xtime_nsec
-= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
75 static inline struct timespec64
tk_xtime(struct timekeeper
*tk
)
79 ts
.tv_sec
= tk
->xtime_sec
;
80 ts
.tv_nsec
= (long)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
84 static void tk_set_xtime(struct timekeeper
*tk
, const struct timespec64
*ts
)
86 tk
->xtime_sec
= ts
->tv_sec
;
87 tk
->tkr_mono
.xtime_nsec
= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
90 static void tk_xtime_add(struct timekeeper
*tk
, const struct timespec64
*ts
)
92 tk
->xtime_sec
+= ts
->tv_sec
;
93 tk
->tkr_mono
.xtime_nsec
+= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
94 tk_normalize_xtime(tk
);
97 static void tk_set_wall_to_mono(struct timekeeper
*tk
, struct timespec64 wtm
)
99 struct timespec64 tmp
;
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
105 set_normalized_timespec64(&tmp
, -tk
->wall_to_monotonic
.tv_sec
,
106 -tk
->wall_to_monotonic
.tv_nsec
);
107 WARN_ON_ONCE(tk
->offs_real
.tv64
!= timespec64_to_ktime(tmp
).tv64
);
108 tk
->wall_to_monotonic
= wtm
;
109 set_normalized_timespec64(&tmp
, -wtm
.tv_sec
, -wtm
.tv_nsec
);
110 tk
->offs_real
= timespec64_to_ktime(tmp
);
111 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tk
->tai_offset
, 0));
114 static inline void tk_update_sleep_time(struct timekeeper
*tk
, ktime_t delta
)
116 tk
->offs_boot
= ktime_add(tk
->offs_boot
, delta
);
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
122 static void timekeeping_check_update(struct timekeeper
*tk
, cycle_t offset
)
125 cycle_t max_cycles
= tk
->tkr_mono
.clock
->max_cycles
;
126 const char *name
= tk
->tkr_mono
.clock
->name
;
128 if (offset
> max_cycles
) {
129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 offset
, name
, max_cycles
);
131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
133 if (offset
> (max_cycles
>> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
135 offset
, name
, max_cycles
>> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
140 if (tk
->underflow_seen
) {
141 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name
);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
145 tk
->last_warning
= jiffies
;
147 tk
->underflow_seen
= 0;
150 if (tk
->overflow_seen
) {
151 if (jiffies
- tk
->last_warning
> WARNING_FREQ
) {
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name
);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
155 tk
->last_warning
= jiffies
;
157 tk
->overflow_seen
= 0;
161 static inline cycle_t
timekeeping_get_delta(struct tk_read_base
*tkr
)
163 struct timekeeper
*tk
= &tk_core
.timekeeper
;
164 cycle_t now
, last
, mask
, max
, delta
;
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
175 seq
= read_seqcount_begin(&tk_core
.seq
);
176 now
= tkr
->read(tkr
->clock
);
177 last
= tkr
->cycle_last
;
179 max
= tkr
->clock
->max_cycles
;
180 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
182 delta
= clocksource_delta(now
, last
, mask
);
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
188 if (unlikely((~delta
& mask
) < (mask
>> 3))) {
189 tk
->underflow_seen
= 1;
193 /* Cap delta value to the max_cycles values to avoid mult overflows */
194 if (unlikely(delta
> max
)) {
195 tk
->overflow_seen
= 1;
196 delta
= tkr
->clock
->max_cycles
;
202 static inline void timekeeping_check_update(struct timekeeper
*tk
, cycle_t offset
)
205 static inline cycle_t
timekeeping_get_delta(struct tk_read_base
*tkr
)
207 cycle_t cycle_now
, delta
;
209 /* read clocksource */
210 cycle_now
= tkr
->read(tkr
->clock
);
212 /* calculate the delta since the last update_wall_time */
213 delta
= clocksource_delta(cycle_now
, tkr
->cycle_last
, tkr
->mask
);
220 * tk_setup_internals - Set up internals to use clocksource clock.
222 * @tk: The target timekeeper to setup.
223 * @clock: Pointer to clocksource.
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
228 * Unless you're the timekeeping code, you should not be using this!
230 static void tk_setup_internals(struct timekeeper
*tk
, struct clocksource
*clock
)
233 u64 tmp
, ntpinterval
;
234 struct clocksource
*old_clock
;
236 old_clock
= tk
->tkr_mono
.clock
;
237 tk
->tkr_mono
.clock
= clock
;
238 tk
->tkr_mono
.read
= clock
->read
;
239 tk
->tkr_mono
.mask
= clock
->mask
;
240 tk
->tkr_mono
.cycle_last
= tk
->tkr_mono
.read(clock
);
242 tk
->tkr_raw
.clock
= clock
;
243 tk
->tkr_raw
.read
= clock
->read
;
244 tk
->tkr_raw
.mask
= clock
->mask
;
245 tk
->tkr_raw
.cycle_last
= tk
->tkr_mono
.cycle_last
;
247 /* Do the ns -> cycle conversion first, using original mult */
248 tmp
= NTP_INTERVAL_LENGTH
;
249 tmp
<<= clock
->shift
;
251 tmp
+= clock
->mult
/2;
252 do_div(tmp
, clock
->mult
);
256 interval
= (cycle_t
) tmp
;
257 tk
->cycle_interval
= interval
;
259 /* Go back from cycles -> shifted ns */
260 tk
->xtime_interval
= (u64
) interval
* clock
->mult
;
261 tk
->xtime_remainder
= ntpinterval
- tk
->xtime_interval
;
263 ((u64
) interval
* clock
->mult
) >> clock
->shift
;
265 /* if changing clocks, convert xtime_nsec shift units */
267 int shift_change
= clock
->shift
- old_clock
->shift
;
268 if (shift_change
< 0)
269 tk
->tkr_mono
.xtime_nsec
>>= -shift_change
;
271 tk
->tkr_mono
.xtime_nsec
<<= shift_change
;
273 tk
->tkr_raw
.xtime_nsec
= 0;
275 tk
->tkr_mono
.shift
= clock
->shift
;
276 tk
->tkr_raw
.shift
= clock
->shift
;
279 tk
->ntp_error_shift
= NTP_SCALE_SHIFT
- clock
->shift
;
280 tk
->ntp_tick
= ntpinterval
<< tk
->ntp_error_shift
;
283 * The timekeeper keeps its own mult values for the currently
284 * active clocksource. These value will be adjusted via NTP
285 * to counteract clock drifting.
287 tk
->tkr_mono
.mult
= clock
->mult
;
288 tk
->tkr_raw
.mult
= clock
->mult
;
289 tk
->ntp_err_mult
= 0;
292 /* Timekeeper helper functions. */
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32
default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset
)(void) = default_arch_gettimeoffset
;
298 static inline u32
arch_gettimeoffset(void) { return 0; }
301 static inline s64
timekeeping_get_ns(struct tk_read_base
*tkr
)
306 delta
= timekeeping_get_delta(tkr
);
308 nsec
= delta
* tkr
->mult
+ tkr
->xtime_nsec
;
311 /* If arch requires, add in get_arch_timeoffset() */
312 return nsec
+ arch_gettimeoffset();
316 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
317 * @tkr: Timekeeping readout base from which we take the update
319 * We want to use this from any context including NMI and tracing /
320 * instrumenting the timekeeping code itself.
322 * Employ the latch technique; see @raw_write_seqcount_latch.
324 * So if a NMI hits the update of base[0] then it will use base[1]
325 * which is still consistent. In the worst case this can result is a
326 * slightly wrong timestamp (a few nanoseconds). See
327 * @ktime_get_mono_fast_ns.
329 static void update_fast_timekeeper(struct tk_read_base
*tkr
, struct tk_fast
*tkf
)
331 struct tk_read_base
*base
= tkf
->base
;
333 /* Force readers off to base[1] */
334 raw_write_seqcount_latch(&tkf
->seq
);
337 memcpy(base
, tkr
, sizeof(*base
));
339 /* Force readers back to base[0] */
340 raw_write_seqcount_latch(&tkf
->seq
);
343 memcpy(base
+ 1, base
, sizeof(*base
));
347 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
349 * This timestamp is not guaranteed to be monotonic across an update.
350 * The timestamp is calculated by:
352 * now = base_mono + clock_delta * slope
354 * So if the update lowers the slope, readers who are forced to the
355 * not yet updated second array are still using the old steeper slope.
364 * |12345678---> reader order
370 * So reader 6 will observe time going backwards versus reader 5.
372 * While other CPUs are likely to be able observe that, the only way
373 * for a CPU local observation is when an NMI hits in the middle of
374 * the update. Timestamps taken from that NMI context might be ahead
375 * of the following timestamps. Callers need to be aware of that and
378 static __always_inline u64
__ktime_get_fast_ns(struct tk_fast
*tkf
)
380 struct tk_read_base
*tkr
;
385 seq
= raw_read_seqcount_latch(&tkf
->seq
);
386 tkr
= tkf
->base
+ (seq
& 0x01);
387 now
= ktime_to_ns(tkr
->base
) + timekeeping_get_ns(tkr
);
388 } while (read_seqcount_retry(&tkf
->seq
, seq
));
393 u64
ktime_get_mono_fast_ns(void)
395 return __ktime_get_fast_ns(&tk_fast_mono
);
397 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns
);
399 u64
ktime_get_raw_fast_ns(void)
401 return __ktime_get_fast_ns(&tk_fast_raw
);
403 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns
);
405 /* Suspend-time cycles value for halted fast timekeeper. */
406 static cycle_t cycles_at_suspend
;
408 static cycle_t
dummy_clock_read(struct clocksource
*cs
)
410 return cycles_at_suspend
;
414 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
415 * @tk: Timekeeper to snapshot.
417 * It generally is unsafe to access the clocksource after timekeeping has been
418 * suspended, so take a snapshot of the readout base of @tk and use it as the
419 * fast timekeeper's readout base while suspended. It will return the same
420 * number of cycles every time until timekeeping is resumed at which time the
421 * proper readout base for the fast timekeeper will be restored automatically.
423 static void halt_fast_timekeeper(struct timekeeper
*tk
)
425 static struct tk_read_base tkr_dummy
;
426 struct tk_read_base
*tkr
= &tk
->tkr_mono
;
428 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
429 cycles_at_suspend
= tkr
->read(tkr
->clock
);
430 tkr_dummy
.read
= dummy_clock_read
;
431 update_fast_timekeeper(&tkr_dummy
, &tk_fast_mono
);
434 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
435 tkr_dummy
.read
= dummy_clock_read
;
436 update_fast_timekeeper(&tkr_dummy
, &tk_fast_raw
);
439 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
441 static inline void update_vsyscall(struct timekeeper
*tk
)
443 struct timespec xt
, wm
;
445 xt
= timespec64_to_timespec(tk_xtime(tk
));
446 wm
= timespec64_to_timespec(tk
->wall_to_monotonic
);
447 update_vsyscall_old(&xt
, &wm
, tk
->tkr_mono
.clock
, tk
->tkr_mono
.mult
,
448 tk
->tkr_mono
.cycle_last
);
451 static inline void old_vsyscall_fixup(struct timekeeper
*tk
)
456 * Store only full nanoseconds into xtime_nsec after rounding
457 * it up and add the remainder to the error difference.
458 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
459 * by truncating the remainder in vsyscalls. However, it causes
460 * additional work to be done in timekeeping_adjust(). Once
461 * the vsyscall implementations are converted to use xtime_nsec
462 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
463 * users are removed, this can be killed.
465 remainder
= tk
->tkr_mono
.xtime_nsec
& ((1ULL << tk
->tkr_mono
.shift
) - 1);
466 tk
->tkr_mono
.xtime_nsec
-= remainder
;
467 tk
->tkr_mono
.xtime_nsec
+= 1ULL << tk
->tkr_mono
.shift
;
468 tk
->ntp_error
+= remainder
<< tk
->ntp_error_shift
;
469 tk
->ntp_error
-= (1ULL << tk
->tkr_mono
.shift
) << tk
->ntp_error_shift
;
472 #define old_vsyscall_fixup(tk)
475 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain
);
477 static void update_pvclock_gtod(struct timekeeper
*tk
, bool was_set
)
479 raw_notifier_call_chain(&pvclock_gtod_chain
, was_set
, tk
);
483 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
485 int pvclock_gtod_register_notifier(struct notifier_block
*nb
)
487 struct timekeeper
*tk
= &tk_core
.timekeeper
;
491 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
492 ret
= raw_notifier_chain_register(&pvclock_gtod_chain
, nb
);
493 update_pvclock_gtod(tk
, true);
494 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
498 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier
);
501 * pvclock_gtod_unregister_notifier - unregister a pvclock
502 * timedata update listener
504 int pvclock_gtod_unregister_notifier(struct notifier_block
*nb
)
509 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
510 ret
= raw_notifier_chain_unregister(&pvclock_gtod_chain
, nb
);
511 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
515 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier
);
518 * tk_update_leap_state - helper to update the next_leap_ktime
520 static inline void tk_update_leap_state(struct timekeeper
*tk
)
522 tk
->next_leap_ktime
= ntp_get_next_leap();
523 if (tk
->next_leap_ktime
.tv64
!= KTIME_MAX
)
524 /* Convert to monotonic time */
525 tk
->next_leap_ktime
= ktime_sub(tk
->next_leap_ktime
, tk
->offs_real
);
529 * Update the ktime_t based scalar nsec members of the timekeeper
531 static inline void tk_update_ktime_data(struct timekeeper
*tk
)
537 * The xtime based monotonic readout is:
538 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
539 * The ktime based monotonic readout is:
540 * nsec = base_mono + now();
541 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
543 seconds
= (u64
)(tk
->xtime_sec
+ tk
->wall_to_monotonic
.tv_sec
);
544 nsec
= (u32
) tk
->wall_to_monotonic
.tv_nsec
;
545 tk
->tkr_mono
.base
= ns_to_ktime(seconds
* NSEC_PER_SEC
+ nsec
);
547 /* Update the monotonic raw base */
548 tk
->tkr_raw
.base
= timespec64_to_ktime(tk
->raw_time
);
551 * The sum of the nanoseconds portions of xtime and
552 * wall_to_monotonic can be greater/equal one second. Take
553 * this into account before updating tk->ktime_sec.
555 nsec
+= (u32
)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
556 if (nsec
>= NSEC_PER_SEC
)
558 tk
->ktime_sec
= seconds
;
561 /* must hold timekeeper_lock */
562 static void timekeeping_update(struct timekeeper
*tk
, unsigned int action
)
564 if (action
& TK_CLEAR_NTP
) {
569 tk_update_leap_state(tk
);
570 tk_update_ktime_data(tk
);
573 update_pvclock_gtod(tk
, action
& TK_CLOCK_WAS_SET
);
575 update_fast_timekeeper(&tk
->tkr_mono
, &tk_fast_mono
);
576 update_fast_timekeeper(&tk
->tkr_raw
, &tk_fast_raw
);
578 if (action
& TK_CLOCK_WAS_SET
)
579 tk
->clock_was_set_seq
++;
581 * The mirroring of the data to the shadow-timekeeper needs
582 * to happen last here to ensure we don't over-write the
583 * timekeeper structure on the next update with stale data
585 if (action
& TK_MIRROR
)
586 memcpy(&shadow_timekeeper
, &tk_core
.timekeeper
,
587 sizeof(tk_core
.timekeeper
));
591 * timekeeping_forward_now - update clock to the current time
593 * Forward the current clock to update its state since the last call to
594 * update_wall_time(). This is useful before significant clock changes,
595 * as it avoids having to deal with this time offset explicitly.
597 static void timekeeping_forward_now(struct timekeeper
*tk
)
599 struct clocksource
*clock
= tk
->tkr_mono
.clock
;
600 cycle_t cycle_now
, delta
;
603 cycle_now
= tk
->tkr_mono
.read(clock
);
604 delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
605 tk
->tkr_mono
.cycle_last
= cycle_now
;
606 tk
->tkr_raw
.cycle_last
= cycle_now
;
608 tk
->tkr_mono
.xtime_nsec
+= delta
* tk
->tkr_mono
.mult
;
610 /* If arch requires, add in get_arch_timeoffset() */
611 tk
->tkr_mono
.xtime_nsec
+= (u64
)arch_gettimeoffset() << tk
->tkr_mono
.shift
;
613 tk_normalize_xtime(tk
);
615 nsec
= clocksource_cyc2ns(delta
, tk
->tkr_raw
.mult
, tk
->tkr_raw
.shift
);
616 timespec64_add_ns(&tk
->raw_time
, nsec
);
620 * __getnstimeofday64 - Returns the time of day in a timespec64.
621 * @ts: pointer to the timespec to be set
623 * Updates the time of day in the timespec.
624 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
626 int __getnstimeofday64(struct timespec64
*ts
)
628 struct timekeeper
*tk
= &tk_core
.timekeeper
;
633 seq
= read_seqcount_begin(&tk_core
.seq
);
635 ts
->tv_sec
= tk
->xtime_sec
;
636 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
638 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
641 timespec64_add_ns(ts
, nsecs
);
644 * Do not bail out early, in case there were callers still using
645 * the value, even in the face of the WARN_ON.
647 if (unlikely(timekeeping_suspended
))
651 EXPORT_SYMBOL(__getnstimeofday64
);
654 * getnstimeofday64 - Returns the time of day in a timespec64.
655 * @ts: pointer to the timespec64 to be set
657 * Returns the time of day in a timespec64 (WARN if suspended).
659 void getnstimeofday64(struct timespec64
*ts
)
661 WARN_ON(__getnstimeofday64(ts
));
663 EXPORT_SYMBOL(getnstimeofday64
);
665 ktime_t
ktime_get(void)
667 struct timekeeper
*tk
= &tk_core
.timekeeper
;
672 WARN_ON(timekeeping_suspended
);
675 seq
= read_seqcount_begin(&tk_core
.seq
);
676 base
= tk
->tkr_mono
.base
;
677 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
679 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
681 return ktime_add_ns(base
, nsecs
);
683 EXPORT_SYMBOL_GPL(ktime_get
);
685 u32
ktime_get_resolution_ns(void)
687 struct timekeeper
*tk
= &tk_core
.timekeeper
;
691 WARN_ON(timekeeping_suspended
);
694 seq
= read_seqcount_begin(&tk_core
.seq
);
695 nsecs
= tk
->tkr_mono
.mult
>> tk
->tkr_mono
.shift
;
696 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
700 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns
);
702 static ktime_t
*offsets
[TK_OFFS_MAX
] = {
703 [TK_OFFS_REAL
] = &tk_core
.timekeeper
.offs_real
,
704 [TK_OFFS_BOOT
] = &tk_core
.timekeeper
.offs_boot
,
705 [TK_OFFS_TAI
] = &tk_core
.timekeeper
.offs_tai
,
708 ktime_t
ktime_get_with_offset(enum tk_offsets offs
)
710 struct timekeeper
*tk
= &tk_core
.timekeeper
;
712 ktime_t base
, *offset
= offsets
[offs
];
715 WARN_ON(timekeeping_suspended
);
718 seq
= read_seqcount_begin(&tk_core
.seq
);
719 base
= ktime_add(tk
->tkr_mono
.base
, *offset
);
720 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
722 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
724 return ktime_add_ns(base
, nsecs
);
727 EXPORT_SYMBOL_GPL(ktime_get_with_offset
);
730 * ktime_mono_to_any() - convert mononotic time to any other time
731 * @tmono: time to convert.
732 * @offs: which offset to use
734 ktime_t
ktime_mono_to_any(ktime_t tmono
, enum tk_offsets offs
)
736 ktime_t
*offset
= offsets
[offs
];
741 seq
= read_seqcount_begin(&tk_core
.seq
);
742 tconv
= ktime_add(tmono
, *offset
);
743 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
747 EXPORT_SYMBOL_GPL(ktime_mono_to_any
);
750 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
752 ktime_t
ktime_get_raw(void)
754 struct timekeeper
*tk
= &tk_core
.timekeeper
;
760 seq
= read_seqcount_begin(&tk_core
.seq
);
761 base
= tk
->tkr_raw
.base
;
762 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
764 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
766 return ktime_add_ns(base
, nsecs
);
768 EXPORT_SYMBOL_GPL(ktime_get_raw
);
771 * ktime_get_ts64 - get the monotonic clock in timespec64 format
772 * @ts: pointer to timespec variable
774 * The function calculates the monotonic clock from the realtime
775 * clock and the wall_to_monotonic offset and stores the result
776 * in normalized timespec64 format in the variable pointed to by @ts.
778 void ktime_get_ts64(struct timespec64
*ts
)
780 struct timekeeper
*tk
= &tk_core
.timekeeper
;
781 struct timespec64 tomono
;
785 WARN_ON(timekeeping_suspended
);
788 seq
= read_seqcount_begin(&tk_core
.seq
);
789 ts
->tv_sec
= tk
->xtime_sec
;
790 nsec
= timekeeping_get_ns(&tk
->tkr_mono
);
791 tomono
= tk
->wall_to_monotonic
;
793 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
795 ts
->tv_sec
+= tomono
.tv_sec
;
797 timespec64_add_ns(ts
, nsec
+ tomono
.tv_nsec
);
799 EXPORT_SYMBOL_GPL(ktime_get_ts64
);
802 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
804 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
805 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
806 * works on both 32 and 64 bit systems. On 32 bit systems the readout
807 * covers ~136 years of uptime which should be enough to prevent
808 * premature wrap arounds.
810 time64_t
ktime_get_seconds(void)
812 struct timekeeper
*tk
= &tk_core
.timekeeper
;
814 WARN_ON(timekeeping_suspended
);
815 return tk
->ktime_sec
;
817 EXPORT_SYMBOL_GPL(ktime_get_seconds
);
820 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
822 * Returns the wall clock seconds since 1970. This replaces the
823 * get_seconds() interface which is not y2038 safe on 32bit systems.
825 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
826 * 32bit systems the access must be protected with the sequence
827 * counter to provide "atomic" access to the 64bit tk->xtime_sec
830 time64_t
ktime_get_real_seconds(void)
832 struct timekeeper
*tk
= &tk_core
.timekeeper
;
836 if (IS_ENABLED(CONFIG_64BIT
))
837 return tk
->xtime_sec
;
840 seq
= read_seqcount_begin(&tk_core
.seq
);
841 seconds
= tk
->xtime_sec
;
843 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
847 EXPORT_SYMBOL_GPL(ktime_get_real_seconds
);
849 #ifdef CONFIG_NTP_PPS
852 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
853 * @ts_raw: pointer to the timespec to be set to raw monotonic time
854 * @ts_real: pointer to the timespec to be set to the time of day
856 * This function reads both the time of day and raw monotonic time at the
857 * same time atomically and stores the resulting timestamps in timespec
860 void getnstime_raw_and_real(struct timespec
*ts_raw
, struct timespec
*ts_real
)
862 struct timekeeper
*tk
= &tk_core
.timekeeper
;
864 s64 nsecs_raw
, nsecs_real
;
866 WARN_ON_ONCE(timekeeping_suspended
);
869 seq
= read_seqcount_begin(&tk_core
.seq
);
871 *ts_raw
= timespec64_to_timespec(tk
->raw_time
);
872 ts_real
->tv_sec
= tk
->xtime_sec
;
873 ts_real
->tv_nsec
= 0;
875 nsecs_raw
= timekeeping_get_ns(&tk
->tkr_raw
);
876 nsecs_real
= timekeeping_get_ns(&tk
->tkr_mono
);
878 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
880 timespec_add_ns(ts_raw
, nsecs_raw
);
881 timespec_add_ns(ts_real
, nsecs_real
);
883 EXPORT_SYMBOL(getnstime_raw_and_real
);
885 #endif /* CONFIG_NTP_PPS */
888 * do_gettimeofday - Returns the time of day in a timeval
889 * @tv: pointer to the timeval to be set
891 * NOTE: Users should be converted to using getnstimeofday()
893 void do_gettimeofday(struct timeval
*tv
)
895 struct timespec64 now
;
897 getnstimeofday64(&now
);
898 tv
->tv_sec
= now
.tv_sec
;
899 tv
->tv_usec
= now
.tv_nsec
/1000;
901 EXPORT_SYMBOL(do_gettimeofday
);
904 * do_settimeofday64 - Sets the time of day.
905 * @ts: pointer to the timespec64 variable containing the new time
907 * Sets the time of day to the new time and update NTP and notify hrtimers
909 int do_settimeofday64(const struct timespec64
*ts
)
911 struct timekeeper
*tk
= &tk_core
.timekeeper
;
912 struct timespec64 ts_delta
, xt
;
915 if (!timespec64_valid_strict(ts
))
918 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
919 write_seqcount_begin(&tk_core
.seq
);
921 timekeeping_forward_now(tk
);
924 ts_delta
.tv_sec
= ts
->tv_sec
- xt
.tv_sec
;
925 ts_delta
.tv_nsec
= ts
->tv_nsec
- xt
.tv_nsec
;
927 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts_delta
));
929 tk_set_xtime(tk
, ts
);
931 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
933 write_seqcount_end(&tk_core
.seq
);
934 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
936 /* signal hrtimers about time change */
941 EXPORT_SYMBOL(do_settimeofday64
);
944 * timekeeping_inject_offset - Adds or subtracts from the current time.
945 * @tv: pointer to the timespec variable containing the offset
947 * Adds or subtracts an offset value from the current time.
949 int timekeeping_inject_offset(struct timespec
*ts
)
951 struct timekeeper
*tk
= &tk_core
.timekeeper
;
953 struct timespec64 ts64
, tmp
;
956 if ((unsigned long)ts
->tv_nsec
>= NSEC_PER_SEC
)
959 ts64
= timespec_to_timespec64(*ts
);
961 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
962 write_seqcount_begin(&tk_core
.seq
);
964 timekeeping_forward_now(tk
);
966 /* Make sure the proposed value is valid */
967 tmp
= timespec64_add(tk_xtime(tk
), ts64
);
968 if (!timespec64_valid_strict(&tmp
)) {
973 tk_xtime_add(tk
, &ts64
);
974 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, ts64
));
976 error
: /* even if we error out, we forwarded the time, so call update */
977 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
979 write_seqcount_end(&tk_core
.seq
);
980 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
982 /* signal hrtimers about time change */
987 EXPORT_SYMBOL(timekeeping_inject_offset
);
991 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
994 s32
timekeeping_get_tai_offset(void)
996 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1001 seq
= read_seqcount_begin(&tk_core
.seq
);
1002 ret
= tk
->tai_offset
;
1003 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1009 * __timekeeping_set_tai_offset - Lock free worker function
1012 static void __timekeeping_set_tai_offset(struct timekeeper
*tk
, s32 tai_offset
)
1014 tk
->tai_offset
= tai_offset
;
1015 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tai_offset
, 0));
1019 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1022 void timekeeping_set_tai_offset(s32 tai_offset
)
1024 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1025 unsigned long flags
;
1027 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1028 write_seqcount_begin(&tk_core
.seq
);
1029 __timekeeping_set_tai_offset(tk
, tai_offset
);
1030 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1031 write_seqcount_end(&tk_core
.seq
);
1032 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1037 * change_clocksource - Swaps clocksources if a new one is available
1039 * Accumulates current time interval and initializes new clocksource
1041 static int change_clocksource(void *data
)
1043 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1044 struct clocksource
*new, *old
;
1045 unsigned long flags
;
1047 new = (struct clocksource
*) data
;
1049 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1050 write_seqcount_begin(&tk_core
.seq
);
1052 timekeeping_forward_now(tk
);
1054 * If the cs is in module, get a module reference. Succeeds
1055 * for built-in code (owner == NULL) as well.
1057 if (try_module_get(new->owner
)) {
1058 if (!new->enable
|| new->enable(new) == 0) {
1059 old
= tk
->tkr_mono
.clock
;
1060 tk_setup_internals(tk
, new);
1063 module_put(old
->owner
);
1065 module_put(new->owner
);
1068 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1070 write_seqcount_end(&tk_core
.seq
);
1071 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1077 * timekeeping_notify - Install a new clock source
1078 * @clock: pointer to the clock source
1080 * This function is called from clocksource.c after a new, better clock
1081 * source has been registered. The caller holds the clocksource_mutex.
1083 int timekeeping_notify(struct clocksource
*clock
)
1085 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1087 if (tk
->tkr_mono
.clock
== clock
)
1089 stop_machine(change_clocksource
, clock
, NULL
);
1090 tick_clock_notify();
1091 return tk
->tkr_mono
.clock
== clock
? 0 : -1;
1095 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1096 * @ts: pointer to the timespec64 to be set
1098 * Returns the raw monotonic time (completely un-modified by ntp)
1100 void getrawmonotonic64(struct timespec64
*ts
)
1102 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1103 struct timespec64 ts64
;
1108 seq
= read_seqcount_begin(&tk_core
.seq
);
1109 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
1110 ts64
= tk
->raw_time
;
1112 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1114 timespec64_add_ns(&ts64
, nsecs
);
1117 EXPORT_SYMBOL(getrawmonotonic64
);
1121 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1123 int timekeeping_valid_for_hres(void)
1125 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1130 seq
= read_seqcount_begin(&tk_core
.seq
);
1132 ret
= tk
->tkr_mono
.clock
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
;
1134 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1140 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1142 u64
timekeeping_max_deferment(void)
1144 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1149 seq
= read_seqcount_begin(&tk_core
.seq
);
1151 ret
= tk
->tkr_mono
.clock
->max_idle_ns
;
1153 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1159 * read_persistent_clock - Return time from the persistent clock.
1161 * Weak dummy function for arches that do not yet support it.
1162 * Reads the time from the battery backed persistent clock.
1163 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1165 * XXX - Do be sure to remove it once all arches implement it.
1167 void __weak
read_persistent_clock(struct timespec
*ts
)
1173 void __weak
read_persistent_clock64(struct timespec64
*ts64
)
1177 read_persistent_clock(&ts
);
1178 *ts64
= timespec_to_timespec64(ts
);
1182 * read_boot_clock64 - Return time of the system start.
1184 * Weak dummy function for arches that do not yet support it.
1185 * Function to read the exact time the system has been started.
1186 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1188 * XXX - Do be sure to remove it once all arches implement it.
1190 void __weak
read_boot_clock64(struct timespec64
*ts
)
1196 /* Flag for if timekeeping_resume() has injected sleeptime */
1197 static bool sleeptime_injected
;
1199 /* Flag for if there is a persistent clock on this platform */
1200 static bool persistent_clock_exists
;
1203 * timekeeping_init - Initializes the clocksource and common timekeeping values
1205 void __init
timekeeping_init(void)
1207 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1208 struct clocksource
*clock
;
1209 unsigned long flags
;
1210 struct timespec64 now
, boot
, tmp
;
1212 read_persistent_clock64(&now
);
1213 if (!timespec64_valid_strict(&now
)) {
1214 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1215 " Check your CMOS/BIOS settings.\n");
1218 } else if (now
.tv_sec
|| now
.tv_nsec
)
1219 persistent_clock_exists
= true;
1221 read_boot_clock64(&boot
);
1222 if (!timespec64_valid_strict(&boot
)) {
1223 pr_warn("WARNING: Boot clock returned invalid value!\n"
1224 " Check your CMOS/BIOS settings.\n");
1229 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1230 write_seqcount_begin(&tk_core
.seq
);
1233 clock
= clocksource_default_clock();
1235 clock
->enable(clock
);
1236 tk_setup_internals(tk
, clock
);
1238 tk_set_xtime(tk
, &now
);
1239 tk
->raw_time
.tv_sec
= 0;
1240 tk
->raw_time
.tv_nsec
= 0;
1241 if (boot
.tv_sec
== 0 && boot
.tv_nsec
== 0)
1242 boot
= tk_xtime(tk
);
1244 set_normalized_timespec64(&tmp
, -boot
.tv_sec
, -boot
.tv_nsec
);
1245 tk_set_wall_to_mono(tk
, tmp
);
1247 timekeeping_update(tk
, TK_MIRROR
);
1249 write_seqcount_end(&tk_core
.seq
);
1250 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1253 /* time in seconds when suspend began for persistent clock */
1254 static struct timespec64 timekeeping_suspend_time
;
1257 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1258 * @delta: pointer to a timespec delta value
1260 * Takes a timespec offset measuring a suspend interval and properly
1261 * adds the sleep offset to the timekeeping variables.
1263 static void __timekeeping_inject_sleeptime(struct timekeeper
*tk
,
1264 struct timespec64
*delta
)
1266 if (!timespec64_valid_strict(delta
)) {
1267 printk_deferred(KERN_WARNING
1268 "__timekeeping_inject_sleeptime: Invalid "
1269 "sleep delta value!\n");
1272 tk_xtime_add(tk
, delta
);
1273 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, *delta
));
1274 tk_update_sleep_time(tk
, timespec64_to_ktime(*delta
));
1275 tk_debug_account_sleep_time(delta
);
1278 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1280 * We have three kinds of time sources to use for sleep time
1281 * injection, the preference order is:
1282 * 1) non-stop clocksource
1283 * 2) persistent clock (ie: RTC accessible when irqs are off)
1286 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1287 * If system has neither 1) nor 2), 3) will be used finally.
1290 * If timekeeping has injected sleeptime via either 1) or 2),
1291 * 3) becomes needless, so in this case we don't need to call
1292 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1295 bool timekeeping_rtc_skipresume(void)
1297 return sleeptime_injected
;
1301 * 1) can be determined whether to use or not only when doing
1302 * timekeeping_resume() which is invoked after rtc_suspend(),
1303 * so we can't skip rtc_suspend() surely if system has 1).
1305 * But if system has 2), 2) will definitely be used, so in this
1306 * case we don't need to call rtc_suspend(), and this is what
1307 * timekeeping_rtc_skipsuspend() means.
1309 bool timekeeping_rtc_skipsuspend(void)
1311 return persistent_clock_exists
;
1315 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1316 * @delta: pointer to a timespec64 delta value
1318 * This hook is for architectures that cannot support read_persistent_clock64
1319 * because their RTC/persistent clock is only accessible when irqs are enabled.
1320 * and also don't have an effective nonstop clocksource.
1322 * This function should only be called by rtc_resume(), and allows
1323 * a suspend offset to be injected into the timekeeping values.
1325 void timekeeping_inject_sleeptime64(struct timespec64
*delta
)
1327 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1328 unsigned long flags
;
1330 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1331 write_seqcount_begin(&tk_core
.seq
);
1333 timekeeping_forward_now(tk
);
1335 __timekeeping_inject_sleeptime(tk
, delta
);
1337 timekeeping_update(tk
, TK_CLEAR_NTP
| TK_MIRROR
| TK_CLOCK_WAS_SET
);
1339 write_seqcount_end(&tk_core
.seq
);
1340 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1342 /* signal hrtimers about time change */
1348 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1350 void timekeeping_resume(void)
1352 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1353 struct clocksource
*clock
= tk
->tkr_mono
.clock
;
1354 unsigned long flags
;
1355 struct timespec64 ts_new
, ts_delta
;
1356 cycle_t cycle_now
, cycle_delta
;
1358 sleeptime_injected
= false;
1359 read_persistent_clock64(&ts_new
);
1361 clockevents_resume();
1362 clocksource_resume();
1364 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1365 write_seqcount_begin(&tk_core
.seq
);
1368 * After system resumes, we need to calculate the suspended time and
1369 * compensate it for the OS time. There are 3 sources that could be
1370 * used: Nonstop clocksource during suspend, persistent clock and rtc
1373 * One specific platform may have 1 or 2 or all of them, and the
1374 * preference will be:
1375 * suspend-nonstop clocksource -> persistent clock -> rtc
1376 * The less preferred source will only be tried if there is no better
1377 * usable source. The rtc part is handled separately in rtc core code.
1379 cycle_now
= tk
->tkr_mono
.read(clock
);
1380 if ((clock
->flags
& CLOCK_SOURCE_SUSPEND_NONSTOP
) &&
1381 cycle_now
> tk
->tkr_mono
.cycle_last
) {
1382 u64 num
, max
= ULLONG_MAX
;
1383 u32 mult
= clock
->mult
;
1384 u32 shift
= clock
->shift
;
1387 cycle_delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
,
1391 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1392 * suspended time is too long. In that case we need do the
1393 * 64 bits math carefully
1396 if (cycle_delta
> max
) {
1397 num
= div64_u64(cycle_delta
, max
);
1398 nsec
= (((u64
) max
* mult
) >> shift
) * num
;
1399 cycle_delta
-= num
* max
;
1401 nsec
+= ((u64
) cycle_delta
* mult
) >> shift
;
1403 ts_delta
= ns_to_timespec64(nsec
);
1404 sleeptime_injected
= true;
1405 } else if (timespec64_compare(&ts_new
, &timekeeping_suspend_time
) > 0) {
1406 ts_delta
= timespec64_sub(ts_new
, timekeeping_suspend_time
);
1407 sleeptime_injected
= true;
1410 if (sleeptime_injected
)
1411 __timekeeping_inject_sleeptime(tk
, &ts_delta
);
1413 /* Re-base the last cycle value */
1414 tk
->tkr_mono
.cycle_last
= cycle_now
;
1415 tk
->tkr_raw
.cycle_last
= cycle_now
;
1418 timekeeping_suspended
= 0;
1419 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
1420 write_seqcount_end(&tk_core
.seq
);
1421 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1423 touch_softlockup_watchdog();
1429 int timekeeping_suspend(void)
1431 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1432 unsigned long flags
;
1433 struct timespec64 delta
, delta_delta
;
1434 static struct timespec64 old_delta
;
1436 read_persistent_clock64(&timekeeping_suspend_time
);
1439 * On some systems the persistent_clock can not be detected at
1440 * timekeeping_init by its return value, so if we see a valid
1441 * value returned, update the persistent_clock_exists flag.
1443 if (timekeeping_suspend_time
.tv_sec
|| timekeeping_suspend_time
.tv_nsec
)
1444 persistent_clock_exists
= true;
1446 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1447 write_seqcount_begin(&tk_core
.seq
);
1448 timekeeping_forward_now(tk
);
1449 timekeeping_suspended
= 1;
1451 if (persistent_clock_exists
) {
1453 * To avoid drift caused by repeated suspend/resumes,
1454 * which each can add ~1 second drift error,
1455 * try to compensate so the difference in system time
1456 * and persistent_clock time stays close to constant.
1458 delta
= timespec64_sub(tk_xtime(tk
), timekeeping_suspend_time
);
1459 delta_delta
= timespec64_sub(delta
, old_delta
);
1460 if (abs(delta_delta
.tv_sec
) >= 2) {
1462 * if delta_delta is too large, assume time correction
1463 * has occurred and set old_delta to the current delta.
1467 /* Otherwise try to adjust old_system to compensate */
1468 timekeeping_suspend_time
=
1469 timespec64_add(timekeeping_suspend_time
, delta_delta
);
1473 timekeeping_update(tk
, TK_MIRROR
);
1474 halt_fast_timekeeper(tk
);
1475 write_seqcount_end(&tk_core
.seq
);
1476 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1479 clocksource_suspend();
1480 clockevents_suspend();
1485 /* sysfs resume/suspend bits for timekeeping */
1486 static struct syscore_ops timekeeping_syscore_ops
= {
1487 .resume
= timekeeping_resume
,
1488 .suspend
= timekeeping_suspend
,
1491 static int __init
timekeeping_init_ops(void)
1493 register_syscore_ops(&timekeeping_syscore_ops
);
1496 device_initcall(timekeeping_init_ops
);
1499 * Apply a multiplier adjustment to the timekeeper
1501 static __always_inline
void timekeeping_apply_adjustment(struct timekeeper
*tk
,
1506 s64 interval
= tk
->cycle_interval
;
1510 mult_adj
= -mult_adj
;
1511 interval
= -interval
;
1514 mult_adj
<<= adj_scale
;
1515 interval
<<= adj_scale
;
1516 offset
<<= adj_scale
;
1519 * So the following can be confusing.
1521 * To keep things simple, lets assume mult_adj == 1 for now.
1523 * When mult_adj != 1, remember that the interval and offset values
1524 * have been appropriately scaled so the math is the same.
1526 * The basic idea here is that we're increasing the multiplier
1527 * by one, this causes the xtime_interval to be incremented by
1528 * one cycle_interval. This is because:
1529 * xtime_interval = cycle_interval * mult
1530 * So if mult is being incremented by one:
1531 * xtime_interval = cycle_interval * (mult + 1)
1533 * xtime_interval = (cycle_interval * mult) + cycle_interval
1534 * Which can be shortened to:
1535 * xtime_interval += cycle_interval
1537 * So offset stores the non-accumulated cycles. Thus the current
1538 * time (in shifted nanoseconds) is:
1539 * now = (offset * adj) + xtime_nsec
1540 * Now, even though we're adjusting the clock frequency, we have
1541 * to keep time consistent. In other words, we can't jump back
1542 * in time, and we also want to avoid jumping forward in time.
1544 * So given the same offset value, we need the time to be the same
1545 * both before and after the freq adjustment.
1546 * now = (offset * adj_1) + xtime_nsec_1
1547 * now = (offset * adj_2) + xtime_nsec_2
1549 * (offset * adj_1) + xtime_nsec_1 =
1550 * (offset * adj_2) + xtime_nsec_2
1554 * (offset * adj_1) + xtime_nsec_1 =
1555 * (offset * (adj_1+1)) + xtime_nsec_2
1556 * (offset * adj_1) + xtime_nsec_1 =
1557 * (offset * adj_1) + offset + xtime_nsec_2
1558 * Canceling the sides:
1559 * xtime_nsec_1 = offset + xtime_nsec_2
1561 * xtime_nsec_2 = xtime_nsec_1 - offset
1562 * Which simplfies to:
1563 * xtime_nsec -= offset
1565 * XXX - TODO: Doc ntp_error calculation.
1567 if ((mult_adj
> 0) && (tk
->tkr_mono
.mult
+ mult_adj
< mult_adj
)) {
1568 /* NTP adjustment caused clocksource mult overflow */
1573 tk
->tkr_mono
.mult
+= mult_adj
;
1574 tk
->xtime_interval
+= interval
;
1575 tk
->tkr_mono
.xtime_nsec
-= offset
;
1576 tk
->ntp_error
-= (interval
- offset
) << tk
->ntp_error_shift
;
1580 * Calculate the multiplier adjustment needed to match the frequency
1583 static __always_inline
void timekeeping_freqadjust(struct timekeeper
*tk
,
1586 s64 interval
= tk
->cycle_interval
;
1587 s64 xinterval
= tk
->xtime_interval
;
1592 /* Remove any current error adj from freq calculation */
1593 if (tk
->ntp_err_mult
)
1594 xinterval
-= tk
->cycle_interval
;
1596 tk
->ntp_tick
= ntp_tick_length();
1598 /* Calculate current error per tick */
1599 tick_error
= ntp_tick_length() >> tk
->ntp_error_shift
;
1600 tick_error
-= (xinterval
+ tk
->xtime_remainder
);
1602 /* Don't worry about correcting it if its small */
1603 if (likely((tick_error
>= 0) && (tick_error
<= interval
)))
1606 /* preserve the direction of correction */
1607 negative
= (tick_error
< 0);
1609 /* Sort out the magnitude of the correction */
1610 tick_error
= abs(tick_error
);
1611 for (adj
= 0; tick_error
> interval
; adj
++)
1614 /* scale the corrections */
1615 timekeeping_apply_adjustment(tk
, offset
, negative
, adj
);
1619 * Adjust the timekeeper's multiplier to the correct frequency
1620 * and also to reduce the accumulated error value.
1622 static void timekeeping_adjust(struct timekeeper
*tk
, s64 offset
)
1624 /* Correct for the current frequency error */
1625 timekeeping_freqadjust(tk
, offset
);
1627 /* Next make a small adjustment to fix any cumulative error */
1628 if (!tk
->ntp_err_mult
&& (tk
->ntp_error
> 0)) {
1629 tk
->ntp_err_mult
= 1;
1630 timekeeping_apply_adjustment(tk
, offset
, 0, 0);
1631 } else if (tk
->ntp_err_mult
&& (tk
->ntp_error
<= 0)) {
1632 /* Undo any existing error adjustment */
1633 timekeeping_apply_adjustment(tk
, offset
, 1, 0);
1634 tk
->ntp_err_mult
= 0;
1637 if (unlikely(tk
->tkr_mono
.clock
->maxadj
&&
1638 (abs(tk
->tkr_mono
.mult
- tk
->tkr_mono
.clock
->mult
)
1639 > tk
->tkr_mono
.clock
->maxadj
))) {
1640 printk_once(KERN_WARNING
1641 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1642 tk
->tkr_mono
.clock
->name
, (long)tk
->tkr_mono
.mult
,
1643 (long)tk
->tkr_mono
.clock
->mult
+ tk
->tkr_mono
.clock
->maxadj
);
1647 * It may be possible that when we entered this function, xtime_nsec
1648 * was very small. Further, if we're slightly speeding the clocksource
1649 * in the code above, its possible the required corrective factor to
1650 * xtime_nsec could cause it to underflow.
1652 * Now, since we already accumulated the second, cannot simply roll
1653 * the accumulated second back, since the NTP subsystem has been
1654 * notified via second_overflow. So instead we push xtime_nsec forward
1655 * by the amount we underflowed, and add that amount into the error.
1657 * We'll correct this error next time through this function, when
1658 * xtime_nsec is not as small.
1660 if (unlikely((s64
)tk
->tkr_mono
.xtime_nsec
< 0)) {
1661 s64 neg
= -(s64
)tk
->tkr_mono
.xtime_nsec
;
1662 tk
->tkr_mono
.xtime_nsec
= 0;
1663 tk
->ntp_error
+= neg
<< tk
->ntp_error_shift
;
1668 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1670 * Helper function that accumulates a the nsecs greater then a second
1671 * from the xtime_nsec field to the xtime_secs field.
1672 * It also calls into the NTP code to handle leapsecond processing.
1675 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper
*tk
)
1677 u64 nsecps
= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
1678 unsigned int clock_set
= 0;
1680 while (tk
->tkr_mono
.xtime_nsec
>= nsecps
) {
1683 tk
->tkr_mono
.xtime_nsec
-= nsecps
;
1686 /* Figure out if its a leap sec and apply if needed */
1687 leap
= second_overflow(tk
->xtime_sec
);
1688 if (unlikely(leap
)) {
1689 struct timespec64 ts
;
1691 tk
->xtime_sec
+= leap
;
1695 tk_set_wall_to_mono(tk
,
1696 timespec64_sub(tk
->wall_to_monotonic
, ts
));
1698 __timekeeping_set_tai_offset(tk
, tk
->tai_offset
- leap
);
1700 clock_set
= TK_CLOCK_WAS_SET
;
1707 * logarithmic_accumulation - shifted accumulation of cycles
1709 * This functions accumulates a shifted interval of cycles into
1710 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1713 * Returns the unconsumed cycles.
1715 static cycle_t
logarithmic_accumulation(struct timekeeper
*tk
, cycle_t offset
,
1717 unsigned int *clock_set
)
1719 cycle_t interval
= tk
->cycle_interval
<< shift
;
1722 /* If the offset is smaller then a shifted interval, do nothing */
1723 if (offset
< interval
)
1726 /* Accumulate one shifted interval */
1728 tk
->tkr_mono
.cycle_last
+= interval
;
1729 tk
->tkr_raw
.cycle_last
+= interval
;
1731 tk
->tkr_mono
.xtime_nsec
+= tk
->xtime_interval
<< shift
;
1732 *clock_set
|= accumulate_nsecs_to_secs(tk
);
1734 /* Accumulate raw time */
1735 raw_nsecs
= (u64
)tk
->raw_interval
<< shift
;
1736 raw_nsecs
+= tk
->raw_time
.tv_nsec
;
1737 if (raw_nsecs
>= NSEC_PER_SEC
) {
1738 u64 raw_secs
= raw_nsecs
;
1739 raw_nsecs
= do_div(raw_secs
, NSEC_PER_SEC
);
1740 tk
->raw_time
.tv_sec
+= raw_secs
;
1742 tk
->raw_time
.tv_nsec
= raw_nsecs
;
1744 /* Accumulate error between NTP and clock interval */
1745 tk
->ntp_error
+= tk
->ntp_tick
<< shift
;
1746 tk
->ntp_error
-= (tk
->xtime_interval
+ tk
->xtime_remainder
) <<
1747 (tk
->ntp_error_shift
+ shift
);
1753 * update_wall_time - Uses the current clocksource to increment the wall time
1756 void update_wall_time(void)
1758 struct timekeeper
*real_tk
= &tk_core
.timekeeper
;
1759 struct timekeeper
*tk
= &shadow_timekeeper
;
1761 int shift
= 0, maxshift
;
1762 unsigned int clock_set
= 0;
1763 unsigned long flags
;
1765 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1767 /* Make sure we're fully resumed: */
1768 if (unlikely(timekeeping_suspended
))
1771 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1772 offset
= real_tk
->cycle_interval
;
1774 offset
= clocksource_delta(tk
->tkr_mono
.read(tk
->tkr_mono
.clock
),
1775 tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
);
1778 /* Check if there's really nothing to do */
1779 if (offset
< real_tk
->cycle_interval
)
1782 /* Do some additional sanity checking */
1783 timekeeping_check_update(real_tk
, offset
);
1786 * With NO_HZ we may have to accumulate many cycle_intervals
1787 * (think "ticks") worth of time at once. To do this efficiently,
1788 * we calculate the largest doubling multiple of cycle_intervals
1789 * that is smaller than the offset. We then accumulate that
1790 * chunk in one go, and then try to consume the next smaller
1793 shift
= ilog2(offset
) - ilog2(tk
->cycle_interval
);
1794 shift
= max(0, shift
);
1795 /* Bound shift to one less than what overflows tick_length */
1796 maxshift
= (64 - (ilog2(ntp_tick_length())+1)) - 1;
1797 shift
= min(shift
, maxshift
);
1798 while (offset
>= tk
->cycle_interval
) {
1799 offset
= logarithmic_accumulation(tk
, offset
, shift
,
1801 if (offset
< tk
->cycle_interval
<<shift
)
1805 /* correct the clock when NTP error is too big */
1806 timekeeping_adjust(tk
, offset
);
1809 * XXX This can be killed once everyone converts
1810 * to the new update_vsyscall.
1812 old_vsyscall_fixup(tk
);
1815 * Finally, make sure that after the rounding
1816 * xtime_nsec isn't larger than NSEC_PER_SEC
1818 clock_set
|= accumulate_nsecs_to_secs(tk
);
1820 write_seqcount_begin(&tk_core
.seq
);
1822 * Update the real timekeeper.
1824 * We could avoid this memcpy by switching pointers, but that
1825 * requires changes to all other timekeeper usage sites as
1826 * well, i.e. move the timekeeper pointer getter into the
1827 * spinlocked/seqcount protected sections. And we trade this
1828 * memcpy under the tk_core.seq against one before we start
1831 timekeeping_update(tk
, clock_set
);
1832 memcpy(real_tk
, tk
, sizeof(*tk
));
1833 /* The memcpy must come last. Do not put anything here! */
1834 write_seqcount_end(&tk_core
.seq
);
1836 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
1838 /* Have to call _delayed version, since in irq context*/
1839 clock_was_set_delayed();
1843 * getboottime64 - Return the real time of system boot.
1844 * @ts: pointer to the timespec64 to be set
1846 * Returns the wall-time of boot in a timespec64.
1848 * This is based on the wall_to_monotonic offset and the total suspend
1849 * time. Calls to settimeofday will affect the value returned (which
1850 * basically means that however wrong your real time clock is at boot time,
1851 * you get the right time here).
1853 void getboottime64(struct timespec64
*ts
)
1855 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1856 ktime_t t
= ktime_sub(tk
->offs_real
, tk
->offs_boot
);
1858 *ts
= ktime_to_timespec64(t
);
1860 EXPORT_SYMBOL_GPL(getboottime64
);
1862 unsigned long get_seconds(void)
1864 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1866 return tk
->xtime_sec
;
1868 EXPORT_SYMBOL(get_seconds
);
1870 struct timespec
__current_kernel_time(void)
1872 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1874 return timespec64_to_timespec(tk_xtime(tk
));
1877 struct timespec
current_kernel_time(void)
1879 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1880 struct timespec64 now
;
1884 seq
= read_seqcount_begin(&tk_core
.seq
);
1887 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1889 return timespec64_to_timespec(now
);
1891 EXPORT_SYMBOL(current_kernel_time
);
1893 struct timespec64
get_monotonic_coarse64(void)
1895 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1896 struct timespec64 now
, mono
;
1900 seq
= read_seqcount_begin(&tk_core
.seq
);
1903 mono
= tk
->wall_to_monotonic
;
1904 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1906 set_normalized_timespec64(&now
, now
.tv_sec
+ mono
.tv_sec
,
1907 now
.tv_nsec
+ mono
.tv_nsec
);
1913 * Must hold jiffies_lock
1915 void do_timer(unsigned long ticks
)
1917 jiffies_64
+= ticks
;
1918 calc_global_load(ticks
);
1922 * ktime_get_update_offsets_now - hrtimer helper
1923 * @cwsseq: pointer to check and store the clock was set sequence number
1924 * @offs_real: pointer to storage for monotonic -> realtime offset
1925 * @offs_boot: pointer to storage for monotonic -> boottime offset
1926 * @offs_tai: pointer to storage for monotonic -> clock tai offset
1928 * Returns current monotonic time and updates the offsets if the
1929 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
1932 * Called from hrtimer_interrupt() or retrigger_next_event()
1934 ktime_t
ktime_get_update_offsets_now(unsigned int *cwsseq
, ktime_t
*offs_real
,
1935 ktime_t
*offs_boot
, ktime_t
*offs_tai
)
1937 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1943 seq
= read_seqcount_begin(&tk_core
.seq
);
1945 base
= tk
->tkr_mono
.base
;
1946 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
1947 base
= ktime_add_ns(base
, nsecs
);
1949 if (*cwsseq
!= tk
->clock_was_set_seq
) {
1950 *cwsseq
= tk
->clock_was_set_seq
;
1951 *offs_real
= tk
->offs_real
;
1952 *offs_boot
= tk
->offs_boot
;
1953 *offs_tai
= tk
->offs_tai
;
1956 /* Handle leapsecond insertion adjustments */
1957 if (unlikely(base
.tv64
>= tk
->next_leap_ktime
.tv64
))
1958 *offs_real
= ktime_sub(tk
->offs_real
, ktime_set(1, 0));
1960 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1966 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1968 int do_adjtimex(struct timex
*txc
)
1970 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1971 unsigned long flags
;
1972 struct timespec64 ts
;
1976 /* Validate the data before disabling interrupts */
1977 ret
= ntp_validate_timex(txc
);
1981 if (txc
->modes
& ADJ_SETOFFSET
) {
1982 struct timespec delta
;
1983 delta
.tv_sec
= txc
->time
.tv_sec
;
1984 delta
.tv_nsec
= txc
->time
.tv_usec
;
1985 if (!(txc
->modes
& ADJ_NANO
))
1986 delta
.tv_nsec
*= 1000;
1987 ret
= timekeeping_inject_offset(&delta
);
1992 getnstimeofday64(&ts
);
1994 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
1995 write_seqcount_begin(&tk_core
.seq
);
1997 orig_tai
= tai
= tk
->tai_offset
;
1998 ret
= __do_adjtimex(txc
, &ts
, &tai
);
2000 if (tai
!= orig_tai
) {
2001 __timekeeping_set_tai_offset(tk
, tai
);
2002 timekeeping_update(tk
, TK_MIRROR
| TK_CLOCK_WAS_SET
);
2004 tk_update_leap_state(tk
);
2006 write_seqcount_end(&tk_core
.seq
);
2007 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2009 if (tai
!= orig_tai
)
2012 ntp_notify_cmos_timer();
2017 #ifdef CONFIG_NTP_PPS
2019 * hardpps() - Accessor function to NTP __hardpps function
2021 void hardpps(const struct timespec
*phase_ts
, const struct timespec
*raw_ts
)
2023 unsigned long flags
;
2025 raw_spin_lock_irqsave(&timekeeper_lock
, flags
);
2026 write_seqcount_begin(&tk_core
.seq
);
2028 __hardpps(phase_ts
, raw_ts
);
2030 write_seqcount_end(&tk_core
.seq
);
2031 raw_spin_unlock_irqrestore(&timekeeper_lock
, flags
);
2033 EXPORT_SYMBOL(hardpps
);
2037 * xtime_update() - advances the timekeeping infrastructure
2038 * @ticks: number of ticks, that have elapsed since the last call.
2040 * Must be called with interrupts disabled.
2042 void xtime_update(unsigned long ticks
)
2044 write_seqlock(&jiffies_lock
);
2046 write_sequnlock(&jiffies_lock
);