2 * Generic address resultion entity
6 * net_ratelimit Andi Kleen
7 * in{4,6}_pton YOSHIFUJI Hideaki, Copyright (C)2006 USAGI/WIDE Project
9 * Created by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/module.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel.h>
20 #include <linux/ctype.h>
21 #include <linux/inet.h>
23 #include <linux/net.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/percpu.h>
27 #include <linux/init.h>
28 #include <linux/ratelimit.h>
31 #include <net/net_ratelimit.h>
33 #include <asm/byteorder.h>
34 #include <asm/uaccess.h>
36 DEFINE_RATELIMIT_STATE(net_ratelimit_state
, 5 * HZ
, 10);
38 * All net warning printk()s should be guarded by this function.
40 int net_ratelimit(void)
42 return __ratelimit(&net_ratelimit_state
);
44 EXPORT_SYMBOL(net_ratelimit
);
47 * Convert an ASCII string to binary IP.
48 * This is outside of net/ipv4/ because various code that uses IP addresses
49 * is otherwise not dependent on the TCP/IP stack.
52 __be32
in_aton(const char *str
)
59 for (i
= 0; i
< 4; i
++) {
63 while (*str
!= '\0' && *str
!= '.' && *str
!= '\n') {
75 EXPORT_SYMBOL(in_aton
);
77 #define IN6PTON_XDIGIT 0x00010000
78 #define IN6PTON_DIGIT 0x00020000
79 #define IN6PTON_COLON_MASK 0x00700000
80 #define IN6PTON_COLON_1 0x00100000 /* single : requested */
81 #define IN6PTON_COLON_2 0x00200000 /* second : requested */
82 #define IN6PTON_COLON_1_2 0x00400000 /* :: requested */
83 #define IN6PTON_DOT 0x00800000 /* . */
84 #define IN6PTON_DELIM 0x10000000
85 #define IN6PTON_NULL 0x20000000 /* first/tail */
86 #define IN6PTON_UNKNOWN 0x40000000
88 static inline int xdigit2bin(char c
, int delim
)
92 if (c
== delim
|| c
== '\0')
95 return IN6PTON_COLON_MASK
;
101 return val
| IN6PTON_XDIGIT
| (val
< 10 ? IN6PTON_DIGIT
: 0);
104 return IN6PTON_DELIM
;
105 return IN6PTON_UNKNOWN
;
109 * in4_pton - convert an IPv4 address from literal to binary representation
110 * @src: the start of the IPv4 address string
111 * @srclen: the length of the string, -1 means strlen(src)
112 * @dst: the binary (u8[4] array) representation of the IPv4 address
113 * @delim: the delimiter of the IPv4 address in @src, -1 means no delimiter
114 * @end: A pointer to the end of the parsed string will be placed here
116 * Return one on success, return zero when any error occurs
117 * and @end will point to the end of the parsed string.
120 int in4_pton(const char *src
, int srclen
,
122 int delim
, const char **end
)
132 srclen
= strlen(src
);
138 c
= xdigit2bin(srclen
> 0 ? *s
: '\0', delim
);
139 if (!(c
& (IN6PTON_DIGIT
| IN6PTON_DOT
| IN6PTON_DELIM
| IN6PTON_COLON_MASK
))) {
142 if (c
& (IN6PTON_DOT
| IN6PTON_DELIM
| IN6PTON_COLON_MASK
)) {
148 if (c
& (IN6PTON_DELIM
| IN6PTON_COLON_MASK
)) {
156 if ((w
& 0xffff) > 255) {
166 memcpy(dst
, dbuf
, sizeof(dbuf
));
172 EXPORT_SYMBOL(in4_pton
);
175 * in6_pton - convert an IPv6 address from literal to binary representation
176 * @src: the start of the IPv6 address string
177 * @srclen: the length of the string, -1 means strlen(src)
178 * @dst: the binary (u8[16] array) representation of the IPv6 address
179 * @delim: the delimiter of the IPv6 address in @src, -1 means no delimiter
180 * @end: A pointer to the end of the parsed string will be placed here
182 * Return one on success, return zero when any error occurs
183 * and @end will point to the end of the parsed string.
186 int in6_pton(const char *src
, int srclen
,
188 int delim
, const char **end
)
190 const char *s
, *tok
= NULL
;
195 int state
= IN6PTON_COLON_1_2
| IN6PTON_XDIGIT
| IN6PTON_NULL
;
198 memset(dbuf
, 0, sizeof(dbuf
));
203 srclen
= strlen(src
);
208 c
= xdigit2bin(srclen
> 0 ? *s
: '\0', delim
);
211 if (c
& (IN6PTON_DELIM
| IN6PTON_COLON_MASK
)) {
212 /* process one 16-bit word */
213 if (!(state
& IN6PTON_NULL
)) {
214 *d
++ = (w
>> 8) & 0xff;
218 if (c
& IN6PTON_DELIM
) {
219 /* We've processed last word */
224 * COLON_2 => XDIGIT|DELIM
225 * COLON_1_2 => COLON_2
227 switch (state
& IN6PTON_COLON_MASK
) {
228 case IN6PTON_COLON_2
:
230 state
= IN6PTON_XDIGIT
| IN6PTON_DELIM
;
231 if (dc
- dbuf
>= sizeof(dbuf
))
232 state
|= IN6PTON_NULL
;
234 case IN6PTON_COLON_1
|IN6PTON_COLON_1_2
:
235 state
= IN6PTON_XDIGIT
| IN6PTON_COLON_2
;
237 case IN6PTON_COLON_1
:
238 state
= IN6PTON_XDIGIT
;
240 case IN6PTON_COLON_1_2
:
241 state
= IN6PTON_COLON_2
;
250 if (c
& IN6PTON_DOT
) {
251 ret
= in4_pton(tok
? tok
: s
, srclen
+ (int)(s
- tok
), d
, delim
, &s
);
259 w
= (w
<< 4) | (0xff & c
);
260 state
= IN6PTON_COLON_1
| IN6PTON_DELIM
;
262 state
|= IN6PTON_XDIGIT
;
264 if (!dc
&& d
+ 2 < dbuf
+ sizeof(dbuf
)) {
265 state
|= IN6PTON_COLON_1_2
;
266 state
&= ~IN6PTON_DELIM
;
268 if (d
+ 2 >= dbuf
+ sizeof(dbuf
)) {
269 state
&= ~(IN6PTON_COLON_1
|IN6PTON_COLON_1_2
);
272 if ((dc
&& d
+ 4 < dbuf
+ sizeof(dbuf
)) ||
273 d
+ 4 == dbuf
+ sizeof(dbuf
)) {
274 state
|= IN6PTON_DOT
;
276 if (d
>= dbuf
+ sizeof(dbuf
)) {
277 state
&= ~(IN6PTON_XDIGIT
|IN6PTON_COLON_MASK
);
288 while(i
>= dc
- dbuf
)
293 memcpy(dst
, dbuf
, sizeof(dbuf
));
301 EXPORT_SYMBOL(in6_pton
);
303 void inet_proto_csum_replace4(__sum16
*sum
, struct sk_buff
*skb
,
304 __be32 from
, __be32 to
, int pseudohdr
)
306 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
307 csum_replace4(sum
, from
, to
);
308 if (skb
->ip_summed
== CHECKSUM_COMPLETE
&& pseudohdr
)
309 skb
->csum
= ~csum_add(csum_sub(~(skb
->csum
),
310 (__force __wsum
)from
),
312 } else if (pseudohdr
)
313 *sum
= ~csum_fold(csum_add(csum_sub(csum_unfold(*sum
),
314 (__force __wsum
)from
),
315 (__force __wsum
)to
));
317 EXPORT_SYMBOL(inet_proto_csum_replace4
);
319 void inet_proto_csum_replace16(__sum16
*sum
, struct sk_buff
*skb
,
320 const __be32
*from
, const __be32
*to
,
324 ~from
[0], ~from
[1], ~from
[2], ~from
[3],
325 to
[0], to
[1], to
[2], to
[3],
327 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
328 *sum
= csum_fold(csum_partial(diff
, sizeof(diff
),
329 ~csum_unfold(*sum
)));
330 if (skb
->ip_summed
== CHECKSUM_COMPLETE
&& pseudohdr
)
331 skb
->csum
= ~csum_partial(diff
, sizeof(diff
),
333 } else if (pseudohdr
)
334 *sum
= ~csum_fold(csum_partial(diff
, sizeof(diff
),
337 EXPORT_SYMBOL(inet_proto_csum_replace16
);
339 struct __net_random_once_work
{
340 struct work_struct work
;
341 struct static_key
*key
;
344 static void __net_random_once_deferred(struct work_struct
*w
)
346 struct __net_random_once_work
*work
=
347 container_of(w
, struct __net_random_once_work
, work
);
348 BUG_ON(!static_key_enabled(work
->key
));
349 static_key_slow_dec(work
->key
);
353 static void __net_random_once_disable_jump(struct static_key
*key
)
355 struct __net_random_once_work
*w
;
357 w
= kmalloc(sizeof(*w
), GFP_ATOMIC
);
361 INIT_WORK(&w
->work
, __net_random_once_deferred
);
363 schedule_work(&w
->work
);
366 bool __net_get_random_once(void *buf
, int nbytes
, bool *done
,
367 struct static_key
*once_key
)
369 static DEFINE_SPINLOCK(lock
);
372 spin_lock_irqsave(&lock
, flags
);
374 spin_unlock_irqrestore(&lock
, flags
);
378 get_random_bytes(buf
, nbytes
);
380 spin_unlock_irqrestore(&lock
, flags
);
382 __net_random_once_disable_jump(once_key
);
386 EXPORT_SYMBOL(__net_get_random_once
);