4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
8 #include "../builtin.h"
9 #include "../util/util.h"
10 #include "../util/parse-options.h"
11 #include "../util/cloexec.h"
27 #include <sys/resource.h>
29 #include <sys/prctl.h>
30 #include <sys/types.h>
36 * Regular printout to the terminal, supressed if -q is specified:
38 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
43 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
47 cpu_set_t bind_cpumask
;
53 unsigned int loops_done
;
59 pthread_mutex_t
*process_lock
;
62 /* Parameters set by options: */
65 /* Startup synchronization: */
66 bool serialize_startup
;
72 /* Working set sizes: */
73 const char *mb_global_str
;
74 const char *mb_proc_str
;
75 const char *mb_proc_locked_str
;
76 const char *mb_thread_str
;
80 double mb_proc_locked
;
83 /* Access patterns to the working set: */
87 bool data_zero_memset
;
93 /* Working set initialization: */
105 long bytes_process_locked
;
111 bool show_convergence
;
112 bool measure_convergence
;
118 /* Affinity options -C and -N: */
124 /* Global, read-writable area, accessible to all processes and threads: */
129 pthread_mutex_t startup_mutex
;
130 int nr_tasks_started
;
132 pthread_mutex_t startup_done_mutex
;
134 pthread_mutex_t start_work_mutex
;
135 int nr_tasks_working
;
137 pthread_mutex_t stop_work_mutex
;
140 struct thread_data
*threads
;
142 /* Convergence latency measurement: */
151 static struct global_info
*g
= NULL
;
153 static int parse_cpus_opt(const struct option
*opt
, const char *arg
, int unset
);
154 static int parse_nodes_opt(const struct option
*opt
, const char *arg
, int unset
);
158 static const struct option options
[] = {
159 OPT_INTEGER('p', "nr_proc" , &p0
.nr_proc
, "number of processes"),
160 OPT_INTEGER('t', "nr_threads" , &p0
.nr_threads
, "number of threads per process"),
162 OPT_STRING('G', "mb_global" , &p0
.mb_global_str
, "MB", "global memory (MBs)"),
163 OPT_STRING('P', "mb_proc" , &p0
.mb_proc_str
, "MB", "process memory (MBs)"),
164 OPT_STRING('L', "mb_proc_locked", &p0
.mb_proc_locked_str
,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
165 OPT_STRING('T', "mb_thread" , &p0
.mb_thread_str
, "MB", "thread memory (MBs)"),
167 OPT_UINTEGER('l', "nr_loops" , &p0
.nr_loops
, "max number of loops to run"),
168 OPT_UINTEGER('s', "nr_secs" , &p0
.nr_secs
, "max number of seconds to run"),
169 OPT_UINTEGER('u', "usleep" , &p0
.sleep_usecs
, "usecs to sleep per loop iteration"),
171 OPT_BOOLEAN('R', "data_reads" , &p0
.data_reads
, "access the data via writes (can be mixed with -W)"),
172 OPT_BOOLEAN('W', "data_writes" , &p0
.data_writes
, "access the data via writes (can be mixed with -R)"),
173 OPT_BOOLEAN('B', "data_backwards", &p0
.data_backwards
, "access the data backwards as well"),
174 OPT_BOOLEAN('Z', "data_zero_memset", &p0
.data_zero_memset
,"access the data via glibc bzero only"),
175 OPT_BOOLEAN('r', "data_rand_walk", &p0
.data_rand_walk
, "access the data with random (32bit LFSR) walk"),
178 OPT_BOOLEAN('z', "init_zero" , &p0
.init_zero
, "bzero the initial allocations"),
179 OPT_BOOLEAN('I', "init_random" , &p0
.init_random
, "randomize the contents of the initial allocations"),
180 OPT_BOOLEAN('0', "init_cpu0" , &p0
.init_cpu0
, "do the initial allocations on CPU#0"),
181 OPT_INTEGER('x', "perturb_secs", &p0
.perturb_secs
, "perturb thread 0/0 every X secs, to test convergence stability"),
183 OPT_INCR ('d', "show_details" , &p0
.show_details
, "Show details"),
184 OPT_INCR ('a', "all" , &p0
.run_all
, "Run all tests in the suite"),
185 OPT_INTEGER('H', "thp" , &p0
.thp
, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
186 OPT_BOOLEAN('c', "show_convergence", &p0
.show_convergence
, "show convergence details"),
187 OPT_BOOLEAN('m', "measure_convergence", &p0
.measure_convergence
, "measure convergence latency"),
188 OPT_BOOLEAN('q', "quiet" , &p0
.show_quiet
, "quiet mode"),
189 OPT_BOOLEAN('S', "serialize-startup", &p0
.serialize_startup
,"serialize thread startup"),
191 /* Special option string parsing callbacks: */
192 OPT_CALLBACK('C', "cpus", NULL
, "cpu[,cpu2,...cpuN]",
193 "bind the first N tasks to these specific cpus (the rest is unbound)",
195 OPT_CALLBACK('M', "memnodes", NULL
, "node[,node2,...nodeN]",
196 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
201 static const char * const bench_numa_usage
[] = {
202 "perf bench numa <options>",
206 static const char * const numa_usage
[] = {
207 "perf bench numa mem [<options>]",
211 static cpu_set_t
bind_to_cpu(int target_cpu
)
213 cpu_set_t orig_mask
, mask
;
216 ret
= sched_getaffinity(0, sizeof(orig_mask
), &orig_mask
);
221 if (target_cpu
== -1) {
224 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
227 BUG_ON(target_cpu
< 0 || target_cpu
>= g
->p
.nr_cpus
);
228 CPU_SET(target_cpu
, &mask
);
231 ret
= sched_setaffinity(0, sizeof(mask
), &mask
);
237 static cpu_set_t
bind_to_node(int target_node
)
239 int cpus_per_node
= g
->p
.nr_cpus
/g
->p
.nr_nodes
;
240 cpu_set_t orig_mask
, mask
;
244 BUG_ON(cpus_per_node
*g
->p
.nr_nodes
!= g
->p
.nr_cpus
);
245 BUG_ON(!cpus_per_node
);
247 ret
= sched_getaffinity(0, sizeof(orig_mask
), &orig_mask
);
252 if (target_node
== -1) {
253 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
256 int cpu_start
= (target_node
+ 0) * cpus_per_node
;
257 int cpu_stop
= (target_node
+ 1) * cpus_per_node
;
259 BUG_ON(cpu_stop
> g
->p
.nr_cpus
);
261 for (cpu
= cpu_start
; cpu
< cpu_stop
; cpu
++)
265 ret
= sched_setaffinity(0, sizeof(mask
), &mask
);
271 static void bind_to_cpumask(cpu_set_t mask
)
275 ret
= sched_setaffinity(0, sizeof(mask
), &mask
);
279 static void mempol_restore(void)
283 ret
= set_mempolicy(MPOL_DEFAULT
, NULL
, g
->p
.nr_nodes
-1);
288 static void bind_to_memnode(int node
)
290 unsigned long nodemask
;
296 BUG_ON(g
->p
.nr_nodes
> (int)sizeof(nodemask
));
297 nodemask
= 1L << node
;
299 ret
= set_mempolicy(MPOL_BIND
, &nodemask
, sizeof(nodemask
)*8);
300 dprintf("binding to node %d, mask: %016lx => %d\n", node
, nodemask
, ret
);
305 #define HPSIZE (2*1024*1024)
307 #define set_taskname(fmt...) \
311 snprintf(name, 20, fmt); \
312 prctl(PR_SET_NAME, name); \
315 static u8
*alloc_data(ssize_t bytes0
, int map_flags
,
316 int init_zero
, int init_cpu0
, int thp
, int init_random
)
326 /* Allocate and initialize all memory on CPU#0: */
328 orig_mask
= bind_to_node(0);
332 bytes
= bytes0
+ HPSIZE
;
334 buf
= (void *)mmap(0, bytes
, PROT_READ
|PROT_WRITE
, MAP_ANON
|map_flags
, -1, 0);
335 BUG_ON(buf
== (void *)-1);
337 if (map_flags
== MAP_PRIVATE
) {
339 ret
= madvise(buf
, bytes
, MADV_HUGEPAGE
);
340 if (ret
&& !g
->print_once
) {
342 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
346 ret
= madvise(buf
, bytes
, MADV_NOHUGEPAGE
);
347 if (ret
&& !g
->print_once
) {
349 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
357 /* Initialize random contents, different in each word: */
359 u64
*wbuf
= (void *)buf
;
363 for (i
= 0; i
< bytes
/8; i
++)
368 /* Align to 2MB boundary: */
369 buf
= (void *)(((unsigned long)buf
+ HPSIZE
-1) & ~(HPSIZE
-1));
371 /* Restore affinity: */
373 bind_to_cpumask(orig_mask
);
380 static void free_data(void *data
, ssize_t bytes
)
387 ret
= munmap(data
, bytes
);
392 * Create a shared memory buffer that can be shared between processes, zeroed:
394 static void * zalloc_shared_data(ssize_t bytes
)
396 return alloc_data(bytes
, MAP_SHARED
, 1, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
400 * Create a shared memory buffer that can be shared between processes:
402 static void * setup_shared_data(ssize_t bytes
)
404 return alloc_data(bytes
, MAP_SHARED
, 0, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
408 * Allocate process-local memory - this will either be shared between
409 * threads of this process, or only be accessed by this thread:
411 static void * setup_private_data(ssize_t bytes
)
413 return alloc_data(bytes
, MAP_PRIVATE
, 0, g
->p
.init_cpu0
, g
->p
.thp
, g
->p
.init_random
);
417 * Return a process-shared (global) mutex:
419 static void init_global_mutex(pthread_mutex_t
*mutex
)
421 pthread_mutexattr_t attr
;
423 pthread_mutexattr_init(&attr
);
424 pthread_mutexattr_setpshared(&attr
, PTHREAD_PROCESS_SHARED
);
425 pthread_mutex_init(mutex
, &attr
);
428 static int parse_cpu_list(const char *arg
)
430 p0
.cpu_list_str
= strdup(arg
);
432 dprintf("got CPU list: {%s}\n", p0
.cpu_list_str
);
437 static int parse_setup_cpu_list(void)
439 struct thread_data
*td
;
443 if (!g
->p
.cpu_list_str
)
446 dprintf("g->p.nr_tasks: %d\n", g
->p
.nr_tasks
);
448 str0
= str
= strdup(g
->p
.cpu_list_str
);
453 tprintf("# binding tasks to CPUs:\n");
457 int bind_cpu
, bind_cpu_0
, bind_cpu_1
;
458 char *tok
, *tok_end
, *tok_step
, *tok_len
, *tok_mul
;
463 tok
= strsep(&str
, ",");
467 tok_end
= strstr(tok
, "-");
469 dprintf("\ntoken: {%s}, end: {%s}\n", tok
, tok_end
);
471 /* Single CPU specified: */
472 bind_cpu_0
= bind_cpu_1
= atol(tok
);
474 /* CPU range specified (for example: "5-11"): */
475 bind_cpu_0
= atol(tok
);
476 bind_cpu_1
= atol(tok_end
+ 1);
480 tok_step
= strstr(tok
, "#");
482 step
= atol(tok_step
+ 1);
483 BUG_ON(step
<= 0 || step
>= g
->p
.nr_cpus
);
488 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
489 * where the _4 means the next 4 CPUs are allowed.
492 tok_len
= strstr(tok
, "_");
494 bind_len
= atol(tok_len
+ 1);
495 BUG_ON(bind_len
<= 0 || bind_len
> g
->p
.nr_cpus
);
498 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
500 tok_mul
= strstr(tok
, "x");
502 mul
= atol(tok_mul
+ 1);
506 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0
, bind_len
, bind_cpu_1
, step
, mul
);
508 if (bind_cpu_0
>= g
->p
.nr_cpus
|| bind_cpu_1
>= g
->p
.nr_cpus
) {
509 printf("\nTest not applicable, system has only %d CPUs.\n", g
->p
.nr_cpus
);
513 BUG_ON(bind_cpu_0
< 0 || bind_cpu_1
< 0);
514 BUG_ON(bind_cpu_0
> bind_cpu_1
);
516 for (bind_cpu
= bind_cpu_0
; bind_cpu
<= bind_cpu_1
; bind_cpu
+= step
) {
519 for (i
= 0; i
< mul
; i
++) {
522 if (t
>= g
->p
.nr_tasks
) {
523 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu
);
531 tprintf("%2d/%d", bind_cpu
, bind_len
);
533 tprintf("%2d", bind_cpu
);
536 CPU_ZERO(&td
->bind_cpumask
);
537 for (cpu
= bind_cpu
; cpu
< bind_cpu
+bind_len
; cpu
++) {
538 BUG_ON(cpu
< 0 || cpu
>= g
->p
.nr_cpus
);
539 CPU_SET(cpu
, &td
->bind_cpumask
);
549 if (t
< g
->p
.nr_tasks
)
550 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t
, g
->p
.nr_tasks
- t
);
556 static int parse_cpus_opt(const struct option
*opt __maybe_unused
,
557 const char *arg
, int unset __maybe_unused
)
562 return parse_cpu_list(arg
);
565 static int parse_node_list(const char *arg
)
567 p0
.node_list_str
= strdup(arg
);
569 dprintf("got NODE list: {%s}\n", p0
.node_list_str
);
574 static int parse_setup_node_list(void)
576 struct thread_data
*td
;
580 if (!g
->p
.node_list_str
)
583 dprintf("g->p.nr_tasks: %d\n", g
->p
.nr_tasks
);
585 str0
= str
= strdup(g
->p
.node_list_str
);
590 tprintf("# binding tasks to NODEs:\n");
594 int bind_node
, bind_node_0
, bind_node_1
;
595 char *tok
, *tok_end
, *tok_step
, *tok_mul
;
599 tok
= strsep(&str
, ",");
603 tok_end
= strstr(tok
, "-");
605 dprintf("\ntoken: {%s}, end: {%s}\n", tok
, tok_end
);
607 /* Single NODE specified: */
608 bind_node_0
= bind_node_1
= atol(tok
);
610 /* NODE range specified (for example: "5-11"): */
611 bind_node_0
= atol(tok
);
612 bind_node_1
= atol(tok_end
+ 1);
616 tok_step
= strstr(tok
, "#");
618 step
= atol(tok_step
+ 1);
619 BUG_ON(step
<= 0 || step
>= g
->p
.nr_nodes
);
622 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
624 tok_mul
= strstr(tok
, "x");
626 mul
= atol(tok_mul
+ 1);
630 dprintf("NODEs: %d-%d #%d\n", bind_node_0
, bind_node_1
, step
);
632 if (bind_node_0
>= g
->p
.nr_nodes
|| bind_node_1
>= g
->p
.nr_nodes
) {
633 printf("\nTest not applicable, system has only %d nodes.\n", g
->p
.nr_nodes
);
637 BUG_ON(bind_node_0
< 0 || bind_node_1
< 0);
638 BUG_ON(bind_node_0
> bind_node_1
);
640 for (bind_node
= bind_node_0
; bind_node
<= bind_node_1
; bind_node
+= step
) {
643 for (i
= 0; i
< mul
; i
++) {
644 if (t
>= g
->p
.nr_tasks
) {
645 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node
);
651 tprintf(" %2d", bind_node
);
653 tprintf(",%2d", bind_node
);
655 td
->bind_node
= bind_node
;
664 if (t
< g
->p
.nr_tasks
)
665 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t
, g
->p
.nr_tasks
- t
);
671 static int parse_nodes_opt(const struct option
*opt __maybe_unused
,
672 const char *arg
, int unset __maybe_unused
)
677 return parse_node_list(arg
);
682 #define BIT(x) (1ul << x)
684 static inline uint32_t lfsr_32(uint32_t lfsr
)
686 const uint32_t taps
= BIT(1) | BIT(5) | BIT(6) | BIT(31);
687 return (lfsr
>>1) ^ ((0x0u
- (lfsr
& 0x1u
)) & taps
);
691 * Make sure there's real data dependency to RAM (when read
692 * accesses are enabled), so the compiler, the CPU and the
693 * kernel (KSM, zero page, etc.) cannot optimize away RAM
696 static inline u64
access_data(u64
*data
__attribute__((unused
)), u64 val
)
700 if (g
->p
.data_writes
)
706 * The worker process does two types of work, a forwards going
707 * loop and a backwards going loop.
709 * We do this so that on multiprocessor systems we do not create
710 * a 'train' of processing, with highly synchronized processes,
711 * skewing the whole benchmark.
713 static u64
do_work(u8
*__data
, long bytes
, int nr
, int nr_max
, int loop
, u64 val
)
715 long words
= bytes
/sizeof(u64
);
716 u64
*data
= (void *)__data
;
717 long chunk_0
, chunk_1
;
722 BUG_ON(!data
&& words
);
723 BUG_ON(data
&& !words
);
728 /* Very simple memset() work variant: */
729 if (g
->p
.data_zero_memset
&& !g
->p
.data_rand_walk
) {
734 /* Spread out by PID/TID nr and by loop nr: */
735 chunk_0
= words
/nr_max
;
736 chunk_1
= words
/g
->p
.nr_loops
;
737 off
= nr
*chunk_0
+ loop
*chunk_1
;
742 if (g
->p
.data_rand_walk
) {
743 u32 lfsr
= nr
+ loop
+ val
;
746 for (i
= 0; i
< words
/1024; i
++) {
749 lfsr
= lfsr_32(lfsr
);
751 start
= lfsr
% words
;
752 end
= min(start
+ 1024, words
-1);
754 if (g
->p
.data_zero_memset
) {
755 bzero(data
+ start
, (end
-start
) * sizeof(u64
));
757 for (j
= start
; j
< end
; j
++)
758 val
= access_data(data
+ j
, val
);
761 } else if (!g
->p
.data_backwards
|| (nr
+ loop
) & 1) {
767 /* Process data forwards: */
769 if (unlikely(d
>= d1
))
771 if (unlikely(d
== d0
))
774 val
= access_data(d
, val
);
779 /* Process data backwards: */
785 /* Process data forwards: */
787 if (unlikely(d
< data
))
789 if (unlikely(d
== d0
))
792 val
= access_data(d
, val
);
801 static void update_curr_cpu(int task_nr
, unsigned long bytes_worked
)
805 cpu
= sched_getcpu();
807 g
->threads
[task_nr
].curr_cpu
= cpu
;
808 prctl(0, bytes_worked
);
811 #define MAX_NR_NODES 64
814 * Count the number of nodes a process's threads
817 * A count of 1 means that the process is compressed
818 * to a single node. A count of g->p.nr_nodes means it's
819 * spread out on the whole system.
821 static int count_process_nodes(int process_nr
)
823 char node_present
[MAX_NR_NODES
] = { 0, };
827 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
828 struct thread_data
*td
;
832 task_nr
= process_nr
*g
->p
.nr_threads
+ t
;
833 td
= g
->threads
+ task_nr
;
835 node
= numa_node_of_cpu(td
->curr_cpu
);
836 if (node
< 0) /* curr_cpu was likely still -1 */
839 node_present
[node
] = 1;
844 for (n
= 0; n
< MAX_NR_NODES
; n
++)
845 nodes
+= node_present
[n
];
851 * Count the number of distinct process-threads a node contains.
853 * A count of 1 means that the node contains only a single
854 * process. If all nodes on the system contain at most one
855 * process then we are well-converged.
857 static int count_node_processes(int node
)
862 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
863 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
864 struct thread_data
*td
;
868 task_nr
= p
*g
->p
.nr_threads
+ t
;
869 td
= g
->threads
+ task_nr
;
871 n
= numa_node_of_cpu(td
->curr_cpu
);
882 static void calc_convergence_compression(int *strong
)
884 unsigned int nodes_min
, nodes_max
;
890 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
891 unsigned int nodes
= count_process_nodes(p
);
898 nodes_min
= min(nodes
, nodes_min
);
899 nodes_max
= max(nodes
, nodes_max
);
902 /* Strong convergence: all threads compress on a single node: */
903 if (nodes_min
== 1 && nodes_max
== 1) {
907 tprintf(" {%d-%d}", nodes_min
, nodes_max
);
911 static void calc_convergence(double runtime_ns_max
, double *convergence
)
913 unsigned int loops_done_min
, loops_done_max
;
915 int nodes
[MAX_NR_NODES
];
926 if (!g
->p
.show_convergence
&& !g
->p
.measure_convergence
)
929 for (node
= 0; node
< g
->p
.nr_nodes
; node
++)
935 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
936 struct thread_data
*td
= g
->threads
+ t
;
937 unsigned int loops_done
;
941 /* Not all threads have written it yet: */
945 node
= numa_node_of_cpu(cpu
);
949 loops_done
= td
->loops_done
;
950 loops_done_min
= min(loops_done
, loops_done_min
);
951 loops_done_max
= max(loops_done
, loops_done_max
);
955 nr_min
= g
->p
.nr_tasks
;
958 for (node
= 0; node
< g
->p
.nr_nodes
; node
++) {
960 nr_min
= min(nr
, nr_min
);
961 nr_max
= max(nr
, nr_max
);
964 BUG_ON(nr_min
> nr_max
);
966 BUG_ON(sum
> g
->p
.nr_tasks
);
968 if (0 && (sum
< g
->p
.nr_tasks
))
972 * Count the number of distinct process groups present
973 * on nodes - when we are converged this will decrease
978 for (node
= 0; node
< g
->p
.nr_nodes
; node
++) {
979 int processes
= count_node_processes(node
);
982 tprintf(" %2d/%-2d", nr
, processes
);
984 process_groups
+= processes
;
987 distance
= nr_max
- nr_min
;
989 tprintf(" [%2d/%-2d]", distance
, process_groups
);
991 tprintf(" l:%3d-%-3d (%3d)",
992 loops_done_min
, loops_done_max
, loops_done_max
-loops_done_min
);
994 if (loops_done_min
&& loops_done_max
) {
995 double skew
= 1.0 - (double)loops_done_min
/loops_done_max
;
997 tprintf(" [%4.1f%%]", skew
* 100.0);
1000 calc_convergence_compression(&strong
);
1002 if (strong
&& process_groups
== g
->p
.nr_proc
) {
1003 if (!*convergence
) {
1004 *convergence
= runtime_ns_max
;
1005 tprintf(" (%6.1fs converged)\n", *convergence
/1e9
);
1006 if (g
->p
.measure_convergence
) {
1007 g
->all_converged
= true;
1008 g
->stop_work
= true;
1013 tprintf(" (%6.1fs de-converged)", runtime_ns_max
/1e9
);
1020 static void show_summary(double runtime_ns_max
, int l
, double *convergence
)
1022 tprintf("\r # %5.1f%% [%.1f mins]",
1023 (double)(l
+1)/g
->p
.nr_loops
*100.0, runtime_ns_max
/1e9
/ 60.0);
1025 calc_convergence(runtime_ns_max
, convergence
);
1027 if (g
->p
.show_details
>= 0)
1031 static void *worker_thread(void *__tdata
)
1033 struct thread_data
*td
= __tdata
;
1034 struct timeval start0
, start
, stop
, diff
;
1035 int process_nr
= td
->process_nr
;
1036 int thread_nr
= td
->thread_nr
;
1037 unsigned long last_perturbance
;
1038 int task_nr
= td
->task_nr
;
1039 int details
= g
->p
.show_details
;
1040 int first_task
, last_task
;
1041 double convergence
= 0;
1043 double runtime_ns_max
;
1050 struct rusage rusage
;
1052 bind_to_cpumask(td
->bind_cpumask
);
1053 bind_to_memnode(td
->bind_node
);
1055 set_taskname("thread %d/%d", process_nr
, thread_nr
);
1057 global_data
= g
->data
;
1058 process_data
= td
->process_data
;
1059 thread_data
= setup_private_data(g
->p
.bytes_thread
);
1064 if (process_nr
== g
->p
.nr_proc
-1 && thread_nr
== g
->p
.nr_threads
-1)
1068 if (process_nr
== 0 && thread_nr
== 0)
1072 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1073 process_nr
, thread_nr
, global_data
, process_data
, thread_data
);
1076 if (g
->p
.serialize_startup
) {
1077 pthread_mutex_lock(&g
->startup_mutex
);
1078 g
->nr_tasks_started
++;
1079 pthread_mutex_unlock(&g
->startup_mutex
);
1081 /* Here we will wait for the main process to start us all at once: */
1082 pthread_mutex_lock(&g
->start_work_mutex
);
1083 g
->nr_tasks_working
++;
1085 /* Last one wake the main process: */
1086 if (g
->nr_tasks_working
== g
->p
.nr_tasks
)
1087 pthread_mutex_unlock(&g
->startup_done_mutex
);
1089 pthread_mutex_unlock(&g
->start_work_mutex
);
1092 gettimeofday(&start0
, NULL
);
1094 start
= stop
= start0
;
1095 last_perturbance
= start
.tv_sec
;
1097 for (l
= 0; l
< g
->p
.nr_loops
; l
++) {
1103 val
+= do_work(global_data
, g
->p
.bytes_global
, process_nr
, g
->p
.nr_proc
, l
, val
);
1104 val
+= do_work(process_data
, g
->p
.bytes_process
, thread_nr
, g
->p
.nr_threads
, l
, val
);
1105 val
+= do_work(thread_data
, g
->p
.bytes_thread
, 0, 1, l
, val
);
1107 if (g
->p
.sleep_usecs
) {
1108 pthread_mutex_lock(td
->process_lock
);
1109 usleep(g
->p
.sleep_usecs
);
1110 pthread_mutex_unlock(td
->process_lock
);
1113 * Amount of work to be done under a process-global lock:
1115 if (g
->p
.bytes_process_locked
) {
1116 pthread_mutex_lock(td
->process_lock
);
1117 val
+= do_work(process_data
, g
->p
.bytes_process_locked
, thread_nr
, g
->p
.nr_threads
, l
, val
);
1118 pthread_mutex_unlock(td
->process_lock
);
1121 work_done
= g
->p
.bytes_global
+ g
->p
.bytes_process
+
1122 g
->p
.bytes_process_locked
+ g
->p
.bytes_thread
;
1124 update_curr_cpu(task_nr
, work_done
);
1125 bytes_done
+= work_done
;
1127 if (details
< 0 && !g
->p
.perturb_secs
&& !g
->p
.measure_convergence
&& !g
->p
.nr_secs
)
1132 gettimeofday(&stop
, NULL
);
1134 /* Check whether our max runtime timed out: */
1136 timersub(&stop
, &start0
, &diff
);
1137 if ((u32
)diff
.tv_sec
>= g
->p
.nr_secs
) {
1138 g
->stop_work
= true;
1143 /* Update the summary at most once per second: */
1144 if (start
.tv_sec
== stop
.tv_sec
)
1148 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1149 * by migrating to CPU#0:
1151 if (first_task
&& g
->p
.perturb_secs
&& (int)(stop
.tv_sec
- last_perturbance
) >= g
->p
.perturb_secs
) {
1152 cpu_set_t orig_mask
;
1156 last_perturbance
= stop
.tv_sec
;
1159 * Depending on where we are running, move into
1160 * the other half of the system, to create some
1163 this_cpu
= g
->threads
[task_nr
].curr_cpu
;
1164 if (this_cpu
< g
->p
.nr_cpus
/2)
1165 target_cpu
= g
->p
.nr_cpus
-1;
1169 orig_mask
= bind_to_cpu(target_cpu
);
1171 /* Here we are running on the target CPU already */
1173 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu
);
1175 bind_to_cpumask(orig_mask
);
1179 timersub(&stop
, &start
, &diff
);
1180 runtime_ns_max
= diff
.tv_sec
* 1000000000;
1181 runtime_ns_max
+= diff
.tv_usec
* 1000;
1184 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64
"]\n",
1185 process_nr
, thread_nr
, runtime_ns_max
/ bytes_done
, val
);
1192 timersub(&stop
, &start0
, &diff
);
1193 runtime_ns_max
= diff
.tv_sec
* 1000000000ULL;
1194 runtime_ns_max
+= diff
.tv_usec
* 1000ULL;
1196 show_summary(runtime_ns_max
, l
, &convergence
);
1199 gettimeofday(&stop
, NULL
);
1200 timersub(&stop
, &start0
, &diff
);
1201 td
->runtime_ns
= diff
.tv_sec
* 1000000000ULL;
1202 td
->runtime_ns
+= diff
.tv_usec
* 1000ULL;
1203 td
->speed_gbs
= bytes_done
/ (td
->runtime_ns
/ 1e9
) / 1e9
;
1205 getrusage(RUSAGE_THREAD
, &rusage
);
1206 td
->system_time_ns
= rusage
.ru_stime
.tv_sec
* 1000000000ULL;
1207 td
->system_time_ns
+= rusage
.ru_stime
.tv_usec
* 1000ULL;
1208 td
->user_time_ns
= rusage
.ru_utime
.tv_sec
* 1000000000ULL;
1209 td
->user_time_ns
+= rusage
.ru_utime
.tv_usec
* 1000ULL;
1211 free_data(thread_data
, g
->p
.bytes_thread
);
1213 pthread_mutex_lock(&g
->stop_work_mutex
);
1214 g
->bytes_done
+= bytes_done
;
1215 pthread_mutex_unlock(&g
->stop_work_mutex
);
1221 * A worker process starts a couple of threads:
1223 static void worker_process(int process_nr
)
1225 pthread_mutex_t process_lock
;
1226 struct thread_data
*td
;
1227 pthread_t
*pthreads
;
1233 pthread_mutex_init(&process_lock
, NULL
);
1234 set_taskname("process %d", process_nr
);
1237 * Pick up the memory policy and the CPU binding of our first thread,
1238 * so that we initialize memory accordingly:
1240 task_nr
= process_nr
*g
->p
.nr_threads
;
1241 td
= g
->threads
+ task_nr
;
1243 bind_to_memnode(td
->bind_node
);
1244 bind_to_cpumask(td
->bind_cpumask
);
1246 pthreads
= zalloc(g
->p
.nr_threads
* sizeof(pthread_t
));
1247 process_data
= setup_private_data(g
->p
.bytes_process
);
1249 if (g
->p
.show_details
>= 3) {
1250 printf(" # process %2d global mem: %p, process mem: %p\n",
1251 process_nr
, g
->data
, process_data
);
1254 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1255 task_nr
= process_nr
*g
->p
.nr_threads
+ t
;
1256 td
= g
->threads
+ task_nr
;
1258 td
->process_data
= process_data
;
1259 td
->process_nr
= process_nr
;
1261 td
->task_nr
= task_nr
;
1264 td
->process_lock
= &process_lock
;
1266 ret
= pthread_create(pthreads
+ t
, NULL
, worker_thread
, td
);
1270 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1271 ret
= pthread_join(pthreads
[t
], NULL
);
1275 free_data(process_data
, g
->p
.bytes_process
);
1279 static void print_summary(void)
1281 if (g
->p
.show_details
< 0)
1285 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1286 g
->p
.nr_tasks
, g
->p
.nr_tasks
== 1 ? "task" : "tasks", g
->p
.nr_nodes
, g
->p
.nr_cpus
);
1287 printf(" # %5dx %5ldMB global shared mem operations\n",
1288 g
->p
.nr_loops
, g
->p
.bytes_global
/1024/1024);
1289 printf(" # %5dx %5ldMB process shared mem operations\n",
1290 g
->p
.nr_loops
, g
->p
.bytes_process
/1024/1024);
1291 printf(" # %5dx %5ldMB thread local mem operations\n",
1292 g
->p
.nr_loops
, g
->p
.bytes_thread
/1024/1024);
1296 printf("\n ###\n"); fflush(stdout
);
1299 static void init_thread_data(void)
1301 ssize_t size
= sizeof(*g
->threads
)*g
->p
.nr_tasks
;
1304 g
->threads
= zalloc_shared_data(size
);
1306 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1307 struct thread_data
*td
= g
->threads
+ t
;
1310 /* Allow all nodes by default: */
1313 /* Allow all CPUs by default: */
1314 CPU_ZERO(&td
->bind_cpumask
);
1315 for (cpu
= 0; cpu
< g
->p
.nr_cpus
; cpu
++)
1316 CPU_SET(cpu
, &td
->bind_cpumask
);
1320 static void deinit_thread_data(void)
1322 ssize_t size
= sizeof(*g
->threads
)*g
->p
.nr_tasks
;
1324 free_data(g
->threads
, size
);
1327 static int init(void)
1329 g
= (void *)alloc_data(sizeof(*g
), MAP_SHARED
, 1, 0, 0 /* THP */, 0);
1331 /* Copy over options: */
1334 g
->p
.nr_cpus
= numa_num_configured_cpus();
1336 g
->p
.nr_nodes
= numa_max_node() + 1;
1338 /* char array in count_process_nodes(): */
1339 BUG_ON(g
->p
.nr_nodes
> MAX_NR_NODES
|| g
->p
.nr_nodes
< 0);
1341 if (g
->p
.show_quiet
&& !g
->p
.show_details
)
1342 g
->p
.show_details
= -1;
1344 /* Some memory should be specified: */
1345 if (!g
->p
.mb_global_str
&& !g
->p
.mb_proc_str
&& !g
->p
.mb_thread_str
)
1348 if (g
->p
.mb_global_str
) {
1349 g
->p
.mb_global
= atof(g
->p
.mb_global_str
);
1350 BUG_ON(g
->p
.mb_global
< 0);
1353 if (g
->p
.mb_proc_str
) {
1354 g
->p
.mb_proc
= atof(g
->p
.mb_proc_str
);
1355 BUG_ON(g
->p
.mb_proc
< 0);
1358 if (g
->p
.mb_proc_locked_str
) {
1359 g
->p
.mb_proc_locked
= atof(g
->p
.mb_proc_locked_str
);
1360 BUG_ON(g
->p
.mb_proc_locked
< 0);
1361 BUG_ON(g
->p
.mb_proc_locked
> g
->p
.mb_proc
);
1364 if (g
->p
.mb_thread_str
) {
1365 g
->p
.mb_thread
= atof(g
->p
.mb_thread_str
);
1366 BUG_ON(g
->p
.mb_thread
< 0);
1369 BUG_ON(g
->p
.nr_threads
<= 0);
1370 BUG_ON(g
->p
.nr_proc
<= 0);
1372 g
->p
.nr_tasks
= g
->p
.nr_proc
*g
->p
.nr_threads
;
1374 g
->p
.bytes_global
= g
->p
.mb_global
*1024L*1024L;
1375 g
->p
.bytes_process
= g
->p
.mb_proc
*1024L*1024L;
1376 g
->p
.bytes_process_locked
= g
->p
.mb_proc_locked
*1024L*1024L;
1377 g
->p
.bytes_thread
= g
->p
.mb_thread
*1024L*1024L;
1379 g
->data
= setup_shared_data(g
->p
.bytes_global
);
1381 /* Startup serialization: */
1382 init_global_mutex(&g
->start_work_mutex
);
1383 init_global_mutex(&g
->startup_mutex
);
1384 init_global_mutex(&g
->startup_done_mutex
);
1385 init_global_mutex(&g
->stop_work_mutex
);
1390 if (parse_setup_cpu_list() || parse_setup_node_list())
1399 static void deinit(void)
1401 free_data(g
->data
, g
->p
.bytes_global
);
1404 deinit_thread_data();
1406 free_data(g
, sizeof(*g
));
1411 * Print a short or long result, depending on the verbosity setting:
1413 static void print_res(const char *name
, double val
,
1414 const char *txt_unit
, const char *txt_short
, const char *txt_long
)
1419 if (!g
->p
.show_quiet
)
1420 printf(" %-30s %15.3f, %-15s %s\n", name
, val
, txt_unit
, txt_short
);
1422 printf(" %14.3f %s\n", val
, txt_long
);
1425 static int __bench_numa(const char *name
)
1427 struct timeval start
, stop
, diff
;
1428 u64 runtime_ns_min
, runtime_ns_sum
;
1429 pid_t
*pids
, pid
, wpid
;
1430 double delta_runtime
;
1432 double runtime_sec_max
;
1433 double runtime_sec_min
;
1441 pids
= zalloc(g
->p
.nr_proc
* sizeof(*pids
));
1444 /* All threads try to acquire it, this way we can wait for them to start up: */
1445 pthread_mutex_lock(&g
->start_work_mutex
);
1447 if (g
->p
.serialize_startup
) {
1449 tprintf(" # Startup synchronization: ..."); fflush(stdout
);
1452 gettimeofday(&start
, NULL
);
1454 for (i
= 0; i
< g
->p
.nr_proc
; i
++) {
1456 dprintf(" # process %2d: PID %d\n", i
, pid
);
1460 /* Child process: */
1468 /* Wait for all the threads to start up: */
1469 while (g
->nr_tasks_started
!= g
->p
.nr_tasks
)
1472 BUG_ON(g
->nr_tasks_started
!= g
->p
.nr_tasks
);
1474 if (g
->p
.serialize_startup
) {
1477 pthread_mutex_lock(&g
->startup_done_mutex
);
1479 /* This will start all threads: */
1480 pthread_mutex_unlock(&g
->start_work_mutex
);
1482 /* This mutex is locked - the last started thread will wake us: */
1483 pthread_mutex_lock(&g
->startup_done_mutex
);
1485 gettimeofday(&stop
, NULL
);
1487 timersub(&stop
, &start
, &diff
);
1489 startup_sec
= diff
.tv_sec
* 1000000000.0;
1490 startup_sec
+= diff
.tv_usec
* 1000.0;
1493 tprintf(" threads initialized in %.6f seconds.\n", startup_sec
);
1497 pthread_mutex_unlock(&g
->startup_done_mutex
);
1499 gettimeofday(&start
, NULL
);
1502 /* Parent process: */
1505 for (i
= 0; i
< g
->p
.nr_proc
; i
++) {
1506 wpid
= waitpid(pids
[i
], &wait_stat
, 0);
1508 BUG_ON(!WIFEXITED(wait_stat
));
1513 runtime_ns_min
= -1LL;
1515 for (t
= 0; t
< g
->p
.nr_tasks
; t
++) {
1516 u64 thread_runtime_ns
= g
->threads
[t
].runtime_ns
;
1518 runtime_ns_sum
+= thread_runtime_ns
;
1519 runtime_ns_min
= min(thread_runtime_ns
, runtime_ns_min
);
1522 gettimeofday(&stop
, NULL
);
1523 timersub(&stop
, &start
, &diff
);
1525 BUG_ON(bench_format
!= BENCH_FORMAT_DEFAULT
);
1527 tprintf("\n ###\n");
1530 runtime_sec_max
= diff
.tv_sec
* 1000000000.0;
1531 runtime_sec_max
+= diff
.tv_usec
* 1000.0;
1532 runtime_sec_max
/= 1e9
;
1534 runtime_sec_min
= runtime_ns_min
/1e9
;
1536 bytes
= g
->bytes_done
;
1537 runtime_avg
= (double)runtime_ns_sum
/ g
->p
.nr_tasks
/ 1e9
;
1539 if (g
->p
.measure_convergence
) {
1540 print_res(name
, runtime_sec_max
,
1541 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1544 print_res(name
, runtime_sec_max
,
1545 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1547 print_res(name
, runtime_sec_min
,
1548 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1550 print_res(name
, runtime_avg
,
1551 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1553 delta_runtime
= (runtime_sec_max
- runtime_sec_min
)/2.0;
1554 print_res(name
, delta_runtime
/ runtime_sec_max
* 100.0,
1555 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1557 print_res(name
, bytes
/ g
->p
.nr_tasks
/ 1e9
,
1558 "GB,", "data/thread", "GB data processed, per thread");
1560 print_res(name
, bytes
/ 1e9
,
1561 "GB,", "data-total", "GB data processed, total");
1563 print_res(name
, runtime_sec_max
* 1e9
/ (bytes
/ g
->p
.nr_tasks
),
1564 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1566 print_res(name
, bytes
/ g
->p
.nr_tasks
/ 1e9
/ runtime_sec_max
,
1567 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1569 print_res(name
, bytes
/ runtime_sec_max
/ 1e9
,
1570 "GB/sec,", "total-speed", "GB/sec total speed");
1572 if (g
->p
.show_details
>= 2) {
1574 struct thread_data
*td
;
1575 for (p
= 0; p
< g
->p
.nr_proc
; p
++) {
1576 for (t
= 0; t
< g
->p
.nr_threads
; t
++) {
1577 memset(tname
, 0, 32);
1578 td
= g
->threads
+ p
*g
->p
.nr_threads
+ t
;
1579 snprintf(tname
, 32, "process%d:thread%d", p
, t
);
1580 print_res(tname
, td
->speed_gbs
,
1581 "GB/sec", "thread-speed", "GB/sec/thread speed");
1582 print_res(tname
, td
->system_time_ns
/ 1e9
,
1583 "secs", "thread-system-time", "system CPU time/thread");
1584 print_res(tname
, td
->user_time_ns
/ 1e9
,
1585 "secs", "thread-user-time", "user CPU time/thread");
1599 static int command_size(const char **argv
)
1608 BUG_ON(size
>= MAX_ARGS
);
1613 static void init_params(struct params
*p
, const char *name
, int argc
, const char **argv
)
1617 printf("\n # Running %s \"perf bench numa", name
);
1619 for (i
= 0; i
< argc
; i
++)
1620 printf(" %s", argv
[i
]);
1624 memset(p
, 0, sizeof(*p
));
1626 /* Initialize nonzero defaults: */
1628 p
->serialize_startup
= 1;
1629 p
->data_reads
= true;
1630 p
->data_writes
= true;
1631 p
->data_backwards
= true;
1632 p
->data_rand_walk
= true;
1634 p
->init_random
= true;
1635 p
->mb_global_str
= "1";
1639 p
->run_all
= argc
== 1;
1642 static int run_bench_numa(const char *name
, const char **argv
)
1644 int argc
= command_size(argv
);
1646 init_params(&p0
, name
, argc
, argv
);
1647 argc
= parse_options(argc
, argv
, options
, bench_numa_usage
, 0);
1651 if (__bench_numa(name
))
1660 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1661 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1663 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1664 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1666 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1667 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1670 * The built-in test-suite executed by "perf bench numa -a".
1672 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1674 static const char *tests
[][MAX_ARGS
] = {
1675 /* Basic single-stream NUMA bandwidth measurements: */
1676 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1677 "-C" , "0", "-M", "0", OPT_BW_RAM
},
1678 { "RAM-bw-local-NOTHP,",
1679 "mem", "-p", "1", "-t", "1", "-P", "1024",
1680 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP
},
1681 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1682 "-C" , "0", "-M", "1", OPT_BW_RAM
},
1684 /* 2-stream NUMA bandwidth measurements: */
1685 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1686 "-C", "0,2", "-M", "0x2", OPT_BW_RAM
},
1687 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1688 "-C", "0,2", "-M", "1x2", OPT_BW_RAM
},
1690 /* Cross-stream NUMA bandwidth measurement: */
1691 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1692 "-C", "0,8", "-M", "1,0", OPT_BW_RAM
},
1694 /* Convergence latency measurements: */
1695 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV
},
1696 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV
},
1697 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV
},
1698 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV
},
1699 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV
},
1700 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV
},
1701 { " 4x4-convergence-NOTHP,",
1702 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP
},
1703 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV
},
1704 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV
},
1705 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV
},
1706 { " 8x4-convergence-NOTHP,",
1707 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP
},
1708 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV
},
1709 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV
},
1710 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV
},
1711 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV
},
1712 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV
},
1714 /* Various NUMA process/thread layout bandwidth measurements: */
1715 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW
},
1716 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW
},
1717 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW
},
1718 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW
},
1719 { " 8x1-bw-process-NOTHP,",
1720 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP
},
1721 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW
},
1723 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW
},
1724 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW
},
1725 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW
},
1726 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW
},
1728 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW
},
1729 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW
},
1730 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW
},
1731 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW
},
1732 { " 4x8-bw-thread-NOTHP,",
1733 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP
},
1734 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW
},
1735 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW
},
1737 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW
},
1738 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW
},
1740 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW
},
1741 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP
},
1742 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW
},
1743 { "numa01-bw-thread-NOTHP,",
1744 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP
},
1747 static int bench_all(void)
1749 int nr
= ARRAY_SIZE(tests
);
1753 ret
= system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1756 for (i
= 0; i
< nr
; i
++) {
1757 run_bench_numa(tests
[i
][0], tests
[i
] + 1);
1765 int bench_numa(int argc
, const char **argv
, const char *prefix __maybe_unused
)
1767 init_params(&p0
, "main,", argc
, argv
);
1768 argc
= parse_options(argc
, argv
, options
, bench_numa_usage
, 0);
1775 if (__bench_numa(NULL
))
1781 usage_with_options(numa_usage
, options
);