2 * Driver for the Cirrus Logic EP93xx DMA Controller
4 * Copyright (C) 2011 Mika Westerberg
6 * DMA M2P implementation is based on the original
7 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
9 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10 * Copyright (C) 2006 Applied Data Systems
11 * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
13 * This driver is based on dw_dmac and amba-pl08x drivers.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
29 #include <linux/platform_data/dma-ep93xx.h>
31 #include "dmaengine.h"
34 #define M2P_CONTROL 0x0000
35 #define M2P_CONTROL_STALLINT BIT(0)
36 #define M2P_CONTROL_NFBINT BIT(1)
37 #define M2P_CONTROL_CH_ERROR_INT BIT(3)
38 #define M2P_CONTROL_ENABLE BIT(4)
39 #define M2P_CONTROL_ICE BIT(6)
41 #define M2P_INTERRUPT 0x0004
42 #define M2P_INTERRUPT_STALL BIT(0)
43 #define M2P_INTERRUPT_NFB BIT(1)
44 #define M2P_INTERRUPT_ERROR BIT(3)
46 #define M2P_PPALLOC 0x0008
47 #define M2P_STATUS 0x000c
49 #define M2P_MAXCNT0 0x0020
50 #define M2P_BASE0 0x0024
51 #define M2P_MAXCNT1 0x0030
52 #define M2P_BASE1 0x0034
54 #define M2P_STATE_IDLE 0
55 #define M2P_STATE_STALL 1
56 #define M2P_STATE_ON 2
57 #define M2P_STATE_NEXT 3
60 #define M2M_CONTROL 0x0000
61 #define M2M_CONTROL_DONEINT BIT(2)
62 #define M2M_CONTROL_ENABLE BIT(3)
63 #define M2M_CONTROL_START BIT(4)
64 #define M2M_CONTROL_DAH BIT(11)
65 #define M2M_CONTROL_SAH BIT(12)
66 #define M2M_CONTROL_PW_SHIFT 9
67 #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT)
70 #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT)
71 #define M2M_CONTROL_TM_SHIFT 13
72 #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT)
73 #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT)
74 #define M2M_CONTROL_NFBINT BIT(21)
75 #define M2M_CONTROL_RSS_SHIFT 22
76 #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT)
77 #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT)
78 #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT)
79 #define M2M_CONTROL_NO_HDSK BIT(24)
80 #define M2M_CONTROL_PWSC_SHIFT 25
82 #define M2M_INTERRUPT 0x0004
83 #define M2M_INTERRUPT_MASK 6
85 #define M2M_STATUS 0x000c
86 #define M2M_STATUS_CTL_SHIFT 1
87 #define M2M_STATUS_CTL_IDLE (0 << M2M_STATUS_CTL_SHIFT)
88 #define M2M_STATUS_CTL_STALL (1 << M2M_STATUS_CTL_SHIFT)
89 #define M2M_STATUS_CTL_MEMRD (2 << M2M_STATUS_CTL_SHIFT)
90 #define M2M_STATUS_CTL_MEMWR (3 << M2M_STATUS_CTL_SHIFT)
91 #define M2M_STATUS_CTL_BWCWAIT (4 << M2M_STATUS_CTL_SHIFT)
92 #define M2M_STATUS_CTL_MASK (7 << M2M_STATUS_CTL_SHIFT)
93 #define M2M_STATUS_BUF_SHIFT 4
94 #define M2M_STATUS_BUF_NO (0 << M2M_STATUS_BUF_SHIFT)
95 #define M2M_STATUS_BUF_ON (1 << M2M_STATUS_BUF_SHIFT)
96 #define M2M_STATUS_BUF_NEXT (2 << M2M_STATUS_BUF_SHIFT)
97 #define M2M_STATUS_BUF_MASK (3 << M2M_STATUS_BUF_SHIFT)
98 #define M2M_STATUS_DONE BIT(6)
100 #define M2M_BCR0 0x0010
101 #define M2M_BCR1 0x0014
102 #define M2M_SAR_BASE0 0x0018
103 #define M2M_SAR_BASE1 0x001c
104 #define M2M_DAR_BASE0 0x002c
105 #define M2M_DAR_BASE1 0x0030
107 #define DMA_MAX_CHAN_BYTES 0xffff
108 #define DMA_MAX_CHAN_DESCRIPTORS 32
110 struct ep93xx_dma_engine
;
113 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
114 * @src_addr: source address of the transaction
115 * @dst_addr: destination address of the transaction
116 * @size: size of the transaction (in bytes)
117 * @complete: this descriptor is completed
118 * @txd: dmaengine API descriptor
119 * @tx_list: list of linked descriptors
120 * @node: link used for putting this into a channel queue
122 struct ep93xx_dma_desc
{
127 struct dma_async_tx_descriptor txd
;
128 struct list_head tx_list
;
129 struct list_head node
;
133 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
134 * @chan: dmaengine API channel
135 * @edma: pointer to to the engine device
136 * @regs: memory mapped registers
137 * @irq: interrupt number of the channel
138 * @clk: clock used by this channel
139 * @tasklet: channel specific tasklet used for callbacks
140 * @lock: lock protecting the fields following
141 * @flags: flags for the channel
142 * @buffer: which buffer to use next (0/1)
143 * @active: flattened chain of descriptors currently being processed
144 * @queue: pending descriptors which are handled next
145 * @free_list: list of free descriptors which can be used
146 * @runtime_addr: physical address currently used as dest/src (M2M only). This
147 * is set via %DMA_SLAVE_CONFIG before slave operation is
149 * @runtime_ctrl: M2M runtime values for the control register.
151 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
152 * will have slightly different scheme here: @active points to a head of
153 * flattened DMA descriptor chain.
155 * @queue holds pending transactions. These are linked through the first
156 * descriptor in the chain. When a descriptor is moved to the @active queue,
157 * the first and chained descriptors are flattened into a single list.
159 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
160 * necessary channel configuration information. For memcpy channels this must
163 struct ep93xx_dma_chan
{
164 struct dma_chan chan
;
165 const struct ep93xx_dma_engine
*edma
;
169 struct tasklet_struct tasklet
;
170 /* protects the fields following */
173 /* Channel is configured for cyclic transfers */
174 #define EP93XX_DMA_IS_CYCLIC 0
177 struct list_head active
;
178 struct list_head queue
;
179 struct list_head free_list
;
185 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
186 * @dma_dev: holds the dmaengine device
187 * @m2m: is this an M2M or M2P device
188 * @hw_setup: method which sets the channel up for operation
189 * @hw_shutdown: shuts the channel down and flushes whatever is left
190 * @hw_submit: pushes active descriptor(s) to the hardware
191 * @hw_interrupt: handle the interrupt
192 * @num_channels: number of channels for this instance
193 * @channels: array of channels
195 * There is one instance of this struct for the M2P channels and one for the
196 * M2M channels. hw_xxx() methods are used to perform operations which are
197 * different on M2M and M2P channels. These methods are called with channel
198 * lock held and interrupts disabled so they cannot sleep.
200 struct ep93xx_dma_engine
{
201 struct dma_device dma_dev
;
203 int (*hw_setup
)(struct ep93xx_dma_chan
*);
204 void (*hw_shutdown
)(struct ep93xx_dma_chan
*);
205 void (*hw_submit
)(struct ep93xx_dma_chan
*);
206 int (*hw_interrupt
)(struct ep93xx_dma_chan
*);
207 #define INTERRUPT_UNKNOWN 0
208 #define INTERRUPT_DONE 1
209 #define INTERRUPT_NEXT_BUFFER 2
212 struct ep93xx_dma_chan channels
[];
215 static inline struct device
*chan2dev(struct ep93xx_dma_chan
*edmac
)
217 return &edmac
->chan
.dev
->device
;
220 static struct ep93xx_dma_chan
*to_ep93xx_dma_chan(struct dma_chan
*chan
)
222 return container_of(chan
, struct ep93xx_dma_chan
, chan
);
226 * ep93xx_dma_set_active - set new active descriptor chain
228 * @desc: head of the new active descriptor chain
230 * Sets @desc to be the head of the new active descriptor chain. This is the
231 * chain which is processed next. The active list must be empty before calling
234 * Called with @edmac->lock held and interrupts disabled.
236 static void ep93xx_dma_set_active(struct ep93xx_dma_chan
*edmac
,
237 struct ep93xx_dma_desc
*desc
)
239 BUG_ON(!list_empty(&edmac
->active
));
241 list_add_tail(&desc
->node
, &edmac
->active
);
243 /* Flatten the @desc->tx_list chain into @edmac->active list */
244 while (!list_empty(&desc
->tx_list
)) {
245 struct ep93xx_dma_desc
*d
= list_first_entry(&desc
->tx_list
,
246 struct ep93xx_dma_desc
, node
);
249 * We copy the callback parameters from the first descriptor
250 * to all the chained descriptors. This way we can call the
251 * callback without having to find out the first descriptor in
252 * the chain. Useful for cyclic transfers.
254 d
->txd
.callback
= desc
->txd
.callback
;
255 d
->txd
.callback_param
= desc
->txd
.callback_param
;
257 list_move_tail(&d
->node
, &edmac
->active
);
261 /* Called with @edmac->lock held and interrupts disabled */
262 static struct ep93xx_dma_desc
*
263 ep93xx_dma_get_active(struct ep93xx_dma_chan
*edmac
)
265 if (list_empty(&edmac
->active
))
268 return list_first_entry(&edmac
->active
, struct ep93xx_dma_desc
, node
);
272 * ep93xx_dma_advance_active - advances to the next active descriptor
275 * Function advances active descriptor to the next in the @edmac->active and
276 * returns %true if we still have descriptors in the chain to process.
277 * Otherwise returns %false.
279 * When the channel is in cyclic mode always returns %true.
281 * Called with @edmac->lock held and interrupts disabled.
283 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan
*edmac
)
285 struct ep93xx_dma_desc
*desc
;
287 list_rotate_left(&edmac
->active
);
289 if (test_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
))
292 desc
= ep93xx_dma_get_active(edmac
);
297 * If txd.cookie is set it means that we are back in the first
298 * descriptor in the chain and hence done with it.
300 return !desc
->txd
.cookie
;
304 * M2P DMA implementation
307 static void m2p_set_control(struct ep93xx_dma_chan
*edmac
, u32 control
)
309 writel(control
, edmac
->regs
+ M2P_CONTROL
);
311 * EP93xx User's Guide states that we must perform a dummy read after
312 * write to the control register.
314 readl(edmac
->regs
+ M2P_CONTROL
);
317 static int m2p_hw_setup(struct ep93xx_dma_chan
*edmac
)
319 struct ep93xx_dma_data
*data
= edmac
->chan
.private;
322 writel(data
->port
& 0xf, edmac
->regs
+ M2P_PPALLOC
);
324 control
= M2P_CONTROL_CH_ERROR_INT
| M2P_CONTROL_ICE
325 | M2P_CONTROL_ENABLE
;
326 m2p_set_control(edmac
, control
);
331 static inline u32
m2p_channel_state(struct ep93xx_dma_chan
*edmac
)
333 return (readl(edmac
->regs
+ M2P_STATUS
) >> 4) & 0x3;
336 static void m2p_hw_shutdown(struct ep93xx_dma_chan
*edmac
)
340 control
= readl(edmac
->regs
+ M2P_CONTROL
);
341 control
&= ~(M2P_CONTROL_STALLINT
| M2P_CONTROL_NFBINT
);
342 m2p_set_control(edmac
, control
);
344 while (m2p_channel_state(edmac
) >= M2P_STATE_ON
)
347 m2p_set_control(edmac
, 0);
349 while (m2p_channel_state(edmac
) == M2P_STATE_STALL
)
353 static void m2p_fill_desc(struct ep93xx_dma_chan
*edmac
)
355 struct ep93xx_dma_desc
*desc
;
358 desc
= ep93xx_dma_get_active(edmac
);
360 dev_warn(chan2dev(edmac
), "M2P: empty descriptor list\n");
364 if (ep93xx_dma_chan_direction(&edmac
->chan
) == DMA_MEM_TO_DEV
)
365 bus_addr
= desc
->src_addr
;
367 bus_addr
= desc
->dst_addr
;
369 if (edmac
->buffer
== 0) {
370 writel(desc
->size
, edmac
->regs
+ M2P_MAXCNT0
);
371 writel(bus_addr
, edmac
->regs
+ M2P_BASE0
);
373 writel(desc
->size
, edmac
->regs
+ M2P_MAXCNT1
);
374 writel(bus_addr
, edmac
->regs
+ M2P_BASE1
);
380 static void m2p_hw_submit(struct ep93xx_dma_chan
*edmac
)
382 u32 control
= readl(edmac
->regs
+ M2P_CONTROL
);
384 m2p_fill_desc(edmac
);
385 control
|= M2P_CONTROL_STALLINT
;
387 if (ep93xx_dma_advance_active(edmac
)) {
388 m2p_fill_desc(edmac
);
389 control
|= M2P_CONTROL_NFBINT
;
392 m2p_set_control(edmac
, control
);
395 static int m2p_hw_interrupt(struct ep93xx_dma_chan
*edmac
)
397 u32 irq_status
= readl(edmac
->regs
+ M2P_INTERRUPT
);
400 if (irq_status
& M2P_INTERRUPT_ERROR
) {
401 struct ep93xx_dma_desc
*desc
= ep93xx_dma_get_active(edmac
);
403 /* Clear the error interrupt */
404 writel(1, edmac
->regs
+ M2P_INTERRUPT
);
407 * It seems that there is no easy way of reporting errors back
408 * to client so we just report the error here and continue as
411 * Revisit this when there is a mechanism to report back the
414 dev_err(chan2dev(edmac
),
415 "DMA transfer failed! Details:\n"
417 "\tsrc_addr : 0x%08x\n"
418 "\tdst_addr : 0x%08x\n"
420 desc
->txd
.cookie
, desc
->src_addr
, desc
->dst_addr
,
424 switch (irq_status
& (M2P_INTERRUPT_STALL
| M2P_INTERRUPT_NFB
)) {
425 case M2P_INTERRUPT_STALL
:
426 /* Disable interrupts */
427 control
= readl(edmac
->regs
+ M2P_CONTROL
);
428 control
&= ~(M2P_CONTROL_STALLINT
| M2P_CONTROL_NFBINT
);
429 m2p_set_control(edmac
, control
);
431 return INTERRUPT_DONE
;
433 case M2P_INTERRUPT_NFB
:
434 if (ep93xx_dma_advance_active(edmac
))
435 m2p_fill_desc(edmac
);
437 return INTERRUPT_NEXT_BUFFER
;
440 return INTERRUPT_UNKNOWN
;
444 * M2M DMA implementation
447 static int m2m_hw_setup(struct ep93xx_dma_chan
*edmac
)
449 const struct ep93xx_dma_data
*data
= edmac
->chan
.private;
453 /* This is memcpy channel, nothing to configure */
454 writel(control
, edmac
->regs
+ M2M_CONTROL
);
458 switch (data
->port
) {
461 * This was found via experimenting - anything less than 5
462 * causes the channel to perform only a partial transfer which
463 * leads to problems since we don't get DONE interrupt then.
465 control
= (5 << M2M_CONTROL_PWSC_SHIFT
);
466 control
|= M2M_CONTROL_NO_HDSK
;
468 if (data
->direction
== DMA_MEM_TO_DEV
) {
469 control
|= M2M_CONTROL_DAH
;
470 control
|= M2M_CONTROL_TM_TX
;
471 control
|= M2M_CONTROL_RSS_SSPTX
;
473 control
|= M2M_CONTROL_SAH
;
474 control
|= M2M_CONTROL_TM_RX
;
475 control
|= M2M_CONTROL_RSS_SSPRX
;
481 * This IDE part is totally untested. Values below are taken
482 * from the EP93xx Users's Guide and might not be correct.
484 if (data
->direction
== DMA_MEM_TO_DEV
) {
485 /* Worst case from the UG */
486 control
= (3 << M2M_CONTROL_PWSC_SHIFT
);
487 control
|= M2M_CONTROL_DAH
;
488 control
|= M2M_CONTROL_TM_TX
;
490 control
= (2 << M2M_CONTROL_PWSC_SHIFT
);
491 control
|= M2M_CONTROL_SAH
;
492 control
|= M2M_CONTROL_TM_RX
;
495 control
|= M2M_CONTROL_NO_HDSK
;
496 control
|= M2M_CONTROL_RSS_IDE
;
497 control
|= M2M_CONTROL_PW_16
;
504 writel(control
, edmac
->regs
+ M2M_CONTROL
);
508 static void m2m_hw_shutdown(struct ep93xx_dma_chan
*edmac
)
510 /* Just disable the channel */
511 writel(0, edmac
->regs
+ M2M_CONTROL
);
514 static void m2m_fill_desc(struct ep93xx_dma_chan
*edmac
)
516 struct ep93xx_dma_desc
*desc
;
518 desc
= ep93xx_dma_get_active(edmac
);
520 dev_warn(chan2dev(edmac
), "M2M: empty descriptor list\n");
524 if (edmac
->buffer
== 0) {
525 writel(desc
->src_addr
, edmac
->regs
+ M2M_SAR_BASE0
);
526 writel(desc
->dst_addr
, edmac
->regs
+ M2M_DAR_BASE0
);
527 writel(desc
->size
, edmac
->regs
+ M2M_BCR0
);
529 writel(desc
->src_addr
, edmac
->regs
+ M2M_SAR_BASE1
);
530 writel(desc
->dst_addr
, edmac
->regs
+ M2M_DAR_BASE1
);
531 writel(desc
->size
, edmac
->regs
+ M2M_BCR1
);
537 static void m2m_hw_submit(struct ep93xx_dma_chan
*edmac
)
539 struct ep93xx_dma_data
*data
= edmac
->chan
.private;
540 u32 control
= readl(edmac
->regs
+ M2M_CONTROL
);
543 * Since we allow clients to configure PW (peripheral width) we always
544 * clear PW bits here and then set them according what is given in
545 * the runtime configuration.
547 control
&= ~M2M_CONTROL_PW_MASK
;
548 control
|= edmac
->runtime_ctrl
;
550 m2m_fill_desc(edmac
);
551 control
|= M2M_CONTROL_DONEINT
;
553 if (ep93xx_dma_advance_active(edmac
)) {
554 m2m_fill_desc(edmac
);
555 control
|= M2M_CONTROL_NFBINT
;
559 * Now we can finally enable the channel. For M2M channel this must be
560 * done _after_ the BCRx registers are programmed.
562 control
|= M2M_CONTROL_ENABLE
;
563 writel(control
, edmac
->regs
+ M2M_CONTROL
);
567 * For memcpy channels the software trigger must be asserted
568 * in order to start the memcpy operation.
570 control
|= M2M_CONTROL_START
;
571 writel(control
, edmac
->regs
+ M2M_CONTROL
);
576 * According to EP93xx User's Guide, we should receive DONE interrupt when all
577 * M2M DMA controller transactions complete normally. This is not always the
578 * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
579 * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
580 * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
581 * In effect, disabling the channel when only DONE bit is set could stop
582 * currently running DMA transfer. To avoid this, we use Buffer FSM and
583 * Control FSM to check current state of DMA channel.
585 static int m2m_hw_interrupt(struct ep93xx_dma_chan
*edmac
)
587 u32 status
= readl(edmac
->regs
+ M2M_STATUS
);
588 u32 ctl_fsm
= status
& M2M_STATUS_CTL_MASK
;
589 u32 buf_fsm
= status
& M2M_STATUS_BUF_MASK
;
590 bool done
= status
& M2M_STATUS_DONE
;
593 struct ep93xx_dma_desc
*desc
;
595 /* Accept only DONE and NFB interrupts */
596 if (!(readl(edmac
->regs
+ M2M_INTERRUPT
) & M2M_INTERRUPT_MASK
))
597 return INTERRUPT_UNKNOWN
;
600 /* Clear the DONE bit */
601 writel(0, edmac
->regs
+ M2M_INTERRUPT
);
605 * Check whether we are done with descriptors or not. This, together
606 * with DMA channel state, determines action to take in interrupt.
608 desc
= ep93xx_dma_get_active(edmac
);
609 last_done
= !desc
|| desc
->txd
.cookie
;
612 * Use M2M DMA Buffer FSM and Control FSM to check current state of
613 * DMA channel. Using DONE and NFB bits from channel status register
614 * or bits from channel interrupt register is not reliable.
617 (buf_fsm
== M2M_STATUS_BUF_NO
||
618 buf_fsm
== M2M_STATUS_BUF_ON
)) {
620 * Two buffers are ready for update when Buffer FSM is in
621 * DMA_NO_BUF state. Only one buffer can be prepared without
622 * disabling the channel or polling the DONE bit.
623 * To simplify things, always prepare only one buffer.
625 if (ep93xx_dma_advance_active(edmac
)) {
626 m2m_fill_desc(edmac
);
627 if (done
&& !edmac
->chan
.private) {
628 /* Software trigger for memcpy channel */
629 control
= readl(edmac
->regs
+ M2M_CONTROL
);
630 control
|= M2M_CONTROL_START
;
631 writel(control
, edmac
->regs
+ M2M_CONTROL
);
633 return INTERRUPT_NEXT_BUFFER
;
640 * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
641 * and Control FSM is in DMA_STALL state.
644 buf_fsm
== M2M_STATUS_BUF_NO
&&
645 ctl_fsm
== M2M_STATUS_CTL_STALL
) {
646 /* Disable interrupts and the channel */
647 control
= readl(edmac
->regs
+ M2M_CONTROL
);
648 control
&= ~(M2M_CONTROL_DONEINT
| M2M_CONTROL_NFBINT
649 | M2M_CONTROL_ENABLE
);
650 writel(control
, edmac
->regs
+ M2M_CONTROL
);
651 return INTERRUPT_DONE
;
655 * Nothing to do this time.
657 return INTERRUPT_NEXT_BUFFER
;
661 * DMA engine API implementation
664 static struct ep93xx_dma_desc
*
665 ep93xx_dma_desc_get(struct ep93xx_dma_chan
*edmac
)
667 struct ep93xx_dma_desc
*desc
, *_desc
;
668 struct ep93xx_dma_desc
*ret
= NULL
;
671 spin_lock_irqsave(&edmac
->lock
, flags
);
672 list_for_each_entry_safe(desc
, _desc
, &edmac
->free_list
, node
) {
673 if (async_tx_test_ack(&desc
->txd
)) {
674 list_del_init(&desc
->node
);
676 /* Re-initialize the descriptor */
680 desc
->complete
= false;
681 desc
->txd
.cookie
= 0;
682 desc
->txd
.callback
= NULL
;
683 desc
->txd
.callback_param
= NULL
;
689 spin_unlock_irqrestore(&edmac
->lock
, flags
);
693 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan
*edmac
,
694 struct ep93xx_dma_desc
*desc
)
699 spin_lock_irqsave(&edmac
->lock
, flags
);
700 list_splice_init(&desc
->tx_list
, &edmac
->free_list
);
701 list_add(&desc
->node
, &edmac
->free_list
);
702 spin_unlock_irqrestore(&edmac
->lock
, flags
);
707 * ep93xx_dma_advance_work - start processing the next pending transaction
710 * If we have pending transactions queued and we are currently idling, this
711 * function takes the next queued transaction from the @edmac->queue and
712 * pushes it to the hardware for execution.
714 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan
*edmac
)
716 struct ep93xx_dma_desc
*new;
719 spin_lock_irqsave(&edmac
->lock
, flags
);
720 if (!list_empty(&edmac
->active
) || list_empty(&edmac
->queue
)) {
721 spin_unlock_irqrestore(&edmac
->lock
, flags
);
725 /* Take the next descriptor from the pending queue */
726 new = list_first_entry(&edmac
->queue
, struct ep93xx_dma_desc
, node
);
727 list_del_init(&new->node
);
729 ep93xx_dma_set_active(edmac
, new);
731 /* Push it to the hardware */
732 edmac
->edma
->hw_submit(edmac
);
733 spin_unlock_irqrestore(&edmac
->lock
, flags
);
736 static void ep93xx_dma_unmap_buffers(struct ep93xx_dma_desc
*desc
)
738 struct device
*dev
= desc
->txd
.chan
->device
->dev
;
740 if (!(desc
->txd
.flags
& DMA_COMPL_SKIP_SRC_UNMAP
)) {
741 if (desc
->txd
.flags
& DMA_COMPL_SRC_UNMAP_SINGLE
)
742 dma_unmap_single(dev
, desc
->src_addr
, desc
->size
,
745 dma_unmap_page(dev
, desc
->src_addr
, desc
->size
,
748 if (!(desc
->txd
.flags
& DMA_COMPL_SKIP_DEST_UNMAP
)) {
749 if (desc
->txd
.flags
& DMA_COMPL_DEST_UNMAP_SINGLE
)
750 dma_unmap_single(dev
, desc
->dst_addr
, desc
->size
,
753 dma_unmap_page(dev
, desc
->dst_addr
, desc
->size
,
758 static void ep93xx_dma_tasklet(unsigned long data
)
760 struct ep93xx_dma_chan
*edmac
= (struct ep93xx_dma_chan
*)data
;
761 struct ep93xx_dma_desc
*desc
, *d
;
762 dma_async_tx_callback callback
= NULL
;
763 void *callback_param
= NULL
;
766 spin_lock_irq(&edmac
->lock
);
768 * If dma_terminate_all() was called before we get to run, the active
769 * list has become empty. If that happens we aren't supposed to do
770 * anything more than call ep93xx_dma_advance_work().
772 desc
= ep93xx_dma_get_active(edmac
);
774 if (desc
->complete
) {
775 /* mark descriptor complete for non cyclic case only */
776 if (!test_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
))
777 dma_cookie_complete(&desc
->txd
);
778 list_splice_init(&edmac
->active
, &list
);
780 callback
= desc
->txd
.callback
;
781 callback_param
= desc
->txd
.callback_param
;
783 spin_unlock_irq(&edmac
->lock
);
785 /* Pick up the next descriptor from the queue */
786 ep93xx_dma_advance_work(edmac
);
788 /* Now we can release all the chained descriptors */
789 list_for_each_entry_safe(desc
, d
, &list
, node
) {
791 * For the memcpy channels the API requires us to unmap the
792 * buffers unless requested otherwise.
794 if (!edmac
->chan
.private)
795 ep93xx_dma_unmap_buffers(desc
);
797 ep93xx_dma_desc_put(edmac
, desc
);
801 callback(callback_param
);
804 static irqreturn_t
ep93xx_dma_interrupt(int irq
, void *dev_id
)
806 struct ep93xx_dma_chan
*edmac
= dev_id
;
807 struct ep93xx_dma_desc
*desc
;
808 irqreturn_t ret
= IRQ_HANDLED
;
810 spin_lock(&edmac
->lock
);
812 desc
= ep93xx_dma_get_active(edmac
);
814 dev_warn(chan2dev(edmac
),
815 "got interrupt while active list is empty\n");
816 spin_unlock(&edmac
->lock
);
820 switch (edmac
->edma
->hw_interrupt(edmac
)) {
822 desc
->complete
= true;
823 tasklet_schedule(&edmac
->tasklet
);
826 case INTERRUPT_NEXT_BUFFER
:
827 if (test_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
))
828 tasklet_schedule(&edmac
->tasklet
);
832 dev_warn(chan2dev(edmac
), "unknown interrupt!\n");
837 spin_unlock(&edmac
->lock
);
842 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
843 * @tx: descriptor to be executed
845 * Function will execute given descriptor on the hardware or if the hardware
846 * is busy, queue the descriptor to be executed later on. Returns cookie which
847 * can be used to poll the status of the descriptor.
849 static dma_cookie_t
ep93xx_dma_tx_submit(struct dma_async_tx_descriptor
*tx
)
851 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(tx
->chan
);
852 struct ep93xx_dma_desc
*desc
;
856 spin_lock_irqsave(&edmac
->lock
, flags
);
857 cookie
= dma_cookie_assign(tx
);
859 desc
= container_of(tx
, struct ep93xx_dma_desc
, txd
);
862 * If nothing is currently prosessed, we push this descriptor
863 * directly to the hardware. Otherwise we put the descriptor
864 * to the pending queue.
866 if (list_empty(&edmac
->active
)) {
867 ep93xx_dma_set_active(edmac
, desc
);
868 edmac
->edma
->hw_submit(edmac
);
870 list_add_tail(&desc
->node
, &edmac
->queue
);
873 spin_unlock_irqrestore(&edmac
->lock
, flags
);
878 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
879 * @chan: channel to allocate resources
881 * Function allocates necessary resources for the given DMA channel and
882 * returns number of allocated descriptors for the channel. Negative errno
883 * is returned in case of failure.
885 static int ep93xx_dma_alloc_chan_resources(struct dma_chan
*chan
)
887 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
888 struct ep93xx_dma_data
*data
= chan
->private;
889 const char *name
= dma_chan_name(chan
);
892 /* Sanity check the channel parameters */
893 if (!edmac
->edma
->m2m
) {
896 if (data
->port
< EP93XX_DMA_I2S1
||
897 data
->port
> EP93XX_DMA_IRDA
)
899 if (data
->direction
!= ep93xx_dma_chan_direction(chan
))
903 switch (data
->port
) {
906 if (!is_slave_direction(data
->direction
))
915 if (data
&& data
->name
)
918 ret
= clk_enable(edmac
->clk
);
922 ret
= request_irq(edmac
->irq
, ep93xx_dma_interrupt
, 0, name
, edmac
);
924 goto fail_clk_disable
;
926 spin_lock_irq(&edmac
->lock
);
927 dma_cookie_init(&edmac
->chan
);
928 ret
= edmac
->edma
->hw_setup(edmac
);
929 spin_unlock_irq(&edmac
->lock
);
934 for (i
= 0; i
< DMA_MAX_CHAN_DESCRIPTORS
; i
++) {
935 struct ep93xx_dma_desc
*desc
;
937 desc
= kzalloc(sizeof(*desc
), GFP_KERNEL
);
939 dev_warn(chan2dev(edmac
), "not enough descriptors\n");
943 INIT_LIST_HEAD(&desc
->tx_list
);
945 dma_async_tx_descriptor_init(&desc
->txd
, chan
);
946 desc
->txd
.flags
= DMA_CTRL_ACK
;
947 desc
->txd
.tx_submit
= ep93xx_dma_tx_submit
;
949 ep93xx_dma_desc_put(edmac
, desc
);
955 free_irq(edmac
->irq
, edmac
);
957 clk_disable(edmac
->clk
);
963 * ep93xx_dma_free_chan_resources - release resources for the channel
966 * Function releases all the resources allocated for the given channel.
967 * The channel must be idle when this is called.
969 static void ep93xx_dma_free_chan_resources(struct dma_chan
*chan
)
971 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
972 struct ep93xx_dma_desc
*desc
, *d
;
976 BUG_ON(!list_empty(&edmac
->active
));
977 BUG_ON(!list_empty(&edmac
->queue
));
979 spin_lock_irqsave(&edmac
->lock
, flags
);
980 edmac
->edma
->hw_shutdown(edmac
);
981 edmac
->runtime_addr
= 0;
982 edmac
->runtime_ctrl
= 0;
984 list_splice_init(&edmac
->free_list
, &list
);
985 spin_unlock_irqrestore(&edmac
->lock
, flags
);
987 list_for_each_entry_safe(desc
, d
, &list
, node
)
990 clk_disable(edmac
->clk
);
991 free_irq(edmac
->irq
, edmac
);
995 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
997 * @dest: destination bus address
998 * @src: source bus address
999 * @len: size of the transaction
1000 * @flags: flags for the descriptor
1002 * Returns a valid DMA descriptor or %NULL in case of failure.
1004 static struct dma_async_tx_descriptor
*
1005 ep93xx_dma_prep_dma_memcpy(struct dma_chan
*chan
, dma_addr_t dest
,
1006 dma_addr_t src
, size_t len
, unsigned long flags
)
1008 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1009 struct ep93xx_dma_desc
*desc
, *first
;
1010 size_t bytes
, offset
;
1013 for (offset
= 0; offset
< len
; offset
+= bytes
) {
1014 desc
= ep93xx_dma_desc_get(edmac
);
1016 dev_warn(chan2dev(edmac
), "couln't get descriptor\n");
1020 bytes
= min_t(size_t, len
- offset
, DMA_MAX_CHAN_BYTES
);
1022 desc
->src_addr
= src
+ offset
;
1023 desc
->dst_addr
= dest
+ offset
;
1029 list_add_tail(&desc
->node
, &first
->tx_list
);
1032 first
->txd
.cookie
= -EBUSY
;
1033 first
->txd
.flags
= flags
;
1037 ep93xx_dma_desc_put(edmac
, first
);
1042 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1044 * @sgl: list of buffers to transfer
1045 * @sg_len: number of entries in @sgl
1046 * @dir: direction of tha DMA transfer
1047 * @flags: flags for the descriptor
1048 * @context: operation context (ignored)
1050 * Returns a valid DMA descriptor or %NULL in case of failure.
1052 static struct dma_async_tx_descriptor
*
1053 ep93xx_dma_prep_slave_sg(struct dma_chan
*chan
, struct scatterlist
*sgl
,
1054 unsigned int sg_len
, enum dma_transfer_direction dir
,
1055 unsigned long flags
, void *context
)
1057 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1058 struct ep93xx_dma_desc
*desc
, *first
;
1059 struct scatterlist
*sg
;
1062 if (!edmac
->edma
->m2m
&& dir
!= ep93xx_dma_chan_direction(chan
)) {
1063 dev_warn(chan2dev(edmac
),
1064 "channel was configured with different direction\n");
1068 if (test_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
)) {
1069 dev_warn(chan2dev(edmac
),
1070 "channel is already used for cyclic transfers\n");
1075 for_each_sg(sgl
, sg
, sg_len
, i
) {
1076 size_t sg_len
= sg_dma_len(sg
);
1078 if (sg_len
> DMA_MAX_CHAN_BYTES
) {
1079 dev_warn(chan2dev(edmac
), "too big transfer size %d\n",
1084 desc
= ep93xx_dma_desc_get(edmac
);
1086 dev_warn(chan2dev(edmac
), "couln't get descriptor\n");
1090 if (dir
== DMA_MEM_TO_DEV
) {
1091 desc
->src_addr
= sg_dma_address(sg
);
1092 desc
->dst_addr
= edmac
->runtime_addr
;
1094 desc
->src_addr
= edmac
->runtime_addr
;
1095 desc
->dst_addr
= sg_dma_address(sg
);
1097 desc
->size
= sg_len
;
1102 list_add_tail(&desc
->node
, &first
->tx_list
);
1105 first
->txd
.cookie
= -EBUSY
;
1106 first
->txd
.flags
= flags
;
1111 ep93xx_dma_desc_put(edmac
, first
);
1116 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1118 * @dma_addr: DMA mapped address of the buffer
1119 * @buf_len: length of the buffer (in bytes)
1120 * @period_len: length of a single period
1121 * @dir: direction of the operation
1122 * @flags: tx descriptor status flags
1123 * @context: operation context (ignored)
1125 * Prepares a descriptor for cyclic DMA operation. This means that once the
1126 * descriptor is submitted, we will be submitting in a @period_len sized
1127 * buffers and calling callback once the period has been elapsed. Transfer
1128 * terminates only when client calls dmaengine_terminate_all() for this
1131 * Returns a valid DMA descriptor or %NULL in case of failure.
1133 static struct dma_async_tx_descriptor
*
1134 ep93xx_dma_prep_dma_cyclic(struct dma_chan
*chan
, dma_addr_t dma_addr
,
1135 size_t buf_len
, size_t period_len
,
1136 enum dma_transfer_direction dir
, unsigned long flags
,
1139 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1140 struct ep93xx_dma_desc
*desc
, *first
;
1143 if (!edmac
->edma
->m2m
&& dir
!= ep93xx_dma_chan_direction(chan
)) {
1144 dev_warn(chan2dev(edmac
),
1145 "channel was configured with different direction\n");
1149 if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
)) {
1150 dev_warn(chan2dev(edmac
),
1151 "channel is already used for cyclic transfers\n");
1155 if (period_len
> DMA_MAX_CHAN_BYTES
) {
1156 dev_warn(chan2dev(edmac
), "too big period length %d\n",
1161 /* Split the buffer into period size chunks */
1163 for (offset
= 0; offset
< buf_len
; offset
+= period_len
) {
1164 desc
= ep93xx_dma_desc_get(edmac
);
1166 dev_warn(chan2dev(edmac
), "couln't get descriptor\n");
1170 if (dir
== DMA_MEM_TO_DEV
) {
1171 desc
->src_addr
= dma_addr
+ offset
;
1172 desc
->dst_addr
= edmac
->runtime_addr
;
1174 desc
->src_addr
= edmac
->runtime_addr
;
1175 desc
->dst_addr
= dma_addr
+ offset
;
1178 desc
->size
= period_len
;
1183 list_add_tail(&desc
->node
, &first
->tx_list
);
1186 first
->txd
.cookie
= -EBUSY
;
1191 ep93xx_dma_desc_put(edmac
, first
);
1196 * ep93xx_dma_terminate_all - terminate all transactions
1199 * Stops all DMA transactions. All descriptors are put back to the
1200 * @edmac->free_list and callbacks are _not_ called.
1202 static int ep93xx_dma_terminate_all(struct ep93xx_dma_chan
*edmac
)
1204 struct ep93xx_dma_desc
*desc
, *_d
;
1205 unsigned long flags
;
1208 spin_lock_irqsave(&edmac
->lock
, flags
);
1209 /* First we disable and flush the DMA channel */
1210 edmac
->edma
->hw_shutdown(edmac
);
1211 clear_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
);
1212 list_splice_init(&edmac
->active
, &list
);
1213 list_splice_init(&edmac
->queue
, &list
);
1215 * We then re-enable the channel. This way we can continue submitting
1216 * the descriptors by just calling ->hw_submit() again.
1218 edmac
->edma
->hw_setup(edmac
);
1219 spin_unlock_irqrestore(&edmac
->lock
, flags
);
1221 list_for_each_entry_safe(desc
, _d
, &list
, node
)
1222 ep93xx_dma_desc_put(edmac
, desc
);
1227 static int ep93xx_dma_slave_config(struct ep93xx_dma_chan
*edmac
,
1228 struct dma_slave_config
*config
)
1230 enum dma_slave_buswidth width
;
1231 unsigned long flags
;
1234 if (!edmac
->edma
->m2m
)
1237 switch (config
->direction
) {
1238 case DMA_DEV_TO_MEM
:
1239 width
= config
->src_addr_width
;
1240 addr
= config
->src_addr
;
1243 case DMA_MEM_TO_DEV
:
1244 width
= config
->dst_addr_width
;
1245 addr
= config
->dst_addr
;
1253 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1256 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1257 ctrl
= M2M_CONTROL_PW_16
;
1259 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1260 ctrl
= M2M_CONTROL_PW_32
;
1266 spin_lock_irqsave(&edmac
->lock
, flags
);
1267 edmac
->runtime_addr
= addr
;
1268 edmac
->runtime_ctrl
= ctrl
;
1269 spin_unlock_irqrestore(&edmac
->lock
, flags
);
1275 * ep93xx_dma_control - manipulate all pending operations on a channel
1277 * @cmd: control command to perform
1278 * @arg: optional argument
1280 * Controls the channel. Function returns %0 in case of success or negative
1281 * error in case of failure.
1283 static int ep93xx_dma_control(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
1286 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1287 struct dma_slave_config
*config
;
1290 case DMA_TERMINATE_ALL
:
1291 return ep93xx_dma_terminate_all(edmac
);
1293 case DMA_SLAVE_CONFIG
:
1294 config
= (struct dma_slave_config
*)arg
;
1295 return ep93xx_dma_slave_config(edmac
, config
);
1305 * ep93xx_dma_tx_status - check if a transaction is completed
1307 * @cookie: transaction specific cookie
1308 * @state: state of the transaction is stored here if given
1310 * This function can be used to query state of a given transaction.
1312 static enum dma_status
ep93xx_dma_tx_status(struct dma_chan
*chan
,
1313 dma_cookie_t cookie
,
1314 struct dma_tx_state
*state
)
1316 return dma_cookie_status(chan
, cookie
, state
);
1320 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1323 * When this function is called, all pending transactions are pushed to the
1324 * hardware and executed.
1326 static void ep93xx_dma_issue_pending(struct dma_chan
*chan
)
1328 ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan
));
1331 static int __init
ep93xx_dma_probe(struct platform_device
*pdev
)
1333 struct ep93xx_dma_platform_data
*pdata
= dev_get_platdata(&pdev
->dev
);
1334 struct ep93xx_dma_engine
*edma
;
1335 struct dma_device
*dma_dev
;
1339 edma_size
= pdata
->num_channels
* sizeof(struct ep93xx_dma_chan
);
1340 edma
= kzalloc(sizeof(*edma
) + edma_size
, GFP_KERNEL
);
1344 dma_dev
= &edma
->dma_dev
;
1345 edma
->m2m
= platform_get_device_id(pdev
)->driver_data
;
1346 edma
->num_channels
= pdata
->num_channels
;
1348 INIT_LIST_HEAD(&dma_dev
->channels
);
1349 for (i
= 0; i
< pdata
->num_channels
; i
++) {
1350 const struct ep93xx_dma_chan_data
*cdata
= &pdata
->channels
[i
];
1351 struct ep93xx_dma_chan
*edmac
= &edma
->channels
[i
];
1353 edmac
->chan
.device
= dma_dev
;
1354 edmac
->regs
= cdata
->base
;
1355 edmac
->irq
= cdata
->irq
;
1358 edmac
->clk
= clk_get(NULL
, cdata
->name
);
1359 if (IS_ERR(edmac
->clk
)) {
1360 dev_warn(&pdev
->dev
, "failed to get clock for %s\n",
1365 spin_lock_init(&edmac
->lock
);
1366 INIT_LIST_HEAD(&edmac
->active
);
1367 INIT_LIST_HEAD(&edmac
->queue
);
1368 INIT_LIST_HEAD(&edmac
->free_list
);
1369 tasklet_init(&edmac
->tasklet
, ep93xx_dma_tasklet
,
1370 (unsigned long)edmac
);
1372 list_add_tail(&edmac
->chan
.device_node
,
1373 &dma_dev
->channels
);
1376 dma_cap_zero(dma_dev
->cap_mask
);
1377 dma_cap_set(DMA_SLAVE
, dma_dev
->cap_mask
);
1378 dma_cap_set(DMA_CYCLIC
, dma_dev
->cap_mask
);
1380 dma_dev
->dev
= &pdev
->dev
;
1381 dma_dev
->device_alloc_chan_resources
= ep93xx_dma_alloc_chan_resources
;
1382 dma_dev
->device_free_chan_resources
= ep93xx_dma_free_chan_resources
;
1383 dma_dev
->device_prep_slave_sg
= ep93xx_dma_prep_slave_sg
;
1384 dma_dev
->device_prep_dma_cyclic
= ep93xx_dma_prep_dma_cyclic
;
1385 dma_dev
->device_control
= ep93xx_dma_control
;
1386 dma_dev
->device_issue_pending
= ep93xx_dma_issue_pending
;
1387 dma_dev
->device_tx_status
= ep93xx_dma_tx_status
;
1389 dma_set_max_seg_size(dma_dev
->dev
, DMA_MAX_CHAN_BYTES
);
1392 dma_cap_set(DMA_MEMCPY
, dma_dev
->cap_mask
);
1393 dma_dev
->device_prep_dma_memcpy
= ep93xx_dma_prep_dma_memcpy
;
1395 edma
->hw_setup
= m2m_hw_setup
;
1396 edma
->hw_shutdown
= m2m_hw_shutdown
;
1397 edma
->hw_submit
= m2m_hw_submit
;
1398 edma
->hw_interrupt
= m2m_hw_interrupt
;
1400 dma_cap_set(DMA_PRIVATE
, dma_dev
->cap_mask
);
1402 edma
->hw_setup
= m2p_hw_setup
;
1403 edma
->hw_shutdown
= m2p_hw_shutdown
;
1404 edma
->hw_submit
= m2p_hw_submit
;
1405 edma
->hw_interrupt
= m2p_hw_interrupt
;
1408 ret
= dma_async_device_register(dma_dev
);
1409 if (unlikely(ret
)) {
1410 for (i
= 0; i
< edma
->num_channels
; i
++) {
1411 struct ep93xx_dma_chan
*edmac
= &edma
->channels
[i
];
1412 if (!IS_ERR_OR_NULL(edmac
->clk
))
1413 clk_put(edmac
->clk
);
1417 dev_info(dma_dev
->dev
, "EP93xx M2%s DMA ready\n",
1418 edma
->m2m
? "M" : "P");
1424 static struct platform_device_id ep93xx_dma_driver_ids
[] = {
1425 { "ep93xx-dma-m2p", 0 },
1426 { "ep93xx-dma-m2m", 1 },
1430 static struct platform_driver ep93xx_dma_driver
= {
1432 .name
= "ep93xx-dma",
1434 .id_table
= ep93xx_dma_driver_ids
,
1437 static int __init
ep93xx_dma_module_init(void)
1439 return platform_driver_probe(&ep93xx_dma_driver
, ep93xx_dma_probe
);
1441 subsys_initcall(ep93xx_dma_module_init
);
1443 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1444 MODULE_DESCRIPTION("EP93xx DMA driver");
1445 MODULE_LICENSE("GPL");