ARM: amba: Make driver_override output consistent with other buses
[linux/fpc-iii.git] / arch / powerpc / include / asm / book3s / 64 / hash-64k.h
blob3bcf269f8f55470097ac56680685321bf13e62ba
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
3 #define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
5 #define H_PTE_INDEX_SIZE 8
6 #define H_PMD_INDEX_SIZE 10
7 #define H_PUD_INDEX_SIZE 7
8 #define H_PGD_INDEX_SIZE 8
11 * 64k aligned address free up few of the lower bits of RPN for us
12 * We steal that here. For more deatils look at pte_pfn/pfn_pte()
14 #define H_PAGE_COMBO _RPAGE_RPN0 /* this is a combo 4k page */
15 #define H_PAGE_4K_PFN _RPAGE_RPN1 /* PFN is for a single 4k page */
16 #define H_PAGE_BUSY _RPAGE_RPN44 /* software: PTE & hash are busy */
17 #define H_PAGE_HASHPTE _RPAGE_RPN43 /* PTE has associated HPTE */
20 * We need to differentiate between explicit huge page and THP huge
21 * page, since THP huge page also need to track real subpage details
23 #define H_PAGE_THP_HUGE H_PAGE_4K_PFN
25 /* PTE flags to conserve for HPTE identification */
26 #define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | H_PAGE_COMBO)
28 * we support 16 fragments per PTE page of 64K size.
30 #define H_PTE_FRAG_NR 16
32 * We use a 2K PTE page fragment and another 2K for storing
33 * real_pte_t hash index
35 #define H_PTE_FRAG_SIZE_SHIFT 12
36 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
38 #ifndef __ASSEMBLY__
39 #include <asm/errno.h>
42 * With 64K pages on hash table, we have a special PTE format that
43 * uses a second "half" of the page table to encode sub-page information
44 * in order to deal with 64K made of 4K HW pages. Thus we override the
45 * generic accessors and iterators here
47 #define __real_pte __real_pte
48 static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep, int offset)
50 real_pte_t rpte;
51 unsigned long *hidxp;
53 rpte.pte = pte;
56 * Ensure that we do not read the hidx before we read the PTE. Because
57 * the writer side is expected to finish writing the hidx first followed
58 * by the PTE, by using smp_wmb(). pte_set_hash_slot() ensures that.
60 smp_rmb();
62 hidxp = (unsigned long *)(ptep + offset);
63 rpte.hidx = *hidxp;
64 return rpte;
68 * shift the hidx representation by one-modulo-0xf; i.e hidx 0 is respresented
69 * as 1, 1 as 2,... , and 0xf as 0. This convention lets us represent a
70 * invalid hidx 0xf with a 0x0 bit value. PTEs are anyway zero'd when
71 * allocated. We dont have to zero them gain; thus save on the initialization.
73 #define HIDX_UNSHIFT_BY_ONE(x) ((x + 0xfUL) & 0xfUL) /* shift backward by one */
74 #define HIDX_SHIFT_BY_ONE(x) ((x + 0x1UL) & 0xfUL) /* shift forward by one */
75 #define HIDX_BITS(x, index) (x << (index << 2))
76 #define BITS_TO_HIDX(x, index) ((x >> (index << 2)) & 0xfUL)
77 #define INVALID_RPTE_HIDX 0x0UL
79 static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
81 return HIDX_UNSHIFT_BY_ONE(BITS_TO_HIDX(rpte.hidx, index));
85 * Commit the hidx and return PTE bits that needs to be modified. The caller is
86 * expected to modify the PTE bits accordingly and commit the PTE to memory.
88 static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte,
89 unsigned int subpg_index,
90 unsigned long hidx, int offset)
92 unsigned long *hidxp = (unsigned long *)(ptep + offset);
94 rpte.hidx &= ~HIDX_BITS(0xfUL, subpg_index);
95 *hidxp = rpte.hidx | HIDX_BITS(HIDX_SHIFT_BY_ONE(hidx), subpg_index);
98 * Anyone reading PTE must ensure hidx bits are read after reading the
99 * PTE by using the read-side barrier smp_rmb(). __real_pte() can be
100 * used for that.
102 smp_wmb();
104 /* No PTE bits to be modified, return 0x0UL */
105 return 0x0UL;
108 #define __rpte_to_pte(r) ((r).pte)
109 extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
111 * Trick: we set __end to va + 64k, which happens works for
112 * a 16M page as well as we want only one iteration
114 #define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift) \
115 do { \
116 unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT)); \
117 unsigned __split = (psize == MMU_PAGE_4K || \
118 psize == MMU_PAGE_64K_AP); \
119 shift = mmu_psize_defs[psize].shift; \
120 for (index = 0; vpn < __end; index++, \
121 vpn += (1L << (shift - VPN_SHIFT))) { \
122 if (!__split || __rpte_sub_valid(rpte, index)) \
123 do {
125 #define pte_iterate_hashed_end() } while(0); } } while(0)
127 #define pte_pagesize_index(mm, addr, pte) \
128 (((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
130 extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
131 unsigned long pfn, unsigned long size, pgprot_t);
132 static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
133 unsigned long pfn, pgprot_t prot)
135 if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
136 WARN(1, "remap_4k_pfn called with wrong pfn value\n");
137 return -EINVAL;
139 return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
140 __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
143 #define H_PTE_TABLE_SIZE PTE_FRAG_SIZE
144 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined (CONFIG_HUGETLB_PAGE)
145 #define H_PMD_TABLE_SIZE ((sizeof(pmd_t) << PMD_INDEX_SIZE) + \
146 (sizeof(unsigned long) << PMD_INDEX_SIZE))
147 #else
148 #define H_PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE)
149 #endif
150 #ifdef CONFIG_HUGETLB_PAGE
151 #define H_PUD_TABLE_SIZE ((sizeof(pud_t) << PUD_INDEX_SIZE) + \
152 (sizeof(unsigned long) << PUD_INDEX_SIZE))
153 #else
154 #define H_PUD_TABLE_SIZE (sizeof(pud_t) << PUD_INDEX_SIZE)
155 #endif
156 #define H_PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
158 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
159 static inline char *get_hpte_slot_array(pmd_t *pmdp)
162 * The hpte hindex is stored in the pgtable whose address is in the
163 * second half of the PMD
165 * Order this load with the test for pmd_trans_huge in the caller
167 smp_rmb();
168 return *(char **)(pmdp + PTRS_PER_PMD);
173 * The linux hugepage PMD now include the pmd entries followed by the address
174 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
175 * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
176 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
177 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
179 * The top three bits are intentionally left as zero. This memory location
180 * are also used as normal page PTE pointers. So if we have any pointers
181 * left around while we collapse a hugepage, we need to make sure
182 * _PAGE_PRESENT bit of that is zero when we look at them
184 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
186 return hpte_slot_array[index] & 0x1;
189 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
190 int index)
192 return hpte_slot_array[index] >> 1;
195 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
196 unsigned int index, unsigned int hidx)
198 hpte_slot_array[index] = (hidx << 1) | 0x1;
203 * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
204 * page. The hugetlbfs page table walking and mangling paths are totally
205 * separated form the core VM paths and they're differentiated by
206 * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
208 * pmd_trans_huge() is defined as false at build time if
209 * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
210 * time in such case.
212 * For ppc64 we need to differntiate from explicit hugepages from THP, because
213 * for THP we also track the subpage details at the pmd level. We don't do
214 * that for explicit huge pages.
217 static inline int hash__pmd_trans_huge(pmd_t pmd)
219 return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE)) ==
220 (_PAGE_PTE | H_PAGE_THP_HUGE));
223 static inline int hash__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
225 return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0);
228 static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
230 return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
233 extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
234 unsigned long addr, pmd_t *pmdp,
235 unsigned long clr, unsigned long set);
236 extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
237 unsigned long address, pmd_t *pmdp);
238 extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
239 pgtable_t pgtable);
240 extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
241 extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
242 unsigned long addr, pmd_t *pmdp);
243 extern int hash__has_transparent_hugepage(void);
244 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
245 #endif /* __ASSEMBLY__ */
247 #endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */