ARM: amba: Make driver_override output consistent with other buses
[linux/fpc-iii.git] / arch / powerpc / include / asm / book3s / 64 / mmu-hash.h
blob50ed64fba4ae0f17bda5f420809ed3faa40dc783
1 #ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
2 #define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
3 /*
4 * PowerPC64 memory management structures
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
17 #include <asm/bug.h>
20 * This is necessary to get the definition of PGTABLE_RANGE which we
21 * need for various slices related matters. Note that this isn't the
22 * complete pgtable.h but only a portion of it.
24 #include <asm/book3s/64/pgtable.h>
25 #include <asm/bug.h>
26 #include <asm/processor.h>
27 #include <asm/cpu_has_feature.h>
30 * SLB
33 #define SLB_NUM_BOLTED 3
34 #define SLB_CACHE_ENTRIES 8
35 #define SLB_MIN_SIZE 32
37 /* Bits in the SLB ESID word */
38 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
40 /* Bits in the SLB VSID word */
41 #define SLB_VSID_SHIFT 12
42 #define SLB_VSID_SHIFT_256M SLB_VSID_SHIFT
43 #define SLB_VSID_SHIFT_1T 24
44 #define SLB_VSID_SSIZE_SHIFT 62
45 #define SLB_VSID_B ASM_CONST(0xc000000000000000)
46 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
47 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
48 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
49 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
50 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
51 #define SLB_VSID_L ASM_CONST(0x0000000000000100)
52 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
53 #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
54 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
55 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
56 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
57 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
58 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
60 #define SLB_VSID_KERNEL (SLB_VSID_KP)
61 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
63 #define SLBIE_C (0x08000000)
64 #define SLBIE_SSIZE_SHIFT 25
67 * Hash table
70 #define HPTES_PER_GROUP 8
72 #define HPTE_V_SSIZE_SHIFT 62
73 #define HPTE_V_AVPN_SHIFT 7
74 #define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff)
75 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
76 #define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80)
77 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
78 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
79 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
80 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
81 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
82 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
83 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
86 * ISA 3.0 has a different HPTE format.
88 #define HPTE_R_3_0_SSIZE_SHIFT 58
89 #define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT)
90 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
91 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
92 #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
93 #define HPTE_R_KEY_BIT0 ASM_CONST(0x2000000000000000)
94 #define HPTE_R_KEY_BIT1 ASM_CONST(0x1000000000000000)
95 #define HPTE_R_RPN_SHIFT 12
96 #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
97 #define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000)
98 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
99 #define HPTE_R_PPP ASM_CONST(0x8000000000000003)
100 #define HPTE_R_N ASM_CONST(0x0000000000000004)
101 #define HPTE_R_G ASM_CONST(0x0000000000000008)
102 #define HPTE_R_M ASM_CONST(0x0000000000000010)
103 #define HPTE_R_I ASM_CONST(0x0000000000000020)
104 #define HPTE_R_W ASM_CONST(0x0000000000000040)
105 #define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
106 #define HPTE_R_C ASM_CONST(0x0000000000000080)
107 #define HPTE_R_R ASM_CONST(0x0000000000000100)
108 #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
109 #define HPTE_R_KEY_BIT2 ASM_CONST(0x0000000000000800)
110 #define HPTE_R_KEY_BIT3 ASM_CONST(0x0000000000000400)
111 #define HPTE_R_KEY_BIT4 ASM_CONST(0x0000000000000200)
112 #define HPTE_R_KEY (HPTE_R_KEY_LO | HPTE_R_KEY_HI)
114 #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
115 #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
117 /* Values for PP (assumes Ks=0, Kp=1) */
118 #define PP_RWXX 0 /* Supervisor read/write, User none */
119 #define PP_RWRX 1 /* Supervisor read/write, User read */
120 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
121 #define PP_RXRX 3 /* Supervisor read, User read */
122 #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
124 /* Fields for tlbiel instruction in architecture 2.06 */
125 #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
126 #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
127 #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
128 #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
129 #define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
130 #define TLBIEL_INVAL_SET_SHIFT 12
132 #define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
133 #define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
134 #define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */
135 #define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */
137 #ifndef __ASSEMBLY__
139 struct mmu_hash_ops {
140 void (*hpte_invalidate)(unsigned long slot,
141 unsigned long vpn,
142 int bpsize, int apsize,
143 int ssize, int local);
144 long (*hpte_updatepp)(unsigned long slot,
145 unsigned long newpp,
146 unsigned long vpn,
147 int bpsize, int apsize,
148 int ssize, unsigned long flags);
149 void (*hpte_updateboltedpp)(unsigned long newpp,
150 unsigned long ea,
151 int psize, int ssize);
152 long (*hpte_insert)(unsigned long hpte_group,
153 unsigned long vpn,
154 unsigned long prpn,
155 unsigned long rflags,
156 unsigned long vflags,
157 int psize, int apsize,
158 int ssize);
159 long (*hpte_remove)(unsigned long hpte_group);
160 int (*hpte_removebolted)(unsigned long ea,
161 int psize, int ssize);
162 void (*flush_hash_range)(unsigned long number, int local);
163 void (*hugepage_invalidate)(unsigned long vsid,
164 unsigned long addr,
165 unsigned char *hpte_slot_array,
166 int psize, int ssize, int local);
167 int (*resize_hpt)(unsigned long shift);
169 * Special for kexec.
170 * To be called in real mode with interrupts disabled. No locks are
171 * taken as such, concurrent access on pre POWER5 hardware could result
172 * in a deadlock.
173 * The linear mapping is destroyed as well.
175 void (*hpte_clear_all)(void);
177 extern struct mmu_hash_ops mmu_hash_ops;
179 struct hash_pte {
180 __be64 v;
181 __be64 r;
184 extern struct hash_pte *htab_address;
185 extern unsigned long htab_size_bytes;
186 extern unsigned long htab_hash_mask;
189 static inline int shift_to_mmu_psize(unsigned int shift)
191 int psize;
193 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
194 if (mmu_psize_defs[psize].shift == shift)
195 return psize;
196 return -1;
199 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
201 if (mmu_psize_defs[mmu_psize].shift)
202 return mmu_psize_defs[mmu_psize].shift;
203 BUG();
206 static inline unsigned long get_sllp_encoding(int psize)
208 unsigned long sllp;
210 sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
211 ((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
212 return sllp;
215 #endif /* __ASSEMBLY__ */
218 * Segment sizes.
219 * These are the values used by hardware in the B field of
220 * SLB entries and the first dword of MMU hashtable entries.
221 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
223 #define MMU_SEGSIZE_256M 0
224 #define MMU_SEGSIZE_1T 1
227 * encode page number shift.
228 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
229 * 12 bits. This enable us to address upto 76 bit va.
230 * For hpt hash from a va we can ignore the page size bits of va and for
231 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
232 * we work in all cases including 4k page size.
234 #define VPN_SHIFT 12
237 * HPTE Large Page (LP) details
239 #define LP_SHIFT 12
240 #define LP_BITS 8
241 #define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
243 #ifndef __ASSEMBLY__
245 static inline int slb_vsid_shift(int ssize)
247 if (ssize == MMU_SEGSIZE_256M)
248 return SLB_VSID_SHIFT;
249 return SLB_VSID_SHIFT_1T;
252 static inline int segment_shift(int ssize)
254 if (ssize == MMU_SEGSIZE_256M)
255 return SID_SHIFT;
256 return SID_SHIFT_1T;
260 * This array is indexed by the LP field of the HPTE second dword.
261 * Since this field may contain some RPN bits, some entries are
262 * replicated so that we get the same value irrespective of RPN.
263 * The top 4 bits are the page size index (MMU_PAGE_*) for the
264 * actual page size, the bottom 4 bits are the base page size.
266 extern u8 hpte_page_sizes[1 << LP_BITS];
268 static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
269 bool is_base_size)
271 unsigned int i, lp;
273 if (!(h & HPTE_V_LARGE))
274 return 1ul << 12;
276 /* Look at the 8 bit LP value */
277 lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
278 i = hpte_page_sizes[lp];
279 if (!i)
280 return 0;
281 if (!is_base_size)
282 i >>= 4;
283 return 1ul << mmu_psize_defs[i & 0xf].shift;
286 static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
288 return __hpte_page_size(h, l, 0);
291 static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
293 return __hpte_page_size(h, l, 1);
297 * The current system page and segment sizes
299 extern int mmu_kernel_ssize;
300 extern int mmu_highuser_ssize;
301 extern u16 mmu_slb_size;
302 extern unsigned long tce_alloc_start, tce_alloc_end;
305 * If the processor supports 64k normal pages but not 64k cache
306 * inhibited pages, we have to be prepared to switch processes
307 * to use 4k pages when they create cache-inhibited mappings.
308 * If this is the case, mmu_ci_restrictions will be set to 1.
310 extern int mmu_ci_restrictions;
313 * This computes the AVPN and B fields of the first dword of a HPTE,
314 * for use when we want to match an existing PTE. The bottom 7 bits
315 * of the returned value are zero.
317 static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
318 int ssize)
320 unsigned long v;
322 * The AVA field omits the low-order 23 bits of the 78 bits VA.
323 * These bits are not needed in the PTE, because the
324 * low-order b of these bits are part of the byte offset
325 * into the virtual page and, if b < 23, the high-order
326 * 23-b of these bits are always used in selecting the
327 * PTEGs to be searched
329 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
330 v <<= HPTE_V_AVPN_SHIFT;
331 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
332 return v;
336 * ISA v3.0 defines a new HPTE format, which differs from the old
337 * format in having smaller AVPN and ARPN fields, and the B field
338 * in the second dword instead of the first.
340 static inline unsigned long hpte_old_to_new_v(unsigned long v)
342 /* trim AVPN, drop B */
343 return v & HPTE_V_COMMON_BITS;
346 static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
348 /* move B field from 1st to 2nd dword, trim ARPN */
349 return (r & ~HPTE_R_3_0_SSIZE_MASK) |
350 (((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
353 static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
355 /* insert B field */
356 return (v & HPTE_V_COMMON_BITS) |
357 ((r & HPTE_R_3_0_SSIZE_MASK) <<
358 (HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
361 static inline unsigned long hpte_new_to_old_r(unsigned long r)
363 /* clear out B field */
364 return r & ~HPTE_R_3_0_SSIZE_MASK;
368 * This function sets the AVPN and L fields of the HPTE appropriately
369 * using the base page size and actual page size.
371 static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
372 int actual_psize, int ssize)
374 unsigned long v;
375 v = hpte_encode_avpn(vpn, base_psize, ssize);
376 if (actual_psize != MMU_PAGE_4K)
377 v |= HPTE_V_LARGE;
378 return v;
382 * This function sets the ARPN, and LP fields of the HPTE appropriately
383 * for the page size. We assume the pa is already "clean" that is properly
384 * aligned for the requested page size
386 static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
387 int actual_psize)
389 /* A 4K page needs no special encoding */
390 if (actual_psize == MMU_PAGE_4K)
391 return pa & HPTE_R_RPN;
392 else {
393 unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
394 unsigned int shift = mmu_psize_defs[actual_psize].shift;
395 return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
400 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
402 static inline unsigned long hpt_vpn(unsigned long ea,
403 unsigned long vsid, int ssize)
405 unsigned long mask;
406 int s_shift = segment_shift(ssize);
408 mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
409 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
413 * This hashes a virtual address
415 static inline unsigned long hpt_hash(unsigned long vpn,
416 unsigned int shift, int ssize)
418 unsigned long mask;
419 unsigned long hash, vsid;
421 /* VPN_SHIFT can be atmost 12 */
422 if (ssize == MMU_SEGSIZE_256M) {
423 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
424 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
425 ((vpn & mask) >> (shift - VPN_SHIFT));
426 } else {
427 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
428 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
429 hash = vsid ^ (vsid << 25) ^
430 ((vpn & mask) >> (shift - VPN_SHIFT)) ;
432 return hash & 0x7fffffffffUL;
435 #define HPTE_LOCAL_UPDATE 0x1
436 #define HPTE_NOHPTE_UPDATE 0x2
438 extern int __hash_page_4K(unsigned long ea, unsigned long access,
439 unsigned long vsid, pte_t *ptep, unsigned long trap,
440 unsigned long flags, int ssize, int subpage_prot);
441 extern int __hash_page_64K(unsigned long ea, unsigned long access,
442 unsigned long vsid, pte_t *ptep, unsigned long trap,
443 unsigned long flags, int ssize);
444 struct mm_struct;
445 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
446 extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
447 unsigned long access, unsigned long trap,
448 unsigned long flags);
449 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
450 unsigned long dsisr);
451 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
452 pte_t *ptep, unsigned long trap, unsigned long flags,
453 int ssize, unsigned int shift, unsigned int mmu_psize);
454 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
455 extern int __hash_page_thp(unsigned long ea, unsigned long access,
456 unsigned long vsid, pmd_t *pmdp, unsigned long trap,
457 unsigned long flags, int ssize, unsigned int psize);
458 #else
459 static inline int __hash_page_thp(unsigned long ea, unsigned long access,
460 unsigned long vsid, pmd_t *pmdp,
461 unsigned long trap, unsigned long flags,
462 int ssize, unsigned int psize)
464 BUG();
465 return -1;
467 #endif
468 extern void hash_failure_debug(unsigned long ea, unsigned long access,
469 unsigned long vsid, unsigned long trap,
470 int ssize, int psize, int lpsize,
471 unsigned long pte);
472 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
473 unsigned long pstart, unsigned long prot,
474 int psize, int ssize);
475 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
476 int psize, int ssize);
477 extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
478 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
480 #ifdef CONFIG_PPC_PSERIES
481 void hpte_init_pseries(void);
482 #else
483 static inline void hpte_init_pseries(void) { }
484 #endif
486 extern void hpte_init_native(void);
488 extern void slb_initialize(void);
489 extern void slb_flush_and_rebolt(void);
491 extern void slb_vmalloc_update(void);
492 extern void slb_set_size(u16 size);
493 #endif /* __ASSEMBLY__ */
496 * VSID allocation (256MB segment)
498 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
499 * from mmu context id and effective segment id of the address.
501 * For user processes max context id is limited to MAX_USER_CONTEXT.
503 * For kernel space, we use context ids 1-4 to map addresses as below:
504 * NOTE: each context only support 64TB now.
505 * 0x00001 - [ 0xc000000000000000 - 0xc0003fffffffffff ]
506 * 0x00002 - [ 0xd000000000000000 - 0xd0003fffffffffff ]
507 * 0x00003 - [ 0xe000000000000000 - 0xe0003fffffffffff ]
508 * 0x00004 - [ 0xf000000000000000 - 0xf0003fffffffffff ]
510 * The proto-VSIDs are then scrambled into real VSIDs with the
511 * multiplicative hash:
513 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
515 * VSID_MULTIPLIER is prime, so in particular it is
516 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
517 * Because the modulus is 2^n-1 we can compute it efficiently without
518 * a divide or extra multiply (see below). The scramble function gives
519 * robust scattering in the hash table (at least based on some initial
520 * results).
522 * We use VSID 0 to indicate an invalid VSID. The means we can't use context id
523 * 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which
524 * will produce a VSID of 0.
526 * We also need to avoid the last segment of the last context, because that
527 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
528 * because of the modulo operation in vsid scramble.
532 * Max Va bits we support as of now is 68 bits. We want 19 bit
533 * context ID.
534 * Restrictions:
535 * GPU has restrictions of not able to access beyond 128TB
536 * (47 bit effective address). We also cannot do more than 20bit PID.
537 * For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS
538 * to 16 bits (ie, we can only have 2^16 pids at the same time).
540 #define VA_BITS 68
541 #define CONTEXT_BITS 19
542 #define ESID_BITS (VA_BITS - (SID_SHIFT + CONTEXT_BITS))
543 #define ESID_BITS_1T (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))
545 #define ESID_BITS_MASK ((1 << ESID_BITS) - 1)
546 #define ESID_BITS_1T_MASK ((1 << ESID_BITS_1T) - 1)
549 * 256MB segment
550 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
551 * available for user + kernel mapping. VSID 0 is reserved as invalid, contexts
552 * 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each
553 * context maps 2^49 bytes (512TB).
555 * We also need to avoid the last segment of the last context, because that
556 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
557 * because of the modulo operation in vsid scramble.
559 #define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 2)
560 #define MIN_USER_CONTEXT (5)
562 /* Would be nice to use KERNEL_REGION_ID here */
563 #define KERNEL_REGION_CONTEXT_OFFSET (0xc - 1)
566 * For platforms that support on 65bit VA we limit the context bits
568 #define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)
571 * This should be computed such that protovosid * vsid_mulitplier
572 * doesn't overflow 64 bits. The vsid_mutliplier should also be
573 * co-prime to vsid_modulus. We also need to make sure that number
574 * of bits in multiplied result (dividend) is less than twice the number of
575 * protovsid bits for our modulus optmization to work.
577 * The below table shows the current values used.
578 * |-------+------------+----------------------+------------+-------------------|
579 * | | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |
580 * |-------+------------+----------------------+------------+-------------------|
581 * | 1T | 24 | 25 | 49 | 50 |
582 * |-------+------------+----------------------+------------+-------------------|
583 * | 256MB | 24 | 37 | 61 | 74 |
584 * |-------+------------+----------------------+------------+-------------------|
586 * |-------+------------+----------------------+------------+--------------------|
587 * | | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |
588 * |-------+------------+----------------------+------------+--------------------|
589 * | 1T | 24 | 28 | 52 | 56 |
590 * |-------+------------+----------------------+------------+--------------------|
591 * | 256MB | 24 | 40 | 64 | 80 |
592 * |-------+------------+----------------------+------------+--------------------|
595 #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
596 #define VSID_BITS_256M (VA_BITS - SID_SHIFT)
597 #define VSID_BITS_65_256M (65 - SID_SHIFT)
599 * Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS
601 #define VSID_MULINV_256M ASM_CONST(665548017062)
603 #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
604 #define VSID_BITS_1T (VA_BITS - SID_SHIFT_1T)
605 #define VSID_BITS_65_1T (65 - SID_SHIFT_1T)
606 #define VSID_MULINV_1T ASM_CONST(209034062)
608 /* 1TB VSID reserved for VRMA */
609 #define VRMA_VSID 0x1ffffffUL
610 #define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
612 /* 4 bits per slice and we have one slice per 1TB */
613 #define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41)
614 #define TASK_SLICE_ARRAY_SZ(x) ((x)->context.slb_addr_limit >> 41)
616 #ifndef __ASSEMBLY__
618 #ifdef CONFIG_PPC_SUBPAGE_PROT
620 * For the sub-page protection option, we extend the PGD with one of
621 * these. Basically we have a 3-level tree, with the top level being
622 * the protptrs array. To optimize speed and memory consumption when
623 * only addresses < 4GB are being protected, pointers to the first
624 * four pages of sub-page protection words are stored in the low_prot
625 * array.
626 * Each page of sub-page protection words protects 1GB (4 bytes
627 * protects 64k). For the 3-level tree, each page of pointers then
628 * protects 8TB.
630 struct subpage_prot_table {
631 unsigned long maxaddr; /* only addresses < this are protected */
632 unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
633 unsigned int *low_prot[4];
636 #define SBP_L1_BITS (PAGE_SHIFT - 2)
637 #define SBP_L2_BITS (PAGE_SHIFT - 3)
638 #define SBP_L1_COUNT (1 << SBP_L1_BITS)
639 #define SBP_L2_COUNT (1 << SBP_L2_BITS)
640 #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
641 #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
643 extern void subpage_prot_free(struct mm_struct *mm);
644 extern void subpage_prot_init_new_context(struct mm_struct *mm);
645 #else
646 static inline void subpage_prot_free(struct mm_struct *mm) {}
647 static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
648 #endif /* CONFIG_PPC_SUBPAGE_PROT */
650 #if 0
652 * The code below is equivalent to this function for arguments
653 * < 2^VSID_BITS, which is all this should ever be called
654 * with. However gcc is not clever enough to compute the
655 * modulus (2^n-1) without a second multiply.
657 #define vsid_scramble(protovsid, size) \
658 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
660 /* simplified form avoiding mod operation */
661 #define vsid_scramble(protovsid, size) \
662 ({ \
663 unsigned long x; \
664 x = (protovsid) * VSID_MULTIPLIER_##size; \
665 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
666 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
669 #else /* 1 */
670 static inline unsigned long vsid_scramble(unsigned long protovsid,
671 unsigned long vsid_multiplier, int vsid_bits)
673 unsigned long vsid;
674 unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);
676 * We have same multipler for both 256 and 1T segements now
678 vsid = protovsid * vsid_multiplier;
679 vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);
680 return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;
683 #endif /* 1 */
685 /* Returns the segment size indicator for a user address */
686 static inline int user_segment_size(unsigned long addr)
688 /* Use 1T segments if possible for addresses >= 1T */
689 if (addr >= (1UL << SID_SHIFT_1T))
690 return mmu_highuser_ssize;
691 return MMU_SEGSIZE_256M;
694 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
695 int ssize)
697 unsigned long va_bits = VA_BITS;
698 unsigned long vsid_bits;
699 unsigned long protovsid;
702 * Bad address. We return VSID 0 for that
704 if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
705 return 0;
707 if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
708 va_bits = 65;
710 if (ssize == MMU_SEGSIZE_256M) {
711 vsid_bits = va_bits - SID_SHIFT;
712 protovsid = (context << ESID_BITS) |
713 ((ea >> SID_SHIFT) & ESID_BITS_MASK);
714 return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);
716 /* 1T segment */
717 vsid_bits = va_bits - SID_SHIFT_1T;
718 protovsid = (context << ESID_BITS_1T) |
719 ((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);
720 return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);
724 * This is only valid for addresses >= PAGE_OFFSET
726 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
728 unsigned long context;
730 if (!is_kernel_addr(ea))
731 return 0;
734 * For kernel space, we use context ids 1-4 to map the address space as
735 * below:
737 * 0x00001 - [ 0xc000000000000000 - 0xc0003fffffffffff ]
738 * 0x00002 - [ 0xd000000000000000 - 0xd0003fffffffffff ]
739 * 0x00003 - [ 0xe000000000000000 - 0xe0003fffffffffff ]
740 * 0x00004 - [ 0xf000000000000000 - 0xf0003fffffffffff ]
742 * So we can compute the context from the region (top nibble) by
743 * subtracting 11, or 0xc - 1.
745 context = (ea >> 60) - KERNEL_REGION_CONTEXT_OFFSET;
747 return get_vsid(context, ea, ssize);
750 unsigned htab_shift_for_mem_size(unsigned long mem_size);
752 #endif /* __ASSEMBLY__ */
754 #endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */