1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_NOHASH_PGTABLE_H
3 #define _ASM_POWERPC_NOHASH_PGTABLE_H
5 #if defined(CONFIG_PPC64)
6 #include <asm/nohash/64/pgtable.h>
8 #include <asm/nohash/32/pgtable.h>
13 /* Generic accessors to PTE bits */
14 static inline int pte_write(pte_t pte
)
16 return (pte_val(pte
) & (_PAGE_RW
| _PAGE_RO
)) != _PAGE_RO
;
18 static inline int pte_read(pte_t pte
) { return 1; }
19 static inline int pte_dirty(pte_t pte
) { return pte_val(pte
) & _PAGE_DIRTY
; }
20 static inline int pte_young(pte_t pte
) { return pte_val(pte
) & _PAGE_ACCESSED
; }
21 static inline int pte_special(pte_t pte
) { return pte_val(pte
) & _PAGE_SPECIAL
; }
22 static inline int pte_none(pte_t pte
) { return (pte_val(pte
) & ~_PTE_NONE_MASK
) == 0; }
23 static inline pgprot_t
pte_pgprot(pte_t pte
) { return __pgprot(pte_val(pte
) & PAGE_PROT_BITS
); }
25 #ifdef CONFIG_NUMA_BALANCING
27 * These work without NUMA balancing but the kernel does not care. See the
28 * comment in include/asm-generic/pgtable.h . On powerpc, this will only
29 * work for user pages and always return true for kernel pages.
31 static inline int pte_protnone(pte_t pte
)
33 return (pte_val(pte
) &
34 (_PAGE_PRESENT
| _PAGE_USER
)) == _PAGE_PRESENT
;
37 static inline int pmd_protnone(pmd_t pmd
)
39 return pte_protnone(pmd_pte(pmd
));
41 #endif /* CONFIG_NUMA_BALANCING */
43 static inline int pte_present(pte_t pte
)
45 return pte_val(pte
) & _PAGE_PRESENT
;
49 * We only find page table entry in the last level
50 * Hence no need for other accessors
52 #define pte_access_permitted pte_access_permitted
53 static inline bool pte_access_permitted(pte_t pte
, bool write
)
55 unsigned long pteval
= pte_val(pte
);
57 * A read-only access is controlled by _PAGE_USER bit.
58 * We have _PAGE_READ set for WRITE and EXECUTE
60 unsigned long need_pte_bits
= _PAGE_PRESENT
| _PAGE_USER
;
63 need_pte_bits
|= _PAGE_WRITE
;
65 if ((pteval
& need_pte_bits
) != need_pte_bits
)
71 /* Conversion functions: convert a page and protection to a page entry,
72 * and a page entry and page directory to the page they refer to.
74 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
77 static inline pte_t
pfn_pte(unsigned long pfn
, pgprot_t pgprot
) {
78 return __pte(((pte_basic_t
)(pfn
) << PTE_RPN_SHIFT
) |
79 pgprot_val(pgprot
)); }
80 static inline unsigned long pte_pfn(pte_t pte
) {
81 return pte_val(pte
) >> PTE_RPN_SHIFT
; }
83 /* Generic modifiers for PTE bits */
84 static inline pte_t
pte_wrprotect(pte_t pte
)
88 ptev
= pte_val(pte
) & ~(_PAGE_RW
| _PAGE_HWWRITE
);
93 static inline pte_t
pte_mkclean(pte_t pte
)
95 return __pte(pte_val(pte
) & ~(_PAGE_DIRTY
| _PAGE_HWWRITE
));
98 static inline pte_t
pte_mkold(pte_t pte
)
100 return __pte(pte_val(pte
) & ~_PAGE_ACCESSED
);
103 static inline pte_t
pte_mkwrite(pte_t pte
)
107 ptev
= pte_val(pte
) & ~_PAGE_RO
;
112 static inline pte_t
pte_mkdirty(pte_t pte
)
114 return __pte(pte_val(pte
) | _PAGE_DIRTY
);
117 static inline pte_t
pte_mkyoung(pte_t pte
)
119 return __pte(pte_val(pte
) | _PAGE_ACCESSED
);
122 static inline pte_t
pte_mkspecial(pte_t pte
)
124 return __pte(pte_val(pte
) | _PAGE_SPECIAL
);
127 static inline pte_t
pte_mkhuge(pte_t pte
)
129 return __pte(pte_val(pte
) | _PAGE_HUGE
);
132 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
134 return __pte((pte_val(pte
) & _PAGE_CHG_MASK
) | pgprot_val(newprot
));
137 /* Insert a PTE, top-level function is out of line. It uses an inline
138 * low level function in the respective pgtable-* files
140 extern void set_pte_at(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
,
143 /* This low level function performs the actual PTE insertion
144 * Setting the PTE depends on the MMU type and other factors. It's
145 * an horrible mess that I'm not going to try to clean up now but
146 * I'm keeping it in one place rather than spread around
148 static inline void __set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
149 pte_t
*ptep
, pte_t pte
, int percpu
)
151 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
152 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
153 * helper pte_update() which does an atomic update. We need to do that
154 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
155 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
156 * the hash bits instead (ie, same as the non-SMP case)
159 *ptep
= __pte((pte_val(*ptep
) & _PAGE_HASHPTE
)
160 | (pte_val(pte
) & ~_PAGE_HASHPTE
));
162 pte_update(ptep
, ~_PAGE_HASHPTE
, pte_val(pte
));
164 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
165 /* Second case is 32-bit with 64-bit PTE. In this case, we
166 * can just store as long as we do the two halves in the right order
167 * with a barrier in between. This is possible because we take care,
168 * in the hash code, to pre-invalidate if the PTE was already hashed,
169 * which synchronizes us with any concurrent invalidation.
170 * In the percpu case, we also fallback to the simple update preserving
174 *ptep
= __pte((pte_val(*ptep
) & _PAGE_HASHPTE
)
175 | (pte_val(pte
) & ~_PAGE_HASHPTE
));
178 #if _PAGE_HASHPTE != 0
179 if (pte_val(*ptep
) & _PAGE_HASHPTE
)
180 flush_hash_entry(mm
, ptep
, addr
);
182 __asm__
__volatile__("\
186 : "=m" (*ptep
), "=m" (*((unsigned char *)ptep
+4))
187 : "r" (pte
) : "memory");
189 #elif defined(CONFIG_PPC_STD_MMU_32)
190 /* Third case is 32-bit hash table in UP mode, we need to preserve
191 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
192 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
193 * and see we need to keep track that this PTE needs invalidating
195 *ptep
= __pte((pte_val(*ptep
) & _PAGE_HASHPTE
)
196 | (pte_val(pte
) & ~_PAGE_HASHPTE
));
199 /* Anything else just stores the PTE normally. That covers all 64-bit
200 * cases, and 32-bit non-hash with 32-bit PTEs.
204 #ifdef CONFIG_PPC_BOOK3E_64
206 * With hardware tablewalk, a sync is needed to ensure that
207 * subsequent accesses see the PTE we just wrote. Unlike userspace
208 * mappings, we can't tolerate spurious faults, so make sure
209 * the new PTE will be seen the first time.
211 if (is_kernel_addr(addr
))
218 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
219 extern int ptep_set_access_flags(struct vm_area_struct
*vma
, unsigned long address
,
220 pte_t
*ptep
, pte_t entry
, int dirty
);
223 * Macro to mark a page protection value as "uncacheable".
226 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
229 #define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
230 _PAGE_NO_CACHE | _PAGE_GUARDED))
232 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
235 #define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
238 #if _PAGE_WRITETHRU != 0
239 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
240 _PAGE_COHERENT | _PAGE_WRITETHRU))
243 #define pgprot_cached_noncoherent(prot) \
244 (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
246 #define pgprot_writecombine pgprot_noncached_wc
249 extern pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
250 unsigned long size
, pgprot_t vma_prot
);
251 #define __HAVE_PHYS_MEM_ACCESS_PROT
253 #ifdef CONFIG_HUGETLB_PAGE
254 static inline int hugepd_ok(hugepd_t hpd
)
256 #ifdef CONFIG_PPC_8xx
257 return ((hpd_val(hpd
) & 0x4) != 0);
259 /* We clear the top bit to indicate hugepd */
260 return (hpd_val(hpd
) && (hpd_val(hpd
) & PD_HUGE
) == 0);
264 static inline int pmd_huge(pmd_t pmd
)
269 static inline int pud_huge(pud_t pud
)
274 static inline int pgd_huge(pgd_t pgd
)
278 #define pgd_huge pgd_huge
280 #define is_hugepd(hpd) (hugepd_ok(hpd))
283 #endif /* __ASSEMBLY__ */