ARM: amba: Make driver_override output consistent with other buses
[linux/fpc-iii.git] / arch / powerpc / include / asm / nohash / pgtable.h
blobc56de1e8026f676a1698a20fd03b5386b4785eb5
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_NOHASH_PGTABLE_H
3 #define _ASM_POWERPC_NOHASH_PGTABLE_H
5 #if defined(CONFIG_PPC64)
6 #include <asm/nohash/64/pgtable.h>
7 #else
8 #include <asm/nohash/32/pgtable.h>
9 #endif
11 #ifndef __ASSEMBLY__
13 /* Generic accessors to PTE bits */
14 static inline int pte_write(pte_t pte)
16 return (pte_val(pte) & (_PAGE_RW | _PAGE_RO)) != _PAGE_RO;
18 static inline int pte_read(pte_t pte) { return 1; }
19 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
20 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
21 static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
22 static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
23 static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
25 #ifdef CONFIG_NUMA_BALANCING
27 * These work without NUMA balancing but the kernel does not care. See the
28 * comment in include/asm-generic/pgtable.h . On powerpc, this will only
29 * work for user pages and always return true for kernel pages.
31 static inline int pte_protnone(pte_t pte)
33 return (pte_val(pte) &
34 (_PAGE_PRESENT | _PAGE_USER)) == _PAGE_PRESENT;
37 static inline int pmd_protnone(pmd_t pmd)
39 return pte_protnone(pmd_pte(pmd));
41 #endif /* CONFIG_NUMA_BALANCING */
43 static inline int pte_present(pte_t pte)
45 return pte_val(pte) & _PAGE_PRESENT;
49 * We only find page table entry in the last level
50 * Hence no need for other accessors
52 #define pte_access_permitted pte_access_permitted
53 static inline bool pte_access_permitted(pte_t pte, bool write)
55 unsigned long pteval = pte_val(pte);
57 * A read-only access is controlled by _PAGE_USER bit.
58 * We have _PAGE_READ set for WRITE and EXECUTE
60 unsigned long need_pte_bits = _PAGE_PRESENT | _PAGE_USER;
62 if (write)
63 need_pte_bits |= _PAGE_WRITE;
65 if ((pteval & need_pte_bits) != need_pte_bits)
66 return false;
68 return true;
71 /* Conversion functions: convert a page and protection to a page entry,
72 * and a page entry and page directory to the page they refer to.
74 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
75 * long for now.
77 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
78 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
79 pgprot_val(pgprot)); }
80 static inline unsigned long pte_pfn(pte_t pte) {
81 return pte_val(pte) >> PTE_RPN_SHIFT; }
83 /* Generic modifiers for PTE bits */
84 static inline pte_t pte_wrprotect(pte_t pte)
86 pte_basic_t ptev;
88 ptev = pte_val(pte) & ~(_PAGE_RW | _PAGE_HWWRITE);
89 ptev |= _PAGE_RO;
90 return __pte(ptev);
93 static inline pte_t pte_mkclean(pte_t pte)
95 return __pte(pte_val(pte) & ~(_PAGE_DIRTY | _PAGE_HWWRITE));
98 static inline pte_t pte_mkold(pte_t pte)
100 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
103 static inline pte_t pte_mkwrite(pte_t pte)
105 pte_basic_t ptev;
107 ptev = pte_val(pte) & ~_PAGE_RO;
108 ptev |= _PAGE_RW;
109 return __pte(ptev);
112 static inline pte_t pte_mkdirty(pte_t pte)
114 return __pte(pte_val(pte) | _PAGE_DIRTY);
117 static inline pte_t pte_mkyoung(pte_t pte)
119 return __pte(pte_val(pte) | _PAGE_ACCESSED);
122 static inline pte_t pte_mkspecial(pte_t pte)
124 return __pte(pte_val(pte) | _PAGE_SPECIAL);
127 static inline pte_t pte_mkhuge(pte_t pte)
129 return __pte(pte_val(pte) | _PAGE_HUGE);
132 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
134 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
137 /* Insert a PTE, top-level function is out of line. It uses an inline
138 * low level function in the respective pgtable-* files
140 extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
141 pte_t pte);
143 /* This low level function performs the actual PTE insertion
144 * Setting the PTE depends on the MMU type and other factors. It's
145 * an horrible mess that I'm not going to try to clean up now but
146 * I'm keeping it in one place rather than spread around
148 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
149 pte_t *ptep, pte_t pte, int percpu)
151 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
152 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
153 * helper pte_update() which does an atomic update. We need to do that
154 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
155 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
156 * the hash bits instead (ie, same as the non-SMP case)
158 if (percpu)
159 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
160 | (pte_val(pte) & ~_PAGE_HASHPTE));
161 else
162 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
164 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
165 /* Second case is 32-bit with 64-bit PTE. In this case, we
166 * can just store as long as we do the two halves in the right order
167 * with a barrier in between. This is possible because we take care,
168 * in the hash code, to pre-invalidate if the PTE was already hashed,
169 * which synchronizes us with any concurrent invalidation.
170 * In the percpu case, we also fallback to the simple update preserving
171 * the hash bits
173 if (percpu) {
174 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
175 | (pte_val(pte) & ~_PAGE_HASHPTE));
176 return;
178 #if _PAGE_HASHPTE != 0
179 if (pte_val(*ptep) & _PAGE_HASHPTE)
180 flush_hash_entry(mm, ptep, addr);
181 #endif
182 __asm__ __volatile__("\
183 stw%U0%X0 %2,%0\n\
184 eieio\n\
185 stw%U0%X0 %L2,%1"
186 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
187 : "r" (pte) : "memory");
189 #elif defined(CONFIG_PPC_STD_MMU_32)
190 /* Third case is 32-bit hash table in UP mode, we need to preserve
191 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
192 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
193 * and see we need to keep track that this PTE needs invalidating
195 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
196 | (pte_val(pte) & ~_PAGE_HASHPTE));
198 #else
199 /* Anything else just stores the PTE normally. That covers all 64-bit
200 * cases, and 32-bit non-hash with 32-bit PTEs.
202 *ptep = pte;
204 #ifdef CONFIG_PPC_BOOK3E_64
206 * With hardware tablewalk, a sync is needed to ensure that
207 * subsequent accesses see the PTE we just wrote. Unlike userspace
208 * mappings, we can't tolerate spurious faults, so make sure
209 * the new PTE will be seen the first time.
211 if (is_kernel_addr(addr))
212 mb();
213 #endif
214 #endif
218 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
219 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
220 pte_t *ptep, pte_t entry, int dirty);
223 * Macro to mark a page protection value as "uncacheable".
226 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
227 _PAGE_WRITETHRU)
229 #define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
230 _PAGE_NO_CACHE | _PAGE_GUARDED))
232 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
233 _PAGE_NO_CACHE))
235 #define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
236 _PAGE_COHERENT))
238 #if _PAGE_WRITETHRU != 0
239 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
240 _PAGE_COHERENT | _PAGE_WRITETHRU))
241 #endif
243 #define pgprot_cached_noncoherent(prot) \
244 (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
246 #define pgprot_writecombine pgprot_noncached_wc
248 struct file;
249 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
250 unsigned long size, pgprot_t vma_prot);
251 #define __HAVE_PHYS_MEM_ACCESS_PROT
253 #ifdef CONFIG_HUGETLB_PAGE
254 static inline int hugepd_ok(hugepd_t hpd)
256 #ifdef CONFIG_PPC_8xx
257 return ((hpd_val(hpd) & 0x4) != 0);
258 #else
259 /* We clear the top bit to indicate hugepd */
260 return (hpd_val(hpd) && (hpd_val(hpd) & PD_HUGE) == 0);
261 #endif
264 static inline int pmd_huge(pmd_t pmd)
266 return 0;
269 static inline int pud_huge(pud_t pud)
271 return 0;
274 static inline int pgd_huge(pgd_t pgd)
276 return 0;
278 #define pgd_huge pgd_huge
280 #define is_hugepd(hpd) (hugepd_ok(hpd))
281 #endif
283 #endif /* __ASSEMBLY__ */
284 #endif