ARM: amba: Make driver_override output consistent with other buses
[linux/fpc-iii.git] / arch / powerpc / lib / sstep.c
blob70274b7b4773a67be2bf3794e95a1976471b7b19
1 /*
2 * Single-step support.
4 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/ptrace.h>
14 #include <linux/prefetch.h>
15 #include <asm/sstep.h>
16 #include <asm/processor.h>
17 #include <linux/uaccess.h>
18 #include <asm/cpu_has_feature.h>
19 #include <asm/cputable.h>
21 extern char system_call_common[];
23 #ifdef CONFIG_PPC64
24 /* Bits in SRR1 that are copied from MSR */
25 #define MSR_MASK 0xffffffff87c0ffffUL
26 #else
27 #define MSR_MASK 0x87c0ffff
28 #endif
30 /* Bits in XER */
31 #define XER_SO 0x80000000U
32 #define XER_OV 0x40000000U
33 #define XER_CA 0x20000000U
34 #define XER_OV32 0x00080000U
35 #define XER_CA32 0x00040000U
37 #ifdef CONFIG_PPC_FPU
39 * Functions in ldstfp.S
41 extern void get_fpr(int rn, double *p);
42 extern void put_fpr(int rn, const double *p);
43 extern void get_vr(int rn, __vector128 *p);
44 extern void put_vr(int rn, __vector128 *p);
45 extern void load_vsrn(int vsr, const void *p);
46 extern void store_vsrn(int vsr, void *p);
47 extern void conv_sp_to_dp(const float *sp, double *dp);
48 extern void conv_dp_to_sp(const double *dp, float *sp);
49 #endif
51 #ifdef __powerpc64__
53 * Functions in quad.S
55 extern int do_lq(unsigned long ea, unsigned long *regs);
56 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
57 extern int do_lqarx(unsigned long ea, unsigned long *regs);
58 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
59 unsigned int *crp);
60 #endif
62 #ifdef __LITTLE_ENDIAN__
63 #define IS_LE 1
64 #define IS_BE 0
65 #else
66 #define IS_LE 0
67 #define IS_BE 1
68 #endif
71 * Emulate the truncation of 64 bit values in 32-bit mode.
73 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
74 unsigned long val)
76 #ifdef __powerpc64__
77 if ((msr & MSR_64BIT) == 0)
78 val &= 0xffffffffUL;
79 #endif
80 return val;
84 * Determine whether a conditional branch instruction would branch.
86 static nokprobe_inline int branch_taken(unsigned int instr,
87 const struct pt_regs *regs,
88 struct instruction_op *op)
90 unsigned int bo = (instr >> 21) & 0x1f;
91 unsigned int bi;
93 if ((bo & 4) == 0) {
94 /* decrement counter */
95 op->type |= DECCTR;
96 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
97 return 0;
99 if ((bo & 0x10) == 0) {
100 /* check bit from CR */
101 bi = (instr >> 16) & 0x1f;
102 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
103 return 0;
105 return 1;
108 static nokprobe_inline long address_ok(struct pt_regs *regs,
109 unsigned long ea, int nb)
111 if (!user_mode(regs))
112 return 1;
113 if (__access_ok(ea, nb, USER_DS))
114 return 1;
115 if (__access_ok(ea, 1, USER_DS))
116 /* Access overlaps the end of the user region */
117 regs->dar = USER_DS.seg;
118 else
119 regs->dar = ea;
120 return 0;
124 * Calculate effective address for a D-form instruction
126 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
127 const struct pt_regs *regs)
129 int ra;
130 unsigned long ea;
132 ra = (instr >> 16) & 0x1f;
133 ea = (signed short) instr; /* sign-extend */
134 if (ra)
135 ea += regs->gpr[ra];
137 return ea;
140 #ifdef __powerpc64__
142 * Calculate effective address for a DS-form instruction
144 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
145 const struct pt_regs *regs)
147 int ra;
148 unsigned long ea;
150 ra = (instr >> 16) & 0x1f;
151 ea = (signed short) (instr & ~3); /* sign-extend */
152 if (ra)
153 ea += regs->gpr[ra];
155 return ea;
159 * Calculate effective address for a DQ-form instruction
161 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
162 const struct pt_regs *regs)
164 int ra;
165 unsigned long ea;
167 ra = (instr >> 16) & 0x1f;
168 ea = (signed short) (instr & ~0xf); /* sign-extend */
169 if (ra)
170 ea += regs->gpr[ra];
172 return ea;
174 #endif /* __powerpc64 */
177 * Calculate effective address for an X-form instruction
179 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
180 const struct pt_regs *regs)
182 int ra, rb;
183 unsigned long ea;
185 ra = (instr >> 16) & 0x1f;
186 rb = (instr >> 11) & 0x1f;
187 ea = regs->gpr[rb];
188 if (ra)
189 ea += regs->gpr[ra];
191 return ea;
195 * Return the largest power of 2, not greater than sizeof(unsigned long),
196 * such that x is a multiple of it.
198 static nokprobe_inline unsigned long max_align(unsigned long x)
200 x |= sizeof(unsigned long);
201 return x & -x; /* isolates rightmost bit */
204 static nokprobe_inline unsigned long byterev_2(unsigned long x)
206 return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
209 static nokprobe_inline unsigned long byterev_4(unsigned long x)
211 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
212 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
215 #ifdef __powerpc64__
216 static nokprobe_inline unsigned long byterev_8(unsigned long x)
218 return (byterev_4(x) << 32) | byterev_4(x >> 32);
220 #endif
222 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
224 switch (nb) {
225 case 2:
226 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
227 break;
228 case 4:
229 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
230 break;
231 #ifdef __powerpc64__
232 case 8:
233 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
234 break;
235 case 16: {
236 unsigned long *up = (unsigned long *)ptr;
237 unsigned long tmp;
238 tmp = byterev_8(up[0]);
239 up[0] = byterev_8(up[1]);
240 up[1] = tmp;
241 break;
243 #endif
244 default:
245 WARN_ON_ONCE(1);
249 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
250 unsigned long ea, int nb,
251 struct pt_regs *regs)
253 int err = 0;
254 unsigned long x = 0;
256 switch (nb) {
257 case 1:
258 err = __get_user(x, (unsigned char __user *) ea);
259 break;
260 case 2:
261 err = __get_user(x, (unsigned short __user *) ea);
262 break;
263 case 4:
264 err = __get_user(x, (unsigned int __user *) ea);
265 break;
266 #ifdef __powerpc64__
267 case 8:
268 err = __get_user(x, (unsigned long __user *) ea);
269 break;
270 #endif
272 if (!err)
273 *dest = x;
274 else
275 regs->dar = ea;
276 return err;
280 * Copy from userspace to a buffer, using the largest possible
281 * aligned accesses, up to sizeof(long).
283 static int nokprobe_inline copy_mem_in(u8 *dest, unsigned long ea, int nb,
284 struct pt_regs *regs)
286 int err = 0;
287 int c;
289 for (; nb > 0; nb -= c) {
290 c = max_align(ea);
291 if (c > nb)
292 c = max_align(nb);
293 switch (c) {
294 case 1:
295 err = __get_user(*dest, (unsigned char __user *) ea);
296 break;
297 case 2:
298 err = __get_user(*(u16 *)dest,
299 (unsigned short __user *) ea);
300 break;
301 case 4:
302 err = __get_user(*(u32 *)dest,
303 (unsigned int __user *) ea);
304 break;
305 #ifdef __powerpc64__
306 case 8:
307 err = __get_user(*(unsigned long *)dest,
308 (unsigned long __user *) ea);
309 break;
310 #endif
312 if (err) {
313 regs->dar = ea;
314 return err;
316 dest += c;
317 ea += c;
319 return 0;
322 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
323 unsigned long ea, int nb,
324 struct pt_regs *regs)
326 union {
327 unsigned long ul;
328 u8 b[sizeof(unsigned long)];
329 } u;
330 int i;
331 int err;
333 u.ul = 0;
334 i = IS_BE ? sizeof(unsigned long) - nb : 0;
335 err = copy_mem_in(&u.b[i], ea, nb, regs);
336 if (!err)
337 *dest = u.ul;
338 return err;
342 * Read memory at address ea for nb bytes, return 0 for success
343 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
344 * If nb < sizeof(long), the result is right-justified on BE systems.
346 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
347 struct pt_regs *regs)
349 if (!address_ok(regs, ea, nb))
350 return -EFAULT;
351 if ((ea & (nb - 1)) == 0)
352 return read_mem_aligned(dest, ea, nb, regs);
353 return read_mem_unaligned(dest, ea, nb, regs);
355 NOKPROBE_SYMBOL(read_mem);
357 static nokprobe_inline int write_mem_aligned(unsigned long val,
358 unsigned long ea, int nb,
359 struct pt_regs *regs)
361 int err = 0;
363 switch (nb) {
364 case 1:
365 err = __put_user(val, (unsigned char __user *) ea);
366 break;
367 case 2:
368 err = __put_user(val, (unsigned short __user *) ea);
369 break;
370 case 4:
371 err = __put_user(val, (unsigned int __user *) ea);
372 break;
373 #ifdef __powerpc64__
374 case 8:
375 err = __put_user(val, (unsigned long __user *) ea);
376 break;
377 #endif
379 if (err)
380 regs->dar = ea;
381 return err;
385 * Copy from a buffer to userspace, using the largest possible
386 * aligned accesses, up to sizeof(long).
388 static int nokprobe_inline copy_mem_out(u8 *dest, unsigned long ea, int nb,
389 struct pt_regs *regs)
391 int err = 0;
392 int c;
394 for (; nb > 0; nb -= c) {
395 c = max_align(ea);
396 if (c > nb)
397 c = max_align(nb);
398 switch (c) {
399 case 1:
400 err = __put_user(*dest, (unsigned char __user *) ea);
401 break;
402 case 2:
403 err = __put_user(*(u16 *)dest,
404 (unsigned short __user *) ea);
405 break;
406 case 4:
407 err = __put_user(*(u32 *)dest,
408 (unsigned int __user *) ea);
409 break;
410 #ifdef __powerpc64__
411 case 8:
412 err = __put_user(*(unsigned long *)dest,
413 (unsigned long __user *) ea);
414 break;
415 #endif
417 if (err) {
418 regs->dar = ea;
419 return err;
421 dest += c;
422 ea += c;
424 return 0;
427 static nokprobe_inline int write_mem_unaligned(unsigned long val,
428 unsigned long ea, int nb,
429 struct pt_regs *regs)
431 union {
432 unsigned long ul;
433 u8 b[sizeof(unsigned long)];
434 } u;
435 int i;
437 u.ul = val;
438 i = IS_BE ? sizeof(unsigned long) - nb : 0;
439 return copy_mem_out(&u.b[i], ea, nb, regs);
443 * Write memory at address ea for nb bytes, return 0 for success
444 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
446 static int write_mem(unsigned long val, unsigned long ea, int nb,
447 struct pt_regs *regs)
449 if (!address_ok(regs, ea, nb))
450 return -EFAULT;
451 if ((ea & (nb - 1)) == 0)
452 return write_mem_aligned(val, ea, nb, regs);
453 return write_mem_unaligned(val, ea, nb, regs);
455 NOKPROBE_SYMBOL(write_mem);
457 #ifdef CONFIG_PPC_FPU
459 * These access either the real FP register or the image in the
460 * thread_struct, depending on regs->msr & MSR_FP.
462 static int do_fp_load(struct instruction_op *op, unsigned long ea,
463 struct pt_regs *regs, bool cross_endian)
465 int err, rn, nb;
466 union {
467 int i;
468 unsigned int u;
469 float f;
470 double d[2];
471 unsigned long l[2];
472 u8 b[2 * sizeof(double)];
473 } u;
475 nb = GETSIZE(op->type);
476 if (!address_ok(regs, ea, nb))
477 return -EFAULT;
478 rn = op->reg;
479 err = copy_mem_in(u.b, ea, nb, regs);
480 if (err)
481 return err;
482 if (unlikely(cross_endian)) {
483 do_byte_reverse(u.b, min(nb, 8));
484 if (nb == 16)
485 do_byte_reverse(&u.b[8], 8);
487 preempt_disable();
488 if (nb == 4) {
489 if (op->type & FPCONV)
490 conv_sp_to_dp(&u.f, &u.d[0]);
491 else if (op->type & SIGNEXT)
492 u.l[0] = u.i;
493 else
494 u.l[0] = u.u;
496 if (regs->msr & MSR_FP)
497 put_fpr(rn, &u.d[0]);
498 else
499 current->thread.TS_FPR(rn) = u.l[0];
500 if (nb == 16) {
501 /* lfdp */
502 rn |= 1;
503 if (regs->msr & MSR_FP)
504 put_fpr(rn, &u.d[1]);
505 else
506 current->thread.TS_FPR(rn) = u.l[1];
508 preempt_enable();
509 return 0;
511 NOKPROBE_SYMBOL(do_fp_load);
513 static int do_fp_store(struct instruction_op *op, unsigned long ea,
514 struct pt_regs *regs, bool cross_endian)
516 int rn, nb;
517 union {
518 unsigned int u;
519 float f;
520 double d[2];
521 unsigned long l[2];
522 u8 b[2 * sizeof(double)];
523 } u;
525 nb = GETSIZE(op->type);
526 if (!address_ok(regs, ea, nb))
527 return -EFAULT;
528 rn = op->reg;
529 preempt_disable();
530 if (regs->msr & MSR_FP)
531 get_fpr(rn, &u.d[0]);
532 else
533 u.l[0] = current->thread.TS_FPR(rn);
534 if (nb == 4) {
535 if (op->type & FPCONV)
536 conv_dp_to_sp(&u.d[0], &u.f);
537 else
538 u.u = u.l[0];
540 if (nb == 16) {
541 rn |= 1;
542 if (regs->msr & MSR_FP)
543 get_fpr(rn, &u.d[1]);
544 else
545 u.l[1] = current->thread.TS_FPR(rn);
547 preempt_enable();
548 if (unlikely(cross_endian)) {
549 do_byte_reverse(u.b, min(nb, 8));
550 if (nb == 16)
551 do_byte_reverse(&u.b[8], 8);
553 return copy_mem_out(u.b, ea, nb, regs);
555 NOKPROBE_SYMBOL(do_fp_store);
556 #endif
558 #ifdef CONFIG_ALTIVEC
559 /* For Altivec/VMX, no need to worry about alignment */
560 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
561 int size, struct pt_regs *regs,
562 bool cross_endian)
564 int err;
565 union {
566 __vector128 v;
567 u8 b[sizeof(__vector128)];
568 } u = {};
570 if (!address_ok(regs, ea & ~0xfUL, 16))
571 return -EFAULT;
572 /* align to multiple of size */
573 ea &= ~(size - 1);
574 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
575 if (err)
576 return err;
577 if (unlikely(cross_endian))
578 do_byte_reverse(&u.b[ea & 0xf], size);
579 preempt_disable();
580 if (regs->msr & MSR_VEC)
581 put_vr(rn, &u.v);
582 else
583 current->thread.vr_state.vr[rn] = u.v;
584 preempt_enable();
585 return 0;
588 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
589 int size, struct pt_regs *regs,
590 bool cross_endian)
592 union {
593 __vector128 v;
594 u8 b[sizeof(__vector128)];
595 } u;
597 if (!address_ok(regs, ea & ~0xfUL, 16))
598 return -EFAULT;
599 /* align to multiple of size */
600 ea &= ~(size - 1);
602 preempt_disable();
603 if (regs->msr & MSR_VEC)
604 get_vr(rn, &u.v);
605 else
606 u.v = current->thread.vr_state.vr[rn];
607 preempt_enable();
608 if (unlikely(cross_endian))
609 do_byte_reverse(&u.b[ea & 0xf], size);
610 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
612 #endif /* CONFIG_ALTIVEC */
614 #ifdef __powerpc64__
615 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
616 int reg, bool cross_endian)
618 int err;
620 if (!address_ok(regs, ea, 16))
621 return -EFAULT;
622 /* if aligned, should be atomic */
623 if ((ea & 0xf) == 0) {
624 err = do_lq(ea, &regs->gpr[reg]);
625 } else {
626 err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
627 if (!err)
628 err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
630 if (!err && unlikely(cross_endian))
631 do_byte_reverse(&regs->gpr[reg], 16);
632 return err;
635 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
636 int reg, bool cross_endian)
638 int err;
639 unsigned long vals[2];
641 if (!address_ok(regs, ea, 16))
642 return -EFAULT;
643 vals[0] = regs->gpr[reg];
644 vals[1] = regs->gpr[reg + 1];
645 if (unlikely(cross_endian))
646 do_byte_reverse(vals, 16);
648 /* if aligned, should be atomic */
649 if ((ea & 0xf) == 0)
650 return do_stq(ea, vals[0], vals[1]);
652 err = write_mem(vals[IS_LE], ea, 8, regs);
653 if (!err)
654 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
655 return err;
657 #endif /* __powerpc64 */
659 #ifdef CONFIG_VSX
660 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
661 const void *mem, bool rev)
663 int size, read_size;
664 int i, j;
665 const unsigned int *wp;
666 const unsigned short *hp;
667 const unsigned char *bp;
669 size = GETSIZE(op->type);
670 reg->d[0] = reg->d[1] = 0;
672 switch (op->element_size) {
673 case 16:
674 /* whole vector; lxv[x] or lxvl[l] */
675 if (size == 0)
676 break;
677 memcpy(reg, mem, size);
678 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
679 rev = !rev;
680 if (rev)
681 do_byte_reverse(reg, 16);
682 break;
683 case 8:
684 /* scalar loads, lxvd2x, lxvdsx */
685 read_size = (size >= 8) ? 8 : size;
686 i = IS_LE ? 8 : 8 - read_size;
687 memcpy(&reg->b[i], mem, read_size);
688 if (rev)
689 do_byte_reverse(&reg->b[i], 8);
690 if (size < 8) {
691 if (op->type & SIGNEXT) {
692 /* size == 4 is the only case here */
693 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
694 } else if (op->vsx_flags & VSX_FPCONV) {
695 preempt_disable();
696 conv_sp_to_dp(&reg->fp[1 + IS_LE],
697 &reg->dp[IS_LE]);
698 preempt_enable();
700 } else {
701 if (size == 16) {
702 unsigned long v = *(unsigned long *)(mem + 8);
703 reg->d[IS_BE] = !rev ? v : byterev_8(v);
704 } else if (op->vsx_flags & VSX_SPLAT)
705 reg->d[IS_BE] = reg->d[IS_LE];
707 break;
708 case 4:
709 /* lxvw4x, lxvwsx */
710 wp = mem;
711 for (j = 0; j < size / 4; ++j) {
712 i = IS_LE ? 3 - j : j;
713 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
715 if (op->vsx_flags & VSX_SPLAT) {
716 u32 val = reg->w[IS_LE ? 3 : 0];
717 for (; j < 4; ++j) {
718 i = IS_LE ? 3 - j : j;
719 reg->w[i] = val;
722 break;
723 case 2:
724 /* lxvh8x */
725 hp = mem;
726 for (j = 0; j < size / 2; ++j) {
727 i = IS_LE ? 7 - j : j;
728 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
730 break;
731 case 1:
732 /* lxvb16x */
733 bp = mem;
734 for (j = 0; j < size; ++j) {
735 i = IS_LE ? 15 - j : j;
736 reg->b[i] = *bp++;
738 break;
741 EXPORT_SYMBOL_GPL(emulate_vsx_load);
742 NOKPROBE_SYMBOL(emulate_vsx_load);
744 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
745 void *mem, bool rev)
747 int size, write_size;
748 int i, j;
749 union vsx_reg buf;
750 unsigned int *wp;
751 unsigned short *hp;
752 unsigned char *bp;
754 size = GETSIZE(op->type);
756 switch (op->element_size) {
757 case 16:
758 /* stxv, stxvx, stxvl, stxvll */
759 if (size == 0)
760 break;
761 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
762 rev = !rev;
763 if (rev) {
764 /* reverse 16 bytes */
765 buf.d[0] = byterev_8(reg->d[1]);
766 buf.d[1] = byterev_8(reg->d[0]);
767 reg = &buf;
769 memcpy(mem, reg, size);
770 break;
771 case 8:
772 /* scalar stores, stxvd2x */
773 write_size = (size >= 8) ? 8 : size;
774 i = IS_LE ? 8 : 8 - write_size;
775 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
776 buf.d[0] = buf.d[1] = 0;
777 preempt_disable();
778 conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
779 preempt_enable();
780 reg = &buf;
782 memcpy(mem, &reg->b[i], write_size);
783 if (size == 16)
784 memcpy(mem + 8, &reg->d[IS_BE], 8);
785 if (unlikely(rev)) {
786 do_byte_reverse(mem, write_size);
787 if (size == 16)
788 do_byte_reverse(mem + 8, 8);
790 break;
791 case 4:
792 /* stxvw4x */
793 wp = mem;
794 for (j = 0; j < size / 4; ++j) {
795 i = IS_LE ? 3 - j : j;
796 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
798 break;
799 case 2:
800 /* stxvh8x */
801 hp = mem;
802 for (j = 0; j < size / 2; ++j) {
803 i = IS_LE ? 7 - j : j;
804 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
806 break;
807 case 1:
808 /* stvxb16x */
809 bp = mem;
810 for (j = 0; j < size; ++j) {
811 i = IS_LE ? 15 - j : j;
812 *bp++ = reg->b[i];
814 break;
817 EXPORT_SYMBOL_GPL(emulate_vsx_store);
818 NOKPROBE_SYMBOL(emulate_vsx_store);
820 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
821 unsigned long ea, struct pt_regs *regs,
822 bool cross_endian)
824 int reg = op->reg;
825 u8 mem[16];
826 union vsx_reg buf;
827 int size = GETSIZE(op->type);
829 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
830 return -EFAULT;
832 emulate_vsx_load(op, &buf, mem, cross_endian);
833 preempt_disable();
834 if (reg < 32) {
835 /* FP regs + extensions */
836 if (regs->msr & MSR_FP) {
837 load_vsrn(reg, &buf);
838 } else {
839 current->thread.fp_state.fpr[reg][0] = buf.d[0];
840 current->thread.fp_state.fpr[reg][1] = buf.d[1];
842 } else {
843 if (regs->msr & MSR_VEC)
844 load_vsrn(reg, &buf);
845 else
846 current->thread.vr_state.vr[reg - 32] = buf.v;
848 preempt_enable();
849 return 0;
852 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
853 unsigned long ea, struct pt_regs *regs,
854 bool cross_endian)
856 int reg = op->reg;
857 u8 mem[16];
858 union vsx_reg buf;
859 int size = GETSIZE(op->type);
861 if (!address_ok(regs, ea, size))
862 return -EFAULT;
864 preempt_disable();
865 if (reg < 32) {
866 /* FP regs + extensions */
867 if (regs->msr & MSR_FP) {
868 store_vsrn(reg, &buf);
869 } else {
870 buf.d[0] = current->thread.fp_state.fpr[reg][0];
871 buf.d[1] = current->thread.fp_state.fpr[reg][1];
873 } else {
874 if (regs->msr & MSR_VEC)
875 store_vsrn(reg, &buf);
876 else
877 buf.v = current->thread.vr_state.vr[reg - 32];
879 preempt_enable();
880 emulate_vsx_store(op, &buf, mem, cross_endian);
881 return copy_mem_out(mem, ea, size, regs);
883 #endif /* CONFIG_VSX */
885 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
887 int err;
888 unsigned long i, size;
890 #ifdef __powerpc64__
891 size = ppc64_caches.l1d.block_size;
892 if (!(regs->msr & MSR_64BIT))
893 ea &= 0xffffffffUL;
894 #else
895 size = L1_CACHE_BYTES;
896 #endif
897 ea &= ~(size - 1);
898 if (!address_ok(regs, ea, size))
899 return -EFAULT;
900 for (i = 0; i < size; i += sizeof(long)) {
901 err = __put_user(0, (unsigned long __user *) (ea + i));
902 if (err) {
903 regs->dar = ea;
904 return err;
907 return 0;
909 NOKPROBE_SYMBOL(emulate_dcbz);
911 #define __put_user_asmx(x, addr, err, op, cr) \
912 __asm__ __volatile__( \
913 "1: " op " %2,0,%3\n" \
914 " mfcr %1\n" \
915 "2:\n" \
916 ".section .fixup,\"ax\"\n" \
917 "3: li %0,%4\n" \
918 " b 2b\n" \
919 ".previous\n" \
920 EX_TABLE(1b, 3b) \
921 : "=r" (err), "=r" (cr) \
922 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
924 #define __get_user_asmx(x, addr, err, op) \
925 __asm__ __volatile__( \
926 "1: "op" %1,0,%2\n" \
927 "2:\n" \
928 ".section .fixup,\"ax\"\n" \
929 "3: li %0,%3\n" \
930 " b 2b\n" \
931 ".previous\n" \
932 EX_TABLE(1b, 3b) \
933 : "=r" (err), "=r" (x) \
934 : "r" (addr), "i" (-EFAULT), "0" (err))
936 #define __cacheop_user_asmx(addr, err, op) \
937 __asm__ __volatile__( \
938 "1: "op" 0,%1\n" \
939 "2:\n" \
940 ".section .fixup,\"ax\"\n" \
941 "3: li %0,%3\n" \
942 " b 2b\n" \
943 ".previous\n" \
944 EX_TABLE(1b, 3b) \
945 : "=r" (err) \
946 : "r" (addr), "i" (-EFAULT), "0" (err))
948 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
949 struct instruction_op *op)
951 long val = op->val;
953 op->type |= SETCC;
954 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
955 #ifdef __powerpc64__
956 if (!(regs->msr & MSR_64BIT))
957 val = (int) val;
958 #endif
959 if (val < 0)
960 op->ccval |= 0x80000000;
961 else if (val > 0)
962 op->ccval |= 0x40000000;
963 else
964 op->ccval |= 0x20000000;
967 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
969 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
970 if (val)
971 op->xerval |= XER_CA32;
972 else
973 op->xerval &= ~XER_CA32;
977 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
978 struct instruction_op *op, int rd,
979 unsigned long val1, unsigned long val2,
980 unsigned long carry_in)
982 unsigned long val = val1 + val2;
984 if (carry_in)
985 ++val;
986 op->type = COMPUTE + SETREG + SETXER;
987 op->reg = rd;
988 op->val = val;
989 #ifdef __powerpc64__
990 if (!(regs->msr & MSR_64BIT)) {
991 val = (unsigned int) val;
992 val1 = (unsigned int) val1;
994 #endif
995 op->xerval = regs->xer;
996 if (val < val1 || (carry_in && val == val1))
997 op->xerval |= XER_CA;
998 else
999 op->xerval &= ~XER_CA;
1001 set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1002 (carry_in && (unsigned int)val == (unsigned int)val1));
1005 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1006 struct instruction_op *op,
1007 long v1, long v2, int crfld)
1009 unsigned int crval, shift;
1011 op->type = COMPUTE + SETCC;
1012 crval = (regs->xer >> 31) & 1; /* get SO bit */
1013 if (v1 < v2)
1014 crval |= 8;
1015 else if (v1 > v2)
1016 crval |= 4;
1017 else
1018 crval |= 2;
1019 shift = (7 - crfld) * 4;
1020 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1023 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1024 struct instruction_op *op,
1025 unsigned long v1,
1026 unsigned long v2, int crfld)
1028 unsigned int crval, shift;
1030 op->type = COMPUTE + SETCC;
1031 crval = (regs->xer >> 31) & 1; /* get SO bit */
1032 if (v1 < v2)
1033 crval |= 8;
1034 else if (v1 > v2)
1035 crval |= 4;
1036 else
1037 crval |= 2;
1038 shift = (7 - crfld) * 4;
1039 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1042 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1043 struct instruction_op *op,
1044 unsigned long v1, unsigned long v2)
1046 unsigned long long out_val, mask;
1047 int i;
1049 out_val = 0;
1050 for (i = 0; i < 8; i++) {
1051 mask = 0xffUL << (i * 8);
1052 if ((v1 & mask) == (v2 & mask))
1053 out_val |= mask;
1055 op->val = out_val;
1059 * The size parameter is used to adjust the equivalent popcnt instruction.
1060 * popcntb = 8, popcntw = 32, popcntd = 64
1062 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1063 struct instruction_op *op,
1064 unsigned long v1, int size)
1066 unsigned long long out = v1;
1068 out -= (out >> 1) & 0x5555555555555555;
1069 out = (0x3333333333333333 & out) + (0x3333333333333333 & (out >> 2));
1070 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0f;
1072 if (size == 8) { /* popcntb */
1073 op->val = out;
1074 return;
1076 out += out >> 8;
1077 out += out >> 16;
1078 if (size == 32) { /* popcntw */
1079 op->val = out & 0x0000003f0000003f;
1080 return;
1083 out = (out + (out >> 32)) & 0x7f;
1084 op->val = out; /* popcntd */
1087 #ifdef CONFIG_PPC64
1088 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1089 struct instruction_op *op,
1090 unsigned long v1, unsigned long v2)
1092 unsigned char perm, idx;
1093 unsigned int i;
1095 perm = 0;
1096 for (i = 0; i < 8; i++) {
1097 idx = (v1 >> (i * 8)) & 0xff;
1098 if (idx < 64)
1099 if (v2 & PPC_BIT(idx))
1100 perm |= 1 << i;
1102 op->val = perm;
1104 #endif /* CONFIG_PPC64 */
1106 * The size parameter adjusts the equivalent prty instruction.
1107 * prtyw = 32, prtyd = 64
1109 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1110 struct instruction_op *op,
1111 unsigned long v, int size)
1113 unsigned long long res = v ^ (v >> 8);
1115 res ^= res >> 16;
1116 if (size == 32) { /* prtyw */
1117 op->val = res & 0x0000000100000001;
1118 return;
1121 res ^= res >> 32;
1122 op->val = res & 1; /*prtyd */
1125 static nokprobe_inline int trap_compare(long v1, long v2)
1127 int ret = 0;
1129 if (v1 < v2)
1130 ret |= 0x10;
1131 else if (v1 > v2)
1132 ret |= 0x08;
1133 else
1134 ret |= 0x04;
1135 if ((unsigned long)v1 < (unsigned long)v2)
1136 ret |= 0x02;
1137 else if ((unsigned long)v1 > (unsigned long)v2)
1138 ret |= 0x01;
1139 return ret;
1143 * Elements of 32-bit rotate and mask instructions.
1145 #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
1146 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1147 #ifdef __powerpc64__
1148 #define MASK64_L(mb) (~0UL >> (mb))
1149 #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
1150 #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1151 #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1152 #else
1153 #define DATA32(x) (x)
1154 #endif
1155 #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1158 * Decode an instruction, and return information about it in *op
1159 * without changing *regs.
1160 * Integer arithmetic and logical instructions, branches, and barrier
1161 * instructions can be emulated just using the information in *op.
1163 * Return value is 1 if the instruction can be emulated just by
1164 * updating *regs with the information in *op, -1 if we need the
1165 * GPRs but *regs doesn't contain the full register set, or 0
1166 * otherwise.
1168 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1169 unsigned int instr)
1171 unsigned int opcode, ra, rb, rd, spr, u;
1172 unsigned long int imm;
1173 unsigned long int val, val2;
1174 unsigned int mb, me, sh;
1175 long ival;
1177 op->type = COMPUTE;
1179 opcode = instr >> 26;
1180 switch (opcode) {
1181 case 16: /* bc */
1182 op->type = BRANCH;
1183 imm = (signed short)(instr & 0xfffc);
1184 if ((instr & 2) == 0)
1185 imm += regs->nip;
1186 op->val = truncate_if_32bit(regs->msr, imm);
1187 if (instr & 1)
1188 op->type |= SETLK;
1189 if (branch_taken(instr, regs, op))
1190 op->type |= BRTAKEN;
1191 return 1;
1192 #ifdef CONFIG_PPC64
1193 case 17: /* sc */
1194 if ((instr & 0xfe2) == 2)
1195 op->type = SYSCALL;
1196 else
1197 op->type = UNKNOWN;
1198 return 0;
1199 #endif
1200 case 18: /* b */
1201 op->type = BRANCH | BRTAKEN;
1202 imm = instr & 0x03fffffc;
1203 if (imm & 0x02000000)
1204 imm -= 0x04000000;
1205 if ((instr & 2) == 0)
1206 imm += regs->nip;
1207 op->val = truncate_if_32bit(regs->msr, imm);
1208 if (instr & 1)
1209 op->type |= SETLK;
1210 return 1;
1211 case 19:
1212 switch ((instr >> 1) & 0x3ff) {
1213 case 0: /* mcrf */
1214 op->type = COMPUTE + SETCC;
1215 rd = 7 - ((instr >> 23) & 0x7);
1216 ra = 7 - ((instr >> 18) & 0x7);
1217 rd *= 4;
1218 ra *= 4;
1219 val = (regs->ccr >> ra) & 0xf;
1220 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1221 return 1;
1223 case 16: /* bclr */
1224 case 528: /* bcctr */
1225 op->type = BRANCH;
1226 imm = (instr & 0x400)? regs->ctr: regs->link;
1227 op->val = truncate_if_32bit(regs->msr, imm);
1228 if (instr & 1)
1229 op->type |= SETLK;
1230 if (branch_taken(instr, regs, op))
1231 op->type |= BRTAKEN;
1232 return 1;
1234 case 18: /* rfid, scary */
1235 if (regs->msr & MSR_PR)
1236 goto priv;
1237 op->type = RFI;
1238 return 0;
1240 case 150: /* isync */
1241 op->type = BARRIER | BARRIER_ISYNC;
1242 return 1;
1244 case 33: /* crnor */
1245 case 129: /* crandc */
1246 case 193: /* crxor */
1247 case 225: /* crnand */
1248 case 257: /* crand */
1249 case 289: /* creqv */
1250 case 417: /* crorc */
1251 case 449: /* cror */
1252 op->type = COMPUTE + SETCC;
1253 ra = (instr >> 16) & 0x1f;
1254 rb = (instr >> 11) & 0x1f;
1255 rd = (instr >> 21) & 0x1f;
1256 ra = (regs->ccr >> (31 - ra)) & 1;
1257 rb = (regs->ccr >> (31 - rb)) & 1;
1258 val = (instr >> (6 + ra * 2 + rb)) & 1;
1259 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1260 (val << (31 - rd));
1261 return 1;
1263 break;
1264 case 31:
1265 switch ((instr >> 1) & 0x3ff) {
1266 case 598: /* sync */
1267 op->type = BARRIER + BARRIER_SYNC;
1268 #ifdef __powerpc64__
1269 switch ((instr >> 21) & 3) {
1270 case 1: /* lwsync */
1271 op->type = BARRIER + BARRIER_LWSYNC;
1272 break;
1273 case 2: /* ptesync */
1274 op->type = BARRIER + BARRIER_PTESYNC;
1275 break;
1277 #endif
1278 return 1;
1280 case 854: /* eieio */
1281 op->type = BARRIER + BARRIER_EIEIO;
1282 return 1;
1284 break;
1287 /* Following cases refer to regs->gpr[], so we need all regs */
1288 if (!FULL_REGS(regs))
1289 return -1;
1291 rd = (instr >> 21) & 0x1f;
1292 ra = (instr >> 16) & 0x1f;
1293 rb = (instr >> 11) & 0x1f;
1295 switch (opcode) {
1296 #ifdef __powerpc64__
1297 case 2: /* tdi */
1298 if (rd & trap_compare(regs->gpr[ra], (short) instr))
1299 goto trap;
1300 return 1;
1301 #endif
1302 case 3: /* twi */
1303 if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
1304 goto trap;
1305 return 1;
1307 case 7: /* mulli */
1308 op->val = regs->gpr[ra] * (short) instr;
1309 goto compute_done;
1311 case 8: /* subfic */
1312 imm = (short) instr;
1313 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1314 return 1;
1316 case 10: /* cmpli */
1317 imm = (unsigned short) instr;
1318 val = regs->gpr[ra];
1319 #ifdef __powerpc64__
1320 if ((rd & 1) == 0)
1321 val = (unsigned int) val;
1322 #endif
1323 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1324 return 1;
1326 case 11: /* cmpi */
1327 imm = (short) instr;
1328 val = regs->gpr[ra];
1329 #ifdef __powerpc64__
1330 if ((rd & 1) == 0)
1331 val = (int) val;
1332 #endif
1333 do_cmp_signed(regs, op, val, imm, rd >> 2);
1334 return 1;
1336 case 12: /* addic */
1337 imm = (short) instr;
1338 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1339 return 1;
1341 case 13: /* addic. */
1342 imm = (short) instr;
1343 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1344 set_cr0(regs, op);
1345 return 1;
1347 case 14: /* addi */
1348 imm = (short) instr;
1349 if (ra)
1350 imm += regs->gpr[ra];
1351 op->val = imm;
1352 goto compute_done;
1354 case 15: /* addis */
1355 imm = ((short) instr) << 16;
1356 if (ra)
1357 imm += regs->gpr[ra];
1358 op->val = imm;
1359 goto compute_done;
1361 case 19:
1362 if (((instr >> 1) & 0x1f) == 2) {
1363 /* addpcis */
1364 imm = (short) (instr & 0xffc1); /* d0 + d2 fields */
1365 imm |= (instr >> 15) & 0x3e; /* d1 field */
1366 op->val = regs->nip + (imm << 16) + 4;
1367 goto compute_done;
1369 op->type = UNKNOWN;
1370 return 0;
1372 case 20: /* rlwimi */
1373 mb = (instr >> 6) & 0x1f;
1374 me = (instr >> 1) & 0x1f;
1375 val = DATA32(regs->gpr[rd]);
1376 imm = MASK32(mb, me);
1377 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1378 goto logical_done;
1380 case 21: /* rlwinm */
1381 mb = (instr >> 6) & 0x1f;
1382 me = (instr >> 1) & 0x1f;
1383 val = DATA32(regs->gpr[rd]);
1384 op->val = ROTATE(val, rb) & MASK32(mb, me);
1385 goto logical_done;
1387 case 23: /* rlwnm */
1388 mb = (instr >> 6) & 0x1f;
1389 me = (instr >> 1) & 0x1f;
1390 rb = regs->gpr[rb] & 0x1f;
1391 val = DATA32(regs->gpr[rd]);
1392 op->val = ROTATE(val, rb) & MASK32(mb, me);
1393 goto logical_done;
1395 case 24: /* ori */
1396 op->val = regs->gpr[rd] | (unsigned short) instr;
1397 goto logical_done_nocc;
1399 case 25: /* oris */
1400 imm = (unsigned short) instr;
1401 op->val = regs->gpr[rd] | (imm << 16);
1402 goto logical_done_nocc;
1404 case 26: /* xori */
1405 op->val = regs->gpr[rd] ^ (unsigned short) instr;
1406 goto logical_done_nocc;
1408 case 27: /* xoris */
1409 imm = (unsigned short) instr;
1410 op->val = regs->gpr[rd] ^ (imm << 16);
1411 goto logical_done_nocc;
1413 case 28: /* andi. */
1414 op->val = regs->gpr[rd] & (unsigned short) instr;
1415 set_cr0(regs, op);
1416 goto logical_done_nocc;
1418 case 29: /* andis. */
1419 imm = (unsigned short) instr;
1420 op->val = regs->gpr[rd] & (imm << 16);
1421 set_cr0(regs, op);
1422 goto logical_done_nocc;
1424 #ifdef __powerpc64__
1425 case 30: /* rld* */
1426 mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
1427 val = regs->gpr[rd];
1428 if ((instr & 0x10) == 0) {
1429 sh = rb | ((instr & 2) << 4);
1430 val = ROTATE(val, sh);
1431 switch ((instr >> 2) & 3) {
1432 case 0: /* rldicl */
1433 val &= MASK64_L(mb);
1434 break;
1435 case 1: /* rldicr */
1436 val &= MASK64_R(mb);
1437 break;
1438 case 2: /* rldic */
1439 val &= MASK64(mb, 63 - sh);
1440 break;
1441 case 3: /* rldimi */
1442 imm = MASK64(mb, 63 - sh);
1443 val = (regs->gpr[ra] & ~imm) |
1444 (val & imm);
1446 op->val = val;
1447 goto logical_done;
1448 } else {
1449 sh = regs->gpr[rb] & 0x3f;
1450 val = ROTATE(val, sh);
1451 switch ((instr >> 1) & 7) {
1452 case 0: /* rldcl */
1453 op->val = val & MASK64_L(mb);
1454 goto logical_done;
1455 case 1: /* rldcr */
1456 op->val = val & MASK64_R(mb);
1457 goto logical_done;
1460 #endif
1461 op->type = UNKNOWN; /* illegal instruction */
1462 return 0;
1464 case 31:
1465 /* isel occupies 32 minor opcodes */
1466 if (((instr >> 1) & 0x1f) == 15) {
1467 mb = (instr >> 6) & 0x1f; /* bc field */
1468 val = (regs->ccr >> (31 - mb)) & 1;
1469 val2 = (ra) ? regs->gpr[ra] : 0;
1471 op->val = (val) ? val2 : regs->gpr[rb];
1472 goto compute_done;
1475 switch ((instr >> 1) & 0x3ff) {
1476 case 4: /* tw */
1477 if (rd == 0x1f ||
1478 (rd & trap_compare((int)regs->gpr[ra],
1479 (int)regs->gpr[rb])))
1480 goto trap;
1481 return 1;
1482 #ifdef __powerpc64__
1483 case 68: /* td */
1484 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1485 goto trap;
1486 return 1;
1487 #endif
1488 case 83: /* mfmsr */
1489 if (regs->msr & MSR_PR)
1490 goto priv;
1491 op->type = MFMSR;
1492 op->reg = rd;
1493 return 0;
1494 case 146: /* mtmsr */
1495 if (regs->msr & MSR_PR)
1496 goto priv;
1497 op->type = MTMSR;
1498 op->reg = rd;
1499 op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1500 return 0;
1501 #ifdef CONFIG_PPC64
1502 case 178: /* mtmsrd */
1503 if (regs->msr & MSR_PR)
1504 goto priv;
1505 op->type = MTMSR;
1506 op->reg = rd;
1507 /* only MSR_EE and MSR_RI get changed if bit 15 set */
1508 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1509 imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1510 op->val = imm;
1511 return 0;
1512 #endif
1514 case 19: /* mfcr */
1515 imm = 0xffffffffUL;
1516 if ((instr >> 20) & 1) {
1517 imm = 0xf0000000UL;
1518 for (sh = 0; sh < 8; ++sh) {
1519 if (instr & (0x80000 >> sh))
1520 break;
1521 imm >>= 4;
1524 op->val = regs->ccr & imm;
1525 goto compute_done;
1527 case 144: /* mtcrf */
1528 op->type = COMPUTE + SETCC;
1529 imm = 0xf0000000UL;
1530 val = regs->gpr[rd];
1531 op->ccval = regs->ccr;
1532 for (sh = 0; sh < 8; ++sh) {
1533 if (instr & (0x80000 >> sh))
1534 op->ccval = (op->ccval & ~imm) |
1535 (val & imm);
1536 imm >>= 4;
1538 return 1;
1540 case 339: /* mfspr */
1541 spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1542 op->type = MFSPR;
1543 op->reg = rd;
1544 op->spr = spr;
1545 if (spr == SPRN_XER || spr == SPRN_LR ||
1546 spr == SPRN_CTR)
1547 return 1;
1548 return 0;
1550 case 467: /* mtspr */
1551 spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1552 op->type = MTSPR;
1553 op->val = regs->gpr[rd];
1554 op->spr = spr;
1555 if (spr == SPRN_XER || spr == SPRN_LR ||
1556 spr == SPRN_CTR)
1557 return 1;
1558 return 0;
1561 * Compare instructions
1563 case 0: /* cmp */
1564 val = regs->gpr[ra];
1565 val2 = regs->gpr[rb];
1566 #ifdef __powerpc64__
1567 if ((rd & 1) == 0) {
1568 /* word (32-bit) compare */
1569 val = (int) val;
1570 val2 = (int) val2;
1572 #endif
1573 do_cmp_signed(regs, op, val, val2, rd >> 2);
1574 return 1;
1576 case 32: /* cmpl */
1577 val = regs->gpr[ra];
1578 val2 = regs->gpr[rb];
1579 #ifdef __powerpc64__
1580 if ((rd & 1) == 0) {
1581 /* word (32-bit) compare */
1582 val = (unsigned int) val;
1583 val2 = (unsigned int) val2;
1585 #endif
1586 do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1587 return 1;
1589 case 508: /* cmpb */
1590 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1591 goto logical_done_nocc;
1594 * Arithmetic instructions
1596 case 8: /* subfc */
1597 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1598 regs->gpr[rb], 1);
1599 goto arith_done;
1600 #ifdef __powerpc64__
1601 case 9: /* mulhdu */
1602 asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1603 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1604 goto arith_done;
1605 #endif
1606 case 10: /* addc */
1607 add_with_carry(regs, op, rd, regs->gpr[ra],
1608 regs->gpr[rb], 0);
1609 goto arith_done;
1611 case 11: /* mulhwu */
1612 asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1613 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1614 goto arith_done;
1616 case 40: /* subf */
1617 op->val = regs->gpr[rb] - regs->gpr[ra];
1618 goto arith_done;
1619 #ifdef __powerpc64__
1620 case 73: /* mulhd */
1621 asm("mulhd %0,%1,%2" : "=r" (op->val) :
1622 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1623 goto arith_done;
1624 #endif
1625 case 75: /* mulhw */
1626 asm("mulhw %0,%1,%2" : "=r" (op->val) :
1627 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1628 goto arith_done;
1630 case 104: /* neg */
1631 op->val = -regs->gpr[ra];
1632 goto arith_done;
1634 case 136: /* subfe */
1635 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1636 regs->gpr[rb], regs->xer & XER_CA);
1637 goto arith_done;
1639 case 138: /* adde */
1640 add_with_carry(regs, op, rd, regs->gpr[ra],
1641 regs->gpr[rb], regs->xer & XER_CA);
1642 goto arith_done;
1644 case 200: /* subfze */
1645 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1646 regs->xer & XER_CA);
1647 goto arith_done;
1649 case 202: /* addze */
1650 add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1651 regs->xer & XER_CA);
1652 goto arith_done;
1654 case 232: /* subfme */
1655 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1656 regs->xer & XER_CA);
1657 goto arith_done;
1658 #ifdef __powerpc64__
1659 case 233: /* mulld */
1660 op->val = regs->gpr[ra] * regs->gpr[rb];
1661 goto arith_done;
1662 #endif
1663 case 234: /* addme */
1664 add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1665 regs->xer & XER_CA);
1666 goto arith_done;
1668 case 235: /* mullw */
1669 op->val = (long)(int) regs->gpr[ra] *
1670 (int) regs->gpr[rb];
1672 goto arith_done;
1674 case 266: /* add */
1675 op->val = regs->gpr[ra] + regs->gpr[rb];
1676 goto arith_done;
1677 #ifdef __powerpc64__
1678 case 457: /* divdu */
1679 op->val = regs->gpr[ra] / regs->gpr[rb];
1680 goto arith_done;
1681 #endif
1682 case 459: /* divwu */
1683 op->val = (unsigned int) regs->gpr[ra] /
1684 (unsigned int) regs->gpr[rb];
1685 goto arith_done;
1686 #ifdef __powerpc64__
1687 case 489: /* divd */
1688 op->val = (long int) regs->gpr[ra] /
1689 (long int) regs->gpr[rb];
1690 goto arith_done;
1691 #endif
1692 case 491: /* divw */
1693 op->val = (int) regs->gpr[ra] /
1694 (int) regs->gpr[rb];
1695 goto arith_done;
1699 * Logical instructions
1701 case 26: /* cntlzw */
1702 val = (unsigned int) regs->gpr[rd];
1703 op->val = ( val ? __builtin_clz(val) : 32 );
1704 goto logical_done;
1705 #ifdef __powerpc64__
1706 case 58: /* cntlzd */
1707 val = regs->gpr[rd];
1708 op->val = ( val ? __builtin_clzl(val) : 64 );
1709 goto logical_done;
1710 #endif
1711 case 28: /* and */
1712 op->val = regs->gpr[rd] & regs->gpr[rb];
1713 goto logical_done;
1715 case 60: /* andc */
1716 op->val = regs->gpr[rd] & ~regs->gpr[rb];
1717 goto logical_done;
1719 case 122: /* popcntb */
1720 do_popcnt(regs, op, regs->gpr[rd], 8);
1721 goto logical_done_nocc;
1723 case 124: /* nor */
1724 op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1725 goto logical_done;
1727 case 154: /* prtyw */
1728 do_prty(regs, op, regs->gpr[rd], 32);
1729 goto logical_done_nocc;
1731 case 186: /* prtyd */
1732 do_prty(regs, op, regs->gpr[rd], 64);
1733 goto logical_done_nocc;
1734 #ifdef CONFIG_PPC64
1735 case 252: /* bpermd */
1736 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1737 goto logical_done_nocc;
1738 #endif
1739 case 284: /* xor */
1740 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1741 goto logical_done;
1743 case 316: /* xor */
1744 op->val = regs->gpr[rd] ^ regs->gpr[rb];
1745 goto logical_done;
1747 case 378: /* popcntw */
1748 do_popcnt(regs, op, regs->gpr[rd], 32);
1749 goto logical_done_nocc;
1751 case 412: /* orc */
1752 op->val = regs->gpr[rd] | ~regs->gpr[rb];
1753 goto logical_done;
1755 case 444: /* or */
1756 op->val = regs->gpr[rd] | regs->gpr[rb];
1757 goto logical_done;
1759 case 476: /* nand */
1760 op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1761 goto logical_done;
1762 #ifdef CONFIG_PPC64
1763 case 506: /* popcntd */
1764 do_popcnt(regs, op, regs->gpr[rd], 64);
1765 goto logical_done_nocc;
1766 #endif
1767 case 922: /* extsh */
1768 op->val = (signed short) regs->gpr[rd];
1769 goto logical_done;
1771 case 954: /* extsb */
1772 op->val = (signed char) regs->gpr[rd];
1773 goto logical_done;
1774 #ifdef __powerpc64__
1775 case 986: /* extsw */
1776 op->val = (signed int) regs->gpr[rd];
1777 goto logical_done;
1778 #endif
1781 * Shift instructions
1783 case 24: /* slw */
1784 sh = regs->gpr[rb] & 0x3f;
1785 if (sh < 32)
1786 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1787 else
1788 op->val = 0;
1789 goto logical_done;
1791 case 536: /* srw */
1792 sh = regs->gpr[rb] & 0x3f;
1793 if (sh < 32)
1794 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1795 else
1796 op->val = 0;
1797 goto logical_done;
1799 case 792: /* sraw */
1800 op->type = COMPUTE + SETREG + SETXER;
1801 sh = regs->gpr[rb] & 0x3f;
1802 ival = (signed int) regs->gpr[rd];
1803 op->val = ival >> (sh < 32 ? sh : 31);
1804 op->xerval = regs->xer;
1805 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1806 op->xerval |= XER_CA;
1807 else
1808 op->xerval &= ~XER_CA;
1809 set_ca32(op, op->xerval & XER_CA);
1810 goto logical_done;
1812 case 824: /* srawi */
1813 op->type = COMPUTE + SETREG + SETXER;
1814 sh = rb;
1815 ival = (signed int) regs->gpr[rd];
1816 op->val = ival >> sh;
1817 op->xerval = regs->xer;
1818 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1819 op->xerval |= XER_CA;
1820 else
1821 op->xerval &= ~XER_CA;
1822 set_ca32(op, op->xerval & XER_CA);
1823 goto logical_done;
1825 #ifdef __powerpc64__
1826 case 27: /* sld */
1827 sh = regs->gpr[rb] & 0x7f;
1828 if (sh < 64)
1829 op->val = regs->gpr[rd] << sh;
1830 else
1831 op->val = 0;
1832 goto logical_done;
1834 case 539: /* srd */
1835 sh = regs->gpr[rb] & 0x7f;
1836 if (sh < 64)
1837 op->val = regs->gpr[rd] >> sh;
1838 else
1839 op->val = 0;
1840 goto logical_done;
1842 case 794: /* srad */
1843 op->type = COMPUTE + SETREG + SETXER;
1844 sh = regs->gpr[rb] & 0x7f;
1845 ival = (signed long int) regs->gpr[rd];
1846 op->val = ival >> (sh < 64 ? sh : 63);
1847 op->xerval = regs->xer;
1848 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
1849 op->xerval |= XER_CA;
1850 else
1851 op->xerval &= ~XER_CA;
1852 set_ca32(op, op->xerval & XER_CA);
1853 goto logical_done;
1855 case 826: /* sradi with sh_5 = 0 */
1856 case 827: /* sradi with sh_5 = 1 */
1857 op->type = COMPUTE + SETREG + SETXER;
1858 sh = rb | ((instr & 2) << 4);
1859 ival = (signed long int) regs->gpr[rd];
1860 op->val = ival >> sh;
1861 op->xerval = regs->xer;
1862 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1863 op->xerval |= XER_CA;
1864 else
1865 op->xerval &= ~XER_CA;
1866 set_ca32(op, op->xerval & XER_CA);
1867 goto logical_done;
1868 #endif /* __powerpc64__ */
1871 * Cache instructions
1873 case 54: /* dcbst */
1874 op->type = MKOP(CACHEOP, DCBST, 0);
1875 op->ea = xform_ea(instr, regs);
1876 return 0;
1878 case 86: /* dcbf */
1879 op->type = MKOP(CACHEOP, DCBF, 0);
1880 op->ea = xform_ea(instr, regs);
1881 return 0;
1883 case 246: /* dcbtst */
1884 op->type = MKOP(CACHEOP, DCBTST, 0);
1885 op->ea = xform_ea(instr, regs);
1886 op->reg = rd;
1887 return 0;
1889 case 278: /* dcbt */
1890 op->type = MKOP(CACHEOP, DCBTST, 0);
1891 op->ea = xform_ea(instr, regs);
1892 op->reg = rd;
1893 return 0;
1895 case 982: /* icbi */
1896 op->type = MKOP(CACHEOP, ICBI, 0);
1897 op->ea = xform_ea(instr, regs);
1898 return 0;
1900 case 1014: /* dcbz */
1901 op->type = MKOP(CACHEOP, DCBZ, 0);
1902 op->ea = xform_ea(instr, regs);
1903 return 0;
1905 break;
1909 * Loads and stores.
1911 op->type = UNKNOWN;
1912 op->update_reg = ra;
1913 op->reg = rd;
1914 op->val = regs->gpr[rd];
1915 u = (instr >> 20) & UPDATE;
1916 op->vsx_flags = 0;
1918 switch (opcode) {
1919 case 31:
1920 u = instr & UPDATE;
1921 op->ea = xform_ea(instr, regs);
1922 switch ((instr >> 1) & 0x3ff) {
1923 case 20: /* lwarx */
1924 op->type = MKOP(LARX, 0, 4);
1925 break;
1927 case 150: /* stwcx. */
1928 op->type = MKOP(STCX, 0, 4);
1929 break;
1931 #ifdef __powerpc64__
1932 case 84: /* ldarx */
1933 op->type = MKOP(LARX, 0, 8);
1934 break;
1936 case 214: /* stdcx. */
1937 op->type = MKOP(STCX, 0, 8);
1938 break;
1940 case 52: /* lbarx */
1941 op->type = MKOP(LARX, 0, 1);
1942 break;
1944 case 694: /* stbcx. */
1945 op->type = MKOP(STCX, 0, 1);
1946 break;
1948 case 116: /* lharx */
1949 op->type = MKOP(LARX, 0, 2);
1950 break;
1952 case 726: /* sthcx. */
1953 op->type = MKOP(STCX, 0, 2);
1954 break;
1956 case 276: /* lqarx */
1957 if (!((rd & 1) || rd == ra || rd == rb))
1958 op->type = MKOP(LARX, 0, 16);
1959 break;
1961 case 182: /* stqcx. */
1962 if (!(rd & 1))
1963 op->type = MKOP(STCX, 0, 16);
1964 break;
1965 #endif
1967 case 23: /* lwzx */
1968 case 55: /* lwzux */
1969 op->type = MKOP(LOAD, u, 4);
1970 break;
1972 case 87: /* lbzx */
1973 case 119: /* lbzux */
1974 op->type = MKOP(LOAD, u, 1);
1975 break;
1977 #ifdef CONFIG_ALTIVEC
1979 * Note: for the load/store vector element instructions,
1980 * bits of the EA say which field of the VMX register to use.
1982 case 7: /* lvebx */
1983 op->type = MKOP(LOAD_VMX, 0, 1);
1984 op->element_size = 1;
1985 break;
1987 case 39: /* lvehx */
1988 op->type = MKOP(LOAD_VMX, 0, 2);
1989 op->element_size = 2;
1990 break;
1992 case 71: /* lvewx */
1993 op->type = MKOP(LOAD_VMX, 0, 4);
1994 op->element_size = 4;
1995 break;
1997 case 103: /* lvx */
1998 case 359: /* lvxl */
1999 op->type = MKOP(LOAD_VMX, 0, 16);
2000 op->element_size = 16;
2001 break;
2003 case 135: /* stvebx */
2004 op->type = MKOP(STORE_VMX, 0, 1);
2005 op->element_size = 1;
2006 break;
2008 case 167: /* stvehx */
2009 op->type = MKOP(STORE_VMX, 0, 2);
2010 op->element_size = 2;
2011 break;
2013 case 199: /* stvewx */
2014 op->type = MKOP(STORE_VMX, 0, 4);
2015 op->element_size = 4;
2016 break;
2018 case 231: /* stvx */
2019 case 487: /* stvxl */
2020 op->type = MKOP(STORE_VMX, 0, 16);
2021 break;
2022 #endif /* CONFIG_ALTIVEC */
2024 #ifdef __powerpc64__
2025 case 21: /* ldx */
2026 case 53: /* ldux */
2027 op->type = MKOP(LOAD, u, 8);
2028 break;
2030 case 149: /* stdx */
2031 case 181: /* stdux */
2032 op->type = MKOP(STORE, u, 8);
2033 break;
2034 #endif
2036 case 151: /* stwx */
2037 case 183: /* stwux */
2038 op->type = MKOP(STORE, u, 4);
2039 break;
2041 case 215: /* stbx */
2042 case 247: /* stbux */
2043 op->type = MKOP(STORE, u, 1);
2044 break;
2046 case 279: /* lhzx */
2047 case 311: /* lhzux */
2048 op->type = MKOP(LOAD, u, 2);
2049 break;
2051 #ifdef __powerpc64__
2052 case 341: /* lwax */
2053 case 373: /* lwaux */
2054 op->type = MKOP(LOAD, SIGNEXT | u, 4);
2055 break;
2056 #endif
2058 case 343: /* lhax */
2059 case 375: /* lhaux */
2060 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2061 break;
2063 case 407: /* sthx */
2064 case 439: /* sthux */
2065 op->type = MKOP(STORE, u, 2);
2066 break;
2068 #ifdef __powerpc64__
2069 case 532: /* ldbrx */
2070 op->type = MKOP(LOAD, BYTEREV, 8);
2071 break;
2073 #endif
2074 case 533: /* lswx */
2075 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2076 break;
2078 case 534: /* lwbrx */
2079 op->type = MKOP(LOAD, BYTEREV, 4);
2080 break;
2082 case 597: /* lswi */
2083 if (rb == 0)
2084 rb = 32; /* # bytes to load */
2085 op->type = MKOP(LOAD_MULTI, 0, rb);
2086 op->ea = ra ? regs->gpr[ra] : 0;
2087 break;
2089 #ifdef CONFIG_PPC_FPU
2090 case 535: /* lfsx */
2091 case 567: /* lfsux */
2092 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2093 break;
2095 case 599: /* lfdx */
2096 case 631: /* lfdux */
2097 op->type = MKOP(LOAD_FP, u, 8);
2098 break;
2100 case 663: /* stfsx */
2101 case 695: /* stfsux */
2102 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2103 break;
2105 case 727: /* stfdx */
2106 case 759: /* stfdux */
2107 op->type = MKOP(STORE_FP, u, 8);
2108 break;
2110 #ifdef __powerpc64__
2111 case 791: /* lfdpx */
2112 op->type = MKOP(LOAD_FP, 0, 16);
2113 break;
2115 case 855: /* lfiwax */
2116 op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2117 break;
2119 case 887: /* lfiwzx */
2120 op->type = MKOP(LOAD_FP, 0, 4);
2121 break;
2123 case 919: /* stfdpx */
2124 op->type = MKOP(STORE_FP, 0, 16);
2125 break;
2127 case 983: /* stfiwx */
2128 op->type = MKOP(STORE_FP, 0, 4);
2129 break;
2130 #endif /* __powerpc64 */
2131 #endif /* CONFIG_PPC_FPU */
2133 #ifdef __powerpc64__
2134 case 660: /* stdbrx */
2135 op->type = MKOP(STORE, BYTEREV, 8);
2136 op->val = byterev_8(regs->gpr[rd]);
2137 break;
2139 #endif
2140 case 661: /* stswx */
2141 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2142 break;
2144 case 662: /* stwbrx */
2145 op->type = MKOP(STORE, BYTEREV, 4);
2146 op->val = byterev_4(regs->gpr[rd]);
2147 break;
2149 case 725: /* stswi */
2150 if (rb == 0)
2151 rb = 32; /* # bytes to store */
2152 op->type = MKOP(STORE_MULTI, 0, rb);
2153 op->ea = ra ? regs->gpr[ra] : 0;
2154 break;
2156 case 790: /* lhbrx */
2157 op->type = MKOP(LOAD, BYTEREV, 2);
2158 break;
2160 case 918: /* sthbrx */
2161 op->type = MKOP(STORE, BYTEREV, 2);
2162 op->val = byterev_2(regs->gpr[rd]);
2163 break;
2165 #ifdef CONFIG_VSX
2166 case 12: /* lxsiwzx */
2167 op->reg = rd | ((instr & 1) << 5);
2168 op->type = MKOP(LOAD_VSX, 0, 4);
2169 op->element_size = 8;
2170 break;
2172 case 76: /* lxsiwax */
2173 op->reg = rd | ((instr & 1) << 5);
2174 op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2175 op->element_size = 8;
2176 break;
2178 case 140: /* stxsiwx */
2179 op->reg = rd | ((instr & 1) << 5);
2180 op->type = MKOP(STORE_VSX, 0, 4);
2181 op->element_size = 8;
2182 break;
2184 case 268: /* lxvx */
2185 op->reg = rd | ((instr & 1) << 5);
2186 op->type = MKOP(LOAD_VSX, 0, 16);
2187 op->element_size = 16;
2188 op->vsx_flags = VSX_CHECK_VEC;
2189 break;
2191 case 269: /* lxvl */
2192 case 301: { /* lxvll */
2193 int nb;
2194 op->reg = rd | ((instr & 1) << 5);
2195 op->ea = ra ? regs->gpr[ra] : 0;
2196 nb = regs->gpr[rb] & 0xff;
2197 if (nb > 16)
2198 nb = 16;
2199 op->type = MKOP(LOAD_VSX, 0, nb);
2200 op->element_size = 16;
2201 op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2202 VSX_CHECK_VEC;
2203 break;
2205 case 332: /* lxvdsx */
2206 op->reg = rd | ((instr & 1) << 5);
2207 op->type = MKOP(LOAD_VSX, 0, 8);
2208 op->element_size = 8;
2209 op->vsx_flags = VSX_SPLAT;
2210 break;
2212 case 364: /* lxvwsx */
2213 op->reg = rd | ((instr & 1) << 5);
2214 op->type = MKOP(LOAD_VSX, 0, 4);
2215 op->element_size = 4;
2216 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2217 break;
2219 case 396: /* stxvx */
2220 op->reg = rd | ((instr & 1) << 5);
2221 op->type = MKOP(STORE_VSX, 0, 16);
2222 op->element_size = 16;
2223 op->vsx_flags = VSX_CHECK_VEC;
2224 break;
2226 case 397: /* stxvl */
2227 case 429: { /* stxvll */
2228 int nb;
2229 op->reg = rd | ((instr & 1) << 5);
2230 op->ea = ra ? regs->gpr[ra] : 0;
2231 nb = regs->gpr[rb] & 0xff;
2232 if (nb > 16)
2233 nb = 16;
2234 op->type = MKOP(STORE_VSX, 0, nb);
2235 op->element_size = 16;
2236 op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2237 VSX_CHECK_VEC;
2238 break;
2240 case 524: /* lxsspx */
2241 op->reg = rd | ((instr & 1) << 5);
2242 op->type = MKOP(LOAD_VSX, 0, 4);
2243 op->element_size = 8;
2244 op->vsx_flags = VSX_FPCONV;
2245 break;
2247 case 588: /* lxsdx */
2248 op->reg = rd | ((instr & 1) << 5);
2249 op->type = MKOP(LOAD_VSX, 0, 8);
2250 op->element_size = 8;
2251 break;
2253 case 652: /* stxsspx */
2254 op->reg = rd | ((instr & 1) << 5);
2255 op->type = MKOP(STORE_VSX, 0, 4);
2256 op->element_size = 8;
2257 op->vsx_flags = VSX_FPCONV;
2258 break;
2260 case 716: /* stxsdx */
2261 op->reg = rd | ((instr & 1) << 5);
2262 op->type = MKOP(STORE_VSX, 0, 8);
2263 op->element_size = 8;
2264 break;
2266 case 780: /* lxvw4x */
2267 op->reg = rd | ((instr & 1) << 5);
2268 op->type = MKOP(LOAD_VSX, 0, 16);
2269 op->element_size = 4;
2270 break;
2272 case 781: /* lxsibzx */
2273 op->reg = rd | ((instr & 1) << 5);
2274 op->type = MKOP(LOAD_VSX, 0, 1);
2275 op->element_size = 8;
2276 op->vsx_flags = VSX_CHECK_VEC;
2277 break;
2279 case 812: /* lxvh8x */
2280 op->reg = rd | ((instr & 1) << 5);
2281 op->type = MKOP(LOAD_VSX, 0, 16);
2282 op->element_size = 2;
2283 op->vsx_flags = VSX_CHECK_VEC;
2284 break;
2286 case 813: /* lxsihzx */
2287 op->reg = rd | ((instr & 1) << 5);
2288 op->type = MKOP(LOAD_VSX, 0, 2);
2289 op->element_size = 8;
2290 op->vsx_flags = VSX_CHECK_VEC;
2291 break;
2293 case 844: /* lxvd2x */
2294 op->reg = rd | ((instr & 1) << 5);
2295 op->type = MKOP(LOAD_VSX, 0, 16);
2296 op->element_size = 8;
2297 break;
2299 case 876: /* lxvb16x */
2300 op->reg = rd | ((instr & 1) << 5);
2301 op->type = MKOP(LOAD_VSX, 0, 16);
2302 op->element_size = 1;
2303 op->vsx_flags = VSX_CHECK_VEC;
2304 break;
2306 case 908: /* stxvw4x */
2307 op->reg = rd | ((instr & 1) << 5);
2308 op->type = MKOP(STORE_VSX, 0, 16);
2309 op->element_size = 4;
2310 break;
2312 case 909: /* stxsibx */
2313 op->reg = rd | ((instr & 1) << 5);
2314 op->type = MKOP(STORE_VSX, 0, 1);
2315 op->element_size = 8;
2316 op->vsx_flags = VSX_CHECK_VEC;
2317 break;
2319 case 940: /* stxvh8x */
2320 op->reg = rd | ((instr & 1) << 5);
2321 op->type = MKOP(STORE_VSX, 0, 16);
2322 op->element_size = 2;
2323 op->vsx_flags = VSX_CHECK_VEC;
2324 break;
2326 case 941: /* stxsihx */
2327 op->reg = rd | ((instr & 1) << 5);
2328 op->type = MKOP(STORE_VSX, 0, 2);
2329 op->element_size = 8;
2330 op->vsx_flags = VSX_CHECK_VEC;
2331 break;
2333 case 972: /* stxvd2x */
2334 op->reg = rd | ((instr & 1) << 5);
2335 op->type = MKOP(STORE_VSX, 0, 16);
2336 op->element_size = 8;
2337 break;
2339 case 1004: /* stxvb16x */
2340 op->reg = rd | ((instr & 1) << 5);
2341 op->type = MKOP(STORE_VSX, 0, 16);
2342 op->element_size = 1;
2343 op->vsx_flags = VSX_CHECK_VEC;
2344 break;
2346 #endif /* CONFIG_VSX */
2348 break;
2350 case 32: /* lwz */
2351 case 33: /* lwzu */
2352 op->type = MKOP(LOAD, u, 4);
2353 op->ea = dform_ea(instr, regs);
2354 break;
2356 case 34: /* lbz */
2357 case 35: /* lbzu */
2358 op->type = MKOP(LOAD, u, 1);
2359 op->ea = dform_ea(instr, regs);
2360 break;
2362 case 36: /* stw */
2363 case 37: /* stwu */
2364 op->type = MKOP(STORE, u, 4);
2365 op->ea = dform_ea(instr, regs);
2366 break;
2368 case 38: /* stb */
2369 case 39: /* stbu */
2370 op->type = MKOP(STORE, u, 1);
2371 op->ea = dform_ea(instr, regs);
2372 break;
2374 case 40: /* lhz */
2375 case 41: /* lhzu */
2376 op->type = MKOP(LOAD, u, 2);
2377 op->ea = dform_ea(instr, regs);
2378 break;
2380 case 42: /* lha */
2381 case 43: /* lhau */
2382 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2383 op->ea = dform_ea(instr, regs);
2384 break;
2386 case 44: /* sth */
2387 case 45: /* sthu */
2388 op->type = MKOP(STORE, u, 2);
2389 op->ea = dform_ea(instr, regs);
2390 break;
2392 case 46: /* lmw */
2393 if (ra >= rd)
2394 break; /* invalid form, ra in range to load */
2395 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2396 op->ea = dform_ea(instr, regs);
2397 break;
2399 case 47: /* stmw */
2400 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2401 op->ea = dform_ea(instr, regs);
2402 break;
2404 #ifdef CONFIG_PPC_FPU
2405 case 48: /* lfs */
2406 case 49: /* lfsu */
2407 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2408 op->ea = dform_ea(instr, regs);
2409 break;
2411 case 50: /* lfd */
2412 case 51: /* lfdu */
2413 op->type = MKOP(LOAD_FP, u, 8);
2414 op->ea = dform_ea(instr, regs);
2415 break;
2417 case 52: /* stfs */
2418 case 53: /* stfsu */
2419 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2420 op->ea = dform_ea(instr, regs);
2421 break;
2423 case 54: /* stfd */
2424 case 55: /* stfdu */
2425 op->type = MKOP(STORE_FP, u, 8);
2426 op->ea = dform_ea(instr, regs);
2427 break;
2428 #endif
2430 #ifdef __powerpc64__
2431 case 56: /* lq */
2432 if (!((rd & 1) || (rd == ra)))
2433 op->type = MKOP(LOAD, 0, 16);
2434 op->ea = dqform_ea(instr, regs);
2435 break;
2436 #endif
2438 #ifdef CONFIG_VSX
2439 case 57: /* lfdp, lxsd, lxssp */
2440 op->ea = dsform_ea(instr, regs);
2441 switch (instr & 3) {
2442 case 0: /* lfdp */
2443 if (rd & 1)
2444 break; /* reg must be even */
2445 op->type = MKOP(LOAD_FP, 0, 16);
2446 break;
2447 case 2: /* lxsd */
2448 op->reg = rd + 32;
2449 op->type = MKOP(LOAD_VSX, 0, 8);
2450 op->element_size = 8;
2451 op->vsx_flags = VSX_CHECK_VEC;
2452 break;
2453 case 3: /* lxssp */
2454 op->reg = rd + 32;
2455 op->type = MKOP(LOAD_VSX, 0, 4);
2456 op->element_size = 8;
2457 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2458 break;
2460 break;
2461 #endif /* CONFIG_VSX */
2463 #ifdef __powerpc64__
2464 case 58: /* ld[u], lwa */
2465 op->ea = dsform_ea(instr, regs);
2466 switch (instr & 3) {
2467 case 0: /* ld */
2468 op->type = MKOP(LOAD, 0, 8);
2469 break;
2470 case 1: /* ldu */
2471 op->type = MKOP(LOAD, UPDATE, 8);
2472 break;
2473 case 2: /* lwa */
2474 op->type = MKOP(LOAD, SIGNEXT, 4);
2475 break;
2477 break;
2478 #endif
2480 #ifdef CONFIG_VSX
2481 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
2482 switch (instr & 7) {
2483 case 0: /* stfdp with LSB of DS field = 0 */
2484 case 4: /* stfdp with LSB of DS field = 1 */
2485 op->ea = dsform_ea(instr, regs);
2486 op->type = MKOP(STORE_FP, 0, 16);
2487 break;
2489 case 1: /* lxv */
2490 op->ea = dqform_ea(instr, regs);
2491 if (instr & 8)
2492 op->reg = rd + 32;
2493 op->type = MKOP(LOAD_VSX, 0, 16);
2494 op->element_size = 16;
2495 op->vsx_flags = VSX_CHECK_VEC;
2496 break;
2498 case 2: /* stxsd with LSB of DS field = 0 */
2499 case 6: /* stxsd with LSB of DS field = 1 */
2500 op->ea = dsform_ea(instr, regs);
2501 op->reg = rd + 32;
2502 op->type = MKOP(STORE_VSX, 0, 8);
2503 op->element_size = 8;
2504 op->vsx_flags = VSX_CHECK_VEC;
2505 break;
2507 case 3: /* stxssp with LSB of DS field = 0 */
2508 case 7: /* stxssp with LSB of DS field = 1 */
2509 op->ea = dsform_ea(instr, regs);
2510 op->reg = rd + 32;
2511 op->type = MKOP(STORE_VSX, 0, 4);
2512 op->element_size = 8;
2513 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2514 break;
2516 case 5: /* stxv */
2517 op->ea = dqform_ea(instr, regs);
2518 if (instr & 8)
2519 op->reg = rd + 32;
2520 op->type = MKOP(STORE_VSX, 0, 16);
2521 op->element_size = 16;
2522 op->vsx_flags = VSX_CHECK_VEC;
2523 break;
2525 break;
2526 #endif /* CONFIG_VSX */
2528 #ifdef __powerpc64__
2529 case 62: /* std[u] */
2530 op->ea = dsform_ea(instr, regs);
2531 switch (instr & 3) {
2532 case 0: /* std */
2533 op->type = MKOP(STORE, 0, 8);
2534 break;
2535 case 1: /* stdu */
2536 op->type = MKOP(STORE, UPDATE, 8);
2537 break;
2538 case 2: /* stq */
2539 if (!(rd & 1))
2540 op->type = MKOP(STORE, 0, 16);
2541 break;
2543 break;
2544 #endif /* __powerpc64__ */
2547 return 0;
2549 logical_done:
2550 if (instr & 1)
2551 set_cr0(regs, op);
2552 logical_done_nocc:
2553 op->reg = ra;
2554 op->type |= SETREG;
2555 return 1;
2557 arith_done:
2558 if (instr & 1)
2559 set_cr0(regs, op);
2560 compute_done:
2561 op->reg = rd;
2562 op->type |= SETREG;
2563 return 1;
2565 priv:
2566 op->type = INTERRUPT | 0x700;
2567 op->val = SRR1_PROGPRIV;
2568 return 0;
2570 trap:
2571 op->type = INTERRUPT | 0x700;
2572 op->val = SRR1_PROGTRAP;
2573 return 0;
2575 EXPORT_SYMBOL_GPL(analyse_instr);
2576 NOKPROBE_SYMBOL(analyse_instr);
2579 * For PPC32 we always use stwu with r1 to change the stack pointer.
2580 * So this emulated store may corrupt the exception frame, now we
2581 * have to provide the exception frame trampoline, which is pushed
2582 * below the kprobed function stack. So we only update gpr[1] but
2583 * don't emulate the real store operation. We will do real store
2584 * operation safely in exception return code by checking this flag.
2586 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2588 #ifdef CONFIG_PPC32
2590 * Check if we will touch kernel stack overflow
2592 if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2593 printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2594 return -EINVAL;
2596 #endif /* CONFIG_PPC32 */
2598 * Check if we already set since that means we'll
2599 * lose the previous value.
2601 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2602 set_thread_flag(TIF_EMULATE_STACK_STORE);
2603 return 0;
2606 static nokprobe_inline void do_signext(unsigned long *valp, int size)
2608 switch (size) {
2609 case 2:
2610 *valp = (signed short) *valp;
2611 break;
2612 case 4:
2613 *valp = (signed int) *valp;
2614 break;
2618 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2620 switch (size) {
2621 case 2:
2622 *valp = byterev_2(*valp);
2623 break;
2624 case 4:
2625 *valp = byterev_4(*valp);
2626 break;
2627 #ifdef __powerpc64__
2628 case 8:
2629 *valp = byterev_8(*valp);
2630 break;
2631 #endif
2636 * Emulate an instruction that can be executed just by updating
2637 * fields in *regs.
2639 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2641 unsigned long next_pc;
2643 next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
2644 switch (op->type & INSTR_TYPE_MASK) {
2645 case COMPUTE:
2646 if (op->type & SETREG)
2647 regs->gpr[op->reg] = op->val;
2648 if (op->type & SETCC)
2649 regs->ccr = op->ccval;
2650 if (op->type & SETXER)
2651 regs->xer = op->xerval;
2652 break;
2654 case BRANCH:
2655 if (op->type & SETLK)
2656 regs->link = next_pc;
2657 if (op->type & BRTAKEN)
2658 next_pc = op->val;
2659 if (op->type & DECCTR)
2660 --regs->ctr;
2661 break;
2663 case BARRIER:
2664 switch (op->type & BARRIER_MASK) {
2665 case BARRIER_SYNC:
2666 mb();
2667 break;
2668 case BARRIER_ISYNC:
2669 isync();
2670 break;
2671 case BARRIER_EIEIO:
2672 eieio();
2673 break;
2674 case BARRIER_LWSYNC:
2675 asm volatile("lwsync" : : : "memory");
2676 break;
2677 case BARRIER_PTESYNC:
2678 asm volatile("ptesync" : : : "memory");
2679 break;
2681 break;
2683 case MFSPR:
2684 switch (op->spr) {
2685 case SPRN_XER:
2686 regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
2687 break;
2688 case SPRN_LR:
2689 regs->gpr[op->reg] = regs->link;
2690 break;
2691 case SPRN_CTR:
2692 regs->gpr[op->reg] = regs->ctr;
2693 break;
2694 default:
2695 WARN_ON_ONCE(1);
2697 break;
2699 case MTSPR:
2700 switch (op->spr) {
2701 case SPRN_XER:
2702 regs->xer = op->val & 0xffffffffUL;
2703 break;
2704 case SPRN_LR:
2705 regs->link = op->val;
2706 break;
2707 case SPRN_CTR:
2708 regs->ctr = op->val;
2709 break;
2710 default:
2711 WARN_ON_ONCE(1);
2713 break;
2715 default:
2716 WARN_ON_ONCE(1);
2718 regs->nip = next_pc;
2720 NOKPROBE_SYMBOL(emulate_update_regs);
2723 * Emulate a previously-analysed load or store instruction.
2724 * Return values are:
2725 * 0 = instruction emulated successfully
2726 * -EFAULT = address out of range or access faulted (regs->dar
2727 * contains the faulting address)
2728 * -EACCES = misaligned access, instruction requires alignment
2729 * -EINVAL = unknown operation in *op
2731 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
2733 int err, size, type;
2734 int i, rd, nb;
2735 unsigned int cr;
2736 unsigned long val;
2737 unsigned long ea;
2738 bool cross_endian;
2740 err = 0;
2741 size = GETSIZE(op->type);
2742 type = op->type & INSTR_TYPE_MASK;
2743 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
2744 ea = truncate_if_32bit(regs->msr, op->ea);
2746 switch (type) {
2747 case LARX:
2748 if (ea & (size - 1))
2749 return -EACCES; /* can't handle misaligned */
2750 if (!address_ok(regs, ea, size))
2751 return -EFAULT;
2752 err = 0;
2753 val = 0;
2754 switch (size) {
2755 #ifdef __powerpc64__
2756 case 1:
2757 __get_user_asmx(val, ea, err, "lbarx");
2758 break;
2759 case 2:
2760 __get_user_asmx(val, ea, err, "lharx");
2761 break;
2762 #endif
2763 case 4:
2764 __get_user_asmx(val, ea, err, "lwarx");
2765 break;
2766 #ifdef __powerpc64__
2767 case 8:
2768 __get_user_asmx(val, ea, err, "ldarx");
2769 break;
2770 case 16:
2771 err = do_lqarx(ea, &regs->gpr[op->reg]);
2772 break;
2773 #endif
2774 default:
2775 return -EINVAL;
2777 if (err) {
2778 regs->dar = ea;
2779 break;
2781 if (size < 16)
2782 regs->gpr[op->reg] = val;
2783 break;
2785 case STCX:
2786 if (ea & (size - 1))
2787 return -EACCES; /* can't handle misaligned */
2788 if (!address_ok(regs, ea, size))
2789 return -EFAULT;
2790 err = 0;
2791 switch (size) {
2792 #ifdef __powerpc64__
2793 case 1:
2794 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2795 break;
2796 case 2:
2797 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2798 break;
2799 #endif
2800 case 4:
2801 __put_user_asmx(op->val, ea, err, "stwcx.", cr);
2802 break;
2803 #ifdef __powerpc64__
2804 case 8:
2805 __put_user_asmx(op->val, ea, err, "stdcx.", cr);
2806 break;
2807 case 16:
2808 err = do_stqcx(ea, regs->gpr[op->reg],
2809 regs->gpr[op->reg + 1], &cr);
2810 break;
2811 #endif
2812 default:
2813 return -EINVAL;
2815 if (!err)
2816 regs->ccr = (regs->ccr & 0x0fffffff) |
2817 (cr & 0xe0000000) |
2818 ((regs->xer >> 3) & 0x10000000);
2819 else
2820 regs->dar = ea;
2821 break;
2823 case LOAD:
2824 #ifdef __powerpc64__
2825 if (size == 16) {
2826 err = emulate_lq(regs, ea, op->reg, cross_endian);
2827 break;
2829 #endif
2830 err = read_mem(&regs->gpr[op->reg], ea, size, regs);
2831 if (!err) {
2832 if (op->type & SIGNEXT)
2833 do_signext(&regs->gpr[op->reg], size);
2834 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
2835 do_byterev(&regs->gpr[op->reg], size);
2837 break;
2839 #ifdef CONFIG_PPC_FPU
2840 case LOAD_FP:
2842 * If the instruction is in userspace, we can emulate it even
2843 * if the VMX state is not live, because we have the state
2844 * stored in the thread_struct. If the instruction is in
2845 * the kernel, we must not touch the state in the thread_struct.
2847 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2848 return 0;
2849 err = do_fp_load(op, ea, regs, cross_endian);
2850 break;
2851 #endif
2852 #ifdef CONFIG_ALTIVEC
2853 case LOAD_VMX:
2854 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2855 return 0;
2856 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
2857 break;
2858 #endif
2859 #ifdef CONFIG_VSX
2860 case LOAD_VSX: {
2861 unsigned long msrbit = MSR_VSX;
2864 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2865 * when the target of the instruction is a vector register.
2867 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2868 msrbit = MSR_VEC;
2869 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2870 return 0;
2871 err = do_vsx_load(op, ea, regs, cross_endian);
2872 break;
2874 #endif
2875 case LOAD_MULTI:
2876 if (!address_ok(regs, ea, size))
2877 return -EFAULT;
2878 rd = op->reg;
2879 for (i = 0; i < size; i += 4) {
2880 unsigned int v32 = 0;
2882 nb = size - i;
2883 if (nb > 4)
2884 nb = 4;
2885 err = copy_mem_in((u8 *) &v32, ea, nb, regs);
2886 if (err)
2887 break;
2888 if (unlikely(cross_endian))
2889 v32 = byterev_4(v32);
2890 regs->gpr[rd] = v32;
2891 ea += 4;
2892 /* reg number wraps from 31 to 0 for lsw[ix] */
2893 rd = (rd + 1) & 0x1f;
2895 break;
2897 case STORE:
2898 #ifdef __powerpc64__
2899 if (size == 16) {
2900 err = emulate_stq(regs, ea, op->reg, cross_endian);
2901 break;
2903 #endif
2904 if ((op->type & UPDATE) && size == sizeof(long) &&
2905 op->reg == 1 && op->update_reg == 1 &&
2906 !(regs->msr & MSR_PR) &&
2907 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
2908 err = handle_stack_update(ea, regs);
2909 break;
2911 if (unlikely(cross_endian))
2912 do_byterev(&op->val, size);
2913 err = write_mem(op->val, ea, size, regs);
2914 break;
2916 #ifdef CONFIG_PPC_FPU
2917 case STORE_FP:
2918 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2919 return 0;
2920 err = do_fp_store(op, ea, regs, cross_endian);
2921 break;
2922 #endif
2923 #ifdef CONFIG_ALTIVEC
2924 case STORE_VMX:
2925 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2926 return 0;
2927 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
2928 break;
2929 #endif
2930 #ifdef CONFIG_VSX
2931 case STORE_VSX: {
2932 unsigned long msrbit = MSR_VSX;
2935 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2936 * when the target of the instruction is a vector register.
2938 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2939 msrbit = MSR_VEC;
2940 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2941 return 0;
2942 err = do_vsx_store(op, ea, regs, cross_endian);
2943 break;
2945 #endif
2946 case STORE_MULTI:
2947 if (!address_ok(regs, ea, size))
2948 return -EFAULT;
2949 rd = op->reg;
2950 for (i = 0; i < size; i += 4) {
2951 unsigned int v32 = regs->gpr[rd];
2953 nb = size - i;
2954 if (nb > 4)
2955 nb = 4;
2956 if (unlikely(cross_endian))
2957 v32 = byterev_4(v32);
2958 err = copy_mem_out((u8 *) &v32, ea, nb, regs);
2959 if (err)
2960 break;
2961 ea += 4;
2962 /* reg number wraps from 31 to 0 for stsw[ix] */
2963 rd = (rd + 1) & 0x1f;
2965 break;
2967 default:
2968 return -EINVAL;
2971 if (err)
2972 return err;
2974 if (op->type & UPDATE)
2975 regs->gpr[op->update_reg] = op->ea;
2977 return 0;
2979 NOKPROBE_SYMBOL(emulate_loadstore);
2982 * Emulate instructions that cause a transfer of control,
2983 * loads and stores, and a few other instructions.
2984 * Returns 1 if the step was emulated, 0 if not,
2985 * or -1 if the instruction is one that should not be stepped,
2986 * such as an rfid, or a mtmsrd that would clear MSR_RI.
2988 int emulate_step(struct pt_regs *regs, unsigned int instr)
2990 struct instruction_op op;
2991 int r, err, type;
2992 unsigned long val;
2993 unsigned long ea;
2995 r = analyse_instr(&op, regs, instr);
2996 if (r < 0)
2997 return r;
2998 if (r > 0) {
2999 emulate_update_regs(regs, &op);
3000 return 1;
3003 err = 0;
3004 type = op.type & INSTR_TYPE_MASK;
3006 if (OP_IS_LOAD_STORE(type)) {
3007 err = emulate_loadstore(regs, &op);
3008 if (err)
3009 return 0;
3010 goto instr_done;
3013 switch (type) {
3014 case CACHEOP:
3015 ea = truncate_if_32bit(regs->msr, op.ea);
3016 if (!address_ok(regs, ea, 8))
3017 return 0;
3018 switch (op.type & CACHEOP_MASK) {
3019 case DCBST:
3020 __cacheop_user_asmx(ea, err, "dcbst");
3021 break;
3022 case DCBF:
3023 __cacheop_user_asmx(ea, err, "dcbf");
3024 break;
3025 case DCBTST:
3026 if (op.reg == 0)
3027 prefetchw((void *) ea);
3028 break;
3029 case DCBT:
3030 if (op.reg == 0)
3031 prefetch((void *) ea);
3032 break;
3033 case ICBI:
3034 __cacheop_user_asmx(ea, err, "icbi");
3035 break;
3036 case DCBZ:
3037 err = emulate_dcbz(ea, regs);
3038 break;
3040 if (err) {
3041 regs->dar = ea;
3042 return 0;
3044 goto instr_done;
3046 case MFMSR:
3047 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3048 goto instr_done;
3050 case MTMSR:
3051 val = regs->gpr[op.reg];
3052 if ((val & MSR_RI) == 0)
3053 /* can't step mtmsr[d] that would clear MSR_RI */
3054 return -1;
3055 /* here op.val is the mask of bits to change */
3056 regs->msr = (regs->msr & ~op.val) | (val & op.val);
3057 goto instr_done;
3059 #ifdef CONFIG_PPC64
3060 case SYSCALL: /* sc */
3062 * N.B. this uses knowledge about how the syscall
3063 * entry code works. If that is changed, this will
3064 * need to be changed also.
3066 if (regs->gpr[0] == 0x1ebe &&
3067 cpu_has_feature(CPU_FTR_REAL_LE)) {
3068 regs->msr ^= MSR_LE;
3069 goto instr_done;
3071 regs->gpr[9] = regs->gpr[13];
3072 regs->gpr[10] = MSR_KERNEL;
3073 regs->gpr[11] = regs->nip + 4;
3074 regs->gpr[12] = regs->msr & MSR_MASK;
3075 regs->gpr[13] = (unsigned long) get_paca();
3076 regs->nip = (unsigned long) &system_call_common;
3077 regs->msr = MSR_KERNEL;
3078 return 1;
3080 case RFI:
3081 return -1;
3082 #endif
3084 return 0;
3086 instr_done:
3087 regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
3088 return 1;
3090 NOKPROBE_SYMBOL(emulate_step);