ARM: amba: Make driver_override output consistent with other buses
[linux/fpc-iii.git] / arch / powerpc / platforms / powernv / subcore.c
blob596ae2e98040d1db175af075887e9280294865cc
1 /*
2 * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 */
10 #define pr_fmt(fmt) "powernv: " fmt
12 #include <linux/kernel.h>
13 #include <linux/cpu.h>
14 #include <linux/cpumask.h>
15 #include <linux/device.h>
16 #include <linux/gfp.h>
17 #include <linux/smp.h>
18 #include <linux/stop_machine.h>
20 #include <asm/cputhreads.h>
21 #include <asm/cpuidle.h>
22 #include <asm/kvm_ppc.h>
23 #include <asm/machdep.h>
24 #include <asm/opal.h>
25 #include <asm/smp.h>
27 #include "subcore.h"
28 #include "powernv.h"
32 * Split/unsplit procedure:
34 * A core can be in one of three states, unsplit, 2-way split, and 4-way split.
36 * The mapping to subcores_per_core is simple:
38 * State | subcores_per_core
39 * ------------|------------------
40 * Unsplit | 1
41 * 2-way split | 2
42 * 4-way split | 4
44 * The core is split along thread boundaries, the mapping between subcores and
45 * threads is as follows:
47 * Unsplit:
48 * ----------------------------
49 * Subcore | 0 |
50 * ----------------------------
51 * Thread | 0 1 2 3 4 5 6 7 |
52 * ----------------------------
54 * 2-way split:
55 * -------------------------------------
56 * Subcore | 0 | 1 |
57 * -------------------------------------
58 * Thread | 0 1 2 3 | 4 5 6 7 |
59 * -------------------------------------
61 * 4-way split:
62 * -----------------------------------------
63 * Subcore | 0 | 1 | 2 | 3 |
64 * -----------------------------------------
65 * Thread | 0 1 | 2 3 | 4 5 | 6 7 |
66 * -----------------------------------------
69 * Transitions
70 * -----------
72 * It is not possible to transition between either of the split states, the
73 * core must first be unsplit. The legal transitions are:
75 * ----------- ---------------
76 * | | <----> | 2-way split |
77 * | | ---------------
78 * | Unsplit |
79 * | | ---------------
80 * | | <----> | 4-way split |
81 * ----------- ---------------
83 * Unsplitting
84 * -----------
86 * Unsplitting is the simpler procedure. It requires thread 0 to request the
87 * unsplit while all other threads NAP.
89 * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells
90 * the hardware that if all threads except 0 are napping, the hardware should
91 * unsplit the core.
93 * Non-zero threads are sent to a NAP loop, they don't exit the loop until they
94 * see the core unsplit.
96 * Core 0 spins waiting for the hardware to see all the other threads napping
97 * and perform the unsplit.
99 * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them
100 * out of NAP. They will then see the core unsplit and exit the NAP loop.
102 * Splitting
103 * ---------
105 * The basic splitting procedure is fairly straight forward. However it is
106 * complicated by the fact that after the split occurs, the newly created
107 * subcores are not in a fully initialised state.
109 * Most notably the subcores do not have the correct value for SDR1, which
110 * means they must not be running in virtual mode when the split occurs. The
111 * subcores have separate timebases SPRs but these are pre-synchronised by
112 * opal.
114 * To begin with secondary threads are sent to an assembly routine. There they
115 * switch to real mode, so they are immune to the uninitialised SDR1 value.
116 * Once in real mode they indicate that they are in real mode, and spin waiting
117 * to see the core split.
119 * Thread 0 waits to see that all secondaries are in real mode, and then begins
120 * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which
121 * prevents the hardware from unsplitting. Then it sets the appropriate HID bit
122 * to request the split, and spins waiting to see that the split has happened.
124 * Concurrently the secondaries will notice the split. When they do they set up
125 * their SPRs, notably SDR1, and then they can return to virtual mode and exit
126 * the procedure.
129 /* Initialised at boot by subcore_init() */
130 static int subcores_per_core;
133 * Used to communicate to offline cpus that we want them to pop out of the
134 * offline loop and do a split or unsplit.
136 * 0 - no split happening
137 * 1 - unsplit in progress
138 * 2 - split to 2 in progress
139 * 4 - split to 4 in progress
141 static int new_split_mode;
143 static cpumask_var_t cpu_offline_mask;
145 struct split_state {
146 u8 step;
147 u8 master;
150 static DEFINE_PER_CPU(struct split_state, split_state);
152 static void wait_for_sync_step(int step)
154 int i, cpu = smp_processor_id();
156 for (i = cpu + 1; i < cpu + threads_per_core; i++)
157 while(per_cpu(split_state, i).step < step)
158 barrier();
160 /* Order the wait loop vs any subsequent loads/stores. */
161 mb();
164 static void update_hid_in_slw(u64 hid0)
166 u64 idle_states = pnv_get_supported_cpuidle_states();
168 if (idle_states & OPAL_PM_WINKLE_ENABLED) {
169 /* OPAL call to patch slw with the new HID0 value */
170 u64 cpu_pir = hard_smp_processor_id();
172 opal_slw_set_reg(cpu_pir, SPRN_HID0, hid0);
176 static void unsplit_core(void)
178 u64 hid0, mask;
179 int i, cpu;
181 mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
183 cpu = smp_processor_id();
184 if (cpu_thread_in_core(cpu) != 0) {
185 while (mfspr(SPRN_HID0) & mask)
186 power7_idle_insn(PNV_THREAD_NAP);
188 per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT;
189 return;
192 hid0 = mfspr(SPRN_HID0);
193 hid0 &= ~HID0_POWER8_DYNLPARDIS;
194 update_power8_hid0(hid0);
195 update_hid_in_slw(hid0);
197 while (mfspr(SPRN_HID0) & mask)
198 cpu_relax();
200 /* Wake secondaries out of NAP */
201 for (i = cpu + 1; i < cpu + threads_per_core; i++)
202 smp_send_reschedule(i);
204 wait_for_sync_step(SYNC_STEP_UNSPLIT);
207 static void split_core(int new_mode)
209 struct { u64 value; u64 mask; } split_parms[2] = {
210 { HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE },
211 { HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE }
213 int i, cpu;
214 u64 hid0;
216 /* Convert new_mode (2 or 4) into an index into our parms array */
217 i = (new_mode >> 1) - 1;
218 BUG_ON(i < 0 || i > 1);
220 cpu = smp_processor_id();
221 if (cpu_thread_in_core(cpu) != 0) {
222 split_core_secondary_loop(&per_cpu(split_state, cpu).step);
223 return;
226 wait_for_sync_step(SYNC_STEP_REAL_MODE);
228 /* Write new mode */
229 hid0 = mfspr(SPRN_HID0);
230 hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value;
231 update_power8_hid0(hid0);
232 update_hid_in_slw(hid0);
234 /* Wait for it to happen */
235 while (!(mfspr(SPRN_HID0) & split_parms[i].mask))
236 cpu_relax();
239 static void cpu_do_split(int new_mode)
242 * At boot subcores_per_core will be 0, so we will always unsplit at
243 * boot. In the usual case where the core is already unsplit it's a
244 * nop, and this just ensures the kernel's notion of the mode is
245 * consistent with the hardware.
247 if (subcores_per_core != 1)
248 unsplit_core();
250 if (new_mode != 1)
251 split_core(new_mode);
253 mb();
254 per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED;
257 bool cpu_core_split_required(void)
259 smp_rmb();
261 if (!new_split_mode)
262 return false;
264 cpu_do_split(new_split_mode);
266 return true;
269 void update_subcore_sibling_mask(void)
271 int cpu;
273 * sibling mask for the first cpu. Left shift this by required bits
274 * to get sibling mask for the rest of the cpus.
276 int sibling_mask_first_cpu = (1 << threads_per_subcore) - 1;
278 for_each_possible_cpu(cpu) {
279 int tid = cpu_thread_in_core(cpu);
280 int offset = (tid / threads_per_subcore) * threads_per_subcore;
281 int mask = sibling_mask_first_cpu << offset;
283 paca[cpu].subcore_sibling_mask = mask;
288 static int cpu_update_split_mode(void *data)
290 int cpu, new_mode = *(int *)data;
292 if (this_cpu_ptr(&split_state)->master) {
293 new_split_mode = new_mode;
294 smp_wmb();
296 cpumask_andnot(cpu_offline_mask, cpu_present_mask,
297 cpu_online_mask);
299 /* This should work even though the cpu is offline */
300 for_each_cpu(cpu, cpu_offline_mask)
301 smp_send_reschedule(cpu);
304 cpu_do_split(new_mode);
306 if (this_cpu_ptr(&split_state)->master) {
307 /* Wait for all cpus to finish before we touch subcores_per_core */
308 for_each_present_cpu(cpu) {
309 if (cpu >= setup_max_cpus)
310 break;
312 while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED)
313 barrier();
316 new_split_mode = 0;
318 /* Make the new mode public */
319 subcores_per_core = new_mode;
320 threads_per_subcore = threads_per_core / subcores_per_core;
321 update_subcore_sibling_mask();
323 /* Make sure the new mode is written before we exit */
324 mb();
327 return 0;
330 static int set_subcores_per_core(int new_mode)
332 struct split_state *state;
333 int cpu;
335 if (kvm_hv_mode_active()) {
336 pr_err("Unable to change split core mode while KVM active.\n");
337 return -EBUSY;
341 * We are only called at boot, or from the sysfs write. If that ever
342 * changes we'll need a lock here.
344 BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3);
346 for_each_present_cpu(cpu) {
347 state = &per_cpu(split_state, cpu);
348 state->step = SYNC_STEP_INITIAL;
349 state->master = 0;
352 cpus_read_lock();
354 /* This cpu will update the globals before exiting stop machine */
355 this_cpu_ptr(&split_state)->master = 1;
357 /* Ensure state is consistent before we call the other cpus */
358 mb();
360 stop_machine_cpuslocked(cpu_update_split_mode, &new_mode,
361 cpu_online_mask);
363 cpus_read_unlock();
365 return 0;
368 static ssize_t __used store_subcores_per_core(struct device *dev,
369 struct device_attribute *attr, const char *buf,
370 size_t count)
372 unsigned long val;
373 int rc;
375 /* We are serialised by the attribute lock */
377 rc = sscanf(buf, "%lx", &val);
378 if (rc != 1)
379 return -EINVAL;
381 switch (val) {
382 case 1:
383 case 2:
384 case 4:
385 if (subcores_per_core == val)
386 /* Nothing to do */
387 goto out;
388 break;
389 default:
390 return -EINVAL;
393 rc = set_subcores_per_core(val);
394 if (rc)
395 return rc;
397 out:
398 return count;
401 static ssize_t show_subcores_per_core(struct device *dev,
402 struct device_attribute *attr, char *buf)
404 return sprintf(buf, "%x\n", subcores_per_core);
407 static DEVICE_ATTR(subcores_per_core, 0644,
408 show_subcores_per_core, store_subcores_per_core);
410 static int subcore_init(void)
412 unsigned pvr_ver;
414 pvr_ver = PVR_VER(mfspr(SPRN_PVR));
416 if (pvr_ver != PVR_POWER8 &&
417 pvr_ver != PVR_POWER8E &&
418 pvr_ver != PVR_POWER8NVL)
419 return 0;
422 * We need all threads in a core to be present to split/unsplit so
423 * continue only if max_cpus are aligned to threads_per_core.
425 if (setup_max_cpus % threads_per_core)
426 return 0;
428 BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL));
430 set_subcores_per_core(1);
432 return device_create_file(cpu_subsys.dev_root,
433 &dev_attr_subcores_per_core);
435 machine_device_initcall(powernv, subcore_init);