2 * Copyright (C) 2014 Imagination Technologies
3 * Author: Paul Burton <paul.burton@mips.com>
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
11 #include <linux/cpuhotplug.h>
12 #include <linux/init.h>
13 #include <linux/percpu.h>
14 #include <linux/slab.h>
15 #include <linux/suspend.h>
17 #include <asm/asm-offsets.h>
18 #include <asm/cacheflush.h>
19 #include <asm/cacheops.h>
21 #include <asm/mips-cps.h>
22 #include <asm/mipsmtregs.h>
24 #include <asm/pm-cps.h>
25 #include <asm/smp-cps.h>
29 * cps_nc_entry_fn - type of a generated non-coherent state entry function
30 * @online: the count of online coupled VPEs
31 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
33 * The code entering & exiting non-coherent states is generated at runtime
34 * using uasm, in order to ensure that the compiler cannot insert a stray
35 * memory access at an unfortunate time and to allow the generation of optimal
36 * core-specific code particularly for cache routines. If coupled_coherence
37 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
38 * returns the number of VPEs that were in the wait state at the point this
39 * VPE left it. Returns garbage if coupled_coherence is zero or this is not
40 * the entry function for CPS_PM_NC_WAIT.
42 typedef unsigned (*cps_nc_entry_fn
)(unsigned online
, u32
*nc_ready_count
);
45 * The entry point of the generated non-coherent idle state entry/exit
46 * functions. Actually per-core rather than per-CPU.
48 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn
[CPS_PM_STATE_COUNT
],
51 /* Bitmap indicating which states are supported by the system */
52 static DECLARE_BITMAP(state_support
, CPS_PM_STATE_COUNT
);
55 * Indicates the number of coupled VPEs ready to operate in a non-coherent
56 * state. Actually per-core rather than per-CPU.
58 static DEFINE_PER_CPU_ALIGNED(u32
*, ready_count
);
60 /* Indicates online CPUs coupled with the current CPU */
61 static DEFINE_PER_CPU_ALIGNED(cpumask_t
, online_coupled
);
64 * Used to synchronize entry to deep idle states. Actually per-core rather
67 static DEFINE_PER_CPU_ALIGNED(atomic_t
, pm_barrier
);
69 /* Saved CPU state across the CPS_PM_POWER_GATED state */
70 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state
, cps_cpu_state
);
72 /* A somewhat arbitrary number of labels & relocs for uasm */
73 static struct uasm_label labels
[32];
74 static struct uasm_reloc relocs
[32];
77 zero
, at
, v0
, v1
, a0
, a1
, a2
, a3
,
78 t0
, t1
, t2
, t3
, t4
, t5
, t6
, t7
,
79 s0
, s1
, s2
, s3
, s4
, s5
, s6
, s7
,
80 t8
, t9
, k0
, k1
, gp
, sp
, fp
, ra
,
83 bool cps_pm_support_state(enum cps_pm_state state
)
85 return test_bit(state
, state_support
);
88 static void coupled_barrier(atomic_t
*a
, unsigned online
)
91 * This function is effectively the same as
92 * cpuidle_coupled_parallel_barrier, which can't be used here since
93 * there's no cpuidle device.
96 if (!coupled_coherence
)
99 smp_mb__before_atomic();
102 while (atomic_read(a
) < online
)
105 if (atomic_inc_return(a
) == online
* 2) {
110 while (atomic_read(a
) > online
)
114 int cps_pm_enter_state(enum cps_pm_state state
)
116 unsigned cpu
= smp_processor_id();
117 unsigned core
= cpu_core(¤t_cpu_data
);
118 unsigned online
, left
;
119 cpumask_t
*coupled_mask
= this_cpu_ptr(&online_coupled
);
120 u32
*core_ready_count
, *nc_core_ready_count
;
122 cps_nc_entry_fn entry
;
123 struct core_boot_config
*core_cfg
;
124 struct vpe_boot_config
*vpe_cfg
;
126 /* Check that there is an entry function for this state */
127 entry
= per_cpu(nc_asm_enter
, core
)[state
];
131 /* Calculate which coupled CPUs (VPEs) are online */
132 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
133 if (cpu_online(cpu
)) {
134 cpumask_and(coupled_mask
, cpu_online_mask
,
135 &cpu_sibling_map
[cpu
]);
136 online
= cpumask_weight(coupled_mask
);
137 cpumask_clear_cpu(cpu
, coupled_mask
);
141 cpumask_clear(coupled_mask
);
145 /* Setup the VPE to run mips_cps_pm_restore when started again */
146 if (IS_ENABLED(CONFIG_CPU_PM
) && state
== CPS_PM_POWER_GATED
) {
147 /* Power gating relies upon CPS SMP */
148 if (!mips_cps_smp_in_use())
151 core_cfg
= &mips_cps_core_bootcfg
[core
];
152 vpe_cfg
= &core_cfg
->vpe_config
[cpu_vpe_id(¤t_cpu_data
)];
153 vpe_cfg
->pc
= (unsigned long)mips_cps_pm_restore
;
154 vpe_cfg
->gp
= (unsigned long)current_thread_info();
158 /* Indicate that this CPU might not be coherent */
159 cpumask_clear_cpu(cpu
, &cpu_coherent_mask
);
160 smp_mb__after_atomic();
162 /* Create a non-coherent mapping of the core ready_count */
163 core_ready_count
= per_cpu(ready_count
, core
);
164 nc_addr
= kmap_noncoherent(virt_to_page(core_ready_count
),
165 (unsigned long)core_ready_count
);
166 nc_addr
+= ((unsigned long)core_ready_count
& ~PAGE_MASK
);
167 nc_core_ready_count
= nc_addr
;
169 /* Ensure ready_count is zero-initialised before the assembly runs */
170 WRITE_ONCE(*nc_core_ready_count
, 0);
171 coupled_barrier(&per_cpu(pm_barrier
, core
), online
);
173 /* Run the generated entry code */
174 left
= entry(online
, nc_core_ready_count
);
176 /* Remove the non-coherent mapping of ready_count */
177 kunmap_noncoherent();
179 /* Indicate that this CPU is definitely coherent */
180 cpumask_set_cpu(cpu
, &cpu_coherent_mask
);
183 * If this VPE is the first to leave the non-coherent wait state then
184 * it needs to wake up any coupled VPEs still running their wait
185 * instruction so that they return to cpuidle, which can then complete
186 * coordination between the coupled VPEs & provide the governor with
187 * a chance to reflect on the length of time the VPEs were in the
190 if (coupled_coherence
&& (state
== CPS_PM_NC_WAIT
) && (left
== online
))
191 arch_send_call_function_ipi_mask(coupled_mask
);
196 static void cps_gen_cache_routine(u32
**pp
, struct uasm_label
**pl
,
197 struct uasm_reloc
**pr
,
198 const struct cache_desc
*cache
,
199 unsigned op
, int lbl
)
201 unsigned cache_size
= cache
->ways
<< cache
->waybit
;
203 const unsigned unroll_lines
= 32;
205 /* If the cache isn't present this function has it easy */
206 if (cache
->flags
& MIPS_CACHE_NOT_PRESENT
)
209 /* Load base address */
210 UASM_i_LA(pp
, t0
, (long)CKSEG0
);
212 /* Calculate end address */
213 if (cache_size
< 0x8000)
214 uasm_i_addiu(pp
, t1
, t0
, cache_size
);
216 UASM_i_LA(pp
, t1
, (long)(CKSEG0
+ cache_size
));
218 /* Start of cache op loop */
219 uasm_build_label(pl
, *pp
, lbl
);
221 /* Generate the cache ops */
222 for (i
= 0; i
< unroll_lines
; i
++) {
223 if (cpu_has_mips_r6
) {
224 uasm_i_cache(pp
, op
, 0, t0
);
225 uasm_i_addiu(pp
, t0
, t0
, cache
->linesz
);
227 uasm_i_cache(pp
, op
, i
* cache
->linesz
, t0
);
231 if (!cpu_has_mips_r6
)
232 /* Update the base address */
233 uasm_i_addiu(pp
, t0
, t0
, unroll_lines
* cache
->linesz
);
235 /* Loop if we haven't reached the end address yet */
236 uasm_il_bne(pp
, pr
, t0
, t1
, lbl
);
240 static int cps_gen_flush_fsb(u32
**pp
, struct uasm_label
**pl
,
241 struct uasm_reloc
**pr
,
242 const struct cpuinfo_mips
*cpu_info
,
245 unsigned i
, fsb_size
= 8;
246 unsigned num_loads
= (fsb_size
* 3) / 2;
247 unsigned line_stride
= 2;
248 unsigned line_size
= cpu_info
->dcache
.linesz
;
249 unsigned perf_counter
, perf_event
;
250 unsigned revision
= cpu_info
->processor_id
& PRID_REV_MASK
;
253 * Determine whether this CPU requires an FSB flush, and if so which
254 * performance counter/event reflect stalls due to a full FSB.
256 switch (__get_cpu_type(cpu_info
->cputype
)) {
263 /* Newer proAptiv cores don't require this workaround */
264 if (revision
>= PRID_REV_ENCODE_332(1, 1, 0))
267 /* On older ones it's unavailable */
271 /* Assume that the CPU does not need this workaround */
276 * Ensure that the fill/store buffer (FSB) is not holding the results
277 * of a prefetch, since if it is then the CPC sequencer may become
278 * stuck in the D3 (ClrBus) state whilst entering a low power state.
281 /* Preserve perf counter setup */
282 uasm_i_mfc0(pp
, t2
, 25, (perf_counter
* 2) + 0); /* PerfCtlN */
283 uasm_i_mfc0(pp
, t3
, 25, (perf_counter
* 2) + 1); /* PerfCntN */
285 /* Setup perf counter to count FSB full pipeline stalls */
286 uasm_i_addiu(pp
, t0
, zero
, (perf_event
<< 5) | 0xf);
287 uasm_i_mtc0(pp
, t0
, 25, (perf_counter
* 2) + 0); /* PerfCtlN */
289 uasm_i_mtc0(pp
, zero
, 25, (perf_counter
* 2) + 1); /* PerfCntN */
292 /* Base address for loads */
293 UASM_i_LA(pp
, t0
, (long)CKSEG0
);
295 /* Start of clear loop */
296 uasm_build_label(pl
, *pp
, lbl
);
298 /* Perform some loads to fill the FSB */
299 for (i
= 0; i
< num_loads
; i
++)
300 uasm_i_lw(pp
, zero
, i
* line_size
* line_stride
, t0
);
303 * Invalidate the new D-cache entries so that the cache will need
304 * refilling (via the FSB) if the loop is executed again.
306 for (i
= 0; i
< num_loads
; i
++) {
307 uasm_i_cache(pp
, Hit_Invalidate_D
,
308 i
* line_size
* line_stride
, t0
);
309 uasm_i_cache(pp
, Hit_Writeback_Inv_SD
,
310 i
* line_size
* line_stride
, t0
);
313 /* Barrier ensuring previous cache invalidates are complete */
314 uasm_i_sync(pp
, STYPE_SYNC
);
317 /* Check whether the pipeline stalled due to the FSB being full */
318 uasm_i_mfc0(pp
, t1
, 25, (perf_counter
* 2) + 1); /* PerfCntN */
320 /* Loop if it didn't */
321 uasm_il_beqz(pp
, pr
, t1
, lbl
);
324 /* Restore perf counter 1. The count may well now be wrong... */
325 uasm_i_mtc0(pp
, t2
, 25, (perf_counter
* 2) + 0); /* PerfCtlN */
327 uasm_i_mtc0(pp
, t3
, 25, (perf_counter
* 2) + 1); /* PerfCntN */
333 static void cps_gen_set_top_bit(u32
**pp
, struct uasm_label
**pl
,
334 struct uasm_reloc
**pr
,
335 unsigned r_addr
, int lbl
)
337 uasm_i_lui(pp
, t0
, uasm_rel_hi(0x80000000));
338 uasm_build_label(pl
, *pp
, lbl
);
339 uasm_i_ll(pp
, t1
, 0, r_addr
);
340 uasm_i_or(pp
, t1
, t1
, t0
);
341 uasm_i_sc(pp
, t1
, 0, r_addr
);
342 uasm_il_beqz(pp
, pr
, t1
, lbl
);
346 static void *cps_gen_entry_code(unsigned cpu
, enum cps_pm_state state
)
348 struct uasm_label
*l
= labels
;
349 struct uasm_reloc
*r
= relocs
;
351 const unsigned r_online
= a0
;
352 const unsigned r_nc_count
= a1
;
353 const unsigned r_pcohctl
= t7
;
354 const unsigned max_instrs
= 256;
361 lbl_disable_coherence
,
371 /* Allocate a buffer to hold the generated code */
372 p
= buf
= kcalloc(max_instrs
, sizeof(u32
), GFP_KERNEL
);
376 /* Clear labels & relocs ready for (re)use */
377 memset(labels
, 0, sizeof(labels
));
378 memset(relocs
, 0, sizeof(relocs
));
380 if (IS_ENABLED(CONFIG_CPU_PM
) && state
== CPS_PM_POWER_GATED
) {
381 /* Power gating relies upon CPS SMP */
382 if (!mips_cps_smp_in_use())
386 * Save CPU state. Note the non-standard calling convention
387 * with the return address placed in v0 to avoid clobbering
388 * the ra register before it is saved.
390 UASM_i_LA(&p
, t0
, (long)mips_cps_pm_save
);
391 uasm_i_jalr(&p
, v0
, t0
);
396 * Load addresses of required CM & CPC registers. This is done early
397 * because they're needed in both the enable & disable coherence steps
398 * but in the coupled case the enable step will only run on one VPE.
400 UASM_i_LA(&p
, r_pcohctl
, (long)addr_gcr_cl_coherence());
402 if (coupled_coherence
) {
403 /* Increment ready_count */
404 uasm_i_sync(&p
, STYPE_SYNC_MB
);
405 uasm_build_label(&l
, p
, lbl_incready
);
406 uasm_i_ll(&p
, t1
, 0, r_nc_count
);
407 uasm_i_addiu(&p
, t2
, t1
, 1);
408 uasm_i_sc(&p
, t2
, 0, r_nc_count
);
409 uasm_il_beqz(&p
, &r
, t2
, lbl_incready
);
410 uasm_i_addiu(&p
, t1
, t1
, 1);
412 /* Barrier ensuring all CPUs see the updated r_nc_count value */
413 uasm_i_sync(&p
, STYPE_SYNC_MB
);
416 * If this is the last VPE to become ready for non-coherence
417 * then it should branch below.
419 uasm_il_beq(&p
, &r
, t1
, r_online
, lbl_disable_coherence
);
422 if (state
< CPS_PM_POWER_GATED
) {
424 * Otherwise this is not the last VPE to become ready
425 * for non-coherence. It needs to wait until coherence
426 * has been disabled before proceeding, which it will do
427 * by polling for the top bit of ready_count being set.
429 uasm_i_addiu(&p
, t1
, zero
, -1);
430 uasm_build_label(&l
, p
, lbl_poll_cont
);
431 uasm_i_lw(&p
, t0
, 0, r_nc_count
);
432 uasm_il_bltz(&p
, &r
, t0
, lbl_secondary_cont
);
435 uasm_i_yield(&p
, zero
, t1
);
436 uasm_il_b(&p
, &r
, lbl_poll_cont
);
440 * The core will lose power & this VPE will not continue
441 * so it can simply halt here.
443 if (cpu_has_mipsmt
) {
444 /* Halt the VPE via C0 tchalt register */
445 uasm_i_addiu(&p
, t0
, zero
, TCHALT_H
);
446 uasm_i_mtc0(&p
, t0
, 2, 4);
447 } else if (cpu_has_vp
) {
448 /* Halt the VP via the CPC VP_STOP register */
451 vpe_id
= cpu_vpe_id(&cpu_data
[cpu
]);
452 uasm_i_addiu(&p
, t0
, zero
, 1 << vpe_id
);
453 UASM_i_LA(&p
, t1
, (long)addr_cpc_cl_vp_stop());
454 uasm_i_sw(&p
, t0
, 0, t1
);
458 uasm_build_label(&l
, p
, lbl_secondary_hang
);
459 uasm_il_b(&p
, &r
, lbl_secondary_hang
);
465 * This is the point of no return - this VPE will now proceed to
466 * disable coherence. At this point we *must* be sure that no other
467 * VPE within the core will interfere with the L1 dcache.
469 uasm_build_label(&l
, p
, lbl_disable_coherence
);
471 /* Invalidate the L1 icache */
472 cps_gen_cache_routine(&p
, &l
, &r
, &cpu_data
[cpu
].icache
,
473 Index_Invalidate_I
, lbl_invicache
);
475 /* Writeback & invalidate the L1 dcache */
476 cps_gen_cache_routine(&p
, &l
, &r
, &cpu_data
[cpu
].dcache
,
477 Index_Writeback_Inv_D
, lbl_flushdcache
);
479 /* Barrier ensuring previous cache invalidates are complete */
480 uasm_i_sync(&p
, STYPE_SYNC
);
483 if (mips_cm_revision() < CM_REV_CM3
) {
485 * Disable all but self interventions. The load from COHCTL is
486 * defined by the interAptiv & proAptiv SUMs as ensuring that the
487 * operation resulting from the preceding store is complete.
489 uasm_i_addiu(&p
, t0
, zero
, 1 << cpu_core(&cpu_data
[cpu
]));
490 uasm_i_sw(&p
, t0
, 0, r_pcohctl
);
491 uasm_i_lw(&p
, t0
, 0, r_pcohctl
);
493 /* Barrier to ensure write to coherence control is complete */
494 uasm_i_sync(&p
, STYPE_SYNC
);
498 /* Disable coherence */
499 uasm_i_sw(&p
, zero
, 0, r_pcohctl
);
500 uasm_i_lw(&p
, t0
, 0, r_pcohctl
);
502 if (state
>= CPS_PM_CLOCK_GATED
) {
503 err
= cps_gen_flush_fsb(&p
, &l
, &r
, &cpu_data
[cpu
],
508 /* Determine the CPC command to issue */
510 case CPS_PM_CLOCK_GATED
:
511 cpc_cmd
= CPC_Cx_CMD_CLOCKOFF
;
513 case CPS_PM_POWER_GATED
:
514 cpc_cmd
= CPC_Cx_CMD_PWRDOWN
;
521 /* Issue the CPC command */
522 UASM_i_LA(&p
, t0
, (long)addr_cpc_cl_cmd());
523 uasm_i_addiu(&p
, t1
, zero
, cpc_cmd
);
524 uasm_i_sw(&p
, t1
, 0, t0
);
526 if (state
== CPS_PM_POWER_GATED
) {
527 /* If anything goes wrong just hang */
528 uasm_build_label(&l
, p
, lbl_hang
);
529 uasm_il_b(&p
, &r
, lbl_hang
);
533 * There's no point generating more code, the core is
534 * powered down & if powered back up will run from the
535 * reset vector not from here.
540 /* Barrier to ensure write to CPC command is complete */
541 uasm_i_sync(&p
, STYPE_SYNC
);
545 if (state
== CPS_PM_NC_WAIT
) {
547 * At this point it is safe for all VPEs to proceed with
548 * execution. This VPE will set the top bit of ready_count
549 * to indicate to the other VPEs that they may continue.
551 if (coupled_coherence
)
552 cps_gen_set_top_bit(&p
, &l
, &r
, r_nc_count
,
556 * VPEs which did not disable coherence will continue
557 * executing, after coherence has been disabled, from this
560 uasm_build_label(&l
, p
, lbl_secondary_cont
);
562 /* Now perform our wait */
567 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
568 * will run this. The first will actually re-enable coherence & the
569 * rest will just be performing a rather unusual nop.
571 uasm_i_addiu(&p
, t0
, zero
, mips_cm_revision() < CM_REV_CM3
572 ? CM_GCR_Cx_COHERENCE_COHDOMAINEN
573 : CM3_GCR_Cx_COHERENCE_COHEN
);
575 uasm_i_sw(&p
, t0
, 0, r_pcohctl
);
576 uasm_i_lw(&p
, t0
, 0, r_pcohctl
);
578 /* Barrier to ensure write to coherence control is complete */
579 uasm_i_sync(&p
, STYPE_SYNC
);
582 if (coupled_coherence
&& (state
== CPS_PM_NC_WAIT
)) {
583 /* Decrement ready_count */
584 uasm_build_label(&l
, p
, lbl_decready
);
585 uasm_i_sync(&p
, STYPE_SYNC_MB
);
586 uasm_i_ll(&p
, t1
, 0, r_nc_count
);
587 uasm_i_addiu(&p
, t2
, t1
, -1);
588 uasm_i_sc(&p
, t2
, 0, r_nc_count
);
589 uasm_il_beqz(&p
, &r
, t2
, lbl_decready
);
590 uasm_i_andi(&p
, v0
, t1
, (1 << fls(smp_num_siblings
)) - 1);
592 /* Barrier ensuring all CPUs see the updated r_nc_count value */
593 uasm_i_sync(&p
, STYPE_SYNC_MB
);
596 if (coupled_coherence
&& (state
== CPS_PM_CLOCK_GATED
)) {
598 * At this point it is safe for all VPEs to proceed with
599 * execution. This VPE will set the top bit of ready_count
600 * to indicate to the other VPEs that they may continue.
602 cps_gen_set_top_bit(&p
, &l
, &r
, r_nc_count
, lbl_set_cont
);
605 * This core will be reliant upon another core sending a
606 * power-up command to the CPC in order to resume operation.
607 * Thus an arbitrary VPE can't trigger the core leaving the
608 * idle state and the one that disables coherence might as well
609 * be the one to re-enable it. The rest will continue from here
610 * after that has been done.
612 uasm_build_label(&l
, p
, lbl_secondary_cont
);
614 /* Barrier ensuring all CPUs see the updated r_nc_count value */
615 uasm_i_sync(&p
, STYPE_SYNC_MB
);
618 /* The core is coherent, time to return to C code */
623 /* Ensure the code didn't exceed the resources allocated for it */
624 BUG_ON((p
- buf
) > max_instrs
);
625 BUG_ON((l
- labels
) > ARRAY_SIZE(labels
));
626 BUG_ON((r
- relocs
) > ARRAY_SIZE(relocs
));
628 /* Patch branch offsets */
629 uasm_resolve_relocs(relocs
, labels
);
631 /* Flush the icache */
632 local_flush_icache_range((unsigned long)buf
, (unsigned long)p
);
640 static int cps_pm_online_cpu(unsigned int cpu
)
642 enum cps_pm_state state
;
643 unsigned core
= cpu_core(&cpu_data
[cpu
]);
644 void *entry_fn
, *core_rc
;
646 for (state
= CPS_PM_NC_WAIT
; state
< CPS_PM_STATE_COUNT
; state
++) {
647 if (per_cpu(nc_asm_enter
, core
)[state
])
649 if (!test_bit(state
, state_support
))
652 entry_fn
= cps_gen_entry_code(cpu
, state
);
654 pr_err("Failed to generate core %u state %u entry\n",
656 clear_bit(state
, state_support
);
659 per_cpu(nc_asm_enter
, core
)[state
] = entry_fn
;
662 if (!per_cpu(ready_count
, core
)) {
663 core_rc
= kmalloc(sizeof(u32
), GFP_KERNEL
);
665 pr_err("Failed allocate core %u ready_count\n", core
);
668 per_cpu(ready_count
, core
) = core_rc
;
674 static int cps_pm_power_notifier(struct notifier_block
*this,
675 unsigned long event
, void *ptr
)
680 case PM_SUSPEND_PREPARE
:
681 stat
= read_cpc_cl_stat_conf();
683 * If we're attempting to suspend the system and power down all
684 * of the cores, the JTAG detect bit indicates that the CPC will
685 * instead put the cores into clock-off state. In this state
686 * a connected debugger can cause the CPU to attempt
687 * interactions with the powered down system. At best this will
688 * fail. At worst, it can hang the NoC, requiring a hard reset.
689 * To avoid this, just block system suspend if a JTAG probe
692 if (stat
& CPC_Cx_STAT_CONF_EJTAG_PROBE
) {
693 pr_warn("JTAG probe is connected - abort suspend\n");
702 static int __init
cps_pm_init(void)
704 /* A CM is required for all non-coherent states */
705 if (!mips_cm_present()) {
706 pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
711 * If interrupts were enabled whilst running a wait instruction on a
712 * non-coherent core then the VPE may end up processing interrupts
713 * whilst non-coherent. That would be bad.
715 if (cpu_wait
== r4k_wait_irqoff
)
716 set_bit(CPS_PM_NC_WAIT
, state_support
);
718 pr_warn("pm-cps: non-coherent wait unavailable\n");
720 /* Detect whether a CPC is present */
721 if (mips_cpc_present()) {
722 /* Detect whether clock gating is implemented */
723 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL
)
724 set_bit(CPS_PM_CLOCK_GATED
, state_support
);
726 pr_warn("pm-cps: CPC does not support clock gating\n");
728 /* Power gating is available with CPS SMP & any CPC */
729 if (mips_cps_smp_in_use())
730 set_bit(CPS_PM_POWER_GATED
, state_support
);
732 pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
734 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
737 pm_notifier(cps_pm_power_notifier
, 0);
739 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "mips/cps_pm:online",
740 cps_pm_online_cpu
, NULL
);
742 arch_initcall(cps_pm_init
);