tools uapi asm: Update asm-generic/unistd.h copy
[linux/fpc-iii.git] / arch / mips / kernel / smp-bmips.c
blob76fae9b79f1312c1997e399f49d940494bd8b689
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
8 * SMP support for BMIPS
9 */
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
30 #include <asm/time.h>
31 #include <asm/pgtable.h>
32 #include <asm/processor.h>
33 #include <asm/bootinfo.h>
34 #include <asm/pmon.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mipsregs.h>
38 #include <asm/bmips.h>
39 #include <asm/traps.h>
40 #include <asm/barrier.h>
41 #include <asm/cpu-features.h>
43 static int __maybe_unused max_cpus = 1;
45 /* these may be configured by the platform code */
46 int bmips_smp_enabled = 1;
47 int bmips_cpu_offset;
48 cpumask_t bmips_booted_mask;
49 unsigned long bmips_tp1_irqs = IE_IRQ1;
51 #define RESET_FROM_KSEG0 0x80080800
52 #define RESET_FROM_KSEG1 0xa0080800
54 static void bmips_set_reset_vec(int cpu, u32 val);
56 #ifdef CONFIG_SMP
58 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
59 unsigned long bmips_smp_boot_sp;
60 unsigned long bmips_smp_boot_gp;
62 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
63 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
64 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
65 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
67 /* SW interrupts 0,1 are used for interprocessor signaling */
68 #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
69 #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
71 #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
72 #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
73 #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
74 #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
76 static void __init bmips_smp_setup(void)
78 int i, cpu = 1, boot_cpu = 0;
79 int cpu_hw_intr;
81 switch (current_cpu_type()) {
82 case CPU_BMIPS4350:
83 case CPU_BMIPS4380:
84 /* arbitration priority */
85 clear_c0_brcm_cmt_ctrl(0x30);
87 /* NBK and weak order flags */
88 set_c0_brcm_config_0(0x30000);
90 /* Find out if we are running on TP0 or TP1 */
91 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
94 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
95 * thread
96 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
97 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
99 if (boot_cpu == 0)
100 cpu_hw_intr = 0x02;
101 else
102 cpu_hw_intr = 0x1d;
104 change_c0_brcm_cmt_intr(0xf8018000,
105 (cpu_hw_intr << 27) | (0x03 << 15));
107 /* single core, 2 threads (2 pipelines) */
108 max_cpus = 2;
110 break;
111 case CPU_BMIPS5000:
112 /* enable raceless SW interrupts */
113 set_c0_brcm_config(0x03 << 22);
115 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
116 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
118 /* N cores, 2 threads per core */
119 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
121 /* clear any pending SW interrupts */
122 for (i = 0; i < max_cpus; i++) {
123 write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
124 write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
127 break;
128 default:
129 max_cpus = 1;
132 if (!bmips_smp_enabled)
133 max_cpus = 1;
135 /* this can be overridden by the BSP */
136 if (!board_ebase_setup)
137 board_ebase_setup = &bmips_ebase_setup;
139 __cpu_number_map[boot_cpu] = 0;
140 __cpu_logical_map[0] = boot_cpu;
142 for (i = 0; i < max_cpus; i++) {
143 if (i != boot_cpu) {
144 __cpu_number_map[i] = cpu;
145 __cpu_logical_map[cpu] = i;
146 cpu++;
148 set_cpu_possible(i, 1);
149 set_cpu_present(i, 1);
154 * IPI IRQ setup - runs on CPU0
156 static void bmips_prepare_cpus(unsigned int max_cpus)
158 irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
160 switch (current_cpu_type()) {
161 case CPU_BMIPS4350:
162 case CPU_BMIPS4380:
163 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
164 break;
165 case CPU_BMIPS5000:
166 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
167 break;
168 default:
169 return;
172 if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
173 IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
174 panic("Can't request IPI0 interrupt");
175 if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
176 IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
177 panic("Can't request IPI1 interrupt");
181 * Tell the hardware to boot CPUx - runs on CPU0
183 static int bmips_boot_secondary(int cpu, struct task_struct *idle)
185 bmips_smp_boot_sp = __KSTK_TOS(idle);
186 bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
187 mb();
190 * Initial boot sequence for secondary CPU:
191 * bmips_reset_nmi_vec @ a000_0000 ->
192 * bmips_smp_entry ->
193 * plat_wired_tlb_setup (cached function call; optional) ->
194 * start_secondary (cached jump)
196 * Warm restart sequence:
197 * play_dead WAIT loop ->
198 * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
199 * eret to play_dead ->
200 * bmips_secondary_reentry ->
201 * start_secondary
204 pr_info("SMP: Booting CPU%d...\n", cpu);
206 if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
207 /* kseg1 might not exist if this CPU enabled XKS01 */
208 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
210 switch (current_cpu_type()) {
211 case CPU_BMIPS4350:
212 case CPU_BMIPS4380:
213 bmips43xx_send_ipi_single(cpu, 0);
214 break;
215 case CPU_BMIPS5000:
216 bmips5000_send_ipi_single(cpu, 0);
217 break;
219 } else {
220 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
222 switch (current_cpu_type()) {
223 case CPU_BMIPS4350:
224 case CPU_BMIPS4380:
225 /* Reset slave TP1 if booting from TP0 */
226 if (cpu_logical_map(cpu) == 1)
227 set_c0_brcm_cmt_ctrl(0x01);
228 break;
229 case CPU_BMIPS5000:
230 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
231 break;
233 cpumask_set_cpu(cpu, &bmips_booted_mask);
236 return 0;
240 * Early setup - runs on secondary CPU after cache probe
242 static void bmips_init_secondary(void)
244 switch (current_cpu_type()) {
245 case CPU_BMIPS4350:
246 case CPU_BMIPS4380:
247 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
248 break;
249 case CPU_BMIPS5000:
250 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
251 cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
252 break;
257 * Late setup - runs on secondary CPU before entering the idle loop
259 static void bmips_smp_finish(void)
261 pr_info("SMP: CPU%d is running\n", smp_processor_id());
263 /* make sure there won't be a timer interrupt for a little while */
264 write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
266 irq_enable_hazard();
267 set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
268 irq_enable_hazard();
272 * BMIPS5000 raceless IPIs
274 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
275 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
276 * IPI1 is used for SMP_CALL_FUNCTION
279 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
281 write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
284 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
286 int action = irq - IPI0_IRQ;
288 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
290 if (action == 0)
291 scheduler_ipi();
292 else
293 generic_smp_call_function_interrupt();
295 return IRQ_HANDLED;
298 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
299 unsigned int action)
301 unsigned int i;
303 for_each_cpu(i, mask)
304 bmips5000_send_ipi_single(i, action);
308 * BMIPS43xx racey IPIs
310 * We use one inbound SW IRQ for each CPU.
312 * A spinlock must be held in order to keep CPUx from accidentally clearing
313 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
314 * same spinlock is used to protect the action masks.
317 static DEFINE_SPINLOCK(ipi_lock);
318 static DEFINE_PER_CPU(int, ipi_action_mask);
320 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
322 unsigned long flags;
324 spin_lock_irqsave(&ipi_lock, flags);
325 set_c0_cause(cpu ? C_SW1 : C_SW0);
326 per_cpu(ipi_action_mask, cpu) |= action;
327 irq_enable_hazard();
328 spin_unlock_irqrestore(&ipi_lock, flags);
331 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
333 unsigned long flags;
334 int action, cpu = irq - IPI0_IRQ;
336 spin_lock_irqsave(&ipi_lock, flags);
337 action = __this_cpu_read(ipi_action_mask);
338 per_cpu(ipi_action_mask, cpu) = 0;
339 clear_c0_cause(cpu ? C_SW1 : C_SW0);
340 spin_unlock_irqrestore(&ipi_lock, flags);
342 if (action & SMP_RESCHEDULE_YOURSELF)
343 scheduler_ipi();
344 if (action & SMP_CALL_FUNCTION)
345 generic_smp_call_function_interrupt();
347 return IRQ_HANDLED;
350 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
351 unsigned int action)
353 unsigned int i;
355 for_each_cpu(i, mask)
356 bmips43xx_send_ipi_single(i, action);
359 #ifdef CONFIG_HOTPLUG_CPU
361 static int bmips_cpu_disable(void)
363 unsigned int cpu = smp_processor_id();
365 if (cpu == 0)
366 return -EBUSY;
368 pr_info("SMP: CPU%d is offline\n", cpu);
370 set_cpu_online(cpu, false);
371 calculate_cpu_foreign_map();
372 irq_cpu_offline();
373 clear_c0_status(IE_IRQ5);
375 local_flush_tlb_all();
376 local_flush_icache_range(0, ~0);
378 return 0;
381 static void bmips_cpu_die(unsigned int cpu)
385 void __ref play_dead(void)
387 idle_task_exit();
389 /* flush data cache */
390 _dma_cache_wback_inv(0, ~0);
393 * Wakeup is on SW0 or SW1; disable everything else
394 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
395 * IRQ handlers; this clears ST0_IE and returns immediately.
397 clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
398 change_c0_status(
399 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
400 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
401 irq_disable_hazard();
404 * wait for SW interrupt from bmips_boot_secondary(), then jump
405 * back to start_secondary()
407 __asm__ __volatile__(
408 " wait\n"
409 " j bmips_secondary_reentry\n"
410 : : : "memory");
413 #endif /* CONFIG_HOTPLUG_CPU */
415 const struct plat_smp_ops bmips43xx_smp_ops = {
416 .smp_setup = bmips_smp_setup,
417 .prepare_cpus = bmips_prepare_cpus,
418 .boot_secondary = bmips_boot_secondary,
419 .smp_finish = bmips_smp_finish,
420 .init_secondary = bmips_init_secondary,
421 .send_ipi_single = bmips43xx_send_ipi_single,
422 .send_ipi_mask = bmips43xx_send_ipi_mask,
423 #ifdef CONFIG_HOTPLUG_CPU
424 .cpu_disable = bmips_cpu_disable,
425 .cpu_die = bmips_cpu_die,
426 #endif
427 #ifdef CONFIG_KEXEC
428 .kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
429 #endif
432 const struct plat_smp_ops bmips5000_smp_ops = {
433 .smp_setup = bmips_smp_setup,
434 .prepare_cpus = bmips_prepare_cpus,
435 .boot_secondary = bmips_boot_secondary,
436 .smp_finish = bmips_smp_finish,
437 .init_secondary = bmips_init_secondary,
438 .send_ipi_single = bmips5000_send_ipi_single,
439 .send_ipi_mask = bmips5000_send_ipi_mask,
440 #ifdef CONFIG_HOTPLUG_CPU
441 .cpu_disable = bmips_cpu_disable,
442 .cpu_die = bmips_cpu_die,
443 #endif
444 #ifdef CONFIG_KEXEC
445 .kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
446 #endif
449 #endif /* CONFIG_SMP */
451 /***********************************************************************
452 * BMIPS vector relocation
453 * This is primarily used for SMP boot, but it is applicable to some
454 * UP BMIPS systems as well.
455 ***********************************************************************/
457 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
459 memcpy((void *)dst, start, end - start);
460 dma_cache_wback(dst, end - start);
461 local_flush_icache_range(dst, dst + (end - start));
462 instruction_hazard();
465 static inline void bmips_nmi_handler_setup(void)
467 bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
468 &bmips_reset_nmi_vec_end);
469 bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
470 &bmips_smp_int_vec_end);
473 struct reset_vec_info {
474 int cpu;
475 u32 val;
478 static void bmips_set_reset_vec_remote(void *vinfo)
480 struct reset_vec_info *info = vinfo;
481 int shift = info->cpu & 0x01 ? 16 : 0;
482 u32 mask = ~(0xffff << shift), val = info->val >> 16;
484 preempt_disable();
485 if (smp_processor_id() > 0) {
486 smp_call_function_single(0, &bmips_set_reset_vec_remote,
487 info, 1);
488 } else {
489 if (info->cpu & 0x02) {
490 /* BMIPS5200 "should" use mask/shift, but it's buggy */
491 bmips_write_zscm_reg(0xa0, (val << 16) | val);
492 bmips_read_zscm_reg(0xa0);
493 } else {
494 write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
495 (val << shift));
498 preempt_enable();
501 static void bmips_set_reset_vec(int cpu, u32 val)
503 struct reset_vec_info info;
505 if (current_cpu_type() == CPU_BMIPS5000) {
506 /* this needs to run from CPU0 (which is always online) */
507 info.cpu = cpu;
508 info.val = val;
509 bmips_set_reset_vec_remote(&info);
510 } else {
511 void __iomem *cbr = BMIPS_GET_CBR();
513 if (cpu == 0)
514 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
515 else {
516 if (current_cpu_type() != CPU_BMIPS4380)
517 return;
518 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
521 __sync();
522 back_to_back_c0_hazard();
525 void bmips_ebase_setup(void)
527 unsigned long new_ebase = ebase;
529 BUG_ON(ebase != CKSEG0);
531 switch (current_cpu_type()) {
532 case CPU_BMIPS4350:
534 * BMIPS4350 cannot relocate the normal vectors, but it
535 * can relocate the BEV=1 vectors. So CPU1 starts up at
536 * the relocated BEV=1, IV=0 general exception vector @
537 * 0xa000_0380.
539 * set_uncached_handler() is used here because:
540 * - CPU1 will run this from uncached space
541 * - None of the cacheflush functions are set up yet
543 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
544 &bmips_smp_int_vec, 0x80);
545 __sync();
546 return;
547 case CPU_BMIPS3300:
548 case CPU_BMIPS4380:
550 * 0x8000_0000: reset/NMI (initially in kseg1)
551 * 0x8000_0400: normal vectors
553 new_ebase = 0x80000400;
554 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
555 break;
556 case CPU_BMIPS5000:
558 * 0x8000_0000: reset/NMI (initially in kseg1)
559 * 0x8000_1000: normal vectors
561 new_ebase = 0x80001000;
562 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
563 write_c0_ebase(new_ebase);
564 break;
565 default:
566 return;
569 board_nmi_handler_setup = &bmips_nmi_handler_setup;
570 ebase = new_ebase;
573 asmlinkage void __weak plat_wired_tlb_setup(void)
576 * Called when starting/restarting a secondary CPU.
577 * Kernel stacks and other important data might only be accessible
578 * once the wired entries are present.
582 void bmips_cpu_setup(void)
584 void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
585 u32 __maybe_unused cfg;
587 switch (current_cpu_type()) {
588 case CPU_BMIPS3300:
589 /* Set BIU to async mode */
590 set_c0_brcm_bus_pll(BIT(22));
591 __sync();
593 /* put the BIU back in sync mode */
594 clear_c0_brcm_bus_pll(BIT(22));
596 /* clear BHTD to enable branch history table */
597 clear_c0_brcm_reset(BIT(16));
599 /* Flush and enable RAC */
600 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
601 __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
602 __raw_readl(cbr + BMIPS_RAC_CONFIG);
604 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
605 __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
606 __raw_readl(cbr + BMIPS_RAC_CONFIG);
608 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
609 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
610 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
611 break;
613 case CPU_BMIPS4380:
614 /* CBG workaround for early BMIPS4380 CPUs */
615 switch (read_c0_prid()) {
616 case 0x2a040:
617 case 0x2a042:
618 case 0x2a044:
619 case 0x2a060:
620 cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
621 __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
622 __raw_readl(cbr + BMIPS_L2_CONFIG);
625 /* clear BHTD to enable branch history table */
626 clear_c0_brcm_config_0(BIT(21));
628 /* XI/ROTR enable */
629 set_c0_brcm_config_0(BIT(23));
630 set_c0_brcm_cmt_ctrl(BIT(15));
631 break;
633 case CPU_BMIPS5000:
634 /* enable RDHWR, BRDHWR */
635 set_c0_brcm_config(BIT(17) | BIT(21));
637 /* Disable JTB */
638 __asm__ __volatile__(
639 " .set noreorder\n"
640 " li $8, 0x5a455048\n"
641 " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
642 " .word 0x4008b008\n" /* mfc0 t0, $22, 8 */
643 " li $9, 0x00008000\n"
644 " or $8, $8, $9\n"
645 " .word 0x4088b008\n" /* mtc0 t0, $22, 8 */
646 " sync\n"
647 " li $8, 0x0\n"
648 " .word 0x4088b00f\n" /* mtc0 t0, $22, 15 */
649 " .set reorder\n"
650 : : : "$8", "$9");
652 /* XI enable */
653 set_c0_brcm_config(BIT(27));
655 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
656 __asm__ __volatile__(
657 " li $8, 0x5a455048\n"
658 " .word 0x4088b00f\n" /* mtc0 $8, $22, 15 */
659 " nop; nop; nop\n"
660 " .word 0x4008b008\n" /* mfc0 $8, $22, 8 */
661 " lui $9, 0x0100\n"
662 " or $8, $9\n"
663 " .word 0x4088b008\n" /* mtc0 $8, $22, 8 */
664 : : : "$8", "$9");
665 break;