2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
59 #include <trace/events/kvm.h>
61 #include <asm/debugreg.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
73 #define CREATE_TRACE_POINTS
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported
= MCG_CTL_P
| MCG_SER_P
;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported
);
81 #define emul_to_vcpu(ctxt) \
82 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
85 * - enable syscall per default because its emulated by KVM
86 * - enable LME and LMA per default on 64 bit KVM
90 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
92 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
102 static void process_nmi(struct kvm_vcpu
*vcpu
);
103 static void enter_smm(struct kvm_vcpu
*vcpu
);
104 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
);
105 static void store_regs(struct kvm_vcpu
*vcpu
);
106 static int sync_regs(struct kvm_vcpu
*vcpu
);
108 struct kvm_x86_ops
*kvm_x86_ops __read_mostly
;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
111 static bool __read_mostly ignore_msrs
= 0;
112 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
114 static bool __read_mostly report_ignored_msrs
= true;
115 module_param(report_ignored_msrs
, bool, S_IRUGO
| S_IWUSR
);
117 unsigned int min_timer_period_us
= 200;
118 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
120 static bool __read_mostly kvmclock_periodic_sync
= true;
121 module_param(kvmclock_periodic_sync
, bool, S_IRUGO
);
123 bool __read_mostly kvm_has_tsc_control
;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
125 u32 __read_mostly kvm_max_guest_tsc_khz
;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
127 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits
;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits
);
129 u64 __read_mostly kvm_max_tsc_scaling_ratio
;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio
);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio
;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio
);
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm
= 250;
136 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns
= 1000;
140 module_param(lapic_timer_advance_ns
, uint
, S_IRUGO
| S_IWUSR
);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns
);
143 static bool __read_mostly vector_hashing
= true;
144 module_param(vector_hashing
, bool, S_IRUGO
);
146 bool __read_mostly enable_vmware_backdoor
= false;
147 module_param(enable_vmware_backdoor
, bool, S_IRUGO
);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor
);
150 static bool __read_mostly force_emulation_prefix
= false;
151 module_param(force_emulation_prefix
, bool, S_IRUGO
);
153 #define KVM_NR_SHARED_MSRS 16
155 struct kvm_shared_msrs_global
{
157 u32 msrs
[KVM_NR_SHARED_MSRS
];
160 struct kvm_shared_msrs
{
161 struct user_return_notifier urn
;
163 struct kvm_shared_msr_values
{
166 } values
[KVM_NR_SHARED_MSRS
];
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
170 static struct kvm_shared_msrs __percpu
*shared_msrs
;
172 struct kvm_stats_debugfs_item debugfs_entries
[] = {
173 { "pf_fixed", VCPU_STAT(pf_fixed
) },
174 { "pf_guest", VCPU_STAT(pf_guest
) },
175 { "tlb_flush", VCPU_STAT(tlb_flush
) },
176 { "invlpg", VCPU_STAT(invlpg
) },
177 { "exits", VCPU_STAT(exits
) },
178 { "io_exits", VCPU_STAT(io_exits
) },
179 { "mmio_exits", VCPU_STAT(mmio_exits
) },
180 { "signal_exits", VCPU_STAT(signal_exits
) },
181 { "irq_window", VCPU_STAT(irq_window_exits
) },
182 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
183 { "halt_exits", VCPU_STAT(halt_exits
) },
184 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
) },
185 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll
) },
186 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid
) },
187 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
188 { "hypercalls", VCPU_STAT(hypercalls
) },
189 { "request_irq", VCPU_STAT(request_irq_exits
) },
190 { "irq_exits", VCPU_STAT(irq_exits
) },
191 { "host_state_reload", VCPU_STAT(host_state_reload
) },
192 { "fpu_reload", VCPU_STAT(fpu_reload
) },
193 { "insn_emulation", VCPU_STAT(insn_emulation
) },
194 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
195 { "irq_injections", VCPU_STAT(irq_injections
) },
196 { "nmi_injections", VCPU_STAT(nmi_injections
) },
197 { "req_event", VCPU_STAT(req_event
) },
198 { "l1d_flush", VCPU_STAT(l1d_flush
) },
199 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
200 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
201 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
202 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
203 { "mmu_flooded", VM_STAT(mmu_flooded
) },
204 { "mmu_recycled", VM_STAT(mmu_recycled
) },
205 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
206 { "mmu_unsync", VM_STAT(mmu_unsync
) },
207 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
208 { "largepages", VM_STAT(lpages
) },
209 { "max_mmu_page_hash_collisions",
210 VM_STAT(max_mmu_page_hash_collisions
) },
214 u64 __read_mostly host_xcr0
;
216 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
218 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
221 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
222 vcpu
->arch
.apf
.gfns
[i
] = ~0;
225 static void kvm_on_user_return(struct user_return_notifier
*urn
)
228 struct kvm_shared_msrs
*locals
229 = container_of(urn
, struct kvm_shared_msrs
, urn
);
230 struct kvm_shared_msr_values
*values
;
234 * Disabling irqs at this point since the following code could be
235 * interrupted and executed through kvm_arch_hardware_disable()
237 local_irq_save(flags
);
238 if (locals
->registered
) {
239 locals
->registered
= false;
240 user_return_notifier_unregister(urn
);
242 local_irq_restore(flags
);
243 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
244 values
= &locals
->values
[slot
];
245 if (values
->host
!= values
->curr
) {
246 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
247 values
->curr
= values
->host
;
252 static void shared_msr_update(unsigned slot
, u32 msr
)
255 unsigned int cpu
= smp_processor_id();
256 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
258 /* only read, and nobody should modify it at this time,
259 * so don't need lock */
260 if (slot
>= shared_msrs_global
.nr
) {
261 printk(KERN_ERR
"kvm: invalid MSR slot!");
264 rdmsrl_safe(msr
, &value
);
265 smsr
->values
[slot
].host
= value
;
266 smsr
->values
[slot
].curr
= value
;
269 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
271 BUG_ON(slot
>= KVM_NR_SHARED_MSRS
);
272 shared_msrs_global
.msrs
[slot
] = msr
;
273 if (slot
>= shared_msrs_global
.nr
)
274 shared_msrs_global
.nr
= slot
+ 1;
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
278 static void kvm_shared_msr_cpu_online(void)
282 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
283 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
286 int kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
288 unsigned int cpu
= smp_processor_id();
289 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
292 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
294 smsr
->values
[slot
].curr
= value
;
295 err
= wrmsrl_safe(shared_msrs_global
.msrs
[slot
], value
);
299 if (!smsr
->registered
) {
300 smsr
->urn
.on_user_return
= kvm_on_user_return
;
301 user_return_notifier_register(&smsr
->urn
);
302 smsr
->registered
= true;
306 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
308 static void drop_user_return_notifiers(void)
310 unsigned int cpu
= smp_processor_id();
311 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
313 if (smsr
->registered
)
314 kvm_on_user_return(&smsr
->urn
);
317 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
319 return vcpu
->arch
.apic_base
;
321 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
323 enum lapic_mode
kvm_get_apic_mode(struct kvm_vcpu
*vcpu
)
325 return kvm_apic_mode(kvm_get_apic_base(vcpu
));
327 EXPORT_SYMBOL_GPL(kvm_get_apic_mode
);
329 int kvm_set_apic_base(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
331 enum lapic_mode old_mode
= kvm_get_apic_mode(vcpu
);
332 enum lapic_mode new_mode
= kvm_apic_mode(msr_info
->data
);
333 u64 reserved_bits
= ((~0ULL) << cpuid_maxphyaddr(vcpu
)) | 0x2ff |
334 (guest_cpuid_has(vcpu
, X86_FEATURE_X2APIC
) ? 0 : X2APIC_ENABLE
);
336 if ((msr_info
->data
& reserved_bits
) != 0 || new_mode
== LAPIC_MODE_INVALID
)
338 if (!msr_info
->host_initiated
) {
339 if (old_mode
== LAPIC_MODE_X2APIC
&& new_mode
== LAPIC_MODE_XAPIC
)
341 if (old_mode
== LAPIC_MODE_DISABLED
&& new_mode
== LAPIC_MODE_X2APIC
)
345 kvm_lapic_set_base(vcpu
, msr_info
->data
);
348 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
350 asmlinkage __visible
void kvm_spurious_fault(void)
352 /* Fault while not rebooting. We want the trace. */
355 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
357 #define EXCPT_BENIGN 0
358 #define EXCPT_CONTRIBUTORY 1
361 static int exception_class(int vector
)
371 return EXCPT_CONTRIBUTORY
;
378 #define EXCPT_FAULT 0
380 #define EXCPT_ABORT 2
381 #define EXCPT_INTERRUPT 3
383 static int exception_type(int vector
)
387 if (WARN_ON(vector
> 31 || vector
== NMI_VECTOR
))
388 return EXCPT_INTERRUPT
;
392 /* #DB is trap, as instruction watchpoints are handled elsewhere */
393 if (mask
& ((1 << DB_VECTOR
) | (1 << BP_VECTOR
) | (1 << OF_VECTOR
)))
396 if (mask
& ((1 << DF_VECTOR
) | (1 << MC_VECTOR
)))
399 /* Reserved exceptions will result in fault */
403 void kvm_deliver_exception_payload(struct kvm_vcpu
*vcpu
)
405 unsigned nr
= vcpu
->arch
.exception
.nr
;
406 bool has_payload
= vcpu
->arch
.exception
.has_payload
;
407 unsigned long payload
= vcpu
->arch
.exception
.payload
;
415 * "Certain debug exceptions may clear bit 0-3. The
416 * remaining contents of the DR6 register are never
417 * cleared by the processor".
419 vcpu
->arch
.dr6
&= ~DR_TRAP_BITS
;
421 * DR6.RTM is set by all #DB exceptions that don't clear it.
423 vcpu
->arch
.dr6
|= DR6_RTM
;
424 vcpu
->arch
.dr6
|= payload
;
426 * Bit 16 should be set in the payload whenever the #DB
427 * exception should clear DR6.RTM. This makes the payload
428 * compatible with the pending debug exceptions under VMX.
429 * Though not currently documented in the SDM, this also
430 * makes the payload compatible with the exit qualification
431 * for #DB exceptions under VMX.
433 vcpu
->arch
.dr6
^= payload
& DR6_RTM
;
436 vcpu
->arch
.cr2
= payload
;
440 vcpu
->arch
.exception
.has_payload
= false;
441 vcpu
->arch
.exception
.payload
= 0;
443 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload
);
445 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
446 unsigned nr
, bool has_error
, u32 error_code
,
447 bool has_payload
, unsigned long payload
, bool reinject
)
452 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
454 if (!vcpu
->arch
.exception
.pending
&& !vcpu
->arch
.exception
.injected
) {
456 if (has_error
&& !is_protmode(vcpu
))
460 * On vmentry, vcpu->arch.exception.pending is only
461 * true if an event injection was blocked by
462 * nested_run_pending. In that case, however,
463 * vcpu_enter_guest requests an immediate exit,
464 * and the guest shouldn't proceed far enough to
467 WARN_ON_ONCE(vcpu
->arch
.exception
.pending
);
468 vcpu
->arch
.exception
.injected
= true;
469 if (WARN_ON_ONCE(has_payload
)) {
471 * A reinjected event has already
472 * delivered its payload.
478 vcpu
->arch
.exception
.pending
= true;
479 vcpu
->arch
.exception
.injected
= false;
481 vcpu
->arch
.exception
.has_error_code
= has_error
;
482 vcpu
->arch
.exception
.nr
= nr
;
483 vcpu
->arch
.exception
.error_code
= error_code
;
484 vcpu
->arch
.exception
.has_payload
= has_payload
;
485 vcpu
->arch
.exception
.payload
= payload
;
487 * In guest mode, payload delivery should be deferred,
488 * so that the L1 hypervisor can intercept #PF before
489 * CR2 is modified (or intercept #DB before DR6 is
490 * modified under nVMX). However, for ABI
491 * compatibility with KVM_GET_VCPU_EVENTS and
492 * KVM_SET_VCPU_EVENTS, we can't delay payload
493 * delivery unless userspace has enabled this
494 * functionality via the per-VM capability,
495 * KVM_CAP_EXCEPTION_PAYLOAD.
497 if (!vcpu
->kvm
->arch
.exception_payload_enabled
||
498 !is_guest_mode(vcpu
))
499 kvm_deliver_exception_payload(vcpu
);
503 /* to check exception */
504 prev_nr
= vcpu
->arch
.exception
.nr
;
505 if (prev_nr
== DF_VECTOR
) {
506 /* triple fault -> shutdown */
507 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
510 class1
= exception_class(prev_nr
);
511 class2
= exception_class(nr
);
512 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
513 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
515 * Generate double fault per SDM Table 5-5. Set
516 * exception.pending = true so that the double fault
517 * can trigger a nested vmexit.
519 vcpu
->arch
.exception
.pending
= true;
520 vcpu
->arch
.exception
.injected
= false;
521 vcpu
->arch
.exception
.has_error_code
= true;
522 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
523 vcpu
->arch
.exception
.error_code
= 0;
524 vcpu
->arch
.exception
.has_payload
= false;
525 vcpu
->arch
.exception
.payload
= 0;
527 /* replace previous exception with a new one in a hope
528 that instruction re-execution will regenerate lost
533 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
535 kvm_multiple_exception(vcpu
, nr
, false, 0, false, 0, false);
537 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
539 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
541 kvm_multiple_exception(vcpu
, nr
, false, 0, false, 0, true);
543 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
545 static void kvm_queue_exception_p(struct kvm_vcpu
*vcpu
, unsigned nr
,
546 unsigned long payload
)
548 kvm_multiple_exception(vcpu
, nr
, false, 0, true, payload
, false);
551 static void kvm_queue_exception_e_p(struct kvm_vcpu
*vcpu
, unsigned nr
,
552 u32 error_code
, unsigned long payload
)
554 kvm_multiple_exception(vcpu
, nr
, true, error_code
,
555 true, payload
, false);
558 int kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
561 kvm_inject_gp(vcpu
, 0);
563 return kvm_skip_emulated_instruction(vcpu
);
567 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
569 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
571 ++vcpu
->stat
.pf_guest
;
572 vcpu
->arch
.exception
.nested_apf
=
573 is_guest_mode(vcpu
) && fault
->async_page_fault
;
574 if (vcpu
->arch
.exception
.nested_apf
) {
575 vcpu
->arch
.apf
.nested_apf_token
= fault
->address
;
576 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
578 kvm_queue_exception_e_p(vcpu
, PF_VECTOR
, fault
->error_code
,
582 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
584 static bool kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
586 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
587 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
589 vcpu
->arch
.mmu
->inject_page_fault(vcpu
, fault
);
591 return fault
->nested_page_fault
;
594 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
596 atomic_inc(&vcpu
->arch
.nmi_queued
);
597 kvm_make_request(KVM_REQ_NMI
, vcpu
);
599 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
601 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
603 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false, 0, false);
605 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
607 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
609 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false, 0, true);
611 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
614 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
615 * a #GP and return false.
617 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
619 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
621 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
624 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
626 bool kvm_require_dr(struct kvm_vcpu
*vcpu
, int dr
)
628 if ((dr
!= 4 && dr
!= 5) || !kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
631 kvm_queue_exception(vcpu
, UD_VECTOR
);
634 EXPORT_SYMBOL_GPL(kvm_require_dr
);
637 * This function will be used to read from the physical memory of the currently
638 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
639 * can read from guest physical or from the guest's guest physical memory.
641 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
642 gfn_t ngfn
, void *data
, int offset
, int len
,
645 struct x86_exception exception
;
649 ngpa
= gfn_to_gpa(ngfn
);
650 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
, &exception
);
651 if (real_gfn
== UNMAPPED_GVA
)
654 real_gfn
= gpa_to_gfn(real_gfn
);
656 return kvm_vcpu_read_guest_page(vcpu
, real_gfn
, data
, offset
, len
);
658 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
660 static int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
661 void *data
, int offset
, int len
, u32 access
)
663 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
664 data
, offset
, len
, access
);
668 * Load the pae pdptrs. Return true is they are all valid.
670 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
672 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
673 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
676 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
678 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
679 offset
* sizeof(u64
), sizeof(pdpte
),
680 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
685 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
686 if ((pdpte
[i
] & PT_PRESENT_MASK
) &&
688 vcpu
->arch
.mmu
->guest_rsvd_check
.rsvd_bits_mask
[0][2])) {
695 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
696 __set_bit(VCPU_EXREG_PDPTR
,
697 (unsigned long *)&vcpu
->arch
.regs_avail
);
698 __set_bit(VCPU_EXREG_PDPTR
,
699 (unsigned long *)&vcpu
->arch
.regs_dirty
);
704 EXPORT_SYMBOL_GPL(load_pdptrs
);
706 bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
708 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
714 if (is_long_mode(vcpu
) || !is_pae(vcpu
) || !is_paging(vcpu
))
717 if (!test_bit(VCPU_EXREG_PDPTR
,
718 (unsigned long *)&vcpu
->arch
.regs_avail
))
721 gfn
= (kvm_read_cr3(vcpu
) & 0xffffffe0ul
) >> PAGE_SHIFT
;
722 offset
= (kvm_read_cr3(vcpu
) & 0xffffffe0ul
) & (PAGE_SIZE
- 1);
723 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
724 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
727 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
732 EXPORT_SYMBOL_GPL(pdptrs_changed
);
734 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
736 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
737 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
;
742 if (cr0
& 0xffffffff00000000UL
)
746 cr0
&= ~CR0_RESERVED_BITS
;
748 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
751 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
754 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
756 if ((vcpu
->arch
.efer
& EFER_LME
)) {
761 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
766 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
771 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
774 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
776 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
777 kvm_clear_async_pf_completion_queue(vcpu
);
778 kvm_async_pf_hash_reset(vcpu
);
781 if ((cr0
^ old_cr0
) & update_bits
)
782 kvm_mmu_reset_context(vcpu
);
784 if (((cr0
^ old_cr0
) & X86_CR0_CD
) &&
785 kvm_arch_has_noncoherent_dma(vcpu
->kvm
) &&
786 !kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
787 kvm_zap_gfn_range(vcpu
->kvm
, 0, ~0ULL);
791 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
793 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
795 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
797 EXPORT_SYMBOL_GPL(kvm_lmsw
);
799 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
801 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
802 !vcpu
->guest_xcr0_loaded
) {
803 /* kvm_set_xcr() also depends on this */
804 if (vcpu
->arch
.xcr0
!= host_xcr0
)
805 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
806 vcpu
->guest_xcr0_loaded
= 1;
810 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
812 if (vcpu
->guest_xcr0_loaded
) {
813 if (vcpu
->arch
.xcr0
!= host_xcr0
)
814 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
815 vcpu
->guest_xcr0_loaded
= 0;
819 static int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
822 u64 old_xcr0
= vcpu
->arch
.xcr0
;
825 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
826 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
828 if (!(xcr0
& XFEATURE_MASK_FP
))
830 if ((xcr0
& XFEATURE_MASK_YMM
) && !(xcr0
& XFEATURE_MASK_SSE
))
834 * Do not allow the guest to set bits that we do not support
835 * saving. However, xcr0 bit 0 is always set, even if the
836 * emulated CPU does not support XSAVE (see fx_init).
838 valid_bits
= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FP
;
839 if (xcr0
& ~valid_bits
)
842 if ((!(xcr0
& XFEATURE_MASK_BNDREGS
)) !=
843 (!(xcr0
& XFEATURE_MASK_BNDCSR
)))
846 if (xcr0
& XFEATURE_MASK_AVX512
) {
847 if (!(xcr0
& XFEATURE_MASK_YMM
))
849 if ((xcr0
& XFEATURE_MASK_AVX512
) != XFEATURE_MASK_AVX512
)
852 vcpu
->arch
.xcr0
= xcr0
;
854 if ((xcr0
^ old_xcr0
) & XFEATURE_MASK_EXTEND
)
855 kvm_update_cpuid(vcpu
);
859 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
861 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
862 __kvm_set_xcr(vcpu
, index
, xcr
)) {
863 kvm_inject_gp(vcpu
, 0);
868 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
870 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
872 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
873 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
|
874 X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_PKE
;
876 if (cr4
& CR4_RESERVED_BITS
)
879 if (!guest_cpuid_has(vcpu
, X86_FEATURE_XSAVE
) && (cr4
& X86_CR4_OSXSAVE
))
882 if (!guest_cpuid_has(vcpu
, X86_FEATURE_SMEP
) && (cr4
& X86_CR4_SMEP
))
885 if (!guest_cpuid_has(vcpu
, X86_FEATURE_SMAP
) && (cr4
& X86_CR4_SMAP
))
888 if (!guest_cpuid_has(vcpu
, X86_FEATURE_FSGSBASE
) && (cr4
& X86_CR4_FSGSBASE
))
891 if (!guest_cpuid_has(vcpu
, X86_FEATURE_PKU
) && (cr4
& X86_CR4_PKE
))
894 if (!guest_cpuid_has(vcpu
, X86_FEATURE_LA57
) && (cr4
& X86_CR4_LA57
))
897 if (!guest_cpuid_has(vcpu
, X86_FEATURE_UMIP
) && (cr4
& X86_CR4_UMIP
))
900 if (is_long_mode(vcpu
)) {
901 if (!(cr4
& X86_CR4_PAE
))
903 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
904 && ((cr4
^ old_cr4
) & pdptr_bits
)
905 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
909 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
910 if (!guest_cpuid_has(vcpu
, X86_FEATURE_PCID
))
913 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
914 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
918 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
921 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
922 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
923 kvm_mmu_reset_context(vcpu
);
925 if ((cr4
^ old_cr4
) & (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
926 kvm_update_cpuid(vcpu
);
930 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
932 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
934 bool skip_tlb_flush
= false;
936 bool pcid_enabled
= kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
);
939 skip_tlb_flush
= cr3
& X86_CR3_PCID_NOFLUSH
;
940 cr3
&= ~X86_CR3_PCID_NOFLUSH
;
944 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
945 if (!skip_tlb_flush
) {
946 kvm_mmu_sync_roots(vcpu
);
947 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
952 if (is_long_mode(vcpu
) &&
953 (cr3
& rsvd_bits(cpuid_maxphyaddr(vcpu
), 63)))
955 else if (is_pae(vcpu
) && is_paging(vcpu
) &&
956 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
959 kvm_mmu_new_cr3(vcpu
, cr3
, skip_tlb_flush
);
960 vcpu
->arch
.cr3
= cr3
;
961 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
965 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
967 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
969 if (cr8
& CR8_RESERVED_BITS
)
971 if (lapic_in_kernel(vcpu
))
972 kvm_lapic_set_tpr(vcpu
, cr8
);
974 vcpu
->arch
.cr8
= cr8
;
977 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
979 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
981 if (lapic_in_kernel(vcpu
))
982 return kvm_lapic_get_cr8(vcpu
);
984 return vcpu
->arch
.cr8
;
986 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
988 static void kvm_update_dr0123(struct kvm_vcpu
*vcpu
)
992 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
993 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
994 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
995 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_RELOAD
;
999 static void kvm_update_dr6(struct kvm_vcpu
*vcpu
)
1001 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
1002 kvm_x86_ops
->set_dr6(vcpu
, vcpu
->arch
.dr6
);
1005 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
1009 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1010 dr7
= vcpu
->arch
.guest_debug_dr7
;
1012 dr7
= vcpu
->arch
.dr7
;
1013 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
1014 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_BP_ENABLED
;
1015 if (dr7
& DR7_BP_EN_MASK
)
1016 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_BP_ENABLED
;
1019 static u64
kvm_dr6_fixed(struct kvm_vcpu
*vcpu
)
1021 u64 fixed
= DR6_FIXED_1
;
1023 if (!guest_cpuid_has(vcpu
, X86_FEATURE_RTM
))
1028 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
1032 vcpu
->arch
.db
[dr
] = val
;
1033 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
1034 vcpu
->arch
.eff_db
[dr
] = val
;
1039 if (val
& 0xffffffff00000000ULL
)
1040 return -1; /* #GP */
1041 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | kvm_dr6_fixed(vcpu
);
1042 kvm_update_dr6(vcpu
);
1047 if (val
& 0xffffffff00000000ULL
)
1048 return -1; /* #GP */
1049 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
1050 kvm_update_dr7(vcpu
);
1057 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
1059 if (__kvm_set_dr(vcpu
, dr
, val
)) {
1060 kvm_inject_gp(vcpu
, 0);
1065 EXPORT_SYMBOL_GPL(kvm_set_dr
);
1067 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
1071 *val
= vcpu
->arch
.db
[dr
];
1076 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1077 *val
= vcpu
->arch
.dr6
;
1079 *val
= kvm_x86_ops
->get_dr6(vcpu
);
1084 *val
= vcpu
->arch
.dr7
;
1089 EXPORT_SYMBOL_GPL(kvm_get_dr
);
1091 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
1093 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
1097 err
= kvm_pmu_rdpmc(vcpu
, ecx
, &data
);
1100 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
1101 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
1104 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
1107 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1108 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1110 * This list is modified at module load time to reflect the
1111 * capabilities of the host cpu. This capabilities test skips MSRs that are
1112 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1113 * may depend on host virtualization features rather than host cpu features.
1116 static u32 msrs_to_save
[] = {
1117 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
1119 #ifdef CONFIG_X86_64
1120 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
1122 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
1123 MSR_IA32_FEATURE_CONTROL
, MSR_IA32_BNDCFGS
, MSR_TSC_AUX
,
1124 MSR_IA32_SPEC_CTRL
, MSR_IA32_ARCH_CAPABILITIES
1127 static unsigned num_msrs_to_save
;
1129 static u32 emulated_msrs
[] = {
1130 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
1131 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
1132 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
1133 HV_X64_MSR_TIME_REF_COUNT
, HV_X64_MSR_REFERENCE_TSC
,
1134 HV_X64_MSR_TSC_FREQUENCY
, HV_X64_MSR_APIC_FREQUENCY
,
1135 HV_X64_MSR_CRASH_P0
, HV_X64_MSR_CRASH_P1
, HV_X64_MSR_CRASH_P2
,
1136 HV_X64_MSR_CRASH_P3
, HV_X64_MSR_CRASH_P4
, HV_X64_MSR_CRASH_CTL
,
1138 HV_X64_MSR_VP_INDEX
,
1139 HV_X64_MSR_VP_RUNTIME
,
1140 HV_X64_MSR_SCONTROL
,
1141 HV_X64_MSR_STIMER0_CONFIG
,
1142 HV_X64_MSR_VP_ASSIST_PAGE
,
1143 HV_X64_MSR_REENLIGHTENMENT_CONTROL
, HV_X64_MSR_TSC_EMULATION_CONTROL
,
1144 HV_X64_MSR_TSC_EMULATION_STATUS
,
1146 MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
1149 MSR_IA32_TSC_ADJUST
,
1150 MSR_IA32_TSCDEADLINE
,
1151 MSR_IA32_MISC_ENABLE
,
1152 MSR_IA32_MCG_STATUS
,
1154 MSR_IA32_MCG_EXT_CTL
,
1158 MSR_MISC_FEATURES_ENABLES
,
1159 MSR_AMD64_VIRT_SPEC_CTRL
,
1162 static unsigned num_emulated_msrs
;
1165 * List of msr numbers which are used to expose MSR-based features that
1166 * can be used by a hypervisor to validate requested CPU features.
1168 static u32 msr_based_features
[] = {
1170 MSR_IA32_VMX_TRUE_PINBASED_CTLS
,
1171 MSR_IA32_VMX_PINBASED_CTLS
,
1172 MSR_IA32_VMX_TRUE_PROCBASED_CTLS
,
1173 MSR_IA32_VMX_PROCBASED_CTLS
,
1174 MSR_IA32_VMX_TRUE_EXIT_CTLS
,
1175 MSR_IA32_VMX_EXIT_CTLS
,
1176 MSR_IA32_VMX_TRUE_ENTRY_CTLS
,
1177 MSR_IA32_VMX_ENTRY_CTLS
,
1179 MSR_IA32_VMX_CR0_FIXED0
,
1180 MSR_IA32_VMX_CR0_FIXED1
,
1181 MSR_IA32_VMX_CR4_FIXED0
,
1182 MSR_IA32_VMX_CR4_FIXED1
,
1183 MSR_IA32_VMX_VMCS_ENUM
,
1184 MSR_IA32_VMX_PROCBASED_CTLS2
,
1185 MSR_IA32_VMX_EPT_VPID_CAP
,
1186 MSR_IA32_VMX_VMFUNC
,
1190 MSR_IA32_ARCH_CAPABILITIES
,
1193 static unsigned int num_msr_based_features
;
1195 u64
kvm_get_arch_capabilities(void)
1199 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES
, &data
);
1202 * If we're doing cache flushes (either "always" or "cond")
1203 * we will do one whenever the guest does a vmlaunch/vmresume.
1204 * If an outer hypervisor is doing the cache flush for us
1205 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1206 * capability to the guest too, and if EPT is disabled we're not
1207 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1208 * require a nested hypervisor to do a flush of its own.
1210 if (l1tf_vmx_mitigation
!= VMENTER_L1D_FLUSH_NEVER
)
1211 data
|= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH
;
1215 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities
);
1217 static int kvm_get_msr_feature(struct kvm_msr_entry
*msr
)
1219 switch (msr
->index
) {
1220 case MSR_IA32_ARCH_CAPABILITIES
:
1221 msr
->data
= kvm_get_arch_capabilities();
1223 case MSR_IA32_UCODE_REV
:
1224 rdmsrl_safe(msr
->index
, &msr
->data
);
1227 if (kvm_x86_ops
->get_msr_feature(msr
))
1233 static int do_get_msr_feature(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1235 struct kvm_msr_entry msr
;
1239 r
= kvm_get_msr_feature(&msr
);
1248 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1250 if (efer
& efer_reserved_bits
)
1253 if (efer
& EFER_FFXSR
&& !guest_cpuid_has(vcpu
, X86_FEATURE_FXSR_OPT
))
1256 if (efer
& EFER_SVME
&& !guest_cpuid_has(vcpu
, X86_FEATURE_SVM
))
1261 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
1263 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1265 u64 old_efer
= vcpu
->arch
.efer
;
1267 if (!kvm_valid_efer(vcpu
, efer
))
1271 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
1275 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
1277 kvm_x86_ops
->set_efer(vcpu
, efer
);
1279 /* Update reserved bits */
1280 if ((efer
^ old_efer
) & EFER_NX
)
1281 kvm_mmu_reset_context(vcpu
);
1286 void kvm_enable_efer_bits(u64 mask
)
1288 efer_reserved_bits
&= ~mask
;
1290 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
1293 * Writes msr value into into the appropriate "register".
1294 * Returns 0 on success, non-0 otherwise.
1295 * Assumes vcpu_load() was already called.
1297 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1299 switch (msr
->index
) {
1302 case MSR_KERNEL_GS_BASE
:
1305 if (is_noncanonical_address(msr
->data
, vcpu
))
1308 case MSR_IA32_SYSENTER_EIP
:
1309 case MSR_IA32_SYSENTER_ESP
:
1311 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1312 * non-canonical address is written on Intel but not on
1313 * AMD (which ignores the top 32-bits, because it does
1314 * not implement 64-bit SYSENTER).
1316 * 64-bit code should hence be able to write a non-canonical
1317 * value on AMD. Making the address canonical ensures that
1318 * vmentry does not fail on Intel after writing a non-canonical
1319 * value, and that something deterministic happens if the guest
1320 * invokes 64-bit SYSENTER.
1322 msr
->data
= get_canonical(msr
->data
, vcpu_virt_addr_bits(vcpu
));
1324 return kvm_x86_ops
->set_msr(vcpu
, msr
);
1326 EXPORT_SYMBOL_GPL(kvm_set_msr
);
1329 * Adapt set_msr() to msr_io()'s calling convention
1331 static int do_get_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1333 struct msr_data msr
;
1337 msr
.host_initiated
= true;
1338 r
= kvm_get_msr(vcpu
, &msr
);
1346 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1348 struct msr_data msr
;
1352 msr
.host_initiated
= true;
1353 return kvm_set_msr(vcpu
, &msr
);
1356 #ifdef CONFIG_X86_64
1357 struct pvclock_gtod_data
{
1360 struct { /* extract of a clocksource struct */
1373 static struct pvclock_gtod_data pvclock_gtod_data
;
1375 static void update_pvclock_gtod(struct timekeeper
*tk
)
1377 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
1380 boot_ns
= ktime_to_ns(ktime_add(tk
->tkr_mono
.base
, tk
->offs_boot
));
1382 write_seqcount_begin(&vdata
->seq
);
1384 /* copy pvclock gtod data */
1385 vdata
->clock
.vclock_mode
= tk
->tkr_mono
.clock
->archdata
.vclock_mode
;
1386 vdata
->clock
.cycle_last
= tk
->tkr_mono
.cycle_last
;
1387 vdata
->clock
.mask
= tk
->tkr_mono
.mask
;
1388 vdata
->clock
.mult
= tk
->tkr_mono
.mult
;
1389 vdata
->clock
.shift
= tk
->tkr_mono
.shift
;
1391 vdata
->boot_ns
= boot_ns
;
1392 vdata
->nsec_base
= tk
->tkr_mono
.xtime_nsec
;
1394 vdata
->wall_time_sec
= tk
->xtime_sec
;
1396 write_seqcount_end(&vdata
->seq
);
1400 void kvm_set_pending_timer(struct kvm_vcpu
*vcpu
)
1403 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1404 * vcpu_enter_guest. This function is only called from
1405 * the physical CPU that is running vcpu.
1407 kvm_make_request(KVM_REQ_PENDING_TIMER
, vcpu
);
1410 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
1414 struct pvclock_wall_clock wc
;
1415 struct timespec64 boot
;
1420 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1425 ++version
; /* first time write, random junk */
1429 if (kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
)))
1433 * The guest calculates current wall clock time by adding
1434 * system time (updated by kvm_guest_time_update below) to the
1435 * wall clock specified here. guest system time equals host
1436 * system time for us, thus we must fill in host boot time here.
1438 getboottime64(&boot
);
1440 if (kvm
->arch
.kvmclock_offset
) {
1441 struct timespec64 ts
= ns_to_timespec64(kvm
->arch
.kvmclock_offset
);
1442 boot
= timespec64_sub(boot
, ts
);
1444 wc
.sec
= (u32
)boot
.tv_sec
; /* overflow in 2106 guest time */
1445 wc
.nsec
= boot
.tv_nsec
;
1446 wc
.version
= version
;
1448 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1451 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1454 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1456 do_shl32_div32(dividend
, divisor
);
1460 static void kvm_get_time_scale(uint64_t scaled_hz
, uint64_t base_hz
,
1461 s8
*pshift
, u32
*pmultiplier
)
1469 scaled64
= scaled_hz
;
1470 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1475 tps32
= (uint32_t)tps64
;
1476 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1477 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1485 *pmultiplier
= div_frac(scaled64
, tps32
);
1487 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1488 __func__
, base_hz
, scaled_hz
, shift
, *pmultiplier
);
1491 #ifdef CONFIG_X86_64
1492 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1495 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1496 static unsigned long max_tsc_khz
;
1498 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1500 u64 v
= (u64
)khz
* (1000000 + ppm
);
1505 static int set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
1509 /* Guest TSC same frequency as host TSC? */
1511 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1515 /* TSC scaling supported? */
1516 if (!kvm_has_tsc_control
) {
1517 if (user_tsc_khz
> tsc_khz
) {
1518 vcpu
->arch
.tsc_catchup
= 1;
1519 vcpu
->arch
.tsc_always_catchup
= 1;
1522 WARN(1, "user requested TSC rate below hardware speed\n");
1527 /* TSC scaling required - calculate ratio */
1528 ratio
= mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits
,
1529 user_tsc_khz
, tsc_khz
);
1531 if (ratio
== 0 || ratio
>= kvm_max_tsc_scaling_ratio
) {
1532 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1537 vcpu
->arch
.tsc_scaling_ratio
= ratio
;
1541 static int kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
)
1543 u32 thresh_lo
, thresh_hi
;
1544 int use_scaling
= 0;
1546 /* tsc_khz can be zero if TSC calibration fails */
1547 if (user_tsc_khz
== 0) {
1548 /* set tsc_scaling_ratio to a safe value */
1549 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1553 /* Compute a scale to convert nanoseconds in TSC cycles */
1554 kvm_get_time_scale(user_tsc_khz
* 1000LL, NSEC_PER_SEC
,
1555 &vcpu
->arch
.virtual_tsc_shift
,
1556 &vcpu
->arch
.virtual_tsc_mult
);
1557 vcpu
->arch
.virtual_tsc_khz
= user_tsc_khz
;
1560 * Compute the variation in TSC rate which is acceptable
1561 * within the range of tolerance and decide if the
1562 * rate being applied is within that bounds of the hardware
1563 * rate. If so, no scaling or compensation need be done.
1565 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1566 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1567 if (user_tsc_khz
< thresh_lo
|| user_tsc_khz
> thresh_hi
) {
1568 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz
, thresh_lo
, thresh_hi
);
1571 return set_tsc_khz(vcpu
, user_tsc_khz
, use_scaling
);
1574 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1576 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1577 vcpu
->arch
.virtual_tsc_mult
,
1578 vcpu
->arch
.virtual_tsc_shift
);
1579 tsc
+= vcpu
->arch
.this_tsc_write
;
1583 static inline int gtod_is_based_on_tsc(int mode
)
1585 return mode
== VCLOCK_TSC
|| mode
== VCLOCK_HVCLOCK
;
1588 static void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1590 #ifdef CONFIG_X86_64
1592 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1593 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1595 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1596 atomic_read(&vcpu
->kvm
->online_vcpus
));
1599 * Once the masterclock is enabled, always perform request in
1600 * order to update it.
1602 * In order to enable masterclock, the host clocksource must be TSC
1603 * and the vcpus need to have matched TSCs. When that happens,
1604 * perform request to enable masterclock.
1606 if (ka
->use_master_clock
||
1607 (gtod_is_based_on_tsc(gtod
->clock
.vclock_mode
) && vcpus_matched
))
1608 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1610 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1611 atomic_read(&vcpu
->kvm
->online_vcpus
),
1612 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1616 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1618 u64 curr_offset
= kvm_x86_ops
->read_l1_tsc_offset(vcpu
);
1619 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1623 * Multiply tsc by a fixed point number represented by ratio.
1625 * The most significant 64-N bits (mult) of ratio represent the
1626 * integral part of the fixed point number; the remaining N bits
1627 * (frac) represent the fractional part, ie. ratio represents a fixed
1628 * point number (mult + frac * 2^(-N)).
1630 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1632 static inline u64
__scale_tsc(u64 ratio
, u64 tsc
)
1634 return mul_u64_u64_shr(tsc
, ratio
, kvm_tsc_scaling_ratio_frac_bits
);
1637 u64
kvm_scale_tsc(struct kvm_vcpu
*vcpu
, u64 tsc
)
1640 u64 ratio
= vcpu
->arch
.tsc_scaling_ratio
;
1642 if (ratio
!= kvm_default_tsc_scaling_ratio
)
1643 _tsc
= __scale_tsc(ratio
, tsc
);
1647 EXPORT_SYMBOL_GPL(kvm_scale_tsc
);
1649 static u64
kvm_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1653 tsc
= kvm_scale_tsc(vcpu
, rdtsc());
1655 return target_tsc
- tsc
;
1658 u64
kvm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
1660 u64 tsc_offset
= kvm_x86_ops
->read_l1_tsc_offset(vcpu
);
1662 return tsc_offset
+ kvm_scale_tsc(vcpu
, host_tsc
);
1664 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc
);
1666 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1668 vcpu
->arch
.tsc_offset
= kvm_x86_ops
->write_l1_tsc_offset(vcpu
, offset
);
1671 static inline bool kvm_check_tsc_unstable(void)
1673 #ifdef CONFIG_X86_64
1675 * TSC is marked unstable when we're running on Hyper-V,
1676 * 'TSC page' clocksource is good.
1678 if (pvclock_gtod_data
.clock
.vclock_mode
== VCLOCK_HVCLOCK
)
1681 return check_tsc_unstable();
1684 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1686 struct kvm
*kvm
= vcpu
->kvm
;
1687 u64 offset
, ns
, elapsed
;
1688 unsigned long flags
;
1690 bool already_matched
;
1691 u64 data
= msr
->data
;
1692 bool synchronizing
= false;
1694 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1695 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1696 ns
= ktime_get_boot_ns();
1697 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1699 if (vcpu
->arch
.virtual_tsc_khz
) {
1700 if (data
== 0 && msr
->host_initiated
) {
1702 * detection of vcpu initialization -- need to sync
1703 * with other vCPUs. This particularly helps to keep
1704 * kvm_clock stable after CPU hotplug
1706 synchronizing
= true;
1708 u64 tsc_exp
= kvm
->arch
.last_tsc_write
+
1709 nsec_to_cycles(vcpu
, elapsed
);
1710 u64 tsc_hz
= vcpu
->arch
.virtual_tsc_khz
* 1000LL;
1712 * Special case: TSC write with a small delta (1 second)
1713 * of virtual cycle time against real time is
1714 * interpreted as an attempt to synchronize the CPU.
1716 synchronizing
= data
< tsc_exp
+ tsc_hz
&&
1717 data
+ tsc_hz
> tsc_exp
;
1722 * For a reliable TSC, we can match TSC offsets, and for an unstable
1723 * TSC, we add elapsed time in this computation. We could let the
1724 * compensation code attempt to catch up if we fall behind, but
1725 * it's better to try to match offsets from the beginning.
1727 if (synchronizing
&&
1728 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1729 if (!kvm_check_tsc_unstable()) {
1730 offset
= kvm
->arch
.cur_tsc_offset
;
1731 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1733 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1735 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1736 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1739 already_matched
= (vcpu
->arch
.this_tsc_generation
== kvm
->arch
.cur_tsc_generation
);
1742 * We split periods of matched TSC writes into generations.
1743 * For each generation, we track the original measured
1744 * nanosecond time, offset, and write, so if TSCs are in
1745 * sync, we can match exact offset, and if not, we can match
1746 * exact software computation in compute_guest_tsc()
1748 * These values are tracked in kvm->arch.cur_xxx variables.
1750 kvm
->arch
.cur_tsc_generation
++;
1751 kvm
->arch
.cur_tsc_nsec
= ns
;
1752 kvm
->arch
.cur_tsc_write
= data
;
1753 kvm
->arch
.cur_tsc_offset
= offset
;
1755 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1756 kvm
->arch
.cur_tsc_generation
, data
);
1760 * We also track th most recent recorded KHZ, write and time to
1761 * allow the matching interval to be extended at each write.
1763 kvm
->arch
.last_tsc_nsec
= ns
;
1764 kvm
->arch
.last_tsc_write
= data
;
1765 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1767 vcpu
->arch
.last_guest_tsc
= data
;
1769 /* Keep track of which generation this VCPU has synchronized to */
1770 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1771 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1772 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1774 if (!msr
->host_initiated
&& guest_cpuid_has(vcpu
, X86_FEATURE_TSC_ADJUST
))
1775 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1777 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
1778 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1780 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1782 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1783 } else if (!already_matched
) {
1784 kvm
->arch
.nr_vcpus_matched_tsc
++;
1787 kvm_track_tsc_matching(vcpu
);
1788 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1791 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1793 static inline void adjust_tsc_offset_guest(struct kvm_vcpu
*vcpu
,
1796 u64 tsc_offset
= kvm_x86_ops
->read_l1_tsc_offset(vcpu
);
1797 kvm_vcpu_write_tsc_offset(vcpu
, tsc_offset
+ adjustment
);
1800 static inline void adjust_tsc_offset_host(struct kvm_vcpu
*vcpu
, s64 adjustment
)
1802 if (vcpu
->arch
.tsc_scaling_ratio
!= kvm_default_tsc_scaling_ratio
)
1803 WARN_ON(adjustment
< 0);
1804 adjustment
= kvm_scale_tsc(vcpu
, (u64
) adjustment
);
1805 adjust_tsc_offset_guest(vcpu
, adjustment
);
1808 #ifdef CONFIG_X86_64
1810 static u64
read_tsc(void)
1812 u64 ret
= (u64
)rdtsc_ordered();
1813 u64 last
= pvclock_gtod_data
.clock
.cycle_last
;
1815 if (likely(ret
>= last
))
1819 * GCC likes to generate cmov here, but this branch is extremely
1820 * predictable (it's just a function of time and the likely is
1821 * very likely) and there's a data dependence, so force GCC
1822 * to generate a branch instead. I don't barrier() because
1823 * we don't actually need a barrier, and if this function
1824 * ever gets inlined it will generate worse code.
1830 static inline u64
vgettsc(u64
*tsc_timestamp
, int *mode
)
1833 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1836 switch (gtod
->clock
.vclock_mode
) {
1837 case VCLOCK_HVCLOCK
:
1838 tsc_pg_val
= hv_read_tsc_page_tsc(hv_get_tsc_page(),
1840 if (tsc_pg_val
!= U64_MAX
) {
1841 /* TSC page valid */
1842 *mode
= VCLOCK_HVCLOCK
;
1843 v
= (tsc_pg_val
- gtod
->clock
.cycle_last
) &
1846 /* TSC page invalid */
1847 *mode
= VCLOCK_NONE
;
1852 *tsc_timestamp
= read_tsc();
1853 v
= (*tsc_timestamp
- gtod
->clock
.cycle_last
) &
1857 *mode
= VCLOCK_NONE
;
1860 if (*mode
== VCLOCK_NONE
)
1861 *tsc_timestamp
= v
= 0;
1863 return v
* gtod
->clock
.mult
;
1866 static int do_monotonic_boot(s64
*t
, u64
*tsc_timestamp
)
1868 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1874 seq
= read_seqcount_begin(>od
->seq
);
1875 ns
= gtod
->nsec_base
;
1876 ns
+= vgettsc(tsc_timestamp
, &mode
);
1877 ns
>>= gtod
->clock
.shift
;
1878 ns
+= gtod
->boot_ns
;
1879 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1885 static int do_realtime(struct timespec64
*ts
, u64
*tsc_timestamp
)
1887 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1893 seq
= read_seqcount_begin(>od
->seq
);
1894 ts
->tv_sec
= gtod
->wall_time_sec
;
1895 ns
= gtod
->nsec_base
;
1896 ns
+= vgettsc(tsc_timestamp
, &mode
);
1897 ns
>>= gtod
->clock
.shift
;
1898 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1900 ts
->tv_sec
+= __iter_div_u64_rem(ns
, NSEC_PER_SEC
, &ns
);
1906 /* returns true if host is using TSC based clocksource */
1907 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, u64
*tsc_timestamp
)
1909 /* checked again under seqlock below */
1910 if (!gtod_is_based_on_tsc(pvclock_gtod_data
.clock
.vclock_mode
))
1913 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns
,
1917 /* returns true if host is using TSC based clocksource */
1918 static bool kvm_get_walltime_and_clockread(struct timespec64
*ts
,
1921 /* checked again under seqlock below */
1922 if (!gtod_is_based_on_tsc(pvclock_gtod_data
.clock
.vclock_mode
))
1925 return gtod_is_based_on_tsc(do_realtime(ts
, tsc_timestamp
));
1931 * Assuming a stable TSC across physical CPUS, and a stable TSC
1932 * across virtual CPUs, the following condition is possible.
1933 * Each numbered line represents an event visible to both
1934 * CPUs at the next numbered event.
1936 * "timespecX" represents host monotonic time. "tscX" represents
1939 * VCPU0 on CPU0 | VCPU1 on CPU1
1941 * 1. read timespec0,tsc0
1942 * 2. | timespec1 = timespec0 + N
1944 * 3. transition to guest | transition to guest
1945 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1946 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1947 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1949 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1952 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1954 * - 0 < N - M => M < N
1956 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1957 * always the case (the difference between two distinct xtime instances
1958 * might be smaller then the difference between corresponding TSC reads,
1959 * when updating guest vcpus pvclock areas).
1961 * To avoid that problem, do not allow visibility of distinct
1962 * system_timestamp/tsc_timestamp values simultaneously: use a master
1963 * copy of host monotonic time values. Update that master copy
1966 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1970 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1972 #ifdef CONFIG_X86_64
1973 struct kvm_arch
*ka
= &kvm
->arch
;
1975 bool host_tsc_clocksource
, vcpus_matched
;
1977 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1978 atomic_read(&kvm
->online_vcpus
));
1981 * If the host uses TSC clock, then passthrough TSC as stable
1984 host_tsc_clocksource
= kvm_get_time_and_clockread(
1985 &ka
->master_kernel_ns
,
1986 &ka
->master_cycle_now
);
1988 ka
->use_master_clock
= host_tsc_clocksource
&& vcpus_matched
1989 && !ka
->backwards_tsc_observed
1990 && !ka
->boot_vcpu_runs_old_kvmclock
;
1992 if (ka
->use_master_clock
)
1993 atomic_set(&kvm_guest_has_master_clock
, 1);
1995 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1996 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
2001 void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
2003 kvm_make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
2006 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
2008 #ifdef CONFIG_X86_64
2010 struct kvm_vcpu
*vcpu
;
2011 struct kvm_arch
*ka
= &kvm
->arch
;
2013 spin_lock(&ka
->pvclock_gtod_sync_lock
);
2014 kvm_make_mclock_inprogress_request(kvm
);
2015 /* no guest entries from this point */
2016 pvclock_update_vm_gtod_copy(kvm
);
2018 kvm_for_each_vcpu(i
, vcpu
, kvm
)
2019 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2021 /* guest entries allowed */
2022 kvm_for_each_vcpu(i
, vcpu
, kvm
)
2023 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS
, vcpu
);
2025 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
2029 u64
get_kvmclock_ns(struct kvm
*kvm
)
2031 struct kvm_arch
*ka
= &kvm
->arch
;
2032 struct pvclock_vcpu_time_info hv_clock
;
2035 spin_lock(&ka
->pvclock_gtod_sync_lock
);
2036 if (!ka
->use_master_clock
) {
2037 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
2038 return ktime_get_boot_ns() + ka
->kvmclock_offset
;
2041 hv_clock
.tsc_timestamp
= ka
->master_cycle_now
;
2042 hv_clock
.system_time
= ka
->master_kernel_ns
+ ka
->kvmclock_offset
;
2043 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
2045 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2048 if (__this_cpu_read(cpu_tsc_khz
)) {
2049 kvm_get_time_scale(NSEC_PER_SEC
, __this_cpu_read(cpu_tsc_khz
) * 1000LL,
2050 &hv_clock
.tsc_shift
,
2051 &hv_clock
.tsc_to_system_mul
);
2052 ret
= __pvclock_read_cycles(&hv_clock
, rdtsc());
2054 ret
= ktime_get_boot_ns() + ka
->kvmclock_offset
;
2061 static void kvm_setup_pvclock_page(struct kvm_vcpu
*v
)
2063 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
2064 struct pvclock_vcpu_time_info guest_hv_clock
;
2066 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
2067 &guest_hv_clock
, sizeof(guest_hv_clock
))))
2070 /* This VCPU is paused, but it's legal for a guest to read another
2071 * VCPU's kvmclock, so we really have to follow the specification where
2072 * it says that version is odd if data is being modified, and even after
2075 * Version field updates must be kept separate. This is because
2076 * kvm_write_guest_cached might use a "rep movs" instruction, and
2077 * writes within a string instruction are weakly ordered. So there
2078 * are three writes overall.
2080 * As a small optimization, only write the version field in the first
2081 * and third write. The vcpu->pv_time cache is still valid, because the
2082 * version field is the first in the struct.
2084 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info
, version
) != 0);
2086 if (guest_hv_clock
.version
& 1)
2087 ++guest_hv_clock
.version
; /* first time write, random junk */
2089 vcpu
->hv_clock
.version
= guest_hv_clock
.version
+ 1;
2090 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
2092 sizeof(vcpu
->hv_clock
.version
));
2096 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2097 vcpu
->hv_clock
.flags
|= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
2099 if (vcpu
->pvclock_set_guest_stopped_request
) {
2100 vcpu
->hv_clock
.flags
|= PVCLOCK_GUEST_STOPPED
;
2101 vcpu
->pvclock_set_guest_stopped_request
= false;
2104 trace_kvm_pvclock_update(v
->vcpu_id
, &vcpu
->hv_clock
);
2106 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
2108 sizeof(vcpu
->hv_clock
));
2112 vcpu
->hv_clock
.version
++;
2113 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
2115 sizeof(vcpu
->hv_clock
.version
));
2118 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
2120 unsigned long flags
, tgt_tsc_khz
;
2121 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
2122 struct kvm_arch
*ka
= &v
->kvm
->arch
;
2124 u64 tsc_timestamp
, host_tsc
;
2126 bool use_master_clock
;
2132 * If the host uses TSC clock, then passthrough TSC as stable
2135 spin_lock(&ka
->pvclock_gtod_sync_lock
);
2136 use_master_clock
= ka
->use_master_clock
;
2137 if (use_master_clock
) {
2138 host_tsc
= ka
->master_cycle_now
;
2139 kernel_ns
= ka
->master_kernel_ns
;
2141 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
2143 /* Keep irq disabled to prevent changes to the clock */
2144 local_irq_save(flags
);
2145 tgt_tsc_khz
= __this_cpu_read(cpu_tsc_khz
);
2146 if (unlikely(tgt_tsc_khz
== 0)) {
2147 local_irq_restore(flags
);
2148 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
2151 if (!use_master_clock
) {
2153 kernel_ns
= ktime_get_boot_ns();
2156 tsc_timestamp
= kvm_read_l1_tsc(v
, host_tsc
);
2159 * We may have to catch up the TSC to match elapsed wall clock
2160 * time for two reasons, even if kvmclock is used.
2161 * 1) CPU could have been running below the maximum TSC rate
2162 * 2) Broken TSC compensation resets the base at each VCPU
2163 * entry to avoid unknown leaps of TSC even when running
2164 * again on the same CPU. This may cause apparent elapsed
2165 * time to disappear, and the guest to stand still or run
2168 if (vcpu
->tsc_catchup
) {
2169 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
2170 if (tsc
> tsc_timestamp
) {
2171 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
2172 tsc_timestamp
= tsc
;
2176 local_irq_restore(flags
);
2178 /* With all the info we got, fill in the values */
2180 if (kvm_has_tsc_control
)
2181 tgt_tsc_khz
= kvm_scale_tsc(v
, tgt_tsc_khz
);
2183 if (unlikely(vcpu
->hw_tsc_khz
!= tgt_tsc_khz
)) {
2184 kvm_get_time_scale(NSEC_PER_SEC
, tgt_tsc_khz
* 1000LL,
2185 &vcpu
->hv_clock
.tsc_shift
,
2186 &vcpu
->hv_clock
.tsc_to_system_mul
);
2187 vcpu
->hw_tsc_khz
= tgt_tsc_khz
;
2190 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
2191 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
2192 vcpu
->last_guest_tsc
= tsc_timestamp
;
2194 /* If the host uses TSC clocksource, then it is stable */
2196 if (use_master_clock
)
2197 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
2199 vcpu
->hv_clock
.flags
= pvclock_flags
;
2201 if (vcpu
->pv_time_enabled
)
2202 kvm_setup_pvclock_page(v
);
2203 if (v
== kvm_get_vcpu(v
->kvm
, 0))
2204 kvm_hv_setup_tsc_page(v
->kvm
, &vcpu
->hv_clock
);
2209 * kvmclock updates which are isolated to a given vcpu, such as
2210 * vcpu->cpu migration, should not allow system_timestamp from
2211 * the rest of the vcpus to remain static. Otherwise ntp frequency
2212 * correction applies to one vcpu's system_timestamp but not
2215 * So in those cases, request a kvmclock update for all vcpus.
2216 * We need to rate-limit these requests though, as they can
2217 * considerably slow guests that have a large number of vcpus.
2218 * The time for a remote vcpu to update its kvmclock is bound
2219 * by the delay we use to rate-limit the updates.
2222 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2224 static void kvmclock_update_fn(struct work_struct
*work
)
2227 struct delayed_work
*dwork
= to_delayed_work(work
);
2228 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
2229 kvmclock_update_work
);
2230 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
2231 struct kvm_vcpu
*vcpu
;
2233 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2234 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2235 kvm_vcpu_kick(vcpu
);
2239 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
2241 struct kvm
*kvm
= v
->kvm
;
2243 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
2244 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
,
2245 KVMCLOCK_UPDATE_DELAY
);
2248 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2250 static void kvmclock_sync_fn(struct work_struct
*work
)
2252 struct delayed_work
*dwork
= to_delayed_work(work
);
2253 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
2254 kvmclock_sync_work
);
2255 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
2257 if (!kvmclock_periodic_sync
)
2260 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
, 0);
2261 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
2262 KVMCLOCK_SYNC_PERIOD
);
2265 static int set_msr_mce(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2267 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2268 unsigned bank_num
= mcg_cap
& 0xff;
2269 u32 msr
= msr_info
->index
;
2270 u64 data
= msr_info
->data
;
2273 case MSR_IA32_MCG_STATUS
:
2274 vcpu
->arch
.mcg_status
= data
;
2276 case MSR_IA32_MCG_CTL
:
2277 if (!(mcg_cap
& MCG_CTL_P
) &&
2278 (data
|| !msr_info
->host_initiated
))
2280 if (data
!= 0 && data
!= ~(u64
)0)
2282 vcpu
->arch
.mcg_ctl
= data
;
2285 if (msr
>= MSR_IA32_MC0_CTL
&&
2286 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2287 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2288 /* only 0 or all 1s can be written to IA32_MCi_CTL
2289 * some Linux kernels though clear bit 10 in bank 4 to
2290 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2291 * this to avoid an uncatched #GP in the guest
2293 if ((offset
& 0x3) == 0 &&
2294 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
2296 if (!msr_info
->host_initiated
&&
2297 (offset
& 0x3) == 1 && data
!= 0)
2299 vcpu
->arch
.mce_banks
[offset
] = data
;
2307 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
2309 struct kvm
*kvm
= vcpu
->kvm
;
2310 int lm
= is_long_mode(vcpu
);
2311 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
2312 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
2313 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
2314 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
2315 u32 page_num
= data
& ~PAGE_MASK
;
2316 u64 page_addr
= data
& PAGE_MASK
;
2321 if (page_num
>= blob_size
)
2324 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
2329 if (kvm_vcpu_write_guest(vcpu
, page_addr
, page
, PAGE_SIZE
))
2338 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
2340 gpa_t gpa
= data
& ~0x3f;
2342 /* Bits 3:5 are reserved, Should be zero */
2346 vcpu
->arch
.apf
.msr_val
= data
;
2348 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
2349 kvm_clear_async_pf_completion_queue(vcpu
);
2350 kvm_async_pf_hash_reset(vcpu
);
2354 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
2358 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
2359 vcpu
->arch
.apf
.delivery_as_pf_vmexit
= data
& KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT
;
2360 kvm_async_pf_wakeup_all(vcpu
);
2364 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
2366 vcpu
->arch
.pv_time_enabled
= false;
2369 static void kvm_vcpu_flush_tlb(struct kvm_vcpu
*vcpu
, bool invalidate_gpa
)
2371 ++vcpu
->stat
.tlb_flush
;
2372 kvm_x86_ops
->tlb_flush(vcpu
, invalidate_gpa
);
2375 static void record_steal_time(struct kvm_vcpu
*vcpu
)
2377 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2380 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2381 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
2385 * Doing a TLB flush here, on the guest's behalf, can avoid
2388 if (xchg(&vcpu
->arch
.st
.steal
.preempted
, 0) & KVM_VCPU_FLUSH_TLB
)
2389 kvm_vcpu_flush_tlb(vcpu
, false);
2391 if (vcpu
->arch
.st
.steal
.version
& 1)
2392 vcpu
->arch
.st
.steal
.version
+= 1; /* first time write, random junk */
2394 vcpu
->arch
.st
.steal
.version
+= 1;
2396 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2397 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2401 vcpu
->arch
.st
.steal
.steal
+= current
->sched_info
.run_delay
-
2402 vcpu
->arch
.st
.last_steal
;
2403 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2405 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2406 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2410 vcpu
->arch
.st
.steal
.version
+= 1;
2412 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2413 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2416 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2419 u32 msr
= msr_info
->index
;
2420 u64 data
= msr_info
->data
;
2423 case MSR_AMD64_NB_CFG
:
2424 case MSR_IA32_UCODE_WRITE
:
2425 case MSR_VM_HSAVE_PA
:
2426 case MSR_AMD64_PATCH_LOADER
:
2427 case MSR_AMD64_BU_CFG2
:
2428 case MSR_AMD64_DC_CFG
:
2431 case MSR_IA32_UCODE_REV
:
2432 if (msr_info
->host_initiated
)
2433 vcpu
->arch
.microcode_version
= data
;
2436 return set_efer(vcpu
, data
);
2438 data
&= ~(u64
)0x40; /* ignore flush filter disable */
2439 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
2440 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
2441 data
&= ~(u64
)0x40000; /* ignore Mc status write enable */
2443 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
2448 case MSR_FAM10H_MMIO_CONF_BASE
:
2450 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
2455 case MSR_IA32_DEBUGCTLMSR
:
2457 /* We support the non-activated case already */
2459 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2460 /* Values other than LBR and BTF are vendor-specific,
2461 thus reserved and should throw a #GP */
2464 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2467 case 0x200 ... 0x2ff:
2468 return kvm_mtrr_set_msr(vcpu
, msr
, data
);
2469 case MSR_IA32_APICBASE
:
2470 return kvm_set_apic_base(vcpu
, msr_info
);
2471 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2472 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2473 case MSR_IA32_TSCDEADLINE
:
2474 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2476 case MSR_IA32_TSC_ADJUST
:
2477 if (guest_cpuid_has(vcpu
, X86_FEATURE_TSC_ADJUST
)) {
2478 if (!msr_info
->host_initiated
) {
2479 s64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2480 adjust_tsc_offset_guest(vcpu
, adj
);
2482 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2485 case MSR_IA32_MISC_ENABLE
:
2486 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2488 case MSR_IA32_SMBASE
:
2489 if (!msr_info
->host_initiated
)
2491 vcpu
->arch
.smbase
= data
;
2494 kvm_write_tsc(vcpu
, msr_info
);
2497 if (!msr_info
->host_initiated
)
2499 vcpu
->arch
.smi_count
= data
;
2501 case MSR_KVM_WALL_CLOCK_NEW
:
2502 case MSR_KVM_WALL_CLOCK
:
2503 vcpu
->kvm
->arch
.wall_clock
= data
;
2504 kvm_write_wall_clock(vcpu
->kvm
, data
);
2506 case MSR_KVM_SYSTEM_TIME_NEW
:
2507 case MSR_KVM_SYSTEM_TIME
: {
2508 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
2510 kvmclock_reset(vcpu
);
2512 if (vcpu
->vcpu_id
== 0 && !msr_info
->host_initiated
) {
2513 bool tmp
= (msr
== MSR_KVM_SYSTEM_TIME
);
2515 if (ka
->boot_vcpu_runs_old_kvmclock
!= tmp
)
2516 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
2518 ka
->boot_vcpu_runs_old_kvmclock
= tmp
;
2521 vcpu
->arch
.time
= data
;
2522 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2524 /* we verify if the enable bit is set... */
2528 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2529 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2530 sizeof(struct pvclock_vcpu_time_info
)))
2531 vcpu
->arch
.pv_time_enabled
= false;
2533 vcpu
->arch
.pv_time_enabled
= true;
2537 case MSR_KVM_ASYNC_PF_EN
:
2538 if (kvm_pv_enable_async_pf(vcpu
, data
))
2541 case MSR_KVM_STEAL_TIME
:
2543 if (unlikely(!sched_info_on()))
2546 if (data
& KVM_STEAL_RESERVED_MASK
)
2549 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2550 data
& KVM_STEAL_VALID_BITS
,
2551 sizeof(struct kvm_steal_time
)))
2554 vcpu
->arch
.st
.msr_val
= data
;
2556 if (!(data
& KVM_MSR_ENABLED
))
2559 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2562 case MSR_KVM_PV_EOI_EN
:
2563 if (kvm_lapic_enable_pv_eoi(vcpu
, data
, sizeof(u8
)))
2567 case MSR_IA32_MCG_CTL
:
2568 case MSR_IA32_MCG_STATUS
:
2569 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2570 return set_msr_mce(vcpu
, msr_info
);
2572 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2573 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2574 pr
= true; /* fall through */
2575 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2576 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2577 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2578 return kvm_pmu_set_msr(vcpu
, msr_info
);
2580 if (pr
|| data
!= 0)
2581 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2582 "0x%x data 0x%llx\n", msr
, data
);
2584 case MSR_K7_CLK_CTL
:
2586 * Ignore all writes to this no longer documented MSR.
2587 * Writes are only relevant for old K7 processors,
2588 * all pre-dating SVM, but a recommended workaround from
2589 * AMD for these chips. It is possible to specify the
2590 * affected processor models on the command line, hence
2591 * the need to ignore the workaround.
2594 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2595 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2596 case HV_X64_MSR_CRASH_CTL
:
2597 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2598 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
2599 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
2600 case HV_X64_MSR_TSC_EMULATION_STATUS
:
2601 return kvm_hv_set_msr_common(vcpu
, msr
, data
,
2602 msr_info
->host_initiated
);
2603 case MSR_IA32_BBL_CR_CTL3
:
2604 /* Drop writes to this legacy MSR -- see rdmsr
2605 * counterpart for further detail.
2607 if (report_ignored_msrs
)
2608 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data 0x%llx\n",
2611 case MSR_AMD64_OSVW_ID_LENGTH
:
2612 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2614 vcpu
->arch
.osvw
.length
= data
;
2616 case MSR_AMD64_OSVW_STATUS
:
2617 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2619 vcpu
->arch
.osvw
.status
= data
;
2621 case MSR_PLATFORM_INFO
:
2622 if (!msr_info
->host_initiated
||
2623 (!(data
& MSR_PLATFORM_INFO_CPUID_FAULT
) &&
2624 cpuid_fault_enabled(vcpu
)))
2626 vcpu
->arch
.msr_platform_info
= data
;
2628 case MSR_MISC_FEATURES_ENABLES
:
2629 if (data
& ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT
||
2630 (data
& MSR_MISC_FEATURES_ENABLES_CPUID_FAULT
&&
2631 !supports_cpuid_fault(vcpu
)))
2633 vcpu
->arch
.msr_misc_features_enables
= data
;
2636 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2637 return xen_hvm_config(vcpu
, data
);
2638 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2639 return kvm_pmu_set_msr(vcpu
, msr_info
);
2641 vcpu_debug_ratelimited(vcpu
, "unhandled wrmsr: 0x%x data 0x%llx\n",
2645 if (report_ignored_msrs
)
2647 "ignored wrmsr: 0x%x data 0x%llx\n",
2654 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2658 * Reads an msr value (of 'msr_index') into 'pdata'.
2659 * Returns 0 on success, non-0 otherwise.
2660 * Assumes vcpu_load() was already called.
2662 int kvm_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
2664 return kvm_x86_ops
->get_msr(vcpu
, msr
);
2666 EXPORT_SYMBOL_GPL(kvm_get_msr
);
2668 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
, bool host
)
2671 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2672 unsigned bank_num
= mcg_cap
& 0xff;
2675 case MSR_IA32_P5_MC_ADDR
:
2676 case MSR_IA32_P5_MC_TYPE
:
2679 case MSR_IA32_MCG_CAP
:
2680 data
= vcpu
->arch
.mcg_cap
;
2682 case MSR_IA32_MCG_CTL
:
2683 if (!(mcg_cap
& MCG_CTL_P
) && !host
)
2685 data
= vcpu
->arch
.mcg_ctl
;
2687 case MSR_IA32_MCG_STATUS
:
2688 data
= vcpu
->arch
.mcg_status
;
2691 if (msr
>= MSR_IA32_MC0_CTL
&&
2692 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2693 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2694 data
= vcpu
->arch
.mce_banks
[offset
];
2703 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2705 switch (msr_info
->index
) {
2706 case MSR_IA32_PLATFORM_ID
:
2707 case MSR_IA32_EBL_CR_POWERON
:
2708 case MSR_IA32_DEBUGCTLMSR
:
2709 case MSR_IA32_LASTBRANCHFROMIP
:
2710 case MSR_IA32_LASTBRANCHTOIP
:
2711 case MSR_IA32_LASTINTFROMIP
:
2712 case MSR_IA32_LASTINTTOIP
:
2714 case MSR_K8_TSEG_ADDR
:
2715 case MSR_K8_TSEG_MASK
:
2717 case MSR_VM_HSAVE_PA
:
2718 case MSR_K8_INT_PENDING_MSG
:
2719 case MSR_AMD64_NB_CFG
:
2720 case MSR_FAM10H_MMIO_CONF_BASE
:
2721 case MSR_AMD64_BU_CFG2
:
2722 case MSR_IA32_PERF_CTL
:
2723 case MSR_AMD64_DC_CFG
:
2726 case MSR_F15H_PERF_CTL0
... MSR_F15H_PERF_CTR5
:
2727 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2728 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2729 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2730 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2731 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2732 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2735 case MSR_IA32_UCODE_REV
:
2736 msr_info
->data
= vcpu
->arch
.microcode_version
;
2739 msr_info
->data
= kvm_scale_tsc(vcpu
, rdtsc()) + vcpu
->arch
.tsc_offset
;
2742 case 0x200 ... 0x2ff:
2743 return kvm_mtrr_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2744 case 0xcd: /* fsb frequency */
2748 * MSR_EBC_FREQUENCY_ID
2749 * Conservative value valid for even the basic CPU models.
2750 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2751 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2752 * and 266MHz for model 3, or 4. Set Core Clock
2753 * Frequency to System Bus Frequency Ratio to 1 (bits
2754 * 31:24) even though these are only valid for CPU
2755 * models > 2, however guests may end up dividing or
2756 * multiplying by zero otherwise.
2758 case MSR_EBC_FREQUENCY_ID
:
2759 msr_info
->data
= 1 << 24;
2761 case MSR_IA32_APICBASE
:
2762 msr_info
->data
= kvm_get_apic_base(vcpu
);
2764 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2765 return kvm_x2apic_msr_read(vcpu
, msr_info
->index
, &msr_info
->data
);
2767 case MSR_IA32_TSCDEADLINE
:
2768 msr_info
->data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2770 case MSR_IA32_TSC_ADJUST
:
2771 msr_info
->data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2773 case MSR_IA32_MISC_ENABLE
:
2774 msr_info
->data
= vcpu
->arch
.ia32_misc_enable_msr
;
2776 case MSR_IA32_SMBASE
:
2777 if (!msr_info
->host_initiated
)
2779 msr_info
->data
= vcpu
->arch
.smbase
;
2782 msr_info
->data
= vcpu
->arch
.smi_count
;
2784 case MSR_IA32_PERF_STATUS
:
2785 /* TSC increment by tick */
2786 msr_info
->data
= 1000ULL;
2787 /* CPU multiplier */
2788 msr_info
->data
|= (((uint64_t)4ULL) << 40);
2791 msr_info
->data
= vcpu
->arch
.efer
;
2793 case MSR_KVM_WALL_CLOCK
:
2794 case MSR_KVM_WALL_CLOCK_NEW
:
2795 msr_info
->data
= vcpu
->kvm
->arch
.wall_clock
;
2797 case MSR_KVM_SYSTEM_TIME
:
2798 case MSR_KVM_SYSTEM_TIME_NEW
:
2799 msr_info
->data
= vcpu
->arch
.time
;
2801 case MSR_KVM_ASYNC_PF_EN
:
2802 msr_info
->data
= vcpu
->arch
.apf
.msr_val
;
2804 case MSR_KVM_STEAL_TIME
:
2805 msr_info
->data
= vcpu
->arch
.st
.msr_val
;
2807 case MSR_KVM_PV_EOI_EN
:
2808 msr_info
->data
= vcpu
->arch
.pv_eoi
.msr_val
;
2810 case MSR_IA32_P5_MC_ADDR
:
2811 case MSR_IA32_P5_MC_TYPE
:
2812 case MSR_IA32_MCG_CAP
:
2813 case MSR_IA32_MCG_CTL
:
2814 case MSR_IA32_MCG_STATUS
:
2815 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2816 return get_msr_mce(vcpu
, msr_info
->index
, &msr_info
->data
,
2817 msr_info
->host_initiated
);
2818 case MSR_K7_CLK_CTL
:
2820 * Provide expected ramp-up count for K7. All other
2821 * are set to zero, indicating minimum divisors for
2824 * This prevents guest kernels on AMD host with CPU
2825 * type 6, model 8 and higher from exploding due to
2826 * the rdmsr failing.
2828 msr_info
->data
= 0x20000000;
2830 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2831 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2832 case HV_X64_MSR_CRASH_CTL
:
2833 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2834 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
2835 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
2836 case HV_X64_MSR_TSC_EMULATION_STATUS
:
2837 return kvm_hv_get_msr_common(vcpu
,
2838 msr_info
->index
, &msr_info
->data
,
2839 msr_info
->host_initiated
);
2841 case MSR_IA32_BBL_CR_CTL3
:
2842 /* This legacy MSR exists but isn't fully documented in current
2843 * silicon. It is however accessed by winxp in very narrow
2844 * scenarios where it sets bit #19, itself documented as
2845 * a "reserved" bit. Best effort attempt to source coherent
2846 * read data here should the balance of the register be
2847 * interpreted by the guest:
2849 * L2 cache control register 3: 64GB range, 256KB size,
2850 * enabled, latency 0x1, configured
2852 msr_info
->data
= 0xbe702111;
2854 case MSR_AMD64_OSVW_ID_LENGTH
:
2855 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2857 msr_info
->data
= vcpu
->arch
.osvw
.length
;
2859 case MSR_AMD64_OSVW_STATUS
:
2860 if (!guest_cpuid_has(vcpu
, X86_FEATURE_OSVW
))
2862 msr_info
->data
= vcpu
->arch
.osvw
.status
;
2864 case MSR_PLATFORM_INFO
:
2865 if (!msr_info
->host_initiated
&&
2866 !vcpu
->kvm
->arch
.guest_can_read_msr_platform_info
)
2868 msr_info
->data
= vcpu
->arch
.msr_platform_info
;
2870 case MSR_MISC_FEATURES_ENABLES
:
2871 msr_info
->data
= vcpu
->arch
.msr_misc_features_enables
;
2874 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2875 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2877 vcpu_debug_ratelimited(vcpu
, "unhandled rdmsr: 0x%x\n",
2881 if (report_ignored_msrs
)
2882 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n",
2890 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2893 * Read or write a bunch of msrs. All parameters are kernel addresses.
2895 * @return number of msrs set successfully.
2897 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2898 struct kvm_msr_entry
*entries
,
2899 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2900 unsigned index
, u64
*data
))
2904 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2905 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2912 * Read or write a bunch of msrs. Parameters are user addresses.
2914 * @return number of msrs set successfully.
2916 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2917 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2918 unsigned index
, u64
*data
),
2921 struct kvm_msrs msrs
;
2922 struct kvm_msr_entry
*entries
;
2927 if (copy_from_user(&msrs
, user_msrs
, sizeof(msrs
)))
2931 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2934 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2935 entries
= memdup_user(user_msrs
->entries
, size
);
2936 if (IS_ERR(entries
)) {
2937 r
= PTR_ERR(entries
);
2941 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2946 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2957 static inline bool kvm_can_mwait_in_guest(void)
2959 return boot_cpu_has(X86_FEATURE_MWAIT
) &&
2960 !boot_cpu_has_bug(X86_BUG_MONITOR
) &&
2961 boot_cpu_has(X86_FEATURE_ARAT
);
2964 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
2969 case KVM_CAP_IRQCHIP
:
2971 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2972 case KVM_CAP_SET_TSS_ADDR
:
2973 case KVM_CAP_EXT_CPUID
:
2974 case KVM_CAP_EXT_EMUL_CPUID
:
2975 case KVM_CAP_CLOCKSOURCE
:
2977 case KVM_CAP_NOP_IO_DELAY
:
2978 case KVM_CAP_MP_STATE
:
2979 case KVM_CAP_SYNC_MMU
:
2980 case KVM_CAP_USER_NMI
:
2981 case KVM_CAP_REINJECT_CONTROL
:
2982 case KVM_CAP_IRQ_INJECT_STATUS
:
2983 case KVM_CAP_IOEVENTFD
:
2984 case KVM_CAP_IOEVENTFD_NO_LENGTH
:
2986 case KVM_CAP_PIT_STATE2
:
2987 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2988 case KVM_CAP_XEN_HVM
:
2989 case KVM_CAP_VCPU_EVENTS
:
2990 case KVM_CAP_HYPERV
:
2991 case KVM_CAP_HYPERV_VAPIC
:
2992 case KVM_CAP_HYPERV_SPIN
:
2993 case KVM_CAP_HYPERV_SYNIC
:
2994 case KVM_CAP_HYPERV_SYNIC2
:
2995 case KVM_CAP_HYPERV_VP_INDEX
:
2996 case KVM_CAP_HYPERV_EVENTFD
:
2997 case KVM_CAP_HYPERV_TLBFLUSH
:
2998 case KVM_CAP_HYPERV_SEND_IPI
:
2999 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS
:
3000 case KVM_CAP_PCI_SEGMENT
:
3001 case KVM_CAP_DEBUGREGS
:
3002 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
3004 case KVM_CAP_ASYNC_PF
:
3005 case KVM_CAP_GET_TSC_KHZ
:
3006 case KVM_CAP_KVMCLOCK_CTRL
:
3007 case KVM_CAP_READONLY_MEM
:
3008 case KVM_CAP_HYPERV_TIME
:
3009 case KVM_CAP_IOAPIC_POLARITY_IGNORED
:
3010 case KVM_CAP_TSC_DEADLINE_TIMER
:
3011 case KVM_CAP_ENABLE_CAP_VM
:
3012 case KVM_CAP_DISABLE_QUIRKS
:
3013 case KVM_CAP_SET_BOOT_CPU_ID
:
3014 case KVM_CAP_SPLIT_IRQCHIP
:
3015 case KVM_CAP_IMMEDIATE_EXIT
:
3016 case KVM_CAP_GET_MSR_FEATURES
:
3017 case KVM_CAP_MSR_PLATFORM_INFO
:
3018 case KVM_CAP_EXCEPTION_PAYLOAD
:
3021 case KVM_CAP_SYNC_REGS
:
3022 r
= KVM_SYNC_X86_VALID_FIELDS
;
3024 case KVM_CAP_ADJUST_CLOCK
:
3025 r
= KVM_CLOCK_TSC_STABLE
;
3027 case KVM_CAP_X86_DISABLE_EXITS
:
3028 r
|= KVM_X86_DISABLE_EXITS_HLT
| KVM_X86_DISABLE_EXITS_PAUSE
;
3029 if(kvm_can_mwait_in_guest())
3030 r
|= KVM_X86_DISABLE_EXITS_MWAIT
;
3032 case KVM_CAP_X86_SMM
:
3033 /* SMBASE is usually relocated above 1M on modern chipsets,
3034 * and SMM handlers might indeed rely on 4G segment limits,
3035 * so do not report SMM to be available if real mode is
3036 * emulated via vm86 mode. Still, do not go to great lengths
3037 * to avoid userspace's usage of the feature, because it is a
3038 * fringe case that is not enabled except via specific settings
3039 * of the module parameters.
3041 r
= kvm_x86_ops
->has_emulated_msr(MSR_IA32_SMBASE
);
3044 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
3046 case KVM_CAP_NR_VCPUS
:
3047 r
= KVM_SOFT_MAX_VCPUS
;
3049 case KVM_CAP_MAX_VCPUS
:
3052 case KVM_CAP_NR_MEMSLOTS
:
3053 r
= KVM_USER_MEM_SLOTS
;
3055 case KVM_CAP_PV_MMU
: /* obsolete */
3059 r
= KVM_MAX_MCE_BANKS
;
3062 r
= boot_cpu_has(X86_FEATURE_XSAVE
);
3064 case KVM_CAP_TSC_CONTROL
:
3065 r
= kvm_has_tsc_control
;
3067 case KVM_CAP_X2APIC_API
:
3068 r
= KVM_X2APIC_API_VALID_FLAGS
;
3070 case KVM_CAP_NESTED_STATE
:
3071 r
= kvm_x86_ops
->get_nested_state
?
3072 kvm_x86_ops
->get_nested_state(NULL
, 0, 0) : 0;
3081 long kvm_arch_dev_ioctl(struct file
*filp
,
3082 unsigned int ioctl
, unsigned long arg
)
3084 void __user
*argp
= (void __user
*)arg
;
3088 case KVM_GET_MSR_INDEX_LIST
: {
3089 struct kvm_msr_list __user
*user_msr_list
= argp
;
3090 struct kvm_msr_list msr_list
;
3094 if (copy_from_user(&msr_list
, user_msr_list
, sizeof(msr_list
)))
3097 msr_list
.nmsrs
= num_msrs_to_save
+ num_emulated_msrs
;
3098 if (copy_to_user(user_msr_list
, &msr_list
, sizeof(msr_list
)))
3101 if (n
< msr_list
.nmsrs
)
3104 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
3105 num_msrs_to_save
* sizeof(u32
)))
3107 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
3109 num_emulated_msrs
* sizeof(u32
)))
3114 case KVM_GET_SUPPORTED_CPUID
:
3115 case KVM_GET_EMULATED_CPUID
: {
3116 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3117 struct kvm_cpuid2 cpuid
;
3120 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof(cpuid
)))
3123 r
= kvm_dev_ioctl_get_cpuid(&cpuid
, cpuid_arg
->entries
,
3129 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof(cpuid
)))
3134 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
3136 if (copy_to_user(argp
, &kvm_mce_cap_supported
,
3137 sizeof(kvm_mce_cap_supported
)))
3141 case KVM_GET_MSR_FEATURE_INDEX_LIST
: {
3142 struct kvm_msr_list __user
*user_msr_list
= argp
;
3143 struct kvm_msr_list msr_list
;
3147 if (copy_from_user(&msr_list
, user_msr_list
, sizeof(msr_list
)))
3150 msr_list
.nmsrs
= num_msr_based_features
;
3151 if (copy_to_user(user_msr_list
, &msr_list
, sizeof(msr_list
)))
3154 if (n
< msr_list
.nmsrs
)
3157 if (copy_to_user(user_msr_list
->indices
, &msr_based_features
,
3158 num_msr_based_features
* sizeof(u32
)))
3164 r
= msr_io(NULL
, argp
, do_get_msr_feature
, 1);
3174 static void wbinvd_ipi(void *garbage
)
3179 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
3181 return kvm_arch_has_noncoherent_dma(vcpu
->kvm
);
3184 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
3186 /* Address WBINVD may be executed by guest */
3187 if (need_emulate_wbinvd(vcpu
)) {
3188 if (kvm_x86_ops
->has_wbinvd_exit())
3189 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
3190 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
3191 smp_call_function_single(vcpu
->cpu
,
3192 wbinvd_ipi
, NULL
, 1);
3195 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
3197 /* Apply any externally detected TSC adjustments (due to suspend) */
3198 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
3199 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
3200 vcpu
->arch
.tsc_offset_adjustment
= 0;
3201 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3204 if (unlikely(vcpu
->cpu
!= cpu
) || kvm_check_tsc_unstable()) {
3205 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
3206 rdtsc() - vcpu
->arch
.last_host_tsc
;
3208 mark_tsc_unstable("KVM discovered backwards TSC");
3210 if (kvm_check_tsc_unstable()) {
3211 u64 offset
= kvm_compute_tsc_offset(vcpu
,
3212 vcpu
->arch
.last_guest_tsc
);
3213 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
3214 vcpu
->arch
.tsc_catchup
= 1;
3217 if (kvm_lapic_hv_timer_in_use(vcpu
))
3218 kvm_lapic_restart_hv_timer(vcpu
);
3221 * On a host with synchronized TSC, there is no need to update
3222 * kvmclock on vcpu->cpu migration
3224 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
3225 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
3226 if (vcpu
->cpu
!= cpu
)
3227 kvm_make_request(KVM_REQ_MIGRATE_TIMER
, vcpu
);
3231 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
3234 static void kvm_steal_time_set_preempted(struct kvm_vcpu
*vcpu
)
3236 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
3239 vcpu
->arch
.st
.steal
.preempted
= KVM_VCPU_PREEMPTED
;
3241 kvm_write_guest_offset_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
3242 &vcpu
->arch
.st
.steal
.preempted
,
3243 offsetof(struct kvm_steal_time
, preempted
),
3244 sizeof(vcpu
->arch
.st
.steal
.preempted
));
3247 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
3251 if (vcpu
->preempted
)
3252 vcpu
->arch
.preempted_in_kernel
= !kvm_x86_ops
->get_cpl(vcpu
);
3255 * Disable page faults because we're in atomic context here.
3256 * kvm_write_guest_offset_cached() would call might_fault()
3257 * that relies on pagefault_disable() to tell if there's a
3258 * bug. NOTE: the write to guest memory may not go through if
3259 * during postcopy live migration or if there's heavy guest
3262 pagefault_disable();
3264 * kvm_memslots() will be called by
3265 * kvm_write_guest_offset_cached() so take the srcu lock.
3267 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
3268 kvm_steal_time_set_preempted(vcpu
);
3269 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
3271 kvm_x86_ops
->vcpu_put(vcpu
);
3272 vcpu
->arch
.last_host_tsc
= rdtsc();
3274 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3275 * on every vmexit, but if not, we might have a stale dr6 from the
3276 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3281 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
3282 struct kvm_lapic_state
*s
)
3284 if (vcpu
->arch
.apicv_active
)
3285 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
3287 return kvm_apic_get_state(vcpu
, s
);
3290 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
3291 struct kvm_lapic_state
*s
)
3295 r
= kvm_apic_set_state(vcpu
, s
);
3298 update_cr8_intercept(vcpu
);
3303 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu
*vcpu
)
3305 return (!lapic_in_kernel(vcpu
) ||
3306 kvm_apic_accept_pic_intr(vcpu
));
3310 * if userspace requested an interrupt window, check that the
3311 * interrupt window is open.
3313 * No need to exit to userspace if we already have an interrupt queued.
3315 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu
*vcpu
)
3317 return kvm_arch_interrupt_allowed(vcpu
) &&
3318 !kvm_cpu_has_interrupt(vcpu
) &&
3319 !kvm_event_needs_reinjection(vcpu
) &&
3320 kvm_cpu_accept_dm_intr(vcpu
);
3323 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
3324 struct kvm_interrupt
*irq
)
3326 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
3329 if (!irqchip_in_kernel(vcpu
->kvm
)) {
3330 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
3331 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3336 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3337 * fail for in-kernel 8259.
3339 if (pic_in_kernel(vcpu
->kvm
))
3342 if (vcpu
->arch
.pending_external_vector
!= -1)
3345 vcpu
->arch
.pending_external_vector
= irq
->irq
;
3346 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3350 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
3352 kvm_inject_nmi(vcpu
);
3357 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu
*vcpu
)
3359 kvm_make_request(KVM_REQ_SMI
, vcpu
);
3364 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
3365 struct kvm_tpr_access_ctl
*tac
)
3369 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
3373 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
3377 unsigned bank_num
= mcg_cap
& 0xff, bank
;
3380 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
3382 if (mcg_cap
& ~(kvm_mce_cap_supported
| 0xff | 0xff0000))
3385 vcpu
->arch
.mcg_cap
= mcg_cap
;
3386 /* Init IA32_MCG_CTL to all 1s */
3387 if (mcg_cap
& MCG_CTL_P
)
3388 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
3389 /* Init IA32_MCi_CTL to all 1s */
3390 for (bank
= 0; bank
< bank_num
; bank
++)
3391 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
3393 if (kvm_x86_ops
->setup_mce
)
3394 kvm_x86_ops
->setup_mce(vcpu
);
3399 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
3400 struct kvm_x86_mce
*mce
)
3402 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
3403 unsigned bank_num
= mcg_cap
& 0xff;
3404 u64
*banks
= vcpu
->arch
.mce_banks
;
3406 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
3409 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3410 * reporting is disabled
3412 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
3413 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
3415 banks
+= 4 * mce
->bank
;
3417 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3418 * reporting is disabled for the bank
3420 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
3422 if (mce
->status
& MCI_STATUS_UC
) {
3423 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
3424 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
3425 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3428 if (banks
[1] & MCI_STATUS_VAL
)
3429 mce
->status
|= MCI_STATUS_OVER
;
3430 banks
[2] = mce
->addr
;
3431 banks
[3] = mce
->misc
;
3432 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
3433 banks
[1] = mce
->status
;
3434 kvm_queue_exception(vcpu
, MC_VECTOR
);
3435 } else if (!(banks
[1] & MCI_STATUS_VAL
)
3436 || !(banks
[1] & MCI_STATUS_UC
)) {
3437 if (banks
[1] & MCI_STATUS_VAL
)
3438 mce
->status
|= MCI_STATUS_OVER
;
3439 banks
[2] = mce
->addr
;
3440 banks
[3] = mce
->misc
;
3441 banks
[1] = mce
->status
;
3443 banks
[1] |= MCI_STATUS_OVER
;
3447 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
3448 struct kvm_vcpu_events
*events
)
3453 * The API doesn't provide the instruction length for software
3454 * exceptions, so don't report them. As long as the guest RIP
3455 * isn't advanced, we should expect to encounter the exception
3458 if (kvm_exception_is_soft(vcpu
->arch
.exception
.nr
)) {
3459 events
->exception
.injected
= 0;
3460 events
->exception
.pending
= 0;
3462 events
->exception
.injected
= vcpu
->arch
.exception
.injected
;
3463 events
->exception
.pending
= vcpu
->arch
.exception
.pending
;
3465 * For ABI compatibility, deliberately conflate
3466 * pending and injected exceptions when
3467 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3469 if (!vcpu
->kvm
->arch
.exception_payload_enabled
)
3470 events
->exception
.injected
|=
3471 vcpu
->arch
.exception
.pending
;
3473 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
3474 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
3475 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
3476 events
->exception_has_payload
= vcpu
->arch
.exception
.has_payload
;
3477 events
->exception_payload
= vcpu
->arch
.exception
.payload
;
3479 events
->interrupt
.injected
=
3480 vcpu
->arch
.interrupt
.injected
&& !vcpu
->arch
.interrupt
.soft
;
3481 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
3482 events
->interrupt
.soft
= 0;
3483 events
->interrupt
.shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
3485 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
3486 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
3487 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
3488 events
->nmi
.pad
= 0;
3490 events
->sipi_vector
= 0; /* never valid when reporting to user space */
3492 events
->smi
.smm
= is_smm(vcpu
);
3493 events
->smi
.pending
= vcpu
->arch
.smi_pending
;
3494 events
->smi
.smm_inside_nmi
=
3495 !!(vcpu
->arch
.hflags
& HF_SMM_INSIDE_NMI_MASK
);
3496 events
->smi
.latched_init
= kvm_lapic_latched_init(vcpu
);
3498 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
3499 | KVM_VCPUEVENT_VALID_SHADOW
3500 | KVM_VCPUEVENT_VALID_SMM
);
3501 if (vcpu
->kvm
->arch
.exception_payload_enabled
)
3502 events
->flags
|= KVM_VCPUEVENT_VALID_PAYLOAD
;
3504 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
3507 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
);
3509 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
3510 struct kvm_vcpu_events
*events
)
3512 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3513 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3514 | KVM_VCPUEVENT_VALID_SHADOW
3515 | KVM_VCPUEVENT_VALID_SMM
3516 | KVM_VCPUEVENT_VALID_PAYLOAD
))
3519 if (events
->flags
& KVM_VCPUEVENT_VALID_PAYLOAD
) {
3520 if (!vcpu
->kvm
->arch
.exception_payload_enabled
)
3522 if (events
->exception
.pending
)
3523 events
->exception
.injected
= 0;
3525 events
->exception_has_payload
= 0;
3527 events
->exception
.pending
= 0;
3528 events
->exception_has_payload
= 0;
3531 if ((events
->exception
.injected
|| events
->exception
.pending
) &&
3532 (events
->exception
.nr
> 31 || events
->exception
.nr
== NMI_VECTOR
))
3535 /* INITs are latched while in SMM */
3536 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
&&
3537 (events
->smi
.smm
|| events
->smi
.pending
) &&
3538 vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
)
3542 vcpu
->arch
.exception
.injected
= events
->exception
.injected
;
3543 vcpu
->arch
.exception
.pending
= events
->exception
.pending
;
3544 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
3545 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
3546 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
3547 vcpu
->arch
.exception
.has_payload
= events
->exception_has_payload
;
3548 vcpu
->arch
.exception
.payload
= events
->exception_payload
;
3550 vcpu
->arch
.interrupt
.injected
= events
->interrupt
.injected
;
3551 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
3552 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
3553 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
3554 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
3555 events
->interrupt
.shadow
);
3557 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
3558 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
3559 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
3560 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
3562 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
3563 lapic_in_kernel(vcpu
))
3564 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
3566 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
) {
3567 u32 hflags
= vcpu
->arch
.hflags
;
3568 if (events
->smi
.smm
)
3569 hflags
|= HF_SMM_MASK
;
3571 hflags
&= ~HF_SMM_MASK
;
3572 kvm_set_hflags(vcpu
, hflags
);
3574 vcpu
->arch
.smi_pending
= events
->smi
.pending
;
3576 if (events
->smi
.smm
) {
3577 if (events
->smi
.smm_inside_nmi
)
3578 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
3580 vcpu
->arch
.hflags
&= ~HF_SMM_INSIDE_NMI_MASK
;
3581 if (lapic_in_kernel(vcpu
)) {
3582 if (events
->smi
.latched_init
)
3583 set_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3585 clear_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3590 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3595 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
3596 struct kvm_debugregs
*dbgregs
)
3600 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
3601 kvm_get_dr(vcpu
, 6, &val
);
3603 dbgregs
->dr7
= vcpu
->arch
.dr7
;
3605 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
3608 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
3609 struct kvm_debugregs
*dbgregs
)
3614 if (dbgregs
->dr6
& ~0xffffffffull
)
3616 if (dbgregs
->dr7
& ~0xffffffffull
)
3619 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
3620 kvm_update_dr0123(vcpu
);
3621 vcpu
->arch
.dr6
= dbgregs
->dr6
;
3622 kvm_update_dr6(vcpu
);
3623 vcpu
->arch
.dr7
= dbgregs
->dr7
;
3624 kvm_update_dr7(vcpu
);
3629 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3631 static void fill_xsave(u8
*dest
, struct kvm_vcpu
*vcpu
)
3633 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3634 u64 xstate_bv
= xsave
->header
.xfeatures
;
3638 * Copy legacy XSAVE area, to avoid complications with CPUID
3639 * leaves 0 and 1 in the loop below.
3641 memcpy(dest
, xsave
, XSAVE_HDR_OFFSET
);
3644 xstate_bv
&= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FPSSE
;
3645 *(u64
*)(dest
+ XSAVE_HDR_OFFSET
) = xstate_bv
;
3648 * Copy each region from the possibly compacted offset to the
3649 * non-compacted offset.
3651 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3653 u64 feature
= valid
& -valid
;
3654 int index
= fls64(feature
) - 1;
3655 void *src
= get_xsave_addr(xsave
, feature
);
3658 u32 size
, offset
, ecx
, edx
;
3659 cpuid_count(XSTATE_CPUID
, index
,
3660 &size
, &offset
, &ecx
, &edx
);
3661 if (feature
== XFEATURE_MASK_PKRU
)
3662 memcpy(dest
+ offset
, &vcpu
->arch
.pkru
,
3663 sizeof(vcpu
->arch
.pkru
));
3665 memcpy(dest
+ offset
, src
, size
);
3673 static void load_xsave(struct kvm_vcpu
*vcpu
, u8
*src
)
3675 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3676 u64 xstate_bv
= *(u64
*)(src
+ XSAVE_HDR_OFFSET
);
3680 * Copy legacy XSAVE area, to avoid complications with CPUID
3681 * leaves 0 and 1 in the loop below.
3683 memcpy(xsave
, src
, XSAVE_HDR_OFFSET
);
3685 /* Set XSTATE_BV and possibly XCOMP_BV. */
3686 xsave
->header
.xfeatures
= xstate_bv
;
3687 if (boot_cpu_has(X86_FEATURE_XSAVES
))
3688 xsave
->header
.xcomp_bv
= host_xcr0
| XSTATE_COMPACTION_ENABLED
;
3691 * Copy each region from the non-compacted offset to the
3692 * possibly compacted offset.
3694 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3696 u64 feature
= valid
& -valid
;
3697 int index
= fls64(feature
) - 1;
3698 void *dest
= get_xsave_addr(xsave
, feature
);
3701 u32 size
, offset
, ecx
, edx
;
3702 cpuid_count(XSTATE_CPUID
, index
,
3703 &size
, &offset
, &ecx
, &edx
);
3704 if (feature
== XFEATURE_MASK_PKRU
)
3705 memcpy(&vcpu
->arch
.pkru
, src
+ offset
,
3706 sizeof(vcpu
->arch
.pkru
));
3708 memcpy(dest
, src
+ offset
, size
);
3715 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
3716 struct kvm_xsave
*guest_xsave
)
3718 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
3719 memset(guest_xsave
, 0, sizeof(struct kvm_xsave
));
3720 fill_xsave((u8
*) guest_xsave
->region
, vcpu
);
3722 memcpy(guest_xsave
->region
,
3723 &vcpu
->arch
.guest_fpu
.state
.fxsave
,
3724 sizeof(struct fxregs_state
));
3725 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
3726 XFEATURE_MASK_FPSSE
;
3730 #define XSAVE_MXCSR_OFFSET 24
3732 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
3733 struct kvm_xsave
*guest_xsave
)
3736 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
3737 u32 mxcsr
= *(u32
*)&guest_xsave
->region
[XSAVE_MXCSR_OFFSET
/ sizeof(u32
)];
3739 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
3741 * Here we allow setting states that are not present in
3742 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3743 * with old userspace.
3745 if (xstate_bv
& ~kvm_supported_xcr0() ||
3746 mxcsr
& ~mxcsr_feature_mask
)
3748 load_xsave(vcpu
, (u8
*)guest_xsave
->region
);
3750 if (xstate_bv
& ~XFEATURE_MASK_FPSSE
||
3751 mxcsr
& ~mxcsr_feature_mask
)
3753 memcpy(&vcpu
->arch
.guest_fpu
.state
.fxsave
,
3754 guest_xsave
->region
, sizeof(struct fxregs_state
));
3759 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
3760 struct kvm_xcrs
*guest_xcrs
)
3762 if (!boot_cpu_has(X86_FEATURE_XSAVE
)) {
3763 guest_xcrs
->nr_xcrs
= 0;
3767 guest_xcrs
->nr_xcrs
= 1;
3768 guest_xcrs
->flags
= 0;
3769 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
3770 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
3773 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
3774 struct kvm_xcrs
*guest_xcrs
)
3778 if (!boot_cpu_has(X86_FEATURE_XSAVE
))
3781 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
3784 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
3785 /* Only support XCR0 currently */
3786 if (guest_xcrs
->xcrs
[i
].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3787 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3788 guest_xcrs
->xcrs
[i
].value
);
3797 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3798 * stopped by the hypervisor. This function will be called from the host only.
3799 * EINVAL is returned when the host attempts to set the flag for a guest that
3800 * does not support pv clocks.
3802 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
3804 if (!vcpu
->arch
.pv_time_enabled
)
3806 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
3807 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3811 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu
*vcpu
,
3812 struct kvm_enable_cap
*cap
)
3815 uint16_t vmcs_version
;
3816 void __user
*user_ptr
;
3822 case KVM_CAP_HYPERV_SYNIC2
:
3825 case KVM_CAP_HYPERV_SYNIC
:
3826 if (!irqchip_in_kernel(vcpu
->kvm
))
3828 return kvm_hv_activate_synic(vcpu
, cap
->cap
==
3829 KVM_CAP_HYPERV_SYNIC2
);
3830 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS
:
3831 r
= kvm_x86_ops
->nested_enable_evmcs(vcpu
, &vmcs_version
);
3833 user_ptr
= (void __user
*)(uintptr_t)cap
->args
[0];
3834 if (copy_to_user(user_ptr
, &vmcs_version
,
3835 sizeof(vmcs_version
)))
3845 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3846 unsigned int ioctl
, unsigned long arg
)
3848 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3849 void __user
*argp
= (void __user
*)arg
;
3852 struct kvm_lapic_state
*lapic
;
3853 struct kvm_xsave
*xsave
;
3854 struct kvm_xcrs
*xcrs
;
3862 case KVM_GET_LAPIC
: {
3864 if (!lapic_in_kernel(vcpu
))
3866 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3871 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3875 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3880 case KVM_SET_LAPIC
: {
3882 if (!lapic_in_kernel(vcpu
))
3884 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3885 if (IS_ERR(u
.lapic
)) {
3886 r
= PTR_ERR(u
.lapic
);
3890 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3893 case KVM_INTERRUPT
: {
3894 struct kvm_interrupt irq
;
3897 if (copy_from_user(&irq
, argp
, sizeof(irq
)))
3899 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3903 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3907 r
= kvm_vcpu_ioctl_smi(vcpu
);
3910 case KVM_SET_CPUID
: {
3911 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3912 struct kvm_cpuid cpuid
;
3915 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof(cpuid
)))
3917 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3920 case KVM_SET_CPUID2
: {
3921 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3922 struct kvm_cpuid2 cpuid
;
3925 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof(cpuid
)))
3927 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3928 cpuid_arg
->entries
);
3931 case KVM_GET_CPUID2
: {
3932 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3933 struct kvm_cpuid2 cpuid
;
3936 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof(cpuid
)))
3938 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3939 cpuid_arg
->entries
);
3943 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof(cpuid
)))
3948 case KVM_GET_MSRS
: {
3949 int idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
3950 r
= msr_io(vcpu
, argp
, do_get_msr
, 1);
3951 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
3954 case KVM_SET_MSRS
: {
3955 int idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
3956 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3957 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
3960 case KVM_TPR_ACCESS_REPORTING
: {
3961 struct kvm_tpr_access_ctl tac
;
3964 if (copy_from_user(&tac
, argp
, sizeof(tac
)))
3966 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3970 if (copy_to_user(argp
, &tac
, sizeof(tac
)))
3975 case KVM_SET_VAPIC_ADDR
: {
3976 struct kvm_vapic_addr va
;
3980 if (!lapic_in_kernel(vcpu
))
3983 if (copy_from_user(&va
, argp
, sizeof(va
)))
3985 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
3986 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3987 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
3990 case KVM_X86_SETUP_MCE
: {
3994 if (copy_from_user(&mcg_cap
, argp
, sizeof(mcg_cap
)))
3996 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3999 case KVM_X86_SET_MCE
: {
4000 struct kvm_x86_mce mce
;
4003 if (copy_from_user(&mce
, argp
, sizeof(mce
)))
4005 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
4008 case KVM_GET_VCPU_EVENTS
: {
4009 struct kvm_vcpu_events events
;
4011 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
4014 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
4019 case KVM_SET_VCPU_EVENTS
: {
4020 struct kvm_vcpu_events events
;
4023 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
4026 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
4029 case KVM_GET_DEBUGREGS
: {
4030 struct kvm_debugregs dbgregs
;
4032 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
4035 if (copy_to_user(argp
, &dbgregs
,
4036 sizeof(struct kvm_debugregs
)))
4041 case KVM_SET_DEBUGREGS
: {
4042 struct kvm_debugregs dbgregs
;
4045 if (copy_from_user(&dbgregs
, argp
,
4046 sizeof(struct kvm_debugregs
)))
4049 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
4052 case KVM_GET_XSAVE
: {
4053 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
4058 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
4061 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
4066 case KVM_SET_XSAVE
: {
4067 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
4068 if (IS_ERR(u
.xsave
)) {
4069 r
= PTR_ERR(u
.xsave
);
4073 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
4076 case KVM_GET_XCRS
: {
4077 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
4082 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
4085 if (copy_to_user(argp
, u
.xcrs
,
4086 sizeof(struct kvm_xcrs
)))
4091 case KVM_SET_XCRS
: {
4092 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
4093 if (IS_ERR(u
.xcrs
)) {
4094 r
= PTR_ERR(u
.xcrs
);
4098 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
4101 case KVM_SET_TSC_KHZ
: {
4105 user_tsc_khz
= (u32
)arg
;
4107 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
4110 if (user_tsc_khz
== 0)
4111 user_tsc_khz
= tsc_khz
;
4113 if (!kvm_set_tsc_khz(vcpu
, user_tsc_khz
))
4118 case KVM_GET_TSC_KHZ
: {
4119 r
= vcpu
->arch
.virtual_tsc_khz
;
4122 case KVM_KVMCLOCK_CTRL
: {
4123 r
= kvm_set_guest_paused(vcpu
);
4126 case KVM_ENABLE_CAP
: {
4127 struct kvm_enable_cap cap
;
4130 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
4132 r
= kvm_vcpu_ioctl_enable_cap(vcpu
, &cap
);
4135 case KVM_GET_NESTED_STATE
: {
4136 struct kvm_nested_state __user
*user_kvm_nested_state
= argp
;
4140 if (!kvm_x86_ops
->get_nested_state
)
4143 BUILD_BUG_ON(sizeof(user_data_size
) != sizeof(user_kvm_nested_state
->size
));
4145 if (get_user(user_data_size
, &user_kvm_nested_state
->size
))
4148 r
= kvm_x86_ops
->get_nested_state(vcpu
, user_kvm_nested_state
,
4153 if (r
> user_data_size
) {
4154 if (put_user(r
, &user_kvm_nested_state
->size
))
4164 case KVM_SET_NESTED_STATE
: {
4165 struct kvm_nested_state __user
*user_kvm_nested_state
= argp
;
4166 struct kvm_nested_state kvm_state
;
4169 if (!kvm_x86_ops
->set_nested_state
)
4173 if (copy_from_user(&kvm_state
, user_kvm_nested_state
, sizeof(kvm_state
)))
4177 if (kvm_state
.size
< sizeof(kvm_state
))
4180 if (kvm_state
.flags
&
4181 ~(KVM_STATE_NESTED_RUN_PENDING
| KVM_STATE_NESTED_GUEST_MODE
4182 | KVM_STATE_NESTED_EVMCS
))
4185 /* nested_run_pending implies guest_mode. */
4186 if ((kvm_state
.flags
& KVM_STATE_NESTED_RUN_PENDING
)
4187 && !(kvm_state
.flags
& KVM_STATE_NESTED_GUEST_MODE
))
4190 r
= kvm_x86_ops
->set_nested_state(vcpu
, user_kvm_nested_state
, &kvm_state
);
4203 vm_fault_t
kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
4205 return VM_FAULT_SIGBUS
;
4208 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
4212 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
4214 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
4218 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
4221 return kvm_x86_ops
->set_identity_map_addr(kvm
, ident_addr
);
4224 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
4225 u32 kvm_nr_mmu_pages
)
4227 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
4230 mutex_lock(&kvm
->slots_lock
);
4232 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
4233 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
4235 mutex_unlock(&kvm
->slots_lock
);
4239 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
4241 return kvm
->arch
.n_max_mmu_pages
;
4244 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
4246 struct kvm_pic
*pic
= kvm
->arch
.vpic
;
4250 switch (chip
->chip_id
) {
4251 case KVM_IRQCHIP_PIC_MASTER
:
4252 memcpy(&chip
->chip
.pic
, &pic
->pics
[0],
4253 sizeof(struct kvm_pic_state
));
4255 case KVM_IRQCHIP_PIC_SLAVE
:
4256 memcpy(&chip
->chip
.pic
, &pic
->pics
[1],
4257 sizeof(struct kvm_pic_state
));
4259 case KVM_IRQCHIP_IOAPIC
:
4260 kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
4269 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
4271 struct kvm_pic
*pic
= kvm
->arch
.vpic
;
4275 switch (chip
->chip_id
) {
4276 case KVM_IRQCHIP_PIC_MASTER
:
4277 spin_lock(&pic
->lock
);
4278 memcpy(&pic
->pics
[0], &chip
->chip
.pic
,
4279 sizeof(struct kvm_pic_state
));
4280 spin_unlock(&pic
->lock
);
4282 case KVM_IRQCHIP_PIC_SLAVE
:
4283 spin_lock(&pic
->lock
);
4284 memcpy(&pic
->pics
[1], &chip
->chip
.pic
,
4285 sizeof(struct kvm_pic_state
));
4286 spin_unlock(&pic
->lock
);
4288 case KVM_IRQCHIP_IOAPIC
:
4289 kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
4295 kvm_pic_update_irq(pic
);
4299 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
4301 struct kvm_kpit_state
*kps
= &kvm
->arch
.vpit
->pit_state
;
4303 BUILD_BUG_ON(sizeof(*ps
) != sizeof(kps
->channels
));
4305 mutex_lock(&kps
->lock
);
4306 memcpy(ps
, &kps
->channels
, sizeof(*ps
));
4307 mutex_unlock(&kps
->lock
);
4311 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
4314 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
4316 mutex_lock(&pit
->pit_state
.lock
);
4317 memcpy(&pit
->pit_state
.channels
, ps
, sizeof(*ps
));
4318 for (i
= 0; i
< 3; i
++)
4319 kvm_pit_load_count(pit
, i
, ps
->channels
[i
].count
, 0);
4320 mutex_unlock(&pit
->pit_state
.lock
);
4324 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
4326 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
4327 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
4328 sizeof(ps
->channels
));
4329 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
4330 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
4331 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
4335 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
4339 u32 prev_legacy
, cur_legacy
;
4340 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
4342 mutex_lock(&pit
->pit_state
.lock
);
4343 prev_legacy
= pit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
4344 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
4345 if (!prev_legacy
&& cur_legacy
)
4347 memcpy(&pit
->pit_state
.channels
, &ps
->channels
,
4348 sizeof(pit
->pit_state
.channels
));
4349 pit
->pit_state
.flags
= ps
->flags
;
4350 for (i
= 0; i
< 3; i
++)
4351 kvm_pit_load_count(pit
, i
, pit
->pit_state
.channels
[i
].count
,
4353 mutex_unlock(&pit
->pit_state
.lock
);
4357 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
4358 struct kvm_reinject_control
*control
)
4360 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
4365 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4366 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4367 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4369 mutex_lock(&pit
->pit_state
.lock
);
4370 kvm_pit_set_reinject(pit
, control
->pit_reinject
);
4371 mutex_unlock(&pit
->pit_state
.lock
);
4377 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4378 * @kvm: kvm instance
4379 * @log: slot id and address to which we copy the log
4381 * Steps 1-4 below provide general overview of dirty page logging. See
4382 * kvm_get_dirty_log_protect() function description for additional details.
4384 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4385 * always flush the TLB (step 4) even if previous step failed and the dirty
4386 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4387 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4388 * writes will be marked dirty for next log read.
4390 * 1. Take a snapshot of the bit and clear it if needed.
4391 * 2. Write protect the corresponding page.
4392 * 3. Copy the snapshot to the userspace.
4393 * 4. Flush TLB's if needed.
4395 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
4397 bool is_dirty
= false;
4400 mutex_lock(&kvm
->slots_lock
);
4403 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4405 if (kvm_x86_ops
->flush_log_dirty
)
4406 kvm_x86_ops
->flush_log_dirty(kvm
);
4408 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
4411 * All the TLBs can be flushed out of mmu lock, see the comments in
4412 * kvm_mmu_slot_remove_write_access().
4414 lockdep_assert_held(&kvm
->slots_lock
);
4416 kvm_flush_remote_tlbs(kvm
);
4418 mutex_unlock(&kvm
->slots_lock
);
4422 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
4425 if (!irqchip_in_kernel(kvm
))
4428 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
4429 irq_event
->irq
, irq_event
->level
,
4434 static int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
4435 struct kvm_enable_cap
*cap
)
4443 case KVM_CAP_DISABLE_QUIRKS
:
4444 kvm
->arch
.disabled_quirks
= cap
->args
[0];
4447 case KVM_CAP_SPLIT_IRQCHIP
: {
4448 mutex_lock(&kvm
->lock
);
4450 if (cap
->args
[0] > MAX_NR_RESERVED_IOAPIC_PINS
)
4451 goto split_irqchip_unlock
;
4453 if (irqchip_in_kernel(kvm
))
4454 goto split_irqchip_unlock
;
4455 if (kvm
->created_vcpus
)
4456 goto split_irqchip_unlock
;
4457 r
= kvm_setup_empty_irq_routing(kvm
);
4459 goto split_irqchip_unlock
;
4460 /* Pairs with irqchip_in_kernel. */
4462 kvm
->arch
.irqchip_mode
= KVM_IRQCHIP_SPLIT
;
4463 kvm
->arch
.nr_reserved_ioapic_pins
= cap
->args
[0];
4465 split_irqchip_unlock
:
4466 mutex_unlock(&kvm
->lock
);
4469 case KVM_CAP_X2APIC_API
:
4471 if (cap
->args
[0] & ~KVM_X2APIC_API_VALID_FLAGS
)
4474 if (cap
->args
[0] & KVM_X2APIC_API_USE_32BIT_IDS
)
4475 kvm
->arch
.x2apic_format
= true;
4476 if (cap
->args
[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
)
4477 kvm
->arch
.x2apic_broadcast_quirk_disabled
= true;
4481 case KVM_CAP_X86_DISABLE_EXITS
:
4483 if (cap
->args
[0] & ~KVM_X86_DISABLE_VALID_EXITS
)
4486 if ((cap
->args
[0] & KVM_X86_DISABLE_EXITS_MWAIT
) &&
4487 kvm_can_mwait_in_guest())
4488 kvm
->arch
.mwait_in_guest
= true;
4489 if (cap
->args
[0] & KVM_X86_DISABLE_EXITS_HLT
)
4490 kvm
->arch
.hlt_in_guest
= true;
4491 if (cap
->args
[0] & KVM_X86_DISABLE_EXITS_PAUSE
)
4492 kvm
->arch
.pause_in_guest
= true;
4495 case KVM_CAP_MSR_PLATFORM_INFO
:
4496 kvm
->arch
.guest_can_read_msr_platform_info
= cap
->args
[0];
4499 case KVM_CAP_EXCEPTION_PAYLOAD
:
4500 kvm
->arch
.exception_payload_enabled
= cap
->args
[0];
4510 long kvm_arch_vm_ioctl(struct file
*filp
,
4511 unsigned int ioctl
, unsigned long arg
)
4513 struct kvm
*kvm
= filp
->private_data
;
4514 void __user
*argp
= (void __user
*)arg
;
4517 * This union makes it completely explicit to gcc-3.x
4518 * that these two variables' stack usage should be
4519 * combined, not added together.
4522 struct kvm_pit_state ps
;
4523 struct kvm_pit_state2 ps2
;
4524 struct kvm_pit_config pit_config
;
4528 case KVM_SET_TSS_ADDR
:
4529 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
4531 case KVM_SET_IDENTITY_MAP_ADDR
: {
4534 mutex_lock(&kvm
->lock
);
4536 if (kvm
->created_vcpus
)
4537 goto set_identity_unlock
;
4539 if (copy_from_user(&ident_addr
, argp
, sizeof(ident_addr
)))
4540 goto set_identity_unlock
;
4541 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
4542 set_identity_unlock
:
4543 mutex_unlock(&kvm
->lock
);
4546 case KVM_SET_NR_MMU_PAGES
:
4547 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
4549 case KVM_GET_NR_MMU_PAGES
:
4550 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
4552 case KVM_CREATE_IRQCHIP
: {
4553 mutex_lock(&kvm
->lock
);
4556 if (irqchip_in_kernel(kvm
))
4557 goto create_irqchip_unlock
;
4560 if (kvm
->created_vcpus
)
4561 goto create_irqchip_unlock
;
4563 r
= kvm_pic_init(kvm
);
4565 goto create_irqchip_unlock
;
4567 r
= kvm_ioapic_init(kvm
);
4569 kvm_pic_destroy(kvm
);
4570 goto create_irqchip_unlock
;
4573 r
= kvm_setup_default_irq_routing(kvm
);
4575 kvm_ioapic_destroy(kvm
);
4576 kvm_pic_destroy(kvm
);
4577 goto create_irqchip_unlock
;
4579 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4581 kvm
->arch
.irqchip_mode
= KVM_IRQCHIP_KERNEL
;
4582 create_irqchip_unlock
:
4583 mutex_unlock(&kvm
->lock
);
4586 case KVM_CREATE_PIT
:
4587 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
4589 case KVM_CREATE_PIT2
:
4591 if (copy_from_user(&u
.pit_config
, argp
,
4592 sizeof(struct kvm_pit_config
)))
4595 mutex_lock(&kvm
->lock
);
4598 goto create_pit_unlock
;
4600 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
4604 mutex_unlock(&kvm
->lock
);
4606 case KVM_GET_IRQCHIP
: {
4607 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4608 struct kvm_irqchip
*chip
;
4610 chip
= memdup_user(argp
, sizeof(*chip
));
4617 if (!irqchip_kernel(kvm
))
4618 goto get_irqchip_out
;
4619 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
4621 goto get_irqchip_out
;
4623 if (copy_to_user(argp
, chip
, sizeof(*chip
)))
4624 goto get_irqchip_out
;
4630 case KVM_SET_IRQCHIP
: {
4631 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4632 struct kvm_irqchip
*chip
;
4634 chip
= memdup_user(argp
, sizeof(*chip
));
4641 if (!irqchip_kernel(kvm
))
4642 goto set_irqchip_out
;
4643 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
4645 goto set_irqchip_out
;
4653 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
4656 if (!kvm
->arch
.vpit
)
4658 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
4662 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
4669 if (copy_from_user(&u
.ps
, argp
, sizeof(u
.ps
)))
4672 if (!kvm
->arch
.vpit
)
4674 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
4677 case KVM_GET_PIT2
: {
4679 if (!kvm
->arch
.vpit
)
4681 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
4685 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
4690 case KVM_SET_PIT2
: {
4692 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
4695 if (!kvm
->arch
.vpit
)
4697 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
4700 case KVM_REINJECT_CONTROL
: {
4701 struct kvm_reinject_control control
;
4703 if (copy_from_user(&control
, argp
, sizeof(control
)))
4705 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
4708 case KVM_SET_BOOT_CPU_ID
:
4710 mutex_lock(&kvm
->lock
);
4711 if (kvm
->created_vcpus
)
4714 kvm
->arch
.bsp_vcpu_id
= arg
;
4715 mutex_unlock(&kvm
->lock
);
4717 case KVM_XEN_HVM_CONFIG
: {
4718 struct kvm_xen_hvm_config xhc
;
4720 if (copy_from_user(&xhc
, argp
, sizeof(xhc
)))
4725 memcpy(&kvm
->arch
.xen_hvm_config
, &xhc
, sizeof(xhc
));
4729 case KVM_SET_CLOCK
: {
4730 struct kvm_clock_data user_ns
;
4734 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
4743 * TODO: userspace has to take care of races with VCPU_RUN, so
4744 * kvm_gen_update_masterclock() can be cut down to locked
4745 * pvclock_update_vm_gtod_copy().
4747 kvm_gen_update_masterclock(kvm
);
4748 now_ns
= get_kvmclock_ns(kvm
);
4749 kvm
->arch
.kvmclock_offset
+= user_ns
.clock
- now_ns
;
4750 kvm_make_all_cpus_request(kvm
, KVM_REQ_CLOCK_UPDATE
);
4753 case KVM_GET_CLOCK
: {
4754 struct kvm_clock_data user_ns
;
4757 now_ns
= get_kvmclock_ns(kvm
);
4758 user_ns
.clock
= now_ns
;
4759 user_ns
.flags
= kvm
->arch
.use_master_clock
? KVM_CLOCK_TSC_STABLE
: 0;
4760 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
4763 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
4768 case KVM_ENABLE_CAP
: {
4769 struct kvm_enable_cap cap
;
4772 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
4774 r
= kvm_vm_ioctl_enable_cap(kvm
, &cap
);
4777 case KVM_MEMORY_ENCRYPT_OP
: {
4779 if (kvm_x86_ops
->mem_enc_op
)
4780 r
= kvm_x86_ops
->mem_enc_op(kvm
, argp
);
4783 case KVM_MEMORY_ENCRYPT_REG_REGION
: {
4784 struct kvm_enc_region region
;
4787 if (copy_from_user(®ion
, argp
, sizeof(region
)))
4791 if (kvm_x86_ops
->mem_enc_reg_region
)
4792 r
= kvm_x86_ops
->mem_enc_reg_region(kvm
, ®ion
);
4795 case KVM_MEMORY_ENCRYPT_UNREG_REGION
: {
4796 struct kvm_enc_region region
;
4799 if (copy_from_user(®ion
, argp
, sizeof(region
)))
4803 if (kvm_x86_ops
->mem_enc_unreg_region
)
4804 r
= kvm_x86_ops
->mem_enc_unreg_region(kvm
, ®ion
);
4807 case KVM_HYPERV_EVENTFD
: {
4808 struct kvm_hyperv_eventfd hvevfd
;
4811 if (copy_from_user(&hvevfd
, argp
, sizeof(hvevfd
)))
4813 r
= kvm_vm_ioctl_hv_eventfd(kvm
, &hvevfd
);
4823 static void kvm_init_msr_list(void)
4828 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
4829 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
4833 * Even MSRs that are valid in the host may not be exposed
4834 * to the guests in some cases.
4836 switch (msrs_to_save
[i
]) {
4837 case MSR_IA32_BNDCFGS
:
4838 if (!kvm_mpx_supported())
4842 if (!kvm_x86_ops
->rdtscp_supported())
4850 msrs_to_save
[j
] = msrs_to_save
[i
];
4853 num_msrs_to_save
= j
;
4855 for (i
= j
= 0; i
< ARRAY_SIZE(emulated_msrs
); i
++) {
4856 if (!kvm_x86_ops
->has_emulated_msr(emulated_msrs
[i
]))
4860 emulated_msrs
[j
] = emulated_msrs
[i
];
4863 num_emulated_msrs
= j
;
4865 for (i
= j
= 0; i
< ARRAY_SIZE(msr_based_features
); i
++) {
4866 struct kvm_msr_entry msr
;
4868 msr
.index
= msr_based_features
[i
];
4869 if (kvm_get_msr_feature(&msr
))
4873 msr_based_features
[j
] = msr_based_features
[i
];
4876 num_msr_based_features
= j
;
4879 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
4887 if (!(lapic_in_kernel(vcpu
) &&
4888 !kvm_iodevice_write(vcpu
, &vcpu
->arch
.apic
->dev
, addr
, n
, v
))
4889 && kvm_io_bus_write(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4900 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
4907 if (!(lapic_in_kernel(vcpu
) &&
4908 !kvm_iodevice_read(vcpu
, &vcpu
->arch
.apic
->dev
,
4910 && kvm_io_bus_read(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4912 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, v
);
4922 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
4923 struct kvm_segment
*var
, int seg
)
4925 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
4928 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
4929 struct kvm_segment
*var
, int seg
)
4931 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
4934 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
,
4935 struct x86_exception
*exception
)
4939 BUG_ON(!mmu_is_nested(vcpu
));
4941 /* NPT walks are always user-walks */
4942 access
|= PFERR_USER_MASK
;
4943 t_gpa
= vcpu
->arch
.mmu
->gva_to_gpa(vcpu
, gpa
, access
, exception
);
4948 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
4949 struct x86_exception
*exception
)
4951 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4952 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4955 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
4956 struct x86_exception
*exception
)
4958 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4959 access
|= PFERR_FETCH_MASK
;
4960 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4963 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
4964 struct x86_exception
*exception
)
4966 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4967 access
|= PFERR_WRITE_MASK
;
4968 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4971 /* uses this to access any guest's mapped memory without checking CPL */
4972 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
4973 struct x86_exception
*exception
)
4975 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
4978 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
4979 struct kvm_vcpu
*vcpu
, u32 access
,
4980 struct x86_exception
*exception
)
4983 int r
= X86EMUL_CONTINUE
;
4986 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
4988 unsigned offset
= addr
& (PAGE_SIZE
-1);
4989 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4992 if (gpa
== UNMAPPED_GVA
)
4993 return X86EMUL_PROPAGATE_FAULT
;
4994 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, data
,
4997 r
= X86EMUL_IO_NEEDED
;
5009 /* used for instruction fetching */
5010 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
5011 gva_t addr
, void *val
, unsigned int bytes
,
5012 struct x86_exception
*exception
)
5014 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5015 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
5019 /* Inline kvm_read_guest_virt_helper for speed. */
5020 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
|PFERR_FETCH_MASK
,
5022 if (unlikely(gpa
== UNMAPPED_GVA
))
5023 return X86EMUL_PROPAGATE_FAULT
;
5025 offset
= addr
& (PAGE_SIZE
-1);
5026 if (WARN_ON(offset
+ bytes
> PAGE_SIZE
))
5027 bytes
= (unsigned)PAGE_SIZE
- offset
;
5028 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, val
,
5030 if (unlikely(ret
< 0))
5031 return X86EMUL_IO_NEEDED
;
5033 return X86EMUL_CONTINUE
;
5036 int kvm_read_guest_virt(struct kvm_vcpu
*vcpu
,
5037 gva_t addr
, void *val
, unsigned int bytes
,
5038 struct x86_exception
*exception
)
5040 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
5042 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
5045 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
5047 static int emulator_read_std(struct x86_emulate_ctxt
*ctxt
,
5048 gva_t addr
, void *val
, unsigned int bytes
,
5049 struct x86_exception
*exception
, bool system
)
5051 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5054 if (!system
&& kvm_x86_ops
->get_cpl(vcpu
) == 3)
5055 access
|= PFERR_USER_MASK
;
5057 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
, exception
);
5060 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt
*ctxt
,
5061 unsigned long addr
, void *val
, unsigned int bytes
)
5063 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5064 int r
= kvm_vcpu_read_guest(vcpu
, addr
, val
, bytes
);
5066 return r
< 0 ? X86EMUL_IO_NEEDED
: X86EMUL_CONTINUE
;
5069 static int kvm_write_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
5070 struct kvm_vcpu
*vcpu
, u32 access
,
5071 struct x86_exception
*exception
)
5074 int r
= X86EMUL_CONTINUE
;
5077 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
5080 unsigned offset
= addr
& (PAGE_SIZE
-1);
5081 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
5084 if (gpa
== UNMAPPED_GVA
)
5085 return X86EMUL_PROPAGATE_FAULT
;
5086 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, data
, towrite
);
5088 r
= X86EMUL_IO_NEEDED
;
5100 static int emulator_write_std(struct x86_emulate_ctxt
*ctxt
, gva_t addr
, void *val
,
5101 unsigned int bytes
, struct x86_exception
*exception
,
5104 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5105 u32 access
= PFERR_WRITE_MASK
;
5107 if (!system
&& kvm_x86_ops
->get_cpl(vcpu
) == 3)
5108 access
|= PFERR_USER_MASK
;
5110 return kvm_write_guest_virt_helper(addr
, val
, bytes
, vcpu
,
5114 int kvm_write_guest_virt_system(struct kvm_vcpu
*vcpu
, gva_t addr
, void *val
,
5115 unsigned int bytes
, struct x86_exception
*exception
)
5117 /* kvm_write_guest_virt_system can pull in tons of pages. */
5118 vcpu
->arch
.l1tf_flush_l1d
= true;
5120 return kvm_write_guest_virt_helper(addr
, val
, bytes
, vcpu
,
5121 PFERR_WRITE_MASK
, exception
);
5123 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
5125 int handle_ud(struct kvm_vcpu
*vcpu
)
5127 int emul_type
= EMULTYPE_TRAP_UD
;
5128 enum emulation_result er
;
5129 char sig
[5]; /* ud2; .ascii "kvm" */
5130 struct x86_exception e
;
5132 if (force_emulation_prefix
&&
5133 kvm_read_guest_virt(vcpu
, kvm_get_linear_rip(vcpu
),
5134 sig
, sizeof(sig
), &e
) == 0 &&
5135 memcmp(sig
, "\xf\xbkvm", sizeof(sig
)) == 0) {
5136 kvm_rip_write(vcpu
, kvm_rip_read(vcpu
) + sizeof(sig
));
5140 er
= kvm_emulate_instruction(vcpu
, emul_type
);
5141 if (er
== EMULATE_USER_EXIT
)
5143 if (er
!= EMULATE_DONE
)
5144 kvm_queue_exception(vcpu
, UD_VECTOR
);
5147 EXPORT_SYMBOL_GPL(handle_ud
);
5149 static int vcpu_is_mmio_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
5150 gpa_t gpa
, bool write
)
5152 /* For APIC access vmexit */
5153 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
5156 if (vcpu_match_mmio_gpa(vcpu
, gpa
)) {
5157 trace_vcpu_match_mmio(gva
, gpa
, write
, true);
5164 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
5165 gpa_t
*gpa
, struct x86_exception
*exception
,
5168 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
5169 | (write
? PFERR_WRITE_MASK
: 0);
5172 * currently PKRU is only applied to ept enabled guest so
5173 * there is no pkey in EPT page table for L1 guest or EPT
5174 * shadow page table for L2 guest.
5176 if (vcpu_match_mmio_gva(vcpu
, gva
)
5177 && !permission_fault(vcpu
, vcpu
->arch
.walk_mmu
,
5178 vcpu
->arch
.access
, 0, access
)) {
5179 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
5180 (gva
& (PAGE_SIZE
- 1));
5181 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
5185 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
5187 if (*gpa
== UNMAPPED_GVA
)
5190 return vcpu_is_mmio_gpa(vcpu
, gva
, *gpa
, write
);
5193 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5194 const void *val
, int bytes
)
5198 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, val
, bytes
);
5201 kvm_page_track_write(vcpu
, gpa
, val
, bytes
);
5205 struct read_write_emulator_ops
{
5206 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
5208 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5209 void *val
, int bytes
);
5210 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5211 int bytes
, void *val
);
5212 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5213 void *val
, int bytes
);
5217 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
5219 if (vcpu
->mmio_read_completed
) {
5220 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
5221 vcpu
->mmio_fragments
[0].gpa
, val
);
5222 vcpu
->mmio_read_completed
= 0;
5229 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5230 void *val
, int bytes
)
5232 return !kvm_vcpu_read_guest(vcpu
, gpa
, val
, bytes
);
5235 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5236 void *val
, int bytes
)
5238 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
5241 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
5243 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, val
);
5244 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
5247 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5248 void *val
, int bytes
)
5250 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, NULL
);
5251 return X86EMUL_IO_NEEDED
;
5254 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
5255 void *val
, int bytes
)
5257 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
5259 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
5260 return X86EMUL_CONTINUE
;
5263 static const struct read_write_emulator_ops read_emultor
= {
5264 .read_write_prepare
= read_prepare
,
5265 .read_write_emulate
= read_emulate
,
5266 .read_write_mmio
= vcpu_mmio_read
,
5267 .read_write_exit_mmio
= read_exit_mmio
,
5270 static const struct read_write_emulator_ops write_emultor
= {
5271 .read_write_emulate
= write_emulate
,
5272 .read_write_mmio
= write_mmio
,
5273 .read_write_exit_mmio
= write_exit_mmio
,
5277 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
5279 struct x86_exception
*exception
,
5280 struct kvm_vcpu
*vcpu
,
5281 const struct read_write_emulator_ops
*ops
)
5285 bool write
= ops
->write
;
5286 struct kvm_mmio_fragment
*frag
;
5287 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5290 * If the exit was due to a NPF we may already have a GPA.
5291 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5292 * Note, this cannot be used on string operations since string
5293 * operation using rep will only have the initial GPA from the NPF
5296 if (vcpu
->arch
.gpa_available
&&
5297 emulator_can_use_gpa(ctxt
) &&
5298 (addr
& ~PAGE_MASK
) == (vcpu
->arch
.gpa_val
& ~PAGE_MASK
)) {
5299 gpa
= vcpu
->arch
.gpa_val
;
5300 ret
= vcpu_is_mmio_gpa(vcpu
, addr
, gpa
, write
);
5302 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
5304 return X86EMUL_PROPAGATE_FAULT
;
5307 if (!ret
&& ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
5308 return X86EMUL_CONTINUE
;
5311 * Is this MMIO handled locally?
5313 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
5314 if (handled
== bytes
)
5315 return X86EMUL_CONTINUE
;
5321 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
5322 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
5326 return X86EMUL_CONTINUE
;
5329 static int emulator_read_write(struct x86_emulate_ctxt
*ctxt
,
5331 void *val
, unsigned int bytes
,
5332 struct x86_exception
*exception
,
5333 const struct read_write_emulator_ops
*ops
)
5335 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5339 if (ops
->read_write_prepare
&&
5340 ops
->read_write_prepare(vcpu
, val
, bytes
))
5341 return X86EMUL_CONTINUE
;
5343 vcpu
->mmio_nr_fragments
= 0;
5345 /* Crossing a page boundary? */
5346 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
5349 now
= -addr
& ~PAGE_MASK
;
5350 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
5353 if (rc
!= X86EMUL_CONTINUE
)
5356 if (ctxt
->mode
!= X86EMUL_MODE_PROT64
)
5362 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
5364 if (rc
!= X86EMUL_CONTINUE
)
5367 if (!vcpu
->mmio_nr_fragments
)
5370 gpa
= vcpu
->mmio_fragments
[0].gpa
;
5372 vcpu
->mmio_needed
= 1;
5373 vcpu
->mmio_cur_fragment
= 0;
5375 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
5376 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
5377 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
5378 vcpu
->run
->mmio
.phys_addr
= gpa
;
5380 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
5383 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
5387 struct x86_exception
*exception
)
5389 return emulator_read_write(ctxt
, addr
, val
, bytes
,
5390 exception
, &read_emultor
);
5393 static int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
5397 struct x86_exception
*exception
)
5399 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
5400 exception
, &write_emultor
);
5403 #define CMPXCHG_TYPE(t, ptr, old, new) \
5404 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5406 #ifdef CONFIG_X86_64
5407 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5409 # define CMPXCHG64(ptr, old, new) \
5410 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5413 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
5418 struct x86_exception
*exception
)
5420 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5426 /* guests cmpxchg8b have to be emulated atomically */
5427 if (bytes
> 8 || (bytes
& (bytes
- 1)))
5430 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
5432 if (gpa
== UNMAPPED_GVA
||
5433 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
5436 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
5439 page
= kvm_vcpu_gfn_to_page(vcpu
, gpa
>> PAGE_SHIFT
);
5440 if (is_error_page(page
))
5443 kaddr
= kmap_atomic(page
);
5444 kaddr
+= offset_in_page(gpa
);
5447 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
5450 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
5453 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
5456 exchanged
= CMPXCHG64(kaddr
, old
, new);
5461 kunmap_atomic(kaddr
);
5462 kvm_release_page_dirty(page
);
5465 return X86EMUL_CMPXCHG_FAILED
;
5467 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
5468 kvm_page_track_write(vcpu
, gpa
, new, bytes
);
5470 return X86EMUL_CONTINUE
;
5473 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
5475 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
5478 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
5482 for (i
= 0; i
< vcpu
->arch
.pio
.count
; i
++) {
5483 if (vcpu
->arch
.pio
.in
)
5484 r
= kvm_io_bus_read(vcpu
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
5485 vcpu
->arch
.pio
.size
, pd
);
5487 r
= kvm_io_bus_write(vcpu
, KVM_PIO_BUS
,
5488 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
5492 pd
+= vcpu
->arch
.pio
.size
;
5497 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
5498 unsigned short port
, void *val
,
5499 unsigned int count
, bool in
)
5501 vcpu
->arch
.pio
.port
= port
;
5502 vcpu
->arch
.pio
.in
= in
;
5503 vcpu
->arch
.pio
.count
= count
;
5504 vcpu
->arch
.pio
.size
= size
;
5506 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
5507 vcpu
->arch
.pio
.count
= 0;
5511 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
5512 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
5513 vcpu
->run
->io
.size
= size
;
5514 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
5515 vcpu
->run
->io
.count
= count
;
5516 vcpu
->run
->io
.port
= port
;
5521 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
5522 int size
, unsigned short port
, void *val
,
5525 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5528 if (vcpu
->arch
.pio
.count
)
5531 memset(vcpu
->arch
.pio_data
, 0, size
* count
);
5533 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
5536 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
5537 trace_kvm_pio(KVM_PIO_IN
, port
, size
, count
, vcpu
->arch
.pio_data
);
5538 vcpu
->arch
.pio
.count
= 0;
5545 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
5546 int size
, unsigned short port
,
5547 const void *val
, unsigned int count
)
5549 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5551 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
5552 trace_kvm_pio(KVM_PIO_OUT
, port
, size
, count
, vcpu
->arch
.pio_data
);
5553 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
5556 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
5558 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
5561 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
5563 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
5566 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu
*vcpu
)
5568 if (!need_emulate_wbinvd(vcpu
))
5569 return X86EMUL_CONTINUE
;
5571 if (kvm_x86_ops
->has_wbinvd_exit()) {
5572 int cpu
= get_cpu();
5574 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
5575 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
5576 wbinvd_ipi
, NULL
, 1);
5578 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
5581 return X86EMUL_CONTINUE
;
5584 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
5586 kvm_emulate_wbinvd_noskip(vcpu
);
5587 return kvm_skip_emulated_instruction(vcpu
);
5589 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
5593 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
5595 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt
));
5598 static int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
5599 unsigned long *dest
)
5601 return kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
5604 static int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
5605 unsigned long value
)
5608 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
5611 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
5613 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
5616 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
5618 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5619 unsigned long value
;
5623 value
= kvm_read_cr0(vcpu
);
5626 value
= vcpu
->arch
.cr2
;
5629 value
= kvm_read_cr3(vcpu
);
5632 value
= kvm_read_cr4(vcpu
);
5635 value
= kvm_get_cr8(vcpu
);
5638 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
5645 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
5647 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5652 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
5655 vcpu
->arch
.cr2
= val
;
5658 res
= kvm_set_cr3(vcpu
, val
);
5661 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
5664 res
= kvm_set_cr8(vcpu
, val
);
5667 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
5674 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
5676 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
5679 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5681 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
5684 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5686 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
5689 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5691 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
5694 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
5696 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
5699 static unsigned long emulator_get_cached_segment_base(
5700 struct x86_emulate_ctxt
*ctxt
, int seg
)
5702 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
5705 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
5706 struct desc_struct
*desc
, u32
*base3
,
5709 struct kvm_segment var
;
5711 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
5712 *selector
= var
.selector
;
5715 memset(desc
, 0, sizeof(*desc
));
5723 set_desc_limit(desc
, var
.limit
);
5724 set_desc_base(desc
, (unsigned long)var
.base
);
5725 #ifdef CONFIG_X86_64
5727 *base3
= var
.base
>> 32;
5729 desc
->type
= var
.type
;
5731 desc
->dpl
= var
.dpl
;
5732 desc
->p
= var
.present
;
5733 desc
->avl
= var
.avl
;
5741 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
5742 struct desc_struct
*desc
, u32 base3
,
5745 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5746 struct kvm_segment var
;
5748 var
.selector
= selector
;
5749 var
.base
= get_desc_base(desc
);
5750 #ifdef CONFIG_X86_64
5751 var
.base
|= ((u64
)base3
) << 32;
5753 var
.limit
= get_desc_limit(desc
);
5755 var
.limit
= (var
.limit
<< 12) | 0xfff;
5756 var
.type
= desc
->type
;
5757 var
.dpl
= desc
->dpl
;
5762 var
.avl
= desc
->avl
;
5763 var
.present
= desc
->p
;
5764 var
.unusable
= !var
.present
;
5767 kvm_set_segment(vcpu
, &var
, seg
);
5771 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
5772 u32 msr_index
, u64
*pdata
)
5774 struct msr_data msr
;
5777 msr
.index
= msr_index
;
5778 msr
.host_initiated
= false;
5779 r
= kvm_get_msr(emul_to_vcpu(ctxt
), &msr
);
5787 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
5788 u32 msr_index
, u64 data
)
5790 struct msr_data msr
;
5793 msr
.index
= msr_index
;
5794 msr
.host_initiated
= false;
5795 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
5798 static u64
emulator_get_smbase(struct x86_emulate_ctxt
*ctxt
)
5800 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5802 return vcpu
->arch
.smbase
;
5805 static void emulator_set_smbase(struct x86_emulate_ctxt
*ctxt
, u64 smbase
)
5807 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5809 vcpu
->arch
.smbase
= smbase
;
5812 static int emulator_check_pmc(struct x86_emulate_ctxt
*ctxt
,
5815 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt
), pmc
);
5818 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
5819 u32 pmc
, u64
*pdata
)
5821 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
5824 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
5826 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
5829 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
5830 struct x86_instruction_info
*info
,
5831 enum x86_intercept_stage stage
)
5833 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
5836 static bool emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
5837 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
, bool check_limit
)
5839 return kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
, check_limit
);
5842 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
5844 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
5847 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
5849 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
5852 static void emulator_set_nmi_mask(struct x86_emulate_ctxt
*ctxt
, bool masked
)
5854 kvm_x86_ops
->set_nmi_mask(emul_to_vcpu(ctxt
), masked
);
5857 static unsigned emulator_get_hflags(struct x86_emulate_ctxt
*ctxt
)
5859 return emul_to_vcpu(ctxt
)->arch
.hflags
;
5862 static void emulator_set_hflags(struct x86_emulate_ctxt
*ctxt
, unsigned emul_flags
)
5864 kvm_set_hflags(emul_to_vcpu(ctxt
), emul_flags
);
5867 static int emulator_pre_leave_smm(struct x86_emulate_ctxt
*ctxt
, u64 smbase
)
5869 return kvm_x86_ops
->pre_leave_smm(emul_to_vcpu(ctxt
), smbase
);
5872 static const struct x86_emulate_ops emulate_ops
= {
5873 .read_gpr
= emulator_read_gpr
,
5874 .write_gpr
= emulator_write_gpr
,
5875 .read_std
= emulator_read_std
,
5876 .write_std
= emulator_write_std
,
5877 .read_phys
= kvm_read_guest_phys_system
,
5878 .fetch
= kvm_fetch_guest_virt
,
5879 .read_emulated
= emulator_read_emulated
,
5880 .write_emulated
= emulator_write_emulated
,
5881 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
5882 .invlpg
= emulator_invlpg
,
5883 .pio_in_emulated
= emulator_pio_in_emulated
,
5884 .pio_out_emulated
= emulator_pio_out_emulated
,
5885 .get_segment
= emulator_get_segment
,
5886 .set_segment
= emulator_set_segment
,
5887 .get_cached_segment_base
= emulator_get_cached_segment_base
,
5888 .get_gdt
= emulator_get_gdt
,
5889 .get_idt
= emulator_get_idt
,
5890 .set_gdt
= emulator_set_gdt
,
5891 .set_idt
= emulator_set_idt
,
5892 .get_cr
= emulator_get_cr
,
5893 .set_cr
= emulator_set_cr
,
5894 .cpl
= emulator_get_cpl
,
5895 .get_dr
= emulator_get_dr
,
5896 .set_dr
= emulator_set_dr
,
5897 .get_smbase
= emulator_get_smbase
,
5898 .set_smbase
= emulator_set_smbase
,
5899 .set_msr
= emulator_set_msr
,
5900 .get_msr
= emulator_get_msr
,
5901 .check_pmc
= emulator_check_pmc
,
5902 .read_pmc
= emulator_read_pmc
,
5903 .halt
= emulator_halt
,
5904 .wbinvd
= emulator_wbinvd
,
5905 .fix_hypercall
= emulator_fix_hypercall
,
5906 .intercept
= emulator_intercept
,
5907 .get_cpuid
= emulator_get_cpuid
,
5908 .set_nmi_mask
= emulator_set_nmi_mask
,
5909 .get_hflags
= emulator_get_hflags
,
5910 .set_hflags
= emulator_set_hflags
,
5911 .pre_leave_smm
= emulator_pre_leave_smm
,
5914 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
5916 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
5918 * an sti; sti; sequence only disable interrupts for the first
5919 * instruction. So, if the last instruction, be it emulated or
5920 * not, left the system with the INT_STI flag enabled, it
5921 * means that the last instruction is an sti. We should not
5922 * leave the flag on in this case. The same goes for mov ss
5924 if (int_shadow
& mask
)
5926 if (unlikely(int_shadow
|| mask
)) {
5927 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
5929 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5933 static bool inject_emulated_exception(struct kvm_vcpu
*vcpu
)
5935 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5936 if (ctxt
->exception
.vector
== PF_VECTOR
)
5937 return kvm_propagate_fault(vcpu
, &ctxt
->exception
);
5939 if (ctxt
->exception
.error_code_valid
)
5940 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
5941 ctxt
->exception
.error_code
);
5943 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
5947 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
5949 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5952 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5954 ctxt
->eflags
= kvm_get_rflags(vcpu
);
5955 ctxt
->tf
= (ctxt
->eflags
& X86_EFLAGS_TF
) != 0;
5957 ctxt
->eip
= kvm_rip_read(vcpu
);
5958 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
5959 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
5960 (cs_l
&& is_long_mode(vcpu
)) ? X86EMUL_MODE_PROT64
:
5961 cs_db
? X86EMUL_MODE_PROT32
:
5962 X86EMUL_MODE_PROT16
;
5963 BUILD_BUG_ON(HF_GUEST_MASK
!= X86EMUL_GUEST_MASK
);
5964 BUILD_BUG_ON(HF_SMM_MASK
!= X86EMUL_SMM_MASK
);
5965 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK
!= X86EMUL_SMM_INSIDE_NMI_MASK
);
5967 init_decode_cache(ctxt
);
5968 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5971 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
5973 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5976 init_emulate_ctxt(vcpu
);
5980 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
5981 ret
= emulate_int_real(ctxt
, irq
);
5983 if (ret
!= X86EMUL_CONTINUE
)
5984 return EMULATE_FAIL
;
5986 ctxt
->eip
= ctxt
->_eip
;
5987 kvm_rip_write(vcpu
, ctxt
->eip
);
5988 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5990 return EMULATE_DONE
;
5992 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
5994 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
, int emulation_type
)
5996 int r
= EMULATE_DONE
;
5998 ++vcpu
->stat
.insn_emulation_fail
;
5999 trace_kvm_emulate_insn_failed(vcpu
);
6001 if (emulation_type
& EMULTYPE_NO_UD_ON_FAIL
)
6002 return EMULATE_FAIL
;
6004 if (!is_guest_mode(vcpu
) && kvm_x86_ops
->get_cpl(vcpu
) == 0) {
6005 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
6006 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
6007 vcpu
->run
->internal
.ndata
= 0;
6008 r
= EMULATE_USER_EXIT
;
6011 kvm_queue_exception(vcpu
, UD_VECTOR
);
6016 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t cr2
,
6017 bool write_fault_to_shadow_pgtable
,
6023 if (!(emulation_type
& EMULTYPE_ALLOW_RETRY
))
6026 if (WARN_ON_ONCE(is_guest_mode(vcpu
)))
6029 if (!vcpu
->arch
.mmu
->direct_map
) {
6031 * Write permission should be allowed since only
6032 * write access need to be emulated.
6034 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
6037 * If the mapping is invalid in guest, let cpu retry
6038 * it to generate fault.
6040 if (gpa
== UNMAPPED_GVA
)
6045 * Do not retry the unhandleable instruction if it faults on the
6046 * readonly host memory, otherwise it will goto a infinite loop:
6047 * retry instruction -> write #PF -> emulation fail -> retry
6048 * instruction -> ...
6050 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
6053 * If the instruction failed on the error pfn, it can not be fixed,
6054 * report the error to userspace.
6056 if (is_error_noslot_pfn(pfn
))
6059 kvm_release_pfn_clean(pfn
);
6061 /* The instructions are well-emulated on direct mmu. */
6062 if (vcpu
->arch
.mmu
->direct_map
) {
6063 unsigned int indirect_shadow_pages
;
6065 spin_lock(&vcpu
->kvm
->mmu_lock
);
6066 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
6067 spin_unlock(&vcpu
->kvm
->mmu_lock
);
6069 if (indirect_shadow_pages
)
6070 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
6076 * if emulation was due to access to shadowed page table
6077 * and it failed try to unshadow page and re-enter the
6078 * guest to let CPU execute the instruction.
6080 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
6083 * If the access faults on its page table, it can not
6084 * be fixed by unprotecting shadow page and it should
6085 * be reported to userspace.
6087 return !write_fault_to_shadow_pgtable
;
6090 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
6091 unsigned long cr2
, int emulation_type
)
6093 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6094 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
6096 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
6097 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
6100 * If the emulation is caused by #PF and it is non-page_table
6101 * writing instruction, it means the VM-EXIT is caused by shadow
6102 * page protected, we can zap the shadow page and retry this
6103 * instruction directly.
6105 * Note: if the guest uses a non-page-table modifying instruction
6106 * on the PDE that points to the instruction, then we will unmap
6107 * the instruction and go to an infinite loop. So, we cache the
6108 * last retried eip and the last fault address, if we meet the eip
6109 * and the address again, we can break out of the potential infinite
6112 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
6114 if (!(emulation_type
& EMULTYPE_ALLOW_RETRY
))
6117 if (WARN_ON_ONCE(is_guest_mode(vcpu
)))
6120 if (x86_page_table_writing_insn(ctxt
))
6123 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
6126 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
6127 vcpu
->arch
.last_retry_addr
= cr2
;
6129 if (!vcpu
->arch
.mmu
->direct_map
)
6130 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
6132 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
6137 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
6138 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
6140 static void kvm_smm_changed(struct kvm_vcpu
*vcpu
)
6142 if (!(vcpu
->arch
.hflags
& HF_SMM_MASK
)) {
6143 /* This is a good place to trace that we are exiting SMM. */
6144 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, false);
6146 /* Process a latched INIT or SMI, if any. */
6147 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6150 kvm_mmu_reset_context(vcpu
);
6153 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
)
6155 unsigned changed
= vcpu
->arch
.hflags
^ emul_flags
;
6157 vcpu
->arch
.hflags
= emul_flags
;
6159 if (changed
& HF_SMM_MASK
)
6160 kvm_smm_changed(vcpu
);
6163 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
6172 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
6173 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
6178 static void kvm_vcpu_do_singlestep(struct kvm_vcpu
*vcpu
, int *r
)
6180 struct kvm_run
*kvm_run
= vcpu
->run
;
6182 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
6183 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
| DR6_RTM
;
6184 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
6185 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
6186 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
6187 *r
= EMULATE_USER_EXIT
;
6189 kvm_queue_exception_p(vcpu
, DB_VECTOR
, DR6_BS
);
6193 int kvm_skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
6195 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
6196 int r
= EMULATE_DONE
;
6198 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
6201 * rflags is the old, "raw" value of the flags. The new value has
6202 * not been saved yet.
6204 * This is correct even for TF set by the guest, because "the
6205 * processor will not generate this exception after the instruction
6206 * that sets the TF flag".
6208 if (unlikely(rflags
& X86_EFLAGS_TF
))
6209 kvm_vcpu_do_singlestep(vcpu
, &r
);
6210 return r
== EMULATE_DONE
;
6212 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction
);
6214 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
6216 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
6217 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
6218 struct kvm_run
*kvm_run
= vcpu
->run
;
6219 unsigned long eip
= kvm_get_linear_rip(vcpu
);
6220 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
6221 vcpu
->arch
.guest_debug_dr7
,
6225 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
| DR6_RTM
;
6226 kvm_run
->debug
.arch
.pc
= eip
;
6227 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
6228 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
6229 *r
= EMULATE_USER_EXIT
;
6234 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
) &&
6235 !(kvm_get_rflags(vcpu
) & X86_EFLAGS_RF
)) {
6236 unsigned long eip
= kvm_get_linear_rip(vcpu
);
6237 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
6242 vcpu
->arch
.dr6
&= ~15;
6243 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
6244 kvm_queue_exception(vcpu
, DB_VECTOR
);
6253 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt
*ctxt
)
6255 switch (ctxt
->opcode_len
) {
6262 case 0xe6: /* OUT */
6266 case 0x6c: /* INS */
6268 case 0x6e: /* OUTS */
6275 case 0x33: /* RDPMC */
6284 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
6291 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
6292 bool writeback
= true;
6293 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
6295 vcpu
->arch
.l1tf_flush_l1d
= true;
6298 * Clear write_fault_to_shadow_pgtable here to ensure it is
6301 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
6302 kvm_clear_exception_queue(vcpu
);
6304 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
6305 init_emulate_ctxt(vcpu
);
6308 * We will reenter on the same instruction since
6309 * we do not set complete_userspace_io. This does not
6310 * handle watchpoints yet, those would be handled in
6313 if (!(emulation_type
& EMULTYPE_SKIP
) &&
6314 kvm_vcpu_check_breakpoint(vcpu
, &r
))
6317 ctxt
->interruptibility
= 0;
6318 ctxt
->have_exception
= false;
6319 ctxt
->exception
.vector
= -1;
6320 ctxt
->perm_ok
= false;
6322 ctxt
->ud
= emulation_type
& EMULTYPE_TRAP_UD
;
6324 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
6326 trace_kvm_emulate_insn_start(vcpu
);
6327 ++vcpu
->stat
.insn_emulation
;
6328 if (r
!= EMULATION_OK
) {
6329 if (emulation_type
& EMULTYPE_TRAP_UD
)
6330 return EMULATE_FAIL
;
6331 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
6333 return EMULATE_DONE
;
6334 if (ctxt
->have_exception
&& inject_emulated_exception(vcpu
))
6335 return EMULATE_DONE
;
6336 if (emulation_type
& EMULTYPE_SKIP
)
6337 return EMULATE_FAIL
;
6338 return handle_emulation_failure(vcpu
, emulation_type
);
6342 if ((emulation_type
& EMULTYPE_VMWARE
) &&
6343 !is_vmware_backdoor_opcode(ctxt
))
6344 return EMULATE_FAIL
;
6346 if (emulation_type
& EMULTYPE_SKIP
) {
6347 kvm_rip_write(vcpu
, ctxt
->_eip
);
6348 if (ctxt
->eflags
& X86_EFLAGS_RF
)
6349 kvm_set_rflags(vcpu
, ctxt
->eflags
& ~X86_EFLAGS_RF
);
6350 return EMULATE_DONE
;
6353 if (retry_instruction(ctxt
, cr2
, emulation_type
))
6354 return EMULATE_DONE
;
6356 /* this is needed for vmware backdoor interface to work since it
6357 changes registers values during IO operation */
6358 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
6359 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
6360 emulator_invalidate_register_cache(ctxt
);
6364 /* Save the faulting GPA (cr2) in the address field */
6365 ctxt
->exception
.address
= cr2
;
6367 r
= x86_emulate_insn(ctxt
);
6369 if (r
== EMULATION_INTERCEPTED
)
6370 return EMULATE_DONE
;
6372 if (r
== EMULATION_FAILED
) {
6373 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
6375 return EMULATE_DONE
;
6377 return handle_emulation_failure(vcpu
, emulation_type
);
6380 if (ctxt
->have_exception
) {
6382 if (inject_emulated_exception(vcpu
))
6384 } else if (vcpu
->arch
.pio
.count
) {
6385 if (!vcpu
->arch
.pio
.in
) {
6386 /* FIXME: return into emulator if single-stepping. */
6387 vcpu
->arch
.pio
.count
= 0;
6390 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
6392 r
= EMULATE_USER_EXIT
;
6393 } else if (vcpu
->mmio_needed
) {
6394 if (!vcpu
->mmio_is_write
)
6396 r
= EMULATE_USER_EXIT
;
6397 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
6398 } else if (r
== EMULATION_RESTART
)
6404 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
6405 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
6406 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6407 kvm_rip_write(vcpu
, ctxt
->eip
);
6408 if (r
== EMULATE_DONE
&&
6409 (ctxt
->tf
|| (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)))
6410 kvm_vcpu_do_singlestep(vcpu
, &r
);
6411 if (!ctxt
->have_exception
||
6412 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
)
6413 __kvm_set_rflags(vcpu
, ctxt
->eflags
);
6416 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6417 * do nothing, and it will be requested again as soon as
6418 * the shadow expires. But we still need to check here,
6419 * because POPF has no interrupt shadow.
6421 if (unlikely((ctxt
->eflags
& ~rflags
) & X86_EFLAGS_IF
))
6422 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6424 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
6429 int kvm_emulate_instruction(struct kvm_vcpu
*vcpu
, int emulation_type
)
6431 return x86_emulate_instruction(vcpu
, 0, emulation_type
, NULL
, 0);
6433 EXPORT_SYMBOL_GPL(kvm_emulate_instruction
);
6435 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu
*vcpu
,
6436 void *insn
, int insn_len
)
6438 return x86_emulate_instruction(vcpu
, 0, 0, insn
, insn_len
);
6440 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer
);
6442 static int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
,
6443 unsigned short port
)
6445 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6446 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
6447 size
, port
, &val
, 1);
6448 /* do not return to emulator after return from userspace */
6449 vcpu
->arch
.pio
.count
= 0;
6453 static int complete_fast_pio_in(struct kvm_vcpu
*vcpu
)
6457 /* We should only ever be called with arch.pio.count equal to 1 */
6458 BUG_ON(vcpu
->arch
.pio
.count
!= 1);
6460 /* For size less than 4 we merge, else we zero extend */
6461 val
= (vcpu
->arch
.pio
.size
< 4) ? kvm_register_read(vcpu
, VCPU_REGS_RAX
)
6465 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6466 * the copy and tracing
6468 emulator_pio_in_emulated(&vcpu
->arch
.emulate_ctxt
, vcpu
->arch
.pio
.size
,
6469 vcpu
->arch
.pio
.port
, &val
, 1);
6470 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
6475 static int kvm_fast_pio_in(struct kvm_vcpu
*vcpu
, int size
,
6476 unsigned short port
)
6481 /* For size less than 4 we merge, else we zero extend */
6482 val
= (size
< 4) ? kvm_register_read(vcpu
, VCPU_REGS_RAX
) : 0;
6484 ret
= emulator_pio_in_emulated(&vcpu
->arch
.emulate_ctxt
, size
, port
,
6487 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
6491 vcpu
->arch
.complete_userspace_io
= complete_fast_pio_in
;
6496 int kvm_fast_pio(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
, int in
)
6498 int ret
= kvm_skip_emulated_instruction(vcpu
);
6501 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6502 * KVM_EXIT_DEBUG here.
6505 return kvm_fast_pio_in(vcpu
, size
, port
) && ret
;
6507 return kvm_fast_pio_out(vcpu
, size
, port
) && ret
;
6509 EXPORT_SYMBOL_GPL(kvm_fast_pio
);
6511 static int kvmclock_cpu_down_prep(unsigned int cpu
)
6513 __this_cpu_write(cpu_tsc_khz
, 0);
6517 static void tsc_khz_changed(void *data
)
6519 struct cpufreq_freqs
*freq
= data
;
6520 unsigned long khz
= 0;
6524 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
6525 khz
= cpufreq_quick_get(raw_smp_processor_id());
6528 __this_cpu_write(cpu_tsc_khz
, khz
);
6531 #ifdef CONFIG_X86_64
6532 static void kvm_hyperv_tsc_notifier(void)
6535 struct kvm_vcpu
*vcpu
;
6538 spin_lock(&kvm_lock
);
6539 list_for_each_entry(kvm
, &vm_list
, vm_list
)
6540 kvm_make_mclock_inprogress_request(kvm
);
6542 hyperv_stop_tsc_emulation();
6544 /* TSC frequency always matches when on Hyper-V */
6545 for_each_present_cpu(cpu
)
6546 per_cpu(cpu_tsc_khz
, cpu
) = tsc_khz
;
6547 kvm_max_guest_tsc_khz
= tsc_khz
;
6549 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
6550 struct kvm_arch
*ka
= &kvm
->arch
;
6552 spin_lock(&ka
->pvclock_gtod_sync_lock
);
6554 pvclock_update_vm_gtod_copy(kvm
);
6556 kvm_for_each_vcpu(cpu
, vcpu
, kvm
)
6557 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6559 kvm_for_each_vcpu(cpu
, vcpu
, kvm
)
6560 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS
, vcpu
);
6562 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
6564 spin_unlock(&kvm_lock
);
6568 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
6571 struct cpufreq_freqs
*freq
= data
;
6573 struct kvm_vcpu
*vcpu
;
6574 int i
, send_ipi
= 0;
6577 * We allow guests to temporarily run on slowing clocks,
6578 * provided we notify them after, or to run on accelerating
6579 * clocks, provided we notify them before. Thus time never
6582 * However, we have a problem. We can't atomically update
6583 * the frequency of a given CPU from this function; it is
6584 * merely a notifier, which can be called from any CPU.
6585 * Changing the TSC frequency at arbitrary points in time
6586 * requires a recomputation of local variables related to
6587 * the TSC for each VCPU. We must flag these local variables
6588 * to be updated and be sure the update takes place with the
6589 * new frequency before any guests proceed.
6591 * Unfortunately, the combination of hotplug CPU and frequency
6592 * change creates an intractable locking scenario; the order
6593 * of when these callouts happen is undefined with respect to
6594 * CPU hotplug, and they can race with each other. As such,
6595 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6596 * undefined; you can actually have a CPU frequency change take
6597 * place in between the computation of X and the setting of the
6598 * variable. To protect against this problem, all updates of
6599 * the per_cpu tsc_khz variable are done in an interrupt
6600 * protected IPI, and all callers wishing to update the value
6601 * must wait for a synchronous IPI to complete (which is trivial
6602 * if the caller is on the CPU already). This establishes the
6603 * necessary total order on variable updates.
6605 * Note that because a guest time update may take place
6606 * anytime after the setting of the VCPU's request bit, the
6607 * correct TSC value must be set before the request. However,
6608 * to ensure the update actually makes it to any guest which
6609 * starts running in hardware virtualization between the set
6610 * and the acquisition of the spinlock, we must also ping the
6611 * CPU after setting the request bit.
6615 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
6617 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
6620 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
6622 spin_lock(&kvm_lock
);
6623 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
6624 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6625 if (vcpu
->cpu
!= freq
->cpu
)
6627 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6628 if (vcpu
->cpu
!= smp_processor_id())
6632 spin_unlock(&kvm_lock
);
6634 if (freq
->old
< freq
->new && send_ipi
) {
6636 * We upscale the frequency. Must make the guest
6637 * doesn't see old kvmclock values while running with
6638 * the new frequency, otherwise we risk the guest sees
6639 * time go backwards.
6641 * In case we update the frequency for another cpu
6642 * (which might be in guest context) send an interrupt
6643 * to kick the cpu out of guest context. Next time
6644 * guest context is entered kvmclock will be updated,
6645 * so the guest will not see stale values.
6647 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
6652 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
6653 .notifier_call
= kvmclock_cpufreq_notifier
6656 static int kvmclock_cpu_online(unsigned int cpu
)
6658 tsc_khz_changed(NULL
);
6662 static void kvm_timer_init(void)
6664 max_tsc_khz
= tsc_khz
;
6666 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
6667 #ifdef CONFIG_CPU_FREQ
6668 struct cpufreq_policy policy
;
6671 memset(&policy
, 0, sizeof(policy
));
6673 cpufreq_get_policy(&policy
, cpu
);
6674 if (policy
.cpuinfo
.max_freq
)
6675 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
6678 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
6679 CPUFREQ_TRANSITION_NOTIFIER
);
6681 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
6683 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE
, "x86/kvm/clk:online",
6684 kvmclock_cpu_online
, kvmclock_cpu_down_prep
);
6687 DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
6688 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu
);
6690 int kvm_is_in_guest(void)
6692 return __this_cpu_read(current_vcpu
) != NULL
;
6695 static int kvm_is_user_mode(void)
6699 if (__this_cpu_read(current_vcpu
))
6700 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
6702 return user_mode
!= 0;
6705 static unsigned long kvm_get_guest_ip(void)
6707 unsigned long ip
= 0;
6709 if (__this_cpu_read(current_vcpu
))
6710 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
6715 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
6716 .is_in_guest
= kvm_is_in_guest
,
6717 .is_user_mode
= kvm_is_user_mode
,
6718 .get_guest_ip
= kvm_get_guest_ip
,
6721 static void kvm_set_mmio_spte_mask(void)
6724 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
6727 * Set the reserved bits and the present bit of an paging-structure
6728 * entry to generate page fault with PFER.RSV = 1.
6732 * Mask the uppermost physical address bit, which would be reserved as
6733 * long as the supported physical address width is less than 52.
6737 /* Set the present bit. */
6741 * If reserved bit is not supported, clear the present bit to disable
6744 if (IS_ENABLED(CONFIG_X86_64
) && maxphyaddr
== 52)
6747 kvm_mmu_set_mmio_spte_mask(mask
, mask
);
6750 #ifdef CONFIG_X86_64
6751 static void pvclock_gtod_update_fn(struct work_struct
*work
)
6755 struct kvm_vcpu
*vcpu
;
6758 spin_lock(&kvm_lock
);
6759 list_for_each_entry(kvm
, &vm_list
, vm_list
)
6760 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6761 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
6762 atomic_set(&kvm_guest_has_master_clock
, 0);
6763 spin_unlock(&kvm_lock
);
6766 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
6769 * Notification about pvclock gtod data update.
6771 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
6774 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
6775 struct timekeeper
*tk
= priv
;
6777 update_pvclock_gtod(tk
);
6779 /* disable master clock if host does not trust, or does not
6780 * use, TSC based clocksource.
6782 if (!gtod_is_based_on_tsc(gtod
->clock
.vclock_mode
) &&
6783 atomic_read(&kvm_guest_has_master_clock
) != 0)
6784 queue_work(system_long_wq
, &pvclock_gtod_work
);
6789 static struct notifier_block pvclock_gtod_notifier
= {
6790 .notifier_call
= pvclock_gtod_notify
,
6794 int kvm_arch_init(void *opaque
)
6797 struct kvm_x86_ops
*ops
= opaque
;
6800 printk(KERN_ERR
"kvm: already loaded the other module\n");
6805 if (!ops
->cpu_has_kvm_support()) {
6806 printk(KERN_ERR
"kvm: no hardware support\n");
6810 if (ops
->disabled_by_bios()) {
6811 printk(KERN_ERR
"kvm: disabled by bios\n");
6817 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
6819 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
6823 r
= kvm_mmu_module_init();
6825 goto out_free_percpu
;
6827 kvm_set_mmio_spte_mask();
6831 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
6832 PT_DIRTY_MASK
, PT64_NX_MASK
, 0,
6833 PT_PRESENT_MASK
, 0, sme_me_mask
);
6836 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
6838 if (boot_cpu_has(X86_FEATURE_XSAVE
))
6839 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
6842 #ifdef CONFIG_X86_64
6843 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
6845 if (hypervisor_is_type(X86_HYPER_MS_HYPERV
))
6846 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier
);
6852 free_percpu(shared_msrs
);
6857 void kvm_arch_exit(void)
6859 #ifdef CONFIG_X86_64
6860 if (hypervisor_is_type(X86_HYPER_MS_HYPERV
))
6861 clear_hv_tscchange_cb();
6864 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
6866 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
6867 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
6868 CPUFREQ_TRANSITION_NOTIFIER
);
6869 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE
);
6870 #ifdef CONFIG_X86_64
6871 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
6874 kvm_mmu_module_exit();
6875 free_percpu(shared_msrs
);
6878 int kvm_vcpu_halt(struct kvm_vcpu
*vcpu
)
6880 ++vcpu
->stat
.halt_exits
;
6881 if (lapic_in_kernel(vcpu
)) {
6882 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
6885 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
6889 EXPORT_SYMBOL_GPL(kvm_vcpu_halt
);
6891 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
6893 int ret
= kvm_skip_emulated_instruction(vcpu
);
6895 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6896 * KVM_EXIT_DEBUG here.
6898 return kvm_vcpu_halt(vcpu
) && ret
;
6900 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
6902 #ifdef CONFIG_X86_64
6903 static int kvm_pv_clock_pairing(struct kvm_vcpu
*vcpu
, gpa_t paddr
,
6904 unsigned long clock_type
)
6906 struct kvm_clock_pairing clock_pairing
;
6907 struct timespec64 ts
;
6911 if (clock_type
!= KVM_CLOCK_PAIRING_WALLCLOCK
)
6912 return -KVM_EOPNOTSUPP
;
6914 if (kvm_get_walltime_and_clockread(&ts
, &cycle
) == false)
6915 return -KVM_EOPNOTSUPP
;
6917 clock_pairing
.sec
= ts
.tv_sec
;
6918 clock_pairing
.nsec
= ts
.tv_nsec
;
6919 clock_pairing
.tsc
= kvm_read_l1_tsc(vcpu
, cycle
);
6920 clock_pairing
.flags
= 0;
6921 memset(&clock_pairing
.pad
, 0, sizeof(clock_pairing
.pad
));
6924 if (kvm_write_guest(vcpu
->kvm
, paddr
, &clock_pairing
,
6925 sizeof(struct kvm_clock_pairing
)))
6933 * kvm_pv_kick_cpu_op: Kick a vcpu.
6935 * @apicid - apicid of vcpu to be kicked.
6937 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
6939 struct kvm_lapic_irq lapic_irq
;
6941 lapic_irq
.shorthand
= 0;
6942 lapic_irq
.dest_mode
= 0;
6943 lapic_irq
.level
= 0;
6944 lapic_irq
.dest_id
= apicid
;
6945 lapic_irq
.msi_redir_hint
= false;
6947 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
6948 kvm_irq_delivery_to_apic(kvm
, NULL
, &lapic_irq
, NULL
);
6951 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu
*vcpu
)
6953 vcpu
->arch
.apicv_active
= false;
6954 kvm_x86_ops
->refresh_apicv_exec_ctrl(vcpu
);
6957 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
6959 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
6962 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
6963 return kvm_hv_hypercall(vcpu
);
6965 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6966 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6967 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6968 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6969 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6971 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
6973 op_64_bit
= is_64_bit_mode(vcpu
);
6982 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
6988 case KVM_HC_VAPIC_POLL_IRQ
:
6991 case KVM_HC_KICK_CPU
:
6992 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
6995 #ifdef CONFIG_X86_64
6996 case KVM_HC_CLOCK_PAIRING
:
6997 ret
= kvm_pv_clock_pairing(vcpu
, a0
, a1
);
6999 case KVM_HC_SEND_IPI
:
7000 ret
= kvm_pv_send_ipi(vcpu
->kvm
, a0
, a1
, a2
, a3
, op_64_bit
);
7010 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
7012 ++vcpu
->stat
.hypercalls
;
7013 return kvm_skip_emulated_instruction(vcpu
);
7015 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
7017 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
7019 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
7020 char instruction
[3];
7021 unsigned long rip
= kvm_rip_read(vcpu
);
7023 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
7025 return emulator_write_emulated(ctxt
, rip
, instruction
, 3,
7029 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
7031 return vcpu
->run
->request_interrupt_window
&&
7032 likely(!pic_in_kernel(vcpu
->kvm
));
7035 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
7037 struct kvm_run
*kvm_run
= vcpu
->run
;
7039 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
7040 kvm_run
->flags
= is_smm(vcpu
) ? KVM_RUN_X86_SMM
: 0;
7041 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
7042 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
7043 kvm_run
->ready_for_interrupt_injection
=
7044 pic_in_kernel(vcpu
->kvm
) ||
7045 kvm_vcpu_ready_for_interrupt_injection(vcpu
);
7048 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
7052 if (!kvm_x86_ops
->update_cr8_intercept
)
7055 if (!lapic_in_kernel(vcpu
))
7058 if (vcpu
->arch
.apicv_active
)
7061 if (!vcpu
->arch
.apic
->vapic_addr
)
7062 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
7069 tpr
= kvm_lapic_get_cr8(vcpu
);
7071 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
7074 static int inject_pending_event(struct kvm_vcpu
*vcpu
, bool req_int_win
)
7078 /* try to reinject previous events if any */
7080 if (vcpu
->arch
.exception
.injected
)
7081 kvm_x86_ops
->queue_exception(vcpu
);
7083 * Do not inject an NMI or interrupt if there is a pending
7084 * exception. Exceptions and interrupts are recognized at
7085 * instruction boundaries, i.e. the start of an instruction.
7086 * Trap-like exceptions, e.g. #DB, have higher priority than
7087 * NMIs and interrupts, i.e. traps are recognized before an
7088 * NMI/interrupt that's pending on the same instruction.
7089 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7090 * priority, but are only generated (pended) during instruction
7091 * execution, i.e. a pending fault-like exception means the
7092 * fault occurred on the *previous* instruction and must be
7093 * serviced prior to recognizing any new events in order to
7094 * fully complete the previous instruction.
7096 else if (!vcpu
->arch
.exception
.pending
) {
7097 if (vcpu
->arch
.nmi_injected
)
7098 kvm_x86_ops
->set_nmi(vcpu
);
7099 else if (vcpu
->arch
.interrupt
.injected
)
7100 kvm_x86_ops
->set_irq(vcpu
);
7104 * Call check_nested_events() even if we reinjected a previous event
7105 * in order for caller to determine if it should require immediate-exit
7106 * from L2 to L1 due to pending L1 events which require exit
7109 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
7110 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
7115 /* try to inject new event if pending */
7116 if (vcpu
->arch
.exception
.pending
) {
7117 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
7118 vcpu
->arch
.exception
.has_error_code
,
7119 vcpu
->arch
.exception
.error_code
);
7121 WARN_ON_ONCE(vcpu
->arch
.exception
.injected
);
7122 vcpu
->arch
.exception
.pending
= false;
7123 vcpu
->arch
.exception
.injected
= true;
7125 if (exception_type(vcpu
->arch
.exception
.nr
) == EXCPT_FAULT
)
7126 __kvm_set_rflags(vcpu
, kvm_get_rflags(vcpu
) |
7129 if (vcpu
->arch
.exception
.nr
== DB_VECTOR
) {
7131 * This code assumes that nSVM doesn't use
7132 * check_nested_events(). If it does, the
7133 * DR6/DR7 changes should happen before L1
7134 * gets a #VMEXIT for an intercepted #DB in
7135 * L2. (Under VMX, on the other hand, the
7136 * DR6/DR7 changes should not happen in the
7137 * event of a VM-exit to L1 for an intercepted
7140 kvm_deliver_exception_payload(vcpu
);
7141 if (vcpu
->arch
.dr7
& DR7_GD
) {
7142 vcpu
->arch
.dr7
&= ~DR7_GD
;
7143 kvm_update_dr7(vcpu
);
7147 kvm_x86_ops
->queue_exception(vcpu
);
7150 /* Don't consider new event if we re-injected an event */
7151 if (kvm_event_needs_reinjection(vcpu
))
7154 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
) &&
7155 kvm_x86_ops
->smi_allowed(vcpu
)) {
7156 vcpu
->arch
.smi_pending
= false;
7157 ++vcpu
->arch
.smi_count
;
7159 } else if (vcpu
->arch
.nmi_pending
&& kvm_x86_ops
->nmi_allowed(vcpu
)) {
7160 --vcpu
->arch
.nmi_pending
;
7161 vcpu
->arch
.nmi_injected
= true;
7162 kvm_x86_ops
->set_nmi(vcpu
);
7163 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
7165 * Because interrupts can be injected asynchronously, we are
7166 * calling check_nested_events again here to avoid a race condition.
7167 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7168 * proposal and current concerns. Perhaps we should be setting
7169 * KVM_REQ_EVENT only on certain events and not unconditionally?
7171 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
7172 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
7176 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
7177 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
7179 kvm_x86_ops
->set_irq(vcpu
);
7186 static void process_nmi(struct kvm_vcpu
*vcpu
)
7191 * x86 is limited to one NMI running, and one NMI pending after it.
7192 * If an NMI is already in progress, limit further NMIs to just one.
7193 * Otherwise, allow two (and we'll inject the first one immediately).
7195 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
7198 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
7199 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
7200 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7203 static u32
enter_smm_get_segment_flags(struct kvm_segment
*seg
)
7206 flags
|= seg
->g
<< 23;
7207 flags
|= seg
->db
<< 22;
7208 flags
|= seg
->l
<< 21;
7209 flags
|= seg
->avl
<< 20;
7210 flags
|= seg
->present
<< 15;
7211 flags
|= seg
->dpl
<< 13;
7212 flags
|= seg
->s
<< 12;
7213 flags
|= seg
->type
<< 8;
7217 static void enter_smm_save_seg_32(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
7219 struct kvm_segment seg
;
7222 kvm_get_segment(vcpu
, &seg
, n
);
7223 put_smstate(u32
, buf
, 0x7fa8 + n
* 4, seg
.selector
);
7226 offset
= 0x7f84 + n
* 12;
7228 offset
= 0x7f2c + (n
- 3) * 12;
7230 put_smstate(u32
, buf
, offset
+ 8, seg
.base
);
7231 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
7232 put_smstate(u32
, buf
, offset
, enter_smm_get_segment_flags(&seg
));
7235 #ifdef CONFIG_X86_64
7236 static void enter_smm_save_seg_64(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
7238 struct kvm_segment seg
;
7242 kvm_get_segment(vcpu
, &seg
, n
);
7243 offset
= 0x7e00 + n
* 16;
7245 flags
= enter_smm_get_segment_flags(&seg
) >> 8;
7246 put_smstate(u16
, buf
, offset
, seg
.selector
);
7247 put_smstate(u16
, buf
, offset
+ 2, flags
);
7248 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
7249 put_smstate(u64
, buf
, offset
+ 8, seg
.base
);
7253 static void enter_smm_save_state_32(struct kvm_vcpu
*vcpu
, char *buf
)
7256 struct kvm_segment seg
;
7260 put_smstate(u32
, buf
, 0x7ffc, kvm_read_cr0(vcpu
));
7261 put_smstate(u32
, buf
, 0x7ff8, kvm_read_cr3(vcpu
));
7262 put_smstate(u32
, buf
, 0x7ff4, kvm_get_rflags(vcpu
));
7263 put_smstate(u32
, buf
, 0x7ff0, kvm_rip_read(vcpu
));
7265 for (i
= 0; i
< 8; i
++)
7266 put_smstate(u32
, buf
, 0x7fd0 + i
* 4, kvm_register_read(vcpu
, i
));
7268 kvm_get_dr(vcpu
, 6, &val
);
7269 put_smstate(u32
, buf
, 0x7fcc, (u32
)val
);
7270 kvm_get_dr(vcpu
, 7, &val
);
7271 put_smstate(u32
, buf
, 0x7fc8, (u32
)val
);
7273 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
7274 put_smstate(u32
, buf
, 0x7fc4, seg
.selector
);
7275 put_smstate(u32
, buf
, 0x7f64, seg
.base
);
7276 put_smstate(u32
, buf
, 0x7f60, seg
.limit
);
7277 put_smstate(u32
, buf
, 0x7f5c, enter_smm_get_segment_flags(&seg
));
7279 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
7280 put_smstate(u32
, buf
, 0x7fc0, seg
.selector
);
7281 put_smstate(u32
, buf
, 0x7f80, seg
.base
);
7282 put_smstate(u32
, buf
, 0x7f7c, seg
.limit
);
7283 put_smstate(u32
, buf
, 0x7f78, enter_smm_get_segment_flags(&seg
));
7285 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
7286 put_smstate(u32
, buf
, 0x7f74, dt
.address
);
7287 put_smstate(u32
, buf
, 0x7f70, dt
.size
);
7289 kvm_x86_ops
->get_idt(vcpu
, &dt
);
7290 put_smstate(u32
, buf
, 0x7f58, dt
.address
);
7291 put_smstate(u32
, buf
, 0x7f54, dt
.size
);
7293 for (i
= 0; i
< 6; i
++)
7294 enter_smm_save_seg_32(vcpu
, buf
, i
);
7296 put_smstate(u32
, buf
, 0x7f14, kvm_read_cr4(vcpu
));
7299 put_smstate(u32
, buf
, 0x7efc, 0x00020000);
7300 put_smstate(u32
, buf
, 0x7ef8, vcpu
->arch
.smbase
);
7303 static void enter_smm_save_state_64(struct kvm_vcpu
*vcpu
, char *buf
)
7305 #ifdef CONFIG_X86_64
7307 struct kvm_segment seg
;
7311 for (i
= 0; i
< 16; i
++)
7312 put_smstate(u64
, buf
, 0x7ff8 - i
* 8, kvm_register_read(vcpu
, i
));
7314 put_smstate(u64
, buf
, 0x7f78, kvm_rip_read(vcpu
));
7315 put_smstate(u32
, buf
, 0x7f70, kvm_get_rflags(vcpu
));
7317 kvm_get_dr(vcpu
, 6, &val
);
7318 put_smstate(u64
, buf
, 0x7f68, val
);
7319 kvm_get_dr(vcpu
, 7, &val
);
7320 put_smstate(u64
, buf
, 0x7f60, val
);
7322 put_smstate(u64
, buf
, 0x7f58, kvm_read_cr0(vcpu
));
7323 put_smstate(u64
, buf
, 0x7f50, kvm_read_cr3(vcpu
));
7324 put_smstate(u64
, buf
, 0x7f48, kvm_read_cr4(vcpu
));
7326 put_smstate(u32
, buf
, 0x7f00, vcpu
->arch
.smbase
);
7329 put_smstate(u32
, buf
, 0x7efc, 0x00020064);
7331 put_smstate(u64
, buf
, 0x7ed0, vcpu
->arch
.efer
);
7333 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
7334 put_smstate(u16
, buf
, 0x7e90, seg
.selector
);
7335 put_smstate(u16
, buf
, 0x7e92, enter_smm_get_segment_flags(&seg
) >> 8);
7336 put_smstate(u32
, buf
, 0x7e94, seg
.limit
);
7337 put_smstate(u64
, buf
, 0x7e98, seg
.base
);
7339 kvm_x86_ops
->get_idt(vcpu
, &dt
);
7340 put_smstate(u32
, buf
, 0x7e84, dt
.size
);
7341 put_smstate(u64
, buf
, 0x7e88, dt
.address
);
7343 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
7344 put_smstate(u16
, buf
, 0x7e70, seg
.selector
);
7345 put_smstate(u16
, buf
, 0x7e72, enter_smm_get_segment_flags(&seg
) >> 8);
7346 put_smstate(u32
, buf
, 0x7e74, seg
.limit
);
7347 put_smstate(u64
, buf
, 0x7e78, seg
.base
);
7349 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
7350 put_smstate(u32
, buf
, 0x7e64, dt
.size
);
7351 put_smstate(u64
, buf
, 0x7e68, dt
.address
);
7353 for (i
= 0; i
< 6; i
++)
7354 enter_smm_save_seg_64(vcpu
, buf
, i
);
7360 static void enter_smm(struct kvm_vcpu
*vcpu
)
7362 struct kvm_segment cs
, ds
;
7367 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, true);
7368 memset(buf
, 0, 512);
7369 if (guest_cpuid_has(vcpu
, X86_FEATURE_LM
))
7370 enter_smm_save_state_64(vcpu
, buf
);
7372 enter_smm_save_state_32(vcpu
, buf
);
7375 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7376 * vCPU state (e.g. leave guest mode) after we've saved the state into
7377 * the SMM state-save area.
7379 kvm_x86_ops
->pre_enter_smm(vcpu
, buf
);
7381 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
7382 kvm_vcpu_write_guest(vcpu
, vcpu
->arch
.smbase
+ 0xfe00, buf
, sizeof(buf
));
7384 if (kvm_x86_ops
->get_nmi_mask(vcpu
))
7385 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
7387 kvm_x86_ops
->set_nmi_mask(vcpu
, true);
7389 kvm_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
7390 kvm_rip_write(vcpu
, 0x8000);
7392 cr0
= vcpu
->arch
.cr0
& ~(X86_CR0_PE
| X86_CR0_EM
| X86_CR0_TS
| X86_CR0_PG
);
7393 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
7394 vcpu
->arch
.cr0
= cr0
;
7396 kvm_x86_ops
->set_cr4(vcpu
, 0);
7398 /* Undocumented: IDT limit is set to zero on entry to SMM. */
7399 dt
.address
= dt
.size
= 0;
7400 kvm_x86_ops
->set_idt(vcpu
, &dt
);
7402 __kvm_set_dr(vcpu
, 7, DR7_FIXED_1
);
7404 cs
.selector
= (vcpu
->arch
.smbase
>> 4) & 0xffff;
7405 cs
.base
= vcpu
->arch
.smbase
;
7410 cs
.limit
= ds
.limit
= 0xffffffff;
7411 cs
.type
= ds
.type
= 0x3;
7412 cs
.dpl
= ds
.dpl
= 0;
7417 cs
.avl
= ds
.avl
= 0;
7418 cs
.present
= ds
.present
= 1;
7419 cs
.unusable
= ds
.unusable
= 0;
7420 cs
.padding
= ds
.padding
= 0;
7422 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7423 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_DS
);
7424 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_ES
);
7425 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_FS
);
7426 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_GS
);
7427 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_SS
);
7429 if (guest_cpuid_has(vcpu
, X86_FEATURE_LM
))
7430 kvm_x86_ops
->set_efer(vcpu
, 0);
7432 kvm_update_cpuid(vcpu
);
7433 kvm_mmu_reset_context(vcpu
);
7436 static void process_smi(struct kvm_vcpu
*vcpu
)
7438 vcpu
->arch
.smi_pending
= true;
7439 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7442 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
7444 kvm_make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
7447 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
7449 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
7452 bitmap_zero(vcpu
->arch
.ioapic_handled_vectors
, 256);
7454 if (irqchip_split(vcpu
->kvm
))
7455 kvm_scan_ioapic_routes(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
7457 if (vcpu
->arch
.apicv_active
)
7458 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
7459 if (ioapic_in_kernel(vcpu
->kvm
))
7460 kvm_ioapic_scan_entry(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
7463 if (is_guest_mode(vcpu
))
7464 vcpu
->arch
.load_eoi_exitmap_pending
= true;
7466 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP
, vcpu
);
7469 static void vcpu_load_eoi_exitmap(struct kvm_vcpu
*vcpu
)
7471 u64 eoi_exit_bitmap
[4];
7473 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
7476 bitmap_or((ulong
*)eoi_exit_bitmap
, vcpu
->arch
.ioapic_handled_vectors
,
7477 vcpu_to_synic(vcpu
)->vec_bitmap
, 256);
7478 kvm_x86_ops
->load_eoi_exitmap(vcpu
, eoi_exit_bitmap
);
7481 int kvm_arch_mmu_notifier_invalidate_range(struct kvm
*kvm
,
7482 unsigned long start
, unsigned long end
,
7485 unsigned long apic_address
;
7488 * The physical address of apic access page is stored in the VMCS.
7489 * Update it when it becomes invalid.
7491 apic_address
= gfn_to_hva(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
7492 if (start
<= apic_address
&& apic_address
< end
)
7493 kvm_make_all_cpus_request(kvm
, KVM_REQ_APIC_PAGE_RELOAD
);
7498 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu
*vcpu
)
7500 struct page
*page
= NULL
;
7502 if (!lapic_in_kernel(vcpu
))
7505 if (!kvm_x86_ops
->set_apic_access_page_addr
)
7508 page
= gfn_to_page(vcpu
->kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
7509 if (is_error_page(page
))
7511 kvm_x86_ops
->set_apic_access_page_addr(vcpu
, page_to_phys(page
));
7514 * Do not pin apic access page in memory, the MMU notifier
7515 * will call us again if it is migrated or swapped out.
7519 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page
);
7521 void __kvm_request_immediate_exit(struct kvm_vcpu
*vcpu
)
7523 smp_send_reschedule(vcpu
->cpu
);
7525 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit
);
7528 * Returns 1 to let vcpu_run() continue the guest execution loop without
7529 * exiting to the userspace. Otherwise, the value will be returned to the
7532 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
7536 dm_request_for_irq_injection(vcpu
) &&
7537 kvm_cpu_accept_dm_intr(vcpu
);
7539 bool req_immediate_exit
= false;
7541 if (kvm_request_pending(vcpu
)) {
7542 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES
, vcpu
))
7543 kvm_x86_ops
->get_vmcs12_pages(vcpu
);
7544 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
7545 kvm_mmu_unload(vcpu
);
7546 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
7547 __kvm_migrate_timers(vcpu
);
7548 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
7549 kvm_gen_update_masterclock(vcpu
->kvm
);
7550 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
7551 kvm_gen_kvmclock_update(vcpu
);
7552 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
7553 r
= kvm_guest_time_update(vcpu
);
7557 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
7558 kvm_mmu_sync_roots(vcpu
);
7559 if (kvm_check_request(KVM_REQ_LOAD_CR3
, vcpu
))
7560 kvm_mmu_load_cr3(vcpu
);
7561 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
7562 kvm_vcpu_flush_tlb(vcpu
, true);
7563 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
7564 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
7568 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
7569 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
7570 vcpu
->mmio_needed
= 0;
7574 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
7575 /* Page is swapped out. Do synthetic halt */
7576 vcpu
->arch
.apf
.halted
= true;
7580 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
7581 record_steal_time(vcpu
);
7582 if (kvm_check_request(KVM_REQ_SMI
, vcpu
))
7584 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
7586 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
7587 kvm_pmu_handle_event(vcpu
);
7588 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
7589 kvm_pmu_deliver_pmi(vcpu
);
7590 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT
, vcpu
)) {
7591 BUG_ON(vcpu
->arch
.pending_ioapic_eoi
> 255);
7592 if (test_bit(vcpu
->arch
.pending_ioapic_eoi
,
7593 vcpu
->arch
.ioapic_handled_vectors
)) {
7594 vcpu
->run
->exit_reason
= KVM_EXIT_IOAPIC_EOI
;
7595 vcpu
->run
->eoi
.vector
=
7596 vcpu
->arch
.pending_ioapic_eoi
;
7601 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
7602 vcpu_scan_ioapic(vcpu
);
7603 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP
, vcpu
))
7604 vcpu_load_eoi_exitmap(vcpu
);
7605 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
))
7606 kvm_vcpu_reload_apic_access_page(vcpu
);
7607 if (kvm_check_request(KVM_REQ_HV_CRASH
, vcpu
)) {
7608 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
7609 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_CRASH
;
7613 if (kvm_check_request(KVM_REQ_HV_RESET
, vcpu
)) {
7614 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
7615 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_RESET
;
7619 if (kvm_check_request(KVM_REQ_HV_EXIT
, vcpu
)) {
7620 vcpu
->run
->exit_reason
= KVM_EXIT_HYPERV
;
7621 vcpu
->run
->hyperv
= vcpu
->arch
.hyperv
.exit
;
7627 * KVM_REQ_HV_STIMER has to be processed after
7628 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7629 * depend on the guest clock being up-to-date
7631 if (kvm_check_request(KVM_REQ_HV_STIMER
, vcpu
))
7632 kvm_hv_process_stimers(vcpu
);
7635 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
7636 ++vcpu
->stat
.req_event
;
7637 kvm_apic_accept_events(vcpu
);
7638 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
7643 if (inject_pending_event(vcpu
, req_int_win
) != 0)
7644 req_immediate_exit
= true;
7646 /* Enable SMI/NMI/IRQ window open exits if needed.
7648 * SMIs have three cases:
7649 * 1) They can be nested, and then there is nothing to
7650 * do here because RSM will cause a vmexit anyway.
7651 * 2) There is an ISA-specific reason why SMI cannot be
7652 * injected, and the moment when this changes can be
7654 * 3) Or the SMI can be pending because
7655 * inject_pending_event has completed the injection
7656 * of an IRQ or NMI from the previous vmexit, and
7657 * then we request an immediate exit to inject the
7660 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
))
7661 if (!kvm_x86_ops
->enable_smi_window(vcpu
))
7662 req_immediate_exit
= true;
7663 if (vcpu
->arch
.nmi_pending
)
7664 kvm_x86_ops
->enable_nmi_window(vcpu
);
7665 if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
7666 kvm_x86_ops
->enable_irq_window(vcpu
);
7667 WARN_ON(vcpu
->arch
.exception
.pending
);
7670 if (kvm_lapic_enabled(vcpu
)) {
7671 update_cr8_intercept(vcpu
);
7672 kvm_lapic_sync_to_vapic(vcpu
);
7676 r
= kvm_mmu_reload(vcpu
);
7678 goto cancel_injection
;
7683 kvm_x86_ops
->prepare_guest_switch(vcpu
);
7686 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7687 * IPI are then delayed after guest entry, which ensures that they
7688 * result in virtual interrupt delivery.
7690 local_irq_disable();
7691 vcpu
->mode
= IN_GUEST_MODE
;
7693 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
7696 * 1) We should set ->mode before checking ->requests. Please see
7697 * the comment in kvm_vcpu_exiting_guest_mode().
7699 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7700 * pairs with the memory barrier implicit in pi_test_and_set_on
7701 * (see vmx_deliver_posted_interrupt).
7703 * 3) This also orders the write to mode from any reads to the page
7704 * tables done while the VCPU is running. Please see the comment
7705 * in kvm_flush_remote_tlbs.
7707 smp_mb__after_srcu_read_unlock();
7710 * This handles the case where a posted interrupt was
7711 * notified with kvm_vcpu_kick.
7713 if (kvm_lapic_enabled(vcpu
) && vcpu
->arch
.apicv_active
)
7714 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
7716 if (vcpu
->mode
== EXITING_GUEST_MODE
|| kvm_request_pending(vcpu
)
7717 || need_resched() || signal_pending(current
)) {
7718 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
7722 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7724 goto cancel_injection
;
7727 kvm_load_guest_xcr0(vcpu
);
7729 if (req_immediate_exit
) {
7730 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7731 kvm_x86_ops
->request_immediate_exit(vcpu
);
7734 trace_kvm_entry(vcpu
->vcpu_id
);
7735 if (lapic_timer_advance_ns
)
7736 wait_lapic_expire(vcpu
);
7737 guest_enter_irqoff();
7739 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
7741 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
7742 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
7743 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
7744 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
7745 set_debugreg(vcpu
->arch
.dr6
, 6);
7746 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
7749 kvm_x86_ops
->run(vcpu
);
7752 * Do this here before restoring debug registers on the host. And
7753 * since we do this before handling the vmexit, a DR access vmexit
7754 * can (a) read the correct value of the debug registers, (b) set
7755 * KVM_DEBUGREG_WONT_EXIT again.
7757 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)) {
7758 WARN_ON(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
);
7759 kvm_x86_ops
->sync_dirty_debug_regs(vcpu
);
7760 kvm_update_dr0123(vcpu
);
7761 kvm_update_dr6(vcpu
);
7762 kvm_update_dr7(vcpu
);
7763 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
7767 * If the guest has used debug registers, at least dr7
7768 * will be disabled while returning to the host.
7769 * If we don't have active breakpoints in the host, we don't
7770 * care about the messed up debug address registers. But if
7771 * we have some of them active, restore the old state.
7773 if (hw_breakpoint_active())
7774 hw_breakpoint_restore();
7776 vcpu
->arch
.last_guest_tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
7778 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
7781 kvm_put_guest_xcr0(vcpu
);
7783 kvm_before_interrupt(vcpu
);
7784 kvm_x86_ops
->handle_external_intr(vcpu
);
7785 kvm_after_interrupt(vcpu
);
7789 guest_exit_irqoff();
7794 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7797 * Profile KVM exit RIPs:
7799 if (unlikely(prof_on
== KVM_PROFILING
)) {
7800 unsigned long rip
= kvm_rip_read(vcpu
);
7801 profile_hit(KVM_PROFILING
, (void *)rip
);
7804 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
7805 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7807 if (vcpu
->arch
.apic_attention
)
7808 kvm_lapic_sync_from_vapic(vcpu
);
7810 vcpu
->arch
.gpa_available
= false;
7811 r
= kvm_x86_ops
->handle_exit(vcpu
);
7815 kvm_x86_ops
->cancel_injection(vcpu
);
7816 if (unlikely(vcpu
->arch
.apic_attention
))
7817 kvm_lapic_sync_from_vapic(vcpu
);
7822 static inline int vcpu_block(struct kvm
*kvm
, struct kvm_vcpu
*vcpu
)
7824 if (!kvm_arch_vcpu_runnable(vcpu
) &&
7825 (!kvm_x86_ops
->pre_block
|| kvm_x86_ops
->pre_block(vcpu
) == 0)) {
7826 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
7827 kvm_vcpu_block(vcpu
);
7828 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
7830 if (kvm_x86_ops
->post_block
)
7831 kvm_x86_ops
->post_block(vcpu
);
7833 if (!kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
7837 kvm_apic_accept_events(vcpu
);
7838 switch(vcpu
->arch
.mp_state
) {
7839 case KVM_MP_STATE_HALTED
:
7840 vcpu
->arch
.pv
.pv_unhalted
= false;
7841 vcpu
->arch
.mp_state
=
7842 KVM_MP_STATE_RUNNABLE
;
7843 case KVM_MP_STATE_RUNNABLE
:
7844 vcpu
->arch
.apf
.halted
= false;
7846 case KVM_MP_STATE_INIT_RECEIVED
:
7855 static inline bool kvm_vcpu_running(struct kvm_vcpu
*vcpu
)
7857 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
)
7858 kvm_x86_ops
->check_nested_events(vcpu
, false);
7860 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
7861 !vcpu
->arch
.apf
.halted
);
7864 static int vcpu_run(struct kvm_vcpu
*vcpu
)
7867 struct kvm
*kvm
= vcpu
->kvm
;
7869 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
7870 vcpu
->arch
.l1tf_flush_l1d
= true;
7873 if (kvm_vcpu_running(vcpu
)) {
7874 r
= vcpu_enter_guest(vcpu
);
7876 r
= vcpu_block(kvm
, vcpu
);
7882 kvm_clear_request(KVM_REQ_PENDING_TIMER
, vcpu
);
7883 if (kvm_cpu_has_pending_timer(vcpu
))
7884 kvm_inject_pending_timer_irqs(vcpu
);
7886 if (dm_request_for_irq_injection(vcpu
) &&
7887 kvm_vcpu_ready_for_interrupt_injection(vcpu
)) {
7889 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
7890 ++vcpu
->stat
.request_irq_exits
;
7894 kvm_check_async_pf_completion(vcpu
);
7896 if (signal_pending(current
)) {
7898 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
7899 ++vcpu
->stat
.signal_exits
;
7902 if (need_resched()) {
7903 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
7905 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
7909 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
7914 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
7917 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7918 r
= kvm_emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
7919 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
7920 if (r
!= EMULATE_DONE
)
7925 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
7927 BUG_ON(!vcpu
->arch
.pio
.count
);
7929 return complete_emulated_io(vcpu
);
7933 * Implements the following, as a state machine:
7937 * for each mmio piece in the fragment
7945 * for each mmio piece in the fragment
7950 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
7952 struct kvm_run
*run
= vcpu
->run
;
7953 struct kvm_mmio_fragment
*frag
;
7956 BUG_ON(!vcpu
->mmio_needed
);
7958 /* Complete previous fragment */
7959 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
7960 len
= min(8u, frag
->len
);
7961 if (!vcpu
->mmio_is_write
)
7962 memcpy(frag
->data
, run
->mmio
.data
, len
);
7964 if (frag
->len
<= 8) {
7965 /* Switch to the next fragment. */
7967 vcpu
->mmio_cur_fragment
++;
7969 /* Go forward to the next mmio piece. */
7975 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
7976 vcpu
->mmio_needed
= 0;
7978 /* FIXME: return into emulator if single-stepping. */
7979 if (vcpu
->mmio_is_write
)
7981 vcpu
->mmio_read_completed
= 1;
7982 return complete_emulated_io(vcpu
);
7985 run
->exit_reason
= KVM_EXIT_MMIO
;
7986 run
->mmio
.phys_addr
= frag
->gpa
;
7987 if (vcpu
->mmio_is_write
)
7988 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
7989 run
->mmio
.len
= min(8u, frag
->len
);
7990 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
7991 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
7995 /* Swap (qemu) user FPU context for the guest FPU context. */
7996 static void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
7999 copy_fpregs_to_fpstate(&vcpu
->arch
.user_fpu
);
8000 /* PKRU is separately restored in kvm_x86_ops->run. */
8001 __copy_kernel_to_fpregs(&vcpu
->arch
.guest_fpu
.state
,
8002 ~XFEATURE_MASK_PKRU
);
8007 /* When vcpu_run ends, restore user space FPU context. */
8008 static void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
8011 copy_fpregs_to_fpstate(&vcpu
->arch
.guest_fpu
);
8012 copy_kernel_to_fpregs(&vcpu
->arch
.user_fpu
.state
);
8014 ++vcpu
->stat
.fpu_reload
;
8018 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
8023 kvm_sigset_activate(vcpu
);
8024 kvm_load_guest_fpu(vcpu
);
8026 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
8027 if (kvm_run
->immediate_exit
) {
8031 kvm_vcpu_block(vcpu
);
8032 kvm_apic_accept_events(vcpu
);
8033 kvm_clear_request(KVM_REQ_UNHALT
, vcpu
);
8035 if (signal_pending(current
)) {
8037 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
8038 ++vcpu
->stat
.signal_exits
;
8043 if (vcpu
->run
->kvm_valid_regs
& ~KVM_SYNC_X86_VALID_FIELDS
) {
8048 if (vcpu
->run
->kvm_dirty_regs
) {
8049 r
= sync_regs(vcpu
);
8054 /* re-sync apic's tpr */
8055 if (!lapic_in_kernel(vcpu
)) {
8056 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
8062 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
8063 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
8064 vcpu
->arch
.complete_userspace_io
= NULL
;
8069 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
8071 if (kvm_run
->immediate_exit
)
8077 kvm_put_guest_fpu(vcpu
);
8078 if (vcpu
->run
->kvm_valid_regs
)
8080 post_kvm_run_save(vcpu
);
8081 kvm_sigset_deactivate(vcpu
);
8087 static void __get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
8089 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
8091 * We are here if userspace calls get_regs() in the middle of
8092 * instruction emulation. Registers state needs to be copied
8093 * back from emulation context to vcpu. Userspace shouldn't do
8094 * that usually, but some bad designed PV devices (vmware
8095 * backdoor interface) need this to work
8097 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
8098 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
8100 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
8101 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
8102 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
8103 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
8104 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
8105 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
8106 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
8107 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
8108 #ifdef CONFIG_X86_64
8109 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
8110 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
8111 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
8112 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
8113 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
8114 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
8115 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
8116 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
8119 regs
->rip
= kvm_rip_read(vcpu
);
8120 regs
->rflags
= kvm_get_rflags(vcpu
);
8123 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
8126 __get_regs(vcpu
, regs
);
8131 static void __set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
8133 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
8134 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
8136 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
8137 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
8138 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
8139 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
8140 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
8141 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
8142 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
8143 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
8144 #ifdef CONFIG_X86_64
8145 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
8146 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
8147 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
8148 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
8149 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
8150 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
8151 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
8152 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
8155 kvm_rip_write(vcpu
, regs
->rip
);
8156 kvm_set_rflags(vcpu
, regs
->rflags
| X86_EFLAGS_FIXED
);
8158 vcpu
->arch
.exception
.pending
= false;
8160 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8163 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
8166 __set_regs(vcpu
, regs
);
8171 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
8173 struct kvm_segment cs
;
8175 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
8179 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
8181 static void __get_sregs(struct kvm_vcpu
*vcpu
, struct kvm_sregs
*sregs
)
8185 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
8186 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
8187 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
8188 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
8189 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
8190 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
8192 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
8193 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
8195 kvm_x86_ops
->get_idt(vcpu
, &dt
);
8196 sregs
->idt
.limit
= dt
.size
;
8197 sregs
->idt
.base
= dt
.address
;
8198 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
8199 sregs
->gdt
.limit
= dt
.size
;
8200 sregs
->gdt
.base
= dt
.address
;
8202 sregs
->cr0
= kvm_read_cr0(vcpu
);
8203 sregs
->cr2
= vcpu
->arch
.cr2
;
8204 sregs
->cr3
= kvm_read_cr3(vcpu
);
8205 sregs
->cr4
= kvm_read_cr4(vcpu
);
8206 sregs
->cr8
= kvm_get_cr8(vcpu
);
8207 sregs
->efer
= vcpu
->arch
.efer
;
8208 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
8210 memset(sregs
->interrupt_bitmap
, 0, sizeof(sregs
->interrupt_bitmap
));
8212 if (vcpu
->arch
.interrupt
.injected
&& !vcpu
->arch
.interrupt
.soft
)
8213 set_bit(vcpu
->arch
.interrupt
.nr
,
8214 (unsigned long *)sregs
->interrupt_bitmap
);
8217 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
8218 struct kvm_sregs
*sregs
)
8221 __get_sregs(vcpu
, sregs
);
8226 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
8227 struct kvm_mp_state
*mp_state
)
8231 kvm_apic_accept_events(vcpu
);
8232 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
8233 vcpu
->arch
.pv
.pv_unhalted
)
8234 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
8236 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
8242 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
8243 struct kvm_mp_state
*mp_state
)
8249 if (!lapic_in_kernel(vcpu
) &&
8250 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
8253 /* INITs are latched while in SMM */
8254 if ((is_smm(vcpu
) || vcpu
->arch
.smi_pending
) &&
8255 (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
||
8256 mp_state
->mp_state
== KVM_MP_STATE_INIT_RECEIVED
))
8259 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
8260 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
8261 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
8263 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
8264 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8272 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
8273 int reason
, bool has_error_code
, u32 error_code
)
8275 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
8278 init_emulate_ctxt(vcpu
);
8280 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
8281 has_error_code
, error_code
);
8284 return EMULATE_FAIL
;
8286 kvm_rip_write(vcpu
, ctxt
->eip
);
8287 kvm_set_rflags(vcpu
, ctxt
->eflags
);
8288 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8289 return EMULATE_DONE
;
8291 EXPORT_SYMBOL_GPL(kvm_task_switch
);
8293 static int kvm_valid_sregs(struct kvm_vcpu
*vcpu
, struct kvm_sregs
*sregs
)
8295 if (!guest_cpuid_has(vcpu
, X86_FEATURE_XSAVE
) &&
8296 (sregs
->cr4
& X86_CR4_OSXSAVE
))
8299 if ((sregs
->efer
& EFER_LME
) && (sregs
->cr0
& X86_CR0_PG
)) {
8301 * When EFER.LME and CR0.PG are set, the processor is in
8302 * 64-bit mode (though maybe in a 32-bit code segment).
8303 * CR4.PAE and EFER.LMA must be set.
8305 if (!(sregs
->cr4
& X86_CR4_PAE
)
8306 || !(sregs
->efer
& EFER_LMA
))
8310 * Not in 64-bit mode: EFER.LMA is clear and the code
8311 * segment cannot be 64-bit.
8313 if (sregs
->efer
& EFER_LMA
|| sregs
->cs
.l
)
8320 static int __set_sregs(struct kvm_vcpu
*vcpu
, struct kvm_sregs
*sregs
)
8322 struct msr_data apic_base_msr
;
8323 int mmu_reset_needed
= 0;
8324 int cpuid_update_needed
= 0;
8325 int pending_vec
, max_bits
, idx
;
8329 if (kvm_valid_sregs(vcpu
, sregs
))
8332 apic_base_msr
.data
= sregs
->apic_base
;
8333 apic_base_msr
.host_initiated
= true;
8334 if (kvm_set_apic_base(vcpu
, &apic_base_msr
))
8337 dt
.size
= sregs
->idt
.limit
;
8338 dt
.address
= sregs
->idt
.base
;
8339 kvm_x86_ops
->set_idt(vcpu
, &dt
);
8340 dt
.size
= sregs
->gdt
.limit
;
8341 dt
.address
= sregs
->gdt
.base
;
8342 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
8344 vcpu
->arch
.cr2
= sregs
->cr2
;
8345 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
8346 vcpu
->arch
.cr3
= sregs
->cr3
;
8347 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
8349 kvm_set_cr8(vcpu
, sregs
->cr8
);
8351 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
8352 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
8354 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
8355 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
8356 vcpu
->arch
.cr0
= sregs
->cr0
;
8358 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
8359 cpuid_update_needed
|= ((kvm_read_cr4(vcpu
) ^ sregs
->cr4
) &
8360 (X86_CR4_OSXSAVE
| X86_CR4_PKE
));
8361 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
8362 if (cpuid_update_needed
)
8363 kvm_update_cpuid(vcpu
);
8365 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
8366 if (!is_long_mode(vcpu
) && is_pae(vcpu
) && is_paging(vcpu
)) {
8367 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
8368 mmu_reset_needed
= 1;
8370 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
8372 if (mmu_reset_needed
)
8373 kvm_mmu_reset_context(vcpu
);
8375 max_bits
= KVM_NR_INTERRUPTS
;
8376 pending_vec
= find_first_bit(
8377 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
8378 if (pending_vec
< max_bits
) {
8379 kvm_queue_interrupt(vcpu
, pending_vec
, false);
8380 pr_debug("Set back pending irq %d\n", pending_vec
);
8383 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
8384 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
8385 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
8386 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
8387 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
8388 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
8390 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
8391 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
8393 update_cr8_intercept(vcpu
);
8395 /* Older userspace won't unhalt the vcpu on reset. */
8396 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
8397 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
8399 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
8401 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8408 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
8409 struct kvm_sregs
*sregs
)
8414 ret
= __set_sregs(vcpu
, sregs
);
8419 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
8420 struct kvm_guest_debug
*dbg
)
8422 unsigned long rflags
;
8427 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
8429 if (vcpu
->arch
.exception
.pending
)
8431 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
8432 kvm_queue_exception(vcpu
, DB_VECTOR
);
8434 kvm_queue_exception(vcpu
, BP_VECTOR
);
8438 * Read rflags as long as potentially injected trace flags are still
8441 rflags
= kvm_get_rflags(vcpu
);
8443 vcpu
->guest_debug
= dbg
->control
;
8444 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
8445 vcpu
->guest_debug
= 0;
8447 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
8448 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
8449 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
8450 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
8452 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
8453 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
8455 kvm_update_dr7(vcpu
);
8457 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
8458 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
8459 get_segment_base(vcpu
, VCPU_SREG_CS
);
8462 * Trigger an rflags update that will inject or remove the trace
8465 kvm_set_rflags(vcpu
, rflags
);
8467 kvm_x86_ops
->update_bp_intercept(vcpu
);
8477 * Translate a guest virtual address to a guest physical address.
8479 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
8480 struct kvm_translation
*tr
)
8482 unsigned long vaddr
= tr
->linear_address
;
8488 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
8489 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
8490 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
8491 tr
->physical_address
= gpa
;
8492 tr
->valid
= gpa
!= UNMAPPED_GVA
;
8500 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
8502 struct fxregs_state
*fxsave
;
8506 fxsave
= &vcpu
->arch
.guest_fpu
.state
.fxsave
;
8507 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
8508 fpu
->fcw
= fxsave
->cwd
;
8509 fpu
->fsw
= fxsave
->swd
;
8510 fpu
->ftwx
= fxsave
->twd
;
8511 fpu
->last_opcode
= fxsave
->fop
;
8512 fpu
->last_ip
= fxsave
->rip
;
8513 fpu
->last_dp
= fxsave
->rdp
;
8514 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof(fxsave
->xmm_space
));
8520 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
8522 struct fxregs_state
*fxsave
;
8526 fxsave
= &vcpu
->arch
.guest_fpu
.state
.fxsave
;
8528 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
8529 fxsave
->cwd
= fpu
->fcw
;
8530 fxsave
->swd
= fpu
->fsw
;
8531 fxsave
->twd
= fpu
->ftwx
;
8532 fxsave
->fop
= fpu
->last_opcode
;
8533 fxsave
->rip
= fpu
->last_ip
;
8534 fxsave
->rdp
= fpu
->last_dp
;
8535 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof(fxsave
->xmm_space
));
8541 static void store_regs(struct kvm_vcpu
*vcpu
)
8543 BUILD_BUG_ON(sizeof(struct kvm_sync_regs
) > SYNC_REGS_SIZE_BYTES
);
8545 if (vcpu
->run
->kvm_valid_regs
& KVM_SYNC_X86_REGS
)
8546 __get_regs(vcpu
, &vcpu
->run
->s
.regs
.regs
);
8548 if (vcpu
->run
->kvm_valid_regs
& KVM_SYNC_X86_SREGS
)
8549 __get_sregs(vcpu
, &vcpu
->run
->s
.regs
.sregs
);
8551 if (vcpu
->run
->kvm_valid_regs
& KVM_SYNC_X86_EVENTS
)
8552 kvm_vcpu_ioctl_x86_get_vcpu_events(
8553 vcpu
, &vcpu
->run
->s
.regs
.events
);
8556 static int sync_regs(struct kvm_vcpu
*vcpu
)
8558 if (vcpu
->run
->kvm_dirty_regs
& ~KVM_SYNC_X86_VALID_FIELDS
)
8561 if (vcpu
->run
->kvm_dirty_regs
& KVM_SYNC_X86_REGS
) {
8562 __set_regs(vcpu
, &vcpu
->run
->s
.regs
.regs
);
8563 vcpu
->run
->kvm_dirty_regs
&= ~KVM_SYNC_X86_REGS
;
8565 if (vcpu
->run
->kvm_dirty_regs
& KVM_SYNC_X86_SREGS
) {
8566 if (__set_sregs(vcpu
, &vcpu
->run
->s
.regs
.sregs
))
8568 vcpu
->run
->kvm_dirty_regs
&= ~KVM_SYNC_X86_SREGS
;
8570 if (vcpu
->run
->kvm_dirty_regs
& KVM_SYNC_X86_EVENTS
) {
8571 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8572 vcpu
, &vcpu
->run
->s
.regs
.events
))
8574 vcpu
->run
->kvm_dirty_regs
&= ~KVM_SYNC_X86_EVENTS
;
8580 static void fx_init(struct kvm_vcpu
*vcpu
)
8582 fpstate_init(&vcpu
->arch
.guest_fpu
.state
);
8583 if (boot_cpu_has(X86_FEATURE_XSAVES
))
8584 vcpu
->arch
.guest_fpu
.state
.xsave
.header
.xcomp_bv
=
8585 host_xcr0
| XSTATE_COMPACTION_ENABLED
;
8588 * Ensure guest xcr0 is valid for loading
8590 vcpu
->arch
.xcr0
= XFEATURE_MASK_FP
;
8592 vcpu
->arch
.cr0
|= X86_CR0_ET
;
8595 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
8597 void *wbinvd_dirty_mask
= vcpu
->arch
.wbinvd_dirty_mask
;
8599 kvmclock_reset(vcpu
);
8601 kvm_x86_ops
->vcpu_free(vcpu
);
8602 free_cpumask_var(wbinvd_dirty_mask
);
8605 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
8608 struct kvm_vcpu
*vcpu
;
8610 if (kvm_check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
8611 printk_once(KERN_WARNING
8612 "kvm: SMP vm created on host with unstable TSC; "
8613 "guest TSC will not be reliable\n");
8615 vcpu
= kvm_x86_ops
->vcpu_create(kvm
, id
);
8620 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
8622 kvm_vcpu_mtrr_init(vcpu
);
8624 kvm_vcpu_reset(vcpu
, false);
8625 kvm_init_mmu(vcpu
, false);
8630 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
8632 struct msr_data msr
;
8633 struct kvm
*kvm
= vcpu
->kvm
;
8635 kvm_hv_vcpu_postcreate(vcpu
);
8637 if (mutex_lock_killable(&vcpu
->mutex
))
8641 msr
.index
= MSR_IA32_TSC
;
8642 msr
.host_initiated
= true;
8643 kvm_write_tsc(vcpu
, &msr
);
8645 mutex_unlock(&vcpu
->mutex
);
8647 if (!kvmclock_periodic_sync
)
8650 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
8651 KVMCLOCK_SYNC_PERIOD
);
8654 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
8656 vcpu
->arch
.apf
.msr_val
= 0;
8659 kvm_mmu_unload(vcpu
);
8662 kvm_x86_ops
->vcpu_free(vcpu
);
8665 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
8667 kvm_lapic_reset(vcpu
, init_event
);
8669 vcpu
->arch
.hflags
= 0;
8671 vcpu
->arch
.smi_pending
= 0;
8672 vcpu
->arch
.smi_count
= 0;
8673 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
8674 vcpu
->arch
.nmi_pending
= 0;
8675 vcpu
->arch
.nmi_injected
= false;
8676 kvm_clear_interrupt_queue(vcpu
);
8677 kvm_clear_exception_queue(vcpu
);
8678 vcpu
->arch
.exception
.pending
= false;
8680 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
8681 kvm_update_dr0123(vcpu
);
8682 vcpu
->arch
.dr6
= DR6_INIT
;
8683 kvm_update_dr6(vcpu
);
8684 vcpu
->arch
.dr7
= DR7_FIXED_1
;
8685 kvm_update_dr7(vcpu
);
8689 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8690 vcpu
->arch
.apf
.msr_val
= 0;
8691 vcpu
->arch
.st
.msr_val
= 0;
8693 kvmclock_reset(vcpu
);
8695 kvm_clear_async_pf_completion_queue(vcpu
);
8696 kvm_async_pf_hash_reset(vcpu
);
8697 vcpu
->arch
.apf
.halted
= false;
8699 if (kvm_mpx_supported()) {
8700 void *mpx_state_buffer
;
8703 * To avoid have the INIT path from kvm_apic_has_events() that be
8704 * called with loaded FPU and does not let userspace fix the state.
8707 kvm_put_guest_fpu(vcpu
);
8708 mpx_state_buffer
= get_xsave_addr(&vcpu
->arch
.guest_fpu
.state
.xsave
,
8709 XFEATURE_MASK_BNDREGS
);
8710 if (mpx_state_buffer
)
8711 memset(mpx_state_buffer
, 0, sizeof(struct mpx_bndreg_state
));
8712 mpx_state_buffer
= get_xsave_addr(&vcpu
->arch
.guest_fpu
.state
.xsave
,
8713 XFEATURE_MASK_BNDCSR
);
8714 if (mpx_state_buffer
)
8715 memset(mpx_state_buffer
, 0, sizeof(struct mpx_bndcsr
));
8717 kvm_load_guest_fpu(vcpu
);
8721 kvm_pmu_reset(vcpu
);
8722 vcpu
->arch
.smbase
= 0x30000;
8724 vcpu
->arch
.msr_platform_info
= MSR_PLATFORM_INFO_CPUID_FAULT
;
8725 vcpu
->arch
.msr_misc_features_enables
= 0;
8727 vcpu
->arch
.xcr0
= XFEATURE_MASK_FP
;
8730 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
8731 vcpu
->arch
.regs_avail
= ~0;
8732 vcpu
->arch
.regs_dirty
= ~0;
8734 vcpu
->arch
.ia32_xss
= 0;
8736 kvm_x86_ops
->vcpu_reset(vcpu
, init_event
);
8739 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, u8 vector
)
8741 struct kvm_segment cs
;
8743 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
8744 cs
.selector
= vector
<< 8;
8745 cs
.base
= vector
<< 12;
8746 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
8747 kvm_rip_write(vcpu
, 0);
8750 int kvm_arch_hardware_enable(void)
8753 struct kvm_vcpu
*vcpu
;
8758 bool stable
, backwards_tsc
= false;
8760 kvm_shared_msr_cpu_online();
8761 ret
= kvm_x86_ops
->hardware_enable();
8765 local_tsc
= rdtsc();
8766 stable
= !kvm_check_tsc_unstable();
8767 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
8768 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
8769 if (!stable
&& vcpu
->cpu
== smp_processor_id())
8770 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
8771 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
8772 backwards_tsc
= true;
8773 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
8774 max_tsc
= vcpu
->arch
.last_host_tsc
;
8780 * Sometimes, even reliable TSCs go backwards. This happens on
8781 * platforms that reset TSC during suspend or hibernate actions, but
8782 * maintain synchronization. We must compensate. Fortunately, we can
8783 * detect that condition here, which happens early in CPU bringup,
8784 * before any KVM threads can be running. Unfortunately, we can't
8785 * bring the TSCs fully up to date with real time, as we aren't yet far
8786 * enough into CPU bringup that we know how much real time has actually
8787 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8788 * variables that haven't been updated yet.
8790 * So we simply find the maximum observed TSC above, then record the
8791 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8792 * the adjustment will be applied. Note that we accumulate
8793 * adjustments, in case multiple suspend cycles happen before some VCPU
8794 * gets a chance to run again. In the event that no KVM threads get a
8795 * chance to run, we will miss the entire elapsed period, as we'll have
8796 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8797 * loose cycle time. This isn't too big a deal, since the loss will be
8798 * uniform across all VCPUs (not to mention the scenario is extremely
8799 * unlikely). It is possible that a second hibernate recovery happens
8800 * much faster than a first, causing the observed TSC here to be
8801 * smaller; this would require additional padding adjustment, which is
8802 * why we set last_host_tsc to the local tsc observed here.
8804 * N.B. - this code below runs only on platforms with reliable TSC,
8805 * as that is the only way backwards_tsc is set above. Also note
8806 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8807 * have the same delta_cyc adjustment applied if backwards_tsc
8808 * is detected. Note further, this adjustment is only done once,
8809 * as we reset last_host_tsc on all VCPUs to stop this from being
8810 * called multiple times (one for each physical CPU bringup).
8812 * Platforms with unreliable TSCs don't have to deal with this, they
8813 * will be compensated by the logic in vcpu_load, which sets the TSC to
8814 * catchup mode. This will catchup all VCPUs to real time, but cannot
8815 * guarantee that they stay in perfect synchronization.
8817 if (backwards_tsc
) {
8818 u64 delta_cyc
= max_tsc
- local_tsc
;
8819 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
8820 kvm
->arch
.backwards_tsc_observed
= true;
8821 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
8822 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
8823 vcpu
->arch
.last_host_tsc
= local_tsc
;
8824 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
8828 * We have to disable TSC offset matching.. if you were
8829 * booting a VM while issuing an S4 host suspend....
8830 * you may have some problem. Solving this issue is
8831 * left as an exercise to the reader.
8833 kvm
->arch
.last_tsc_nsec
= 0;
8834 kvm
->arch
.last_tsc_write
= 0;
8841 void kvm_arch_hardware_disable(void)
8843 kvm_x86_ops
->hardware_disable();
8844 drop_user_return_notifiers();
8847 int kvm_arch_hardware_setup(void)
8851 r
= kvm_x86_ops
->hardware_setup();
8855 if (kvm_has_tsc_control
) {
8857 * Make sure the user can only configure tsc_khz values that
8858 * fit into a signed integer.
8859 * A min value is not calculated because it will always
8860 * be 1 on all machines.
8862 u64 max
= min(0x7fffffffULL
,
8863 __scale_tsc(kvm_max_tsc_scaling_ratio
, tsc_khz
));
8864 kvm_max_guest_tsc_khz
= max
;
8866 kvm_default_tsc_scaling_ratio
= 1ULL << kvm_tsc_scaling_ratio_frac_bits
;
8869 kvm_init_msr_list();
8873 void kvm_arch_hardware_unsetup(void)
8875 kvm_x86_ops
->hardware_unsetup();
8878 void kvm_arch_check_processor_compat(void *rtn
)
8880 kvm_x86_ops
->check_processor_compatibility(rtn
);
8883 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu
*vcpu
)
8885 return vcpu
->kvm
->arch
.bsp_vcpu_id
== vcpu
->vcpu_id
;
8887 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp
);
8889 bool kvm_vcpu_is_bsp(struct kvm_vcpu
*vcpu
)
8891 return (vcpu
->arch
.apic_base
& MSR_IA32_APICBASE_BSP
) != 0;
8894 struct static_key kvm_no_apic_vcpu __read_mostly
;
8895 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu
);
8897 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
8902 vcpu
->arch
.apicv_active
= kvm_x86_ops
->get_enable_apicv(vcpu
);
8903 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
8904 if (!irqchip_in_kernel(vcpu
->kvm
) || kvm_vcpu_is_reset_bsp(vcpu
))
8905 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
8907 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
8909 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
8914 vcpu
->arch
.pio_data
= page_address(page
);
8916 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
8918 r
= kvm_mmu_create(vcpu
);
8920 goto fail_free_pio_data
;
8922 if (irqchip_in_kernel(vcpu
->kvm
)) {
8923 r
= kvm_create_lapic(vcpu
);
8925 goto fail_mmu_destroy
;
8927 static_key_slow_inc(&kvm_no_apic_vcpu
);
8929 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
8931 if (!vcpu
->arch
.mce_banks
) {
8933 goto fail_free_lapic
;
8935 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
8937 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
)) {
8939 goto fail_free_mce_banks
;
8944 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
8946 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
8948 vcpu
->arch
.pat
= MSR_IA32_CR_PAT_DEFAULT
;
8950 kvm_async_pf_hash_reset(vcpu
);
8953 vcpu
->arch
.pending_external_vector
= -1;
8954 vcpu
->arch
.preempted_in_kernel
= false;
8956 kvm_hv_vcpu_init(vcpu
);
8960 fail_free_mce_banks
:
8961 kfree(vcpu
->arch
.mce_banks
);
8963 kvm_free_lapic(vcpu
);
8965 kvm_mmu_destroy(vcpu
);
8967 free_page((unsigned long)vcpu
->arch
.pio_data
);
8972 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
8976 kvm_hv_vcpu_uninit(vcpu
);
8977 kvm_pmu_destroy(vcpu
);
8978 kfree(vcpu
->arch
.mce_banks
);
8979 kvm_free_lapic(vcpu
);
8980 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
8981 kvm_mmu_destroy(vcpu
);
8982 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
8983 free_page((unsigned long)vcpu
->arch
.pio_data
);
8984 if (!lapic_in_kernel(vcpu
))
8985 static_key_slow_dec(&kvm_no_apic_vcpu
);
8988 void kvm_arch_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
8990 vcpu
->arch
.l1tf_flush_l1d
= true;
8991 kvm_x86_ops
->sched_in(vcpu
, cpu
);
8994 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
8999 INIT_HLIST_HEAD(&kvm
->arch
.mask_notifier_list
);
9000 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
9001 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
9002 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
9003 atomic_set(&kvm
->arch
.noncoherent_dma_count
, 0);
9005 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9006 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
9007 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9008 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
9009 &kvm
->arch
.irq_sources_bitmap
);
9011 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
9012 mutex_init(&kvm
->arch
.apic_map_lock
);
9013 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
9015 kvm
->arch
.kvmclock_offset
= -ktime_get_boot_ns();
9016 pvclock_update_vm_gtod_copy(kvm
);
9018 kvm
->arch
.guest_can_read_msr_platform_info
= true;
9020 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_update_work
, kvmclock_update_fn
);
9021 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_sync_work
, kvmclock_sync_fn
);
9023 kvm_hv_init_vm(kvm
);
9024 kvm_page_track_init(kvm
);
9025 kvm_mmu_init_vm(kvm
);
9027 if (kvm_x86_ops
->vm_init
)
9028 return kvm_x86_ops
->vm_init(kvm
);
9033 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
9036 kvm_mmu_unload(vcpu
);
9040 static void kvm_free_vcpus(struct kvm
*kvm
)
9043 struct kvm_vcpu
*vcpu
;
9046 * Unpin any mmu pages first.
9048 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
9049 kvm_clear_async_pf_completion_queue(vcpu
);
9050 kvm_unload_vcpu_mmu(vcpu
);
9052 kvm_for_each_vcpu(i
, vcpu
, kvm
)
9053 kvm_arch_vcpu_free(vcpu
);
9055 mutex_lock(&kvm
->lock
);
9056 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
9057 kvm
->vcpus
[i
] = NULL
;
9059 atomic_set(&kvm
->online_vcpus
, 0);
9060 mutex_unlock(&kvm
->lock
);
9063 void kvm_arch_sync_events(struct kvm
*kvm
)
9065 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_sync_work
);
9066 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_update_work
);
9070 int __x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
9074 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
9075 struct kvm_memory_slot
*slot
, old
;
9077 /* Called with kvm->slots_lock held. */
9078 if (WARN_ON(id
>= KVM_MEM_SLOTS_NUM
))
9081 slot
= id_to_memslot(slots
, id
);
9087 * MAP_SHARED to prevent internal slot pages from being moved
9090 hva
= vm_mmap(NULL
, 0, size
, PROT_READ
| PROT_WRITE
,
9091 MAP_SHARED
| MAP_ANONYMOUS
, 0);
9092 if (IS_ERR((void *)hva
))
9093 return PTR_ERR((void *)hva
);
9102 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
9103 struct kvm_userspace_memory_region m
;
9105 m
.slot
= id
| (i
<< 16);
9107 m
.guest_phys_addr
= gpa
;
9108 m
.userspace_addr
= hva
;
9109 m
.memory_size
= size
;
9110 r
= __kvm_set_memory_region(kvm
, &m
);
9116 vm_munmap(old
.userspace_addr
, old
.npages
* PAGE_SIZE
);
9120 EXPORT_SYMBOL_GPL(__x86_set_memory_region
);
9122 int x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
9126 mutex_lock(&kvm
->slots_lock
);
9127 r
= __x86_set_memory_region(kvm
, id
, gpa
, size
);
9128 mutex_unlock(&kvm
->slots_lock
);
9132 EXPORT_SYMBOL_GPL(x86_set_memory_region
);
9134 void kvm_arch_destroy_vm(struct kvm
*kvm
)
9136 if (current
->mm
== kvm
->mm
) {
9138 * Free memory regions allocated on behalf of userspace,
9139 * unless the the memory map has changed due to process exit
9142 x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
, 0, 0);
9143 x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
, 0, 0);
9144 x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, 0, 0);
9146 if (kvm_x86_ops
->vm_destroy
)
9147 kvm_x86_ops
->vm_destroy(kvm
);
9148 kvm_pic_destroy(kvm
);
9149 kvm_ioapic_destroy(kvm
);
9150 kvm_free_vcpus(kvm
);
9151 kvfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
9152 kvm_mmu_uninit_vm(kvm
);
9153 kvm_page_track_cleanup(kvm
);
9154 kvm_hv_destroy_vm(kvm
);
9157 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
9158 struct kvm_memory_slot
*dont
)
9162 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
9163 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
9164 kvfree(free
->arch
.rmap
[i
]);
9165 free
->arch
.rmap
[i
] = NULL
;
9170 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
9171 dont
->arch
.lpage_info
[i
- 1]) {
9172 kvfree(free
->arch
.lpage_info
[i
- 1]);
9173 free
->arch
.lpage_info
[i
- 1] = NULL
;
9177 kvm_page_track_free_memslot(free
, dont
);
9180 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
9181 unsigned long npages
)
9185 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
9186 struct kvm_lpage_info
*linfo
;
9191 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
9192 slot
->base_gfn
, level
) + 1;
9194 slot
->arch
.rmap
[i
] =
9195 kvcalloc(lpages
, sizeof(*slot
->arch
.rmap
[i
]),
9197 if (!slot
->arch
.rmap
[i
])
9202 linfo
= kvcalloc(lpages
, sizeof(*linfo
), GFP_KERNEL
);
9206 slot
->arch
.lpage_info
[i
- 1] = linfo
;
9208 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
9209 linfo
[0].disallow_lpage
= 1;
9210 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
9211 linfo
[lpages
- 1].disallow_lpage
= 1;
9212 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
9214 * If the gfn and userspace address are not aligned wrt each
9215 * other, or if explicitly asked to, disable large page
9216 * support for this slot
9218 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
9219 !kvm_largepages_enabled()) {
9222 for (j
= 0; j
< lpages
; ++j
)
9223 linfo
[j
].disallow_lpage
= 1;
9227 if (kvm_page_track_create_memslot(slot
, npages
))
9233 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
9234 kvfree(slot
->arch
.rmap
[i
]);
9235 slot
->arch
.rmap
[i
] = NULL
;
9239 kvfree(slot
->arch
.lpage_info
[i
- 1]);
9240 slot
->arch
.lpage_info
[i
- 1] = NULL
;
9245 void kvm_arch_memslots_updated(struct kvm
*kvm
, struct kvm_memslots
*slots
)
9248 * memslots->generation has been incremented.
9249 * mmio generation may have reached its maximum value.
9251 kvm_mmu_invalidate_mmio_sptes(kvm
, slots
);
9254 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
9255 struct kvm_memory_slot
*memslot
,
9256 const struct kvm_userspace_memory_region
*mem
,
9257 enum kvm_mr_change change
)
9262 static void kvm_mmu_slot_apply_flags(struct kvm
*kvm
,
9263 struct kvm_memory_slot
*new)
9265 /* Still write protect RO slot */
9266 if (new->flags
& KVM_MEM_READONLY
) {
9267 kvm_mmu_slot_remove_write_access(kvm
, new);
9272 * Call kvm_x86_ops dirty logging hooks when they are valid.
9274 * kvm_x86_ops->slot_disable_log_dirty is called when:
9276 * - KVM_MR_CREATE with dirty logging is disabled
9277 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9279 * The reason is, in case of PML, we need to set D-bit for any slots
9280 * with dirty logging disabled in order to eliminate unnecessary GPA
9281 * logging in PML buffer (and potential PML buffer full VMEXT). This
9282 * guarantees leaving PML enabled during guest's lifetime won't have
9283 * any additonal overhead from PML when guest is running with dirty
9284 * logging disabled for memory slots.
9286 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9287 * to dirty logging mode.
9289 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9291 * In case of write protect:
9293 * Write protect all pages for dirty logging.
9295 * All the sptes including the large sptes which point to this
9296 * slot are set to readonly. We can not create any new large
9297 * spte on this slot until the end of the logging.
9299 * See the comments in fast_page_fault().
9301 if (new->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
9302 if (kvm_x86_ops
->slot_enable_log_dirty
)
9303 kvm_x86_ops
->slot_enable_log_dirty(kvm
, new);
9305 kvm_mmu_slot_remove_write_access(kvm
, new);
9307 if (kvm_x86_ops
->slot_disable_log_dirty
)
9308 kvm_x86_ops
->slot_disable_log_dirty(kvm
, new);
9312 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
9313 const struct kvm_userspace_memory_region
*mem
,
9314 const struct kvm_memory_slot
*old
,
9315 const struct kvm_memory_slot
*new,
9316 enum kvm_mr_change change
)
9318 int nr_mmu_pages
= 0;
9320 if (!kvm
->arch
.n_requested_mmu_pages
)
9321 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
9324 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
9327 * Dirty logging tracks sptes in 4k granularity, meaning that large
9328 * sptes have to be split. If live migration is successful, the guest
9329 * in the source machine will be destroyed and large sptes will be
9330 * created in the destination. However, if the guest continues to run
9331 * in the source machine (for example if live migration fails), small
9332 * sptes will remain around and cause bad performance.
9334 * Scan sptes if dirty logging has been stopped, dropping those
9335 * which can be collapsed into a single large-page spte. Later
9336 * page faults will create the large-page sptes.
9338 if ((change
!= KVM_MR_DELETE
) &&
9339 (old
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) &&
9340 !(new->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
9341 kvm_mmu_zap_collapsible_sptes(kvm
, new);
9344 * Set up write protection and/or dirty logging for the new slot.
9346 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9347 * been zapped so no dirty logging staff is needed for old slot. For
9348 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9349 * new and it's also covered when dealing with the new slot.
9351 * FIXME: const-ify all uses of struct kvm_memory_slot.
9353 if (change
!= KVM_MR_DELETE
)
9354 kvm_mmu_slot_apply_flags(kvm
, (struct kvm_memory_slot
*) new);
9357 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
9359 kvm_mmu_invalidate_zap_all_pages(kvm
);
9362 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
9363 struct kvm_memory_slot
*slot
)
9365 kvm_page_track_flush_slot(kvm
, slot
);
9368 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu
*vcpu
)
9370 return (is_guest_mode(vcpu
) &&
9371 kvm_x86_ops
->guest_apic_has_interrupt
&&
9372 kvm_x86_ops
->guest_apic_has_interrupt(vcpu
));
9375 static inline bool kvm_vcpu_has_events(struct kvm_vcpu
*vcpu
)
9377 if (!list_empty_careful(&vcpu
->async_pf
.done
))
9380 if (kvm_apic_has_events(vcpu
))
9383 if (vcpu
->arch
.pv
.pv_unhalted
)
9386 if (vcpu
->arch
.exception
.pending
)
9389 if (kvm_test_request(KVM_REQ_NMI
, vcpu
) ||
9390 (vcpu
->arch
.nmi_pending
&&
9391 kvm_x86_ops
->nmi_allowed(vcpu
)))
9394 if (kvm_test_request(KVM_REQ_SMI
, vcpu
) ||
9395 (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
)))
9398 if (kvm_arch_interrupt_allowed(vcpu
) &&
9399 (kvm_cpu_has_interrupt(vcpu
) ||
9400 kvm_guest_apic_has_interrupt(vcpu
)))
9403 if (kvm_hv_has_stimer_pending(vcpu
))
9409 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
9411 return kvm_vcpu_running(vcpu
) || kvm_vcpu_has_events(vcpu
);
9414 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu
*vcpu
)
9416 return vcpu
->arch
.preempted_in_kernel
;
9419 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
9421 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
9424 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
9426 return kvm_x86_ops
->interrupt_allowed(vcpu
);
9429 unsigned long kvm_get_linear_rip(struct kvm_vcpu
*vcpu
)
9431 if (is_64_bit_mode(vcpu
))
9432 return kvm_rip_read(vcpu
);
9433 return (u32
)(get_segment_base(vcpu
, VCPU_SREG_CS
) +
9434 kvm_rip_read(vcpu
));
9436 EXPORT_SYMBOL_GPL(kvm_get_linear_rip
);
9438 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
9440 return kvm_get_linear_rip(vcpu
) == linear_rip
;
9442 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
9444 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
9446 unsigned long rflags
;
9448 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
9449 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
9450 rflags
&= ~X86_EFLAGS_TF
;
9453 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
9455 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
9457 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
9458 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
9459 rflags
|= X86_EFLAGS_TF
;
9460 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
9463 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
9465 __kvm_set_rflags(vcpu
, rflags
);
9466 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
9468 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
9470 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
9474 if ((vcpu
->arch
.mmu
->direct_map
!= work
->arch
.direct_map
) ||
9478 r
= kvm_mmu_reload(vcpu
);
9482 if (!vcpu
->arch
.mmu
->direct_map
&&
9483 work
->arch
.cr3
!= vcpu
->arch
.mmu
->get_cr3(vcpu
))
9486 vcpu
->arch
.mmu
->page_fault(vcpu
, work
->gva
, 0, true);
9489 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
9491 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
9494 static inline u32
kvm_async_pf_next_probe(u32 key
)
9496 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
9499 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
9501 u32 key
= kvm_async_pf_hash_fn(gfn
);
9503 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
9504 key
= kvm_async_pf_next_probe(key
);
9506 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
9509 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
9512 u32 key
= kvm_async_pf_hash_fn(gfn
);
9514 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
9515 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
9516 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
9517 key
= kvm_async_pf_next_probe(key
);
9522 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
9524 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
9527 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
9531 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
9533 vcpu
->arch
.apf
.gfns
[i
] = ~0;
9535 j
= kvm_async_pf_next_probe(j
);
9536 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
9538 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
9540 * k lies cyclically in ]i,j]
9542 * |....j i.k.| or |.k..j i...|
9544 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
9545 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
9550 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
9553 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
9557 static int apf_get_user(struct kvm_vcpu
*vcpu
, u32
*val
)
9560 return kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, val
,
9564 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
9565 struct kvm_async_pf
*work
)
9567 struct x86_exception fault
;
9569 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
9570 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
9572 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
9573 (vcpu
->arch
.apf
.send_user_only
&&
9574 kvm_x86_ops
->get_cpl(vcpu
) == 0))
9575 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
9576 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
9577 fault
.vector
= PF_VECTOR
;
9578 fault
.error_code_valid
= true;
9579 fault
.error_code
= 0;
9580 fault
.nested_page_fault
= false;
9581 fault
.address
= work
->arch
.token
;
9582 fault
.async_page_fault
= true;
9583 kvm_inject_page_fault(vcpu
, &fault
);
9587 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
9588 struct kvm_async_pf
*work
)
9590 struct x86_exception fault
;
9593 if (work
->wakeup_all
)
9594 work
->arch
.token
= ~0; /* broadcast wakeup */
9596 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
9597 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
9599 if (vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
&&
9600 !apf_get_user(vcpu
, &val
)) {
9601 if (val
== KVM_PV_REASON_PAGE_NOT_PRESENT
&&
9602 vcpu
->arch
.exception
.pending
&&
9603 vcpu
->arch
.exception
.nr
== PF_VECTOR
&&
9604 !apf_put_user(vcpu
, 0)) {
9605 vcpu
->arch
.exception
.injected
= false;
9606 vcpu
->arch
.exception
.pending
= false;
9607 vcpu
->arch
.exception
.nr
= 0;
9608 vcpu
->arch
.exception
.has_error_code
= false;
9609 vcpu
->arch
.exception
.error_code
= 0;
9610 vcpu
->arch
.exception
.has_payload
= false;
9611 vcpu
->arch
.exception
.payload
= 0;
9612 } else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
9613 fault
.vector
= PF_VECTOR
;
9614 fault
.error_code_valid
= true;
9615 fault
.error_code
= 0;
9616 fault
.nested_page_fault
= false;
9617 fault
.address
= work
->arch
.token
;
9618 fault
.async_page_fault
= true;
9619 kvm_inject_page_fault(vcpu
, &fault
);
9622 vcpu
->arch
.apf
.halted
= false;
9623 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
9626 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
9628 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
9631 return kvm_can_do_async_pf(vcpu
);
9634 void kvm_arch_start_assignment(struct kvm
*kvm
)
9636 atomic_inc(&kvm
->arch
.assigned_device_count
);
9638 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment
);
9640 void kvm_arch_end_assignment(struct kvm
*kvm
)
9642 atomic_dec(&kvm
->arch
.assigned_device_count
);
9644 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment
);
9646 bool kvm_arch_has_assigned_device(struct kvm
*kvm
)
9648 return atomic_read(&kvm
->arch
.assigned_device_count
);
9650 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device
);
9652 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
9654 atomic_inc(&kvm
->arch
.noncoherent_dma_count
);
9656 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma
);
9658 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
9660 atomic_dec(&kvm
->arch
.noncoherent_dma_count
);
9662 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma
);
9664 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
9666 return atomic_read(&kvm
->arch
.noncoherent_dma_count
);
9668 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma
);
9670 bool kvm_arch_has_irq_bypass(void)
9672 return kvm_x86_ops
->update_pi_irte
!= NULL
;
9675 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
9676 struct irq_bypass_producer
*prod
)
9678 struct kvm_kernel_irqfd
*irqfd
=
9679 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
9681 irqfd
->producer
= prod
;
9683 return kvm_x86_ops
->update_pi_irte(irqfd
->kvm
,
9684 prod
->irq
, irqfd
->gsi
, 1);
9687 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
9688 struct irq_bypass_producer
*prod
)
9691 struct kvm_kernel_irqfd
*irqfd
=
9692 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
9694 WARN_ON(irqfd
->producer
!= prod
);
9695 irqfd
->producer
= NULL
;
9698 * When producer of consumer is unregistered, we change back to
9699 * remapped mode, so we can re-use the current implementation
9700 * when the irq is masked/disabled or the consumer side (KVM
9701 * int this case doesn't want to receive the interrupts.
9703 ret
= kvm_x86_ops
->update_pi_irte(irqfd
->kvm
, prod
->irq
, irqfd
->gsi
, 0);
9705 printk(KERN_INFO
"irq bypass consumer (token %p) unregistration"
9706 " fails: %d\n", irqfd
->consumer
.token
, ret
);
9709 int kvm_arch_update_irqfd_routing(struct kvm
*kvm
, unsigned int host_irq
,
9710 uint32_t guest_irq
, bool set
)
9712 if (!kvm_x86_ops
->update_pi_irte
)
9715 return kvm_x86_ops
->update_pi_irte(kvm
, host_irq
, guest_irq
, set
);
9718 bool kvm_vector_hashing_enabled(void)
9720 return vector_hashing
;
9722 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled
);
9724 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
9725 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio
);
9726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
9727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
9728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
9729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
9730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
9731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
9732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
9733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
9734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
9735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
9736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
9737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);
9738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window
);
9739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full
);
9740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update
);
9741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access
);
9742 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi
);