tools uapi asm: Update asm-generic/unistd.h copy
[linux/fpc-iii.git] / arch / x86 / kvm / x86.c
blobd02937760c3ba8adc6de37ed4b39db9a926f320d
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
59 #include <trace/events/kvm.h>
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81 #define emul_to_vcpu(ctxt) \
82 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
84 /* EFER defaults:
85 * - enable syscall per default because its emulated by KVM
86 * - enable LME and LMA per default on 64 bit KVM
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32 __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64 __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 1000;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
153 #define KVM_NR_SHARED_MSRS 16
155 struct kvm_shared_msrs_global {
156 int nr;
157 u32 msrs[KVM_NR_SHARED_MSRS];
160 struct kvm_shared_msrs {
161 struct user_return_notifier urn;
162 bool registered;
163 struct kvm_shared_msr_values {
164 u64 host;
165 u64 curr;
166 } values[KVM_NR_SHARED_MSRS];
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173 { "pf_fixed", VCPU_STAT(pf_fixed) },
174 { "pf_guest", VCPU_STAT(pf_guest) },
175 { "tlb_flush", VCPU_STAT(tlb_flush) },
176 { "invlpg", VCPU_STAT(invlpg) },
177 { "exits", VCPU_STAT(exits) },
178 { "io_exits", VCPU_STAT(io_exits) },
179 { "mmio_exits", VCPU_STAT(mmio_exits) },
180 { "signal_exits", VCPU_STAT(signal_exits) },
181 { "irq_window", VCPU_STAT(irq_window_exits) },
182 { "nmi_window", VCPU_STAT(nmi_window_exits) },
183 { "halt_exits", VCPU_STAT(halt_exits) },
184 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
188 { "hypercalls", VCPU_STAT(hypercalls) },
189 { "request_irq", VCPU_STAT(request_irq_exits) },
190 { "irq_exits", VCPU_STAT(irq_exits) },
191 { "host_state_reload", VCPU_STAT(host_state_reload) },
192 { "fpu_reload", VCPU_STAT(fpu_reload) },
193 { "insn_emulation", VCPU_STAT(insn_emulation) },
194 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195 { "irq_injections", VCPU_STAT(irq_injections) },
196 { "nmi_injections", VCPU_STAT(nmi_injections) },
197 { "req_event", VCPU_STAT(req_event) },
198 { "l1d_flush", VCPU_STAT(l1d_flush) },
199 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
200 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
201 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
202 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
203 { "mmu_flooded", VM_STAT(mmu_flooded) },
204 { "mmu_recycled", VM_STAT(mmu_recycled) },
205 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
206 { "mmu_unsync", VM_STAT(mmu_unsync) },
207 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
208 { "largepages", VM_STAT(lpages) },
209 { "max_mmu_page_hash_collisions",
210 VM_STAT(max_mmu_page_hash_collisions) },
211 { NULL }
214 u64 __read_mostly host_xcr0;
216 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
218 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
220 int i;
221 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
222 vcpu->arch.apf.gfns[i] = ~0;
225 static void kvm_on_user_return(struct user_return_notifier *urn)
227 unsigned slot;
228 struct kvm_shared_msrs *locals
229 = container_of(urn, struct kvm_shared_msrs, urn);
230 struct kvm_shared_msr_values *values;
231 unsigned long flags;
234 * Disabling irqs at this point since the following code could be
235 * interrupted and executed through kvm_arch_hardware_disable()
237 local_irq_save(flags);
238 if (locals->registered) {
239 locals->registered = false;
240 user_return_notifier_unregister(urn);
242 local_irq_restore(flags);
243 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
244 values = &locals->values[slot];
245 if (values->host != values->curr) {
246 wrmsrl(shared_msrs_global.msrs[slot], values->host);
247 values->curr = values->host;
252 static void shared_msr_update(unsigned slot, u32 msr)
254 u64 value;
255 unsigned int cpu = smp_processor_id();
256 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
258 /* only read, and nobody should modify it at this time,
259 * so don't need lock */
260 if (slot >= shared_msrs_global.nr) {
261 printk(KERN_ERR "kvm: invalid MSR slot!");
262 return;
264 rdmsrl_safe(msr, &value);
265 smsr->values[slot].host = value;
266 smsr->values[slot].curr = value;
269 void kvm_define_shared_msr(unsigned slot, u32 msr)
271 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
272 shared_msrs_global.msrs[slot] = msr;
273 if (slot >= shared_msrs_global.nr)
274 shared_msrs_global.nr = slot + 1;
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
278 static void kvm_shared_msr_cpu_online(void)
280 unsigned i;
282 for (i = 0; i < shared_msrs_global.nr; ++i)
283 shared_msr_update(i, shared_msrs_global.msrs[i]);
286 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
288 unsigned int cpu = smp_processor_id();
289 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
290 int err;
292 if (((value ^ smsr->values[slot].curr) & mask) == 0)
293 return 0;
294 smsr->values[slot].curr = value;
295 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
296 if (err)
297 return 1;
299 if (!smsr->registered) {
300 smsr->urn.on_user_return = kvm_on_user_return;
301 user_return_notifier_register(&smsr->urn);
302 smsr->registered = true;
304 return 0;
306 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
308 static void drop_user_return_notifiers(void)
310 unsigned int cpu = smp_processor_id();
311 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
313 if (smsr->registered)
314 kvm_on_user_return(&smsr->urn);
317 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
319 return vcpu->arch.apic_base;
321 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
323 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
325 return kvm_apic_mode(kvm_get_apic_base(vcpu));
327 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
329 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
331 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
332 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
333 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
334 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
336 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
337 return 1;
338 if (!msr_info->host_initiated) {
339 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
340 return 1;
341 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
342 return 1;
345 kvm_lapic_set_base(vcpu, msr_info->data);
346 return 0;
348 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
350 asmlinkage __visible void kvm_spurious_fault(void)
352 /* Fault while not rebooting. We want the trace. */
353 BUG();
355 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
357 #define EXCPT_BENIGN 0
358 #define EXCPT_CONTRIBUTORY 1
359 #define EXCPT_PF 2
361 static int exception_class(int vector)
363 switch (vector) {
364 case PF_VECTOR:
365 return EXCPT_PF;
366 case DE_VECTOR:
367 case TS_VECTOR:
368 case NP_VECTOR:
369 case SS_VECTOR:
370 case GP_VECTOR:
371 return EXCPT_CONTRIBUTORY;
372 default:
373 break;
375 return EXCPT_BENIGN;
378 #define EXCPT_FAULT 0
379 #define EXCPT_TRAP 1
380 #define EXCPT_ABORT 2
381 #define EXCPT_INTERRUPT 3
383 static int exception_type(int vector)
385 unsigned int mask;
387 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
388 return EXCPT_INTERRUPT;
390 mask = 1 << vector;
392 /* #DB is trap, as instruction watchpoints are handled elsewhere */
393 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
394 return EXCPT_TRAP;
396 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
397 return EXCPT_ABORT;
399 /* Reserved exceptions will result in fault */
400 return EXCPT_FAULT;
403 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
405 unsigned nr = vcpu->arch.exception.nr;
406 bool has_payload = vcpu->arch.exception.has_payload;
407 unsigned long payload = vcpu->arch.exception.payload;
409 if (!has_payload)
410 return;
412 switch (nr) {
413 case DB_VECTOR:
415 * "Certain debug exceptions may clear bit 0-3. The
416 * remaining contents of the DR6 register are never
417 * cleared by the processor".
419 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
421 * DR6.RTM is set by all #DB exceptions that don't clear it.
423 vcpu->arch.dr6 |= DR6_RTM;
424 vcpu->arch.dr6 |= payload;
426 * Bit 16 should be set in the payload whenever the #DB
427 * exception should clear DR6.RTM. This makes the payload
428 * compatible with the pending debug exceptions under VMX.
429 * Though not currently documented in the SDM, this also
430 * makes the payload compatible with the exit qualification
431 * for #DB exceptions under VMX.
433 vcpu->arch.dr6 ^= payload & DR6_RTM;
434 break;
435 case PF_VECTOR:
436 vcpu->arch.cr2 = payload;
437 break;
440 vcpu->arch.exception.has_payload = false;
441 vcpu->arch.exception.payload = 0;
443 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
445 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
446 unsigned nr, bool has_error, u32 error_code,
447 bool has_payload, unsigned long payload, bool reinject)
449 u32 prev_nr;
450 int class1, class2;
452 kvm_make_request(KVM_REQ_EVENT, vcpu);
454 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
455 queue:
456 if (has_error && !is_protmode(vcpu))
457 has_error = false;
458 if (reinject) {
460 * On vmentry, vcpu->arch.exception.pending is only
461 * true if an event injection was blocked by
462 * nested_run_pending. In that case, however,
463 * vcpu_enter_guest requests an immediate exit,
464 * and the guest shouldn't proceed far enough to
465 * need reinjection.
467 WARN_ON_ONCE(vcpu->arch.exception.pending);
468 vcpu->arch.exception.injected = true;
469 if (WARN_ON_ONCE(has_payload)) {
471 * A reinjected event has already
472 * delivered its payload.
474 has_payload = false;
475 payload = 0;
477 } else {
478 vcpu->arch.exception.pending = true;
479 vcpu->arch.exception.injected = false;
481 vcpu->arch.exception.has_error_code = has_error;
482 vcpu->arch.exception.nr = nr;
483 vcpu->arch.exception.error_code = error_code;
484 vcpu->arch.exception.has_payload = has_payload;
485 vcpu->arch.exception.payload = payload;
487 * In guest mode, payload delivery should be deferred,
488 * so that the L1 hypervisor can intercept #PF before
489 * CR2 is modified (or intercept #DB before DR6 is
490 * modified under nVMX). However, for ABI
491 * compatibility with KVM_GET_VCPU_EVENTS and
492 * KVM_SET_VCPU_EVENTS, we can't delay payload
493 * delivery unless userspace has enabled this
494 * functionality via the per-VM capability,
495 * KVM_CAP_EXCEPTION_PAYLOAD.
497 if (!vcpu->kvm->arch.exception_payload_enabled ||
498 !is_guest_mode(vcpu))
499 kvm_deliver_exception_payload(vcpu);
500 return;
503 /* to check exception */
504 prev_nr = vcpu->arch.exception.nr;
505 if (prev_nr == DF_VECTOR) {
506 /* triple fault -> shutdown */
507 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
508 return;
510 class1 = exception_class(prev_nr);
511 class2 = exception_class(nr);
512 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
513 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
515 * Generate double fault per SDM Table 5-5. Set
516 * exception.pending = true so that the double fault
517 * can trigger a nested vmexit.
519 vcpu->arch.exception.pending = true;
520 vcpu->arch.exception.injected = false;
521 vcpu->arch.exception.has_error_code = true;
522 vcpu->arch.exception.nr = DF_VECTOR;
523 vcpu->arch.exception.error_code = 0;
524 vcpu->arch.exception.has_payload = false;
525 vcpu->arch.exception.payload = 0;
526 } else
527 /* replace previous exception with a new one in a hope
528 that instruction re-execution will regenerate lost
529 exception */
530 goto queue;
533 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
535 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
537 EXPORT_SYMBOL_GPL(kvm_queue_exception);
539 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
541 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
543 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
545 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
546 unsigned long payload)
548 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
551 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
552 u32 error_code, unsigned long payload)
554 kvm_multiple_exception(vcpu, nr, true, error_code,
555 true, payload, false);
558 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
560 if (err)
561 kvm_inject_gp(vcpu, 0);
562 else
563 return kvm_skip_emulated_instruction(vcpu);
565 return 1;
567 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
569 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
571 ++vcpu->stat.pf_guest;
572 vcpu->arch.exception.nested_apf =
573 is_guest_mode(vcpu) && fault->async_page_fault;
574 if (vcpu->arch.exception.nested_apf) {
575 vcpu->arch.apf.nested_apf_token = fault->address;
576 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
577 } else {
578 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
579 fault->address);
582 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
584 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
586 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
587 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
588 else
589 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
591 return fault->nested_page_fault;
594 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
596 atomic_inc(&vcpu->arch.nmi_queued);
597 kvm_make_request(KVM_REQ_NMI, vcpu);
599 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
601 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
603 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
605 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
607 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
609 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
611 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
614 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
615 * a #GP and return false.
617 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
619 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
620 return true;
621 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
622 return false;
624 EXPORT_SYMBOL_GPL(kvm_require_cpl);
626 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
628 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
629 return true;
631 kvm_queue_exception(vcpu, UD_VECTOR);
632 return false;
634 EXPORT_SYMBOL_GPL(kvm_require_dr);
637 * This function will be used to read from the physical memory of the currently
638 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
639 * can read from guest physical or from the guest's guest physical memory.
641 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
642 gfn_t ngfn, void *data, int offset, int len,
643 u32 access)
645 struct x86_exception exception;
646 gfn_t real_gfn;
647 gpa_t ngpa;
649 ngpa = gfn_to_gpa(ngfn);
650 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
651 if (real_gfn == UNMAPPED_GVA)
652 return -EFAULT;
654 real_gfn = gpa_to_gfn(real_gfn);
656 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
658 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
660 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
661 void *data, int offset, int len, u32 access)
663 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
664 data, offset, len, access);
668 * Load the pae pdptrs. Return true is they are all valid.
670 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
672 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
673 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
674 int i;
675 int ret;
676 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
678 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
679 offset * sizeof(u64), sizeof(pdpte),
680 PFERR_USER_MASK|PFERR_WRITE_MASK);
681 if (ret < 0) {
682 ret = 0;
683 goto out;
685 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
686 if ((pdpte[i] & PT_PRESENT_MASK) &&
687 (pdpte[i] &
688 vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
689 ret = 0;
690 goto out;
693 ret = 1;
695 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
696 __set_bit(VCPU_EXREG_PDPTR,
697 (unsigned long *)&vcpu->arch.regs_avail);
698 __set_bit(VCPU_EXREG_PDPTR,
699 (unsigned long *)&vcpu->arch.regs_dirty);
700 out:
702 return ret;
704 EXPORT_SYMBOL_GPL(load_pdptrs);
706 bool pdptrs_changed(struct kvm_vcpu *vcpu)
708 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
709 bool changed = true;
710 int offset;
711 gfn_t gfn;
712 int r;
714 if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
715 return false;
717 if (!test_bit(VCPU_EXREG_PDPTR,
718 (unsigned long *)&vcpu->arch.regs_avail))
719 return true;
721 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
722 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
723 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
724 PFERR_USER_MASK | PFERR_WRITE_MASK);
725 if (r < 0)
726 goto out;
727 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
728 out:
730 return changed;
732 EXPORT_SYMBOL_GPL(pdptrs_changed);
734 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
736 unsigned long old_cr0 = kvm_read_cr0(vcpu);
737 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
739 cr0 |= X86_CR0_ET;
741 #ifdef CONFIG_X86_64
742 if (cr0 & 0xffffffff00000000UL)
743 return 1;
744 #endif
746 cr0 &= ~CR0_RESERVED_BITS;
748 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
749 return 1;
751 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
752 return 1;
754 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
755 #ifdef CONFIG_X86_64
756 if ((vcpu->arch.efer & EFER_LME)) {
757 int cs_db, cs_l;
759 if (!is_pae(vcpu))
760 return 1;
761 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
762 if (cs_l)
763 return 1;
764 } else
765 #endif
766 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
767 kvm_read_cr3(vcpu)))
768 return 1;
771 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
772 return 1;
774 kvm_x86_ops->set_cr0(vcpu, cr0);
776 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
777 kvm_clear_async_pf_completion_queue(vcpu);
778 kvm_async_pf_hash_reset(vcpu);
781 if ((cr0 ^ old_cr0) & update_bits)
782 kvm_mmu_reset_context(vcpu);
784 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
785 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
786 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
787 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
789 return 0;
791 EXPORT_SYMBOL_GPL(kvm_set_cr0);
793 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
795 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
797 EXPORT_SYMBOL_GPL(kvm_lmsw);
799 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
801 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
802 !vcpu->guest_xcr0_loaded) {
803 /* kvm_set_xcr() also depends on this */
804 if (vcpu->arch.xcr0 != host_xcr0)
805 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
806 vcpu->guest_xcr0_loaded = 1;
810 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
812 if (vcpu->guest_xcr0_loaded) {
813 if (vcpu->arch.xcr0 != host_xcr0)
814 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
815 vcpu->guest_xcr0_loaded = 0;
819 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
821 u64 xcr0 = xcr;
822 u64 old_xcr0 = vcpu->arch.xcr0;
823 u64 valid_bits;
825 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
826 if (index != XCR_XFEATURE_ENABLED_MASK)
827 return 1;
828 if (!(xcr0 & XFEATURE_MASK_FP))
829 return 1;
830 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
831 return 1;
834 * Do not allow the guest to set bits that we do not support
835 * saving. However, xcr0 bit 0 is always set, even if the
836 * emulated CPU does not support XSAVE (see fx_init).
838 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
839 if (xcr0 & ~valid_bits)
840 return 1;
842 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
843 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
844 return 1;
846 if (xcr0 & XFEATURE_MASK_AVX512) {
847 if (!(xcr0 & XFEATURE_MASK_YMM))
848 return 1;
849 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
850 return 1;
852 vcpu->arch.xcr0 = xcr0;
854 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
855 kvm_update_cpuid(vcpu);
856 return 0;
859 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
861 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
862 __kvm_set_xcr(vcpu, index, xcr)) {
863 kvm_inject_gp(vcpu, 0);
864 return 1;
866 return 0;
868 EXPORT_SYMBOL_GPL(kvm_set_xcr);
870 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
872 unsigned long old_cr4 = kvm_read_cr4(vcpu);
873 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
874 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
876 if (cr4 & CR4_RESERVED_BITS)
877 return 1;
879 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
880 return 1;
882 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
883 return 1;
885 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
886 return 1;
888 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
889 return 1;
891 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
892 return 1;
894 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
895 return 1;
897 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
898 return 1;
900 if (is_long_mode(vcpu)) {
901 if (!(cr4 & X86_CR4_PAE))
902 return 1;
903 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
904 && ((cr4 ^ old_cr4) & pdptr_bits)
905 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
906 kvm_read_cr3(vcpu)))
907 return 1;
909 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
910 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
911 return 1;
913 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
914 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
915 return 1;
918 if (kvm_x86_ops->set_cr4(vcpu, cr4))
919 return 1;
921 if (((cr4 ^ old_cr4) & pdptr_bits) ||
922 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
923 kvm_mmu_reset_context(vcpu);
925 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
926 kvm_update_cpuid(vcpu);
928 return 0;
930 EXPORT_SYMBOL_GPL(kvm_set_cr4);
932 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
934 bool skip_tlb_flush = false;
935 #ifdef CONFIG_X86_64
936 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
938 if (pcid_enabled) {
939 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
940 cr3 &= ~X86_CR3_PCID_NOFLUSH;
942 #endif
944 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
945 if (!skip_tlb_flush) {
946 kvm_mmu_sync_roots(vcpu);
947 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
949 return 0;
952 if (is_long_mode(vcpu) &&
953 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
954 return 1;
955 else if (is_pae(vcpu) && is_paging(vcpu) &&
956 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
957 return 1;
959 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
960 vcpu->arch.cr3 = cr3;
961 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
963 return 0;
965 EXPORT_SYMBOL_GPL(kvm_set_cr3);
967 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
969 if (cr8 & CR8_RESERVED_BITS)
970 return 1;
971 if (lapic_in_kernel(vcpu))
972 kvm_lapic_set_tpr(vcpu, cr8);
973 else
974 vcpu->arch.cr8 = cr8;
975 return 0;
977 EXPORT_SYMBOL_GPL(kvm_set_cr8);
979 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
981 if (lapic_in_kernel(vcpu))
982 return kvm_lapic_get_cr8(vcpu);
983 else
984 return vcpu->arch.cr8;
986 EXPORT_SYMBOL_GPL(kvm_get_cr8);
988 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
990 int i;
992 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
993 for (i = 0; i < KVM_NR_DB_REGS; i++)
994 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
995 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
999 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1001 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1002 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1005 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1007 unsigned long dr7;
1009 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1010 dr7 = vcpu->arch.guest_debug_dr7;
1011 else
1012 dr7 = vcpu->arch.dr7;
1013 kvm_x86_ops->set_dr7(vcpu, dr7);
1014 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1015 if (dr7 & DR7_BP_EN_MASK)
1016 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1019 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1021 u64 fixed = DR6_FIXED_1;
1023 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1024 fixed |= DR6_RTM;
1025 return fixed;
1028 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1030 switch (dr) {
1031 case 0 ... 3:
1032 vcpu->arch.db[dr] = val;
1033 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1034 vcpu->arch.eff_db[dr] = val;
1035 break;
1036 case 4:
1037 /* fall through */
1038 case 6:
1039 if (val & 0xffffffff00000000ULL)
1040 return -1; /* #GP */
1041 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1042 kvm_update_dr6(vcpu);
1043 break;
1044 case 5:
1045 /* fall through */
1046 default: /* 7 */
1047 if (val & 0xffffffff00000000ULL)
1048 return -1; /* #GP */
1049 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1050 kvm_update_dr7(vcpu);
1051 break;
1054 return 0;
1057 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1059 if (__kvm_set_dr(vcpu, dr, val)) {
1060 kvm_inject_gp(vcpu, 0);
1061 return 1;
1063 return 0;
1065 EXPORT_SYMBOL_GPL(kvm_set_dr);
1067 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1069 switch (dr) {
1070 case 0 ... 3:
1071 *val = vcpu->arch.db[dr];
1072 break;
1073 case 4:
1074 /* fall through */
1075 case 6:
1076 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1077 *val = vcpu->arch.dr6;
1078 else
1079 *val = kvm_x86_ops->get_dr6(vcpu);
1080 break;
1081 case 5:
1082 /* fall through */
1083 default: /* 7 */
1084 *val = vcpu->arch.dr7;
1085 break;
1087 return 0;
1089 EXPORT_SYMBOL_GPL(kvm_get_dr);
1091 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1093 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1094 u64 data;
1095 int err;
1097 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1098 if (err)
1099 return err;
1100 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1101 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1102 return err;
1104 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1107 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1108 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1110 * This list is modified at module load time to reflect the
1111 * capabilities of the host cpu. This capabilities test skips MSRs that are
1112 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1113 * may depend on host virtualization features rather than host cpu features.
1116 static u32 msrs_to_save[] = {
1117 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1118 MSR_STAR,
1119 #ifdef CONFIG_X86_64
1120 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1121 #endif
1122 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1123 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1124 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1127 static unsigned num_msrs_to_save;
1129 static u32 emulated_msrs[] = {
1130 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1131 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1132 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1133 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1134 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1135 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1136 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1137 HV_X64_MSR_RESET,
1138 HV_X64_MSR_VP_INDEX,
1139 HV_X64_MSR_VP_RUNTIME,
1140 HV_X64_MSR_SCONTROL,
1141 HV_X64_MSR_STIMER0_CONFIG,
1142 HV_X64_MSR_VP_ASSIST_PAGE,
1143 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1144 HV_X64_MSR_TSC_EMULATION_STATUS,
1146 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1147 MSR_KVM_PV_EOI_EN,
1149 MSR_IA32_TSC_ADJUST,
1150 MSR_IA32_TSCDEADLINE,
1151 MSR_IA32_MISC_ENABLE,
1152 MSR_IA32_MCG_STATUS,
1153 MSR_IA32_MCG_CTL,
1154 MSR_IA32_MCG_EXT_CTL,
1155 MSR_IA32_SMBASE,
1156 MSR_SMI_COUNT,
1157 MSR_PLATFORM_INFO,
1158 MSR_MISC_FEATURES_ENABLES,
1159 MSR_AMD64_VIRT_SPEC_CTRL,
1162 static unsigned num_emulated_msrs;
1165 * List of msr numbers which are used to expose MSR-based features that
1166 * can be used by a hypervisor to validate requested CPU features.
1168 static u32 msr_based_features[] = {
1169 MSR_IA32_VMX_BASIC,
1170 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1171 MSR_IA32_VMX_PINBASED_CTLS,
1172 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1173 MSR_IA32_VMX_PROCBASED_CTLS,
1174 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1175 MSR_IA32_VMX_EXIT_CTLS,
1176 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1177 MSR_IA32_VMX_ENTRY_CTLS,
1178 MSR_IA32_VMX_MISC,
1179 MSR_IA32_VMX_CR0_FIXED0,
1180 MSR_IA32_VMX_CR0_FIXED1,
1181 MSR_IA32_VMX_CR4_FIXED0,
1182 MSR_IA32_VMX_CR4_FIXED1,
1183 MSR_IA32_VMX_VMCS_ENUM,
1184 MSR_IA32_VMX_PROCBASED_CTLS2,
1185 MSR_IA32_VMX_EPT_VPID_CAP,
1186 MSR_IA32_VMX_VMFUNC,
1188 MSR_F10H_DECFG,
1189 MSR_IA32_UCODE_REV,
1190 MSR_IA32_ARCH_CAPABILITIES,
1193 static unsigned int num_msr_based_features;
1195 u64 kvm_get_arch_capabilities(void)
1197 u64 data;
1199 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1202 * If we're doing cache flushes (either "always" or "cond")
1203 * we will do one whenever the guest does a vmlaunch/vmresume.
1204 * If an outer hypervisor is doing the cache flush for us
1205 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1206 * capability to the guest too, and if EPT is disabled we're not
1207 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1208 * require a nested hypervisor to do a flush of its own.
1210 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1211 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1213 return data;
1215 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1217 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1219 switch (msr->index) {
1220 case MSR_IA32_ARCH_CAPABILITIES:
1221 msr->data = kvm_get_arch_capabilities();
1222 break;
1223 case MSR_IA32_UCODE_REV:
1224 rdmsrl_safe(msr->index, &msr->data);
1225 break;
1226 default:
1227 if (kvm_x86_ops->get_msr_feature(msr))
1228 return 1;
1230 return 0;
1233 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1235 struct kvm_msr_entry msr;
1236 int r;
1238 msr.index = index;
1239 r = kvm_get_msr_feature(&msr);
1240 if (r)
1241 return r;
1243 *data = msr.data;
1245 return 0;
1248 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1250 if (efer & efer_reserved_bits)
1251 return false;
1253 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1254 return false;
1256 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1257 return false;
1259 return true;
1261 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1263 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1265 u64 old_efer = vcpu->arch.efer;
1267 if (!kvm_valid_efer(vcpu, efer))
1268 return 1;
1270 if (is_paging(vcpu)
1271 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1272 return 1;
1274 efer &= ~EFER_LMA;
1275 efer |= vcpu->arch.efer & EFER_LMA;
1277 kvm_x86_ops->set_efer(vcpu, efer);
1279 /* Update reserved bits */
1280 if ((efer ^ old_efer) & EFER_NX)
1281 kvm_mmu_reset_context(vcpu);
1283 return 0;
1286 void kvm_enable_efer_bits(u64 mask)
1288 efer_reserved_bits &= ~mask;
1290 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1293 * Writes msr value into into the appropriate "register".
1294 * Returns 0 on success, non-0 otherwise.
1295 * Assumes vcpu_load() was already called.
1297 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1299 switch (msr->index) {
1300 case MSR_FS_BASE:
1301 case MSR_GS_BASE:
1302 case MSR_KERNEL_GS_BASE:
1303 case MSR_CSTAR:
1304 case MSR_LSTAR:
1305 if (is_noncanonical_address(msr->data, vcpu))
1306 return 1;
1307 break;
1308 case MSR_IA32_SYSENTER_EIP:
1309 case MSR_IA32_SYSENTER_ESP:
1311 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1312 * non-canonical address is written on Intel but not on
1313 * AMD (which ignores the top 32-bits, because it does
1314 * not implement 64-bit SYSENTER).
1316 * 64-bit code should hence be able to write a non-canonical
1317 * value on AMD. Making the address canonical ensures that
1318 * vmentry does not fail on Intel after writing a non-canonical
1319 * value, and that something deterministic happens if the guest
1320 * invokes 64-bit SYSENTER.
1322 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1324 return kvm_x86_ops->set_msr(vcpu, msr);
1326 EXPORT_SYMBOL_GPL(kvm_set_msr);
1329 * Adapt set_msr() to msr_io()'s calling convention
1331 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1333 struct msr_data msr;
1334 int r;
1336 msr.index = index;
1337 msr.host_initiated = true;
1338 r = kvm_get_msr(vcpu, &msr);
1339 if (r)
1340 return r;
1342 *data = msr.data;
1343 return 0;
1346 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1348 struct msr_data msr;
1350 msr.data = *data;
1351 msr.index = index;
1352 msr.host_initiated = true;
1353 return kvm_set_msr(vcpu, &msr);
1356 #ifdef CONFIG_X86_64
1357 struct pvclock_gtod_data {
1358 seqcount_t seq;
1360 struct { /* extract of a clocksource struct */
1361 int vclock_mode;
1362 u64 cycle_last;
1363 u64 mask;
1364 u32 mult;
1365 u32 shift;
1366 } clock;
1368 u64 boot_ns;
1369 u64 nsec_base;
1370 u64 wall_time_sec;
1373 static struct pvclock_gtod_data pvclock_gtod_data;
1375 static void update_pvclock_gtod(struct timekeeper *tk)
1377 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1378 u64 boot_ns;
1380 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1382 write_seqcount_begin(&vdata->seq);
1384 /* copy pvclock gtod data */
1385 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1386 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1387 vdata->clock.mask = tk->tkr_mono.mask;
1388 vdata->clock.mult = tk->tkr_mono.mult;
1389 vdata->clock.shift = tk->tkr_mono.shift;
1391 vdata->boot_ns = boot_ns;
1392 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1394 vdata->wall_time_sec = tk->xtime_sec;
1396 write_seqcount_end(&vdata->seq);
1398 #endif
1400 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1403 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1404 * vcpu_enter_guest. This function is only called from
1405 * the physical CPU that is running vcpu.
1407 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1410 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1412 int version;
1413 int r;
1414 struct pvclock_wall_clock wc;
1415 struct timespec64 boot;
1417 if (!wall_clock)
1418 return;
1420 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1421 if (r)
1422 return;
1424 if (version & 1)
1425 ++version; /* first time write, random junk */
1427 ++version;
1429 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1430 return;
1433 * The guest calculates current wall clock time by adding
1434 * system time (updated by kvm_guest_time_update below) to the
1435 * wall clock specified here. guest system time equals host
1436 * system time for us, thus we must fill in host boot time here.
1438 getboottime64(&boot);
1440 if (kvm->arch.kvmclock_offset) {
1441 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1442 boot = timespec64_sub(boot, ts);
1444 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1445 wc.nsec = boot.tv_nsec;
1446 wc.version = version;
1448 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1450 version++;
1451 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1454 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1456 do_shl32_div32(dividend, divisor);
1457 return dividend;
1460 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1461 s8 *pshift, u32 *pmultiplier)
1463 uint64_t scaled64;
1464 int32_t shift = 0;
1465 uint64_t tps64;
1466 uint32_t tps32;
1468 tps64 = base_hz;
1469 scaled64 = scaled_hz;
1470 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1471 tps64 >>= 1;
1472 shift--;
1475 tps32 = (uint32_t)tps64;
1476 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1477 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1478 scaled64 >>= 1;
1479 else
1480 tps32 <<= 1;
1481 shift++;
1484 *pshift = shift;
1485 *pmultiplier = div_frac(scaled64, tps32);
1487 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1488 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1491 #ifdef CONFIG_X86_64
1492 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1493 #endif
1495 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1496 static unsigned long max_tsc_khz;
1498 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1500 u64 v = (u64)khz * (1000000 + ppm);
1501 do_div(v, 1000000);
1502 return v;
1505 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1507 u64 ratio;
1509 /* Guest TSC same frequency as host TSC? */
1510 if (!scale) {
1511 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1512 return 0;
1515 /* TSC scaling supported? */
1516 if (!kvm_has_tsc_control) {
1517 if (user_tsc_khz > tsc_khz) {
1518 vcpu->arch.tsc_catchup = 1;
1519 vcpu->arch.tsc_always_catchup = 1;
1520 return 0;
1521 } else {
1522 WARN(1, "user requested TSC rate below hardware speed\n");
1523 return -1;
1527 /* TSC scaling required - calculate ratio */
1528 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1529 user_tsc_khz, tsc_khz);
1531 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1532 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1533 user_tsc_khz);
1534 return -1;
1537 vcpu->arch.tsc_scaling_ratio = ratio;
1538 return 0;
1541 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1543 u32 thresh_lo, thresh_hi;
1544 int use_scaling = 0;
1546 /* tsc_khz can be zero if TSC calibration fails */
1547 if (user_tsc_khz == 0) {
1548 /* set tsc_scaling_ratio to a safe value */
1549 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1550 return -1;
1553 /* Compute a scale to convert nanoseconds in TSC cycles */
1554 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1555 &vcpu->arch.virtual_tsc_shift,
1556 &vcpu->arch.virtual_tsc_mult);
1557 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1560 * Compute the variation in TSC rate which is acceptable
1561 * within the range of tolerance and decide if the
1562 * rate being applied is within that bounds of the hardware
1563 * rate. If so, no scaling or compensation need be done.
1565 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1566 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1567 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1568 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1569 use_scaling = 1;
1571 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1574 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1576 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1577 vcpu->arch.virtual_tsc_mult,
1578 vcpu->arch.virtual_tsc_shift);
1579 tsc += vcpu->arch.this_tsc_write;
1580 return tsc;
1583 static inline int gtod_is_based_on_tsc(int mode)
1585 return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1588 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1590 #ifdef CONFIG_X86_64
1591 bool vcpus_matched;
1592 struct kvm_arch *ka = &vcpu->kvm->arch;
1593 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1595 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1596 atomic_read(&vcpu->kvm->online_vcpus));
1599 * Once the masterclock is enabled, always perform request in
1600 * order to update it.
1602 * In order to enable masterclock, the host clocksource must be TSC
1603 * and the vcpus need to have matched TSCs. When that happens,
1604 * perform request to enable masterclock.
1606 if (ka->use_master_clock ||
1607 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1608 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1610 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1611 atomic_read(&vcpu->kvm->online_vcpus),
1612 ka->use_master_clock, gtod->clock.vclock_mode);
1613 #endif
1616 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1618 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1619 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1623 * Multiply tsc by a fixed point number represented by ratio.
1625 * The most significant 64-N bits (mult) of ratio represent the
1626 * integral part of the fixed point number; the remaining N bits
1627 * (frac) represent the fractional part, ie. ratio represents a fixed
1628 * point number (mult + frac * 2^(-N)).
1630 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1632 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1634 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1637 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1639 u64 _tsc = tsc;
1640 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1642 if (ratio != kvm_default_tsc_scaling_ratio)
1643 _tsc = __scale_tsc(ratio, tsc);
1645 return _tsc;
1647 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1649 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1651 u64 tsc;
1653 tsc = kvm_scale_tsc(vcpu, rdtsc());
1655 return target_tsc - tsc;
1658 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1660 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1662 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1664 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1666 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1668 vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1671 static inline bool kvm_check_tsc_unstable(void)
1673 #ifdef CONFIG_X86_64
1675 * TSC is marked unstable when we're running on Hyper-V,
1676 * 'TSC page' clocksource is good.
1678 if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1679 return false;
1680 #endif
1681 return check_tsc_unstable();
1684 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1686 struct kvm *kvm = vcpu->kvm;
1687 u64 offset, ns, elapsed;
1688 unsigned long flags;
1689 bool matched;
1690 bool already_matched;
1691 u64 data = msr->data;
1692 bool synchronizing = false;
1694 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1695 offset = kvm_compute_tsc_offset(vcpu, data);
1696 ns = ktime_get_boot_ns();
1697 elapsed = ns - kvm->arch.last_tsc_nsec;
1699 if (vcpu->arch.virtual_tsc_khz) {
1700 if (data == 0 && msr->host_initiated) {
1702 * detection of vcpu initialization -- need to sync
1703 * with other vCPUs. This particularly helps to keep
1704 * kvm_clock stable after CPU hotplug
1706 synchronizing = true;
1707 } else {
1708 u64 tsc_exp = kvm->arch.last_tsc_write +
1709 nsec_to_cycles(vcpu, elapsed);
1710 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1712 * Special case: TSC write with a small delta (1 second)
1713 * of virtual cycle time against real time is
1714 * interpreted as an attempt to synchronize the CPU.
1716 synchronizing = data < tsc_exp + tsc_hz &&
1717 data + tsc_hz > tsc_exp;
1722 * For a reliable TSC, we can match TSC offsets, and for an unstable
1723 * TSC, we add elapsed time in this computation. We could let the
1724 * compensation code attempt to catch up if we fall behind, but
1725 * it's better to try to match offsets from the beginning.
1727 if (synchronizing &&
1728 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1729 if (!kvm_check_tsc_unstable()) {
1730 offset = kvm->arch.cur_tsc_offset;
1731 pr_debug("kvm: matched tsc offset for %llu\n", data);
1732 } else {
1733 u64 delta = nsec_to_cycles(vcpu, elapsed);
1734 data += delta;
1735 offset = kvm_compute_tsc_offset(vcpu, data);
1736 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1738 matched = true;
1739 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1740 } else {
1742 * We split periods of matched TSC writes into generations.
1743 * For each generation, we track the original measured
1744 * nanosecond time, offset, and write, so if TSCs are in
1745 * sync, we can match exact offset, and if not, we can match
1746 * exact software computation in compute_guest_tsc()
1748 * These values are tracked in kvm->arch.cur_xxx variables.
1750 kvm->arch.cur_tsc_generation++;
1751 kvm->arch.cur_tsc_nsec = ns;
1752 kvm->arch.cur_tsc_write = data;
1753 kvm->arch.cur_tsc_offset = offset;
1754 matched = false;
1755 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1756 kvm->arch.cur_tsc_generation, data);
1760 * We also track th most recent recorded KHZ, write and time to
1761 * allow the matching interval to be extended at each write.
1763 kvm->arch.last_tsc_nsec = ns;
1764 kvm->arch.last_tsc_write = data;
1765 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1767 vcpu->arch.last_guest_tsc = data;
1769 /* Keep track of which generation this VCPU has synchronized to */
1770 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1771 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1772 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1774 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1775 update_ia32_tsc_adjust_msr(vcpu, offset);
1777 kvm_vcpu_write_tsc_offset(vcpu, offset);
1778 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1780 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1781 if (!matched) {
1782 kvm->arch.nr_vcpus_matched_tsc = 0;
1783 } else if (!already_matched) {
1784 kvm->arch.nr_vcpus_matched_tsc++;
1787 kvm_track_tsc_matching(vcpu);
1788 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1791 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1793 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1794 s64 adjustment)
1796 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1797 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1800 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1802 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1803 WARN_ON(adjustment < 0);
1804 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1805 adjust_tsc_offset_guest(vcpu, adjustment);
1808 #ifdef CONFIG_X86_64
1810 static u64 read_tsc(void)
1812 u64 ret = (u64)rdtsc_ordered();
1813 u64 last = pvclock_gtod_data.clock.cycle_last;
1815 if (likely(ret >= last))
1816 return ret;
1819 * GCC likes to generate cmov here, but this branch is extremely
1820 * predictable (it's just a function of time and the likely is
1821 * very likely) and there's a data dependence, so force GCC
1822 * to generate a branch instead. I don't barrier() because
1823 * we don't actually need a barrier, and if this function
1824 * ever gets inlined it will generate worse code.
1826 asm volatile ("");
1827 return last;
1830 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1832 long v;
1833 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1834 u64 tsc_pg_val;
1836 switch (gtod->clock.vclock_mode) {
1837 case VCLOCK_HVCLOCK:
1838 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1839 tsc_timestamp);
1840 if (tsc_pg_val != U64_MAX) {
1841 /* TSC page valid */
1842 *mode = VCLOCK_HVCLOCK;
1843 v = (tsc_pg_val - gtod->clock.cycle_last) &
1844 gtod->clock.mask;
1845 } else {
1846 /* TSC page invalid */
1847 *mode = VCLOCK_NONE;
1849 break;
1850 case VCLOCK_TSC:
1851 *mode = VCLOCK_TSC;
1852 *tsc_timestamp = read_tsc();
1853 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1854 gtod->clock.mask;
1855 break;
1856 default:
1857 *mode = VCLOCK_NONE;
1860 if (*mode == VCLOCK_NONE)
1861 *tsc_timestamp = v = 0;
1863 return v * gtod->clock.mult;
1866 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1868 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1869 unsigned long seq;
1870 int mode;
1871 u64 ns;
1873 do {
1874 seq = read_seqcount_begin(&gtod->seq);
1875 ns = gtod->nsec_base;
1876 ns += vgettsc(tsc_timestamp, &mode);
1877 ns >>= gtod->clock.shift;
1878 ns += gtod->boot_ns;
1879 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1880 *t = ns;
1882 return mode;
1885 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1887 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1888 unsigned long seq;
1889 int mode;
1890 u64 ns;
1892 do {
1893 seq = read_seqcount_begin(&gtod->seq);
1894 ts->tv_sec = gtod->wall_time_sec;
1895 ns = gtod->nsec_base;
1896 ns += vgettsc(tsc_timestamp, &mode);
1897 ns >>= gtod->clock.shift;
1898 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1900 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1901 ts->tv_nsec = ns;
1903 return mode;
1906 /* returns true if host is using TSC based clocksource */
1907 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1909 /* checked again under seqlock below */
1910 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1911 return false;
1913 return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1914 tsc_timestamp));
1917 /* returns true if host is using TSC based clocksource */
1918 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1919 u64 *tsc_timestamp)
1921 /* checked again under seqlock below */
1922 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1923 return false;
1925 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1927 #endif
1931 * Assuming a stable TSC across physical CPUS, and a stable TSC
1932 * across virtual CPUs, the following condition is possible.
1933 * Each numbered line represents an event visible to both
1934 * CPUs at the next numbered event.
1936 * "timespecX" represents host monotonic time. "tscX" represents
1937 * RDTSC value.
1939 * VCPU0 on CPU0 | VCPU1 on CPU1
1941 * 1. read timespec0,tsc0
1942 * 2. | timespec1 = timespec0 + N
1943 * | tsc1 = tsc0 + M
1944 * 3. transition to guest | transition to guest
1945 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1946 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1947 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1949 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1951 * - ret0 < ret1
1952 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1953 * ...
1954 * - 0 < N - M => M < N
1956 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1957 * always the case (the difference between two distinct xtime instances
1958 * might be smaller then the difference between corresponding TSC reads,
1959 * when updating guest vcpus pvclock areas).
1961 * To avoid that problem, do not allow visibility of distinct
1962 * system_timestamp/tsc_timestamp values simultaneously: use a master
1963 * copy of host monotonic time values. Update that master copy
1964 * in lockstep.
1966 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1970 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1972 #ifdef CONFIG_X86_64
1973 struct kvm_arch *ka = &kvm->arch;
1974 int vclock_mode;
1975 bool host_tsc_clocksource, vcpus_matched;
1977 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1978 atomic_read(&kvm->online_vcpus));
1981 * If the host uses TSC clock, then passthrough TSC as stable
1982 * to the guest.
1984 host_tsc_clocksource = kvm_get_time_and_clockread(
1985 &ka->master_kernel_ns,
1986 &ka->master_cycle_now);
1988 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1989 && !ka->backwards_tsc_observed
1990 && !ka->boot_vcpu_runs_old_kvmclock;
1992 if (ka->use_master_clock)
1993 atomic_set(&kvm_guest_has_master_clock, 1);
1995 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1996 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1997 vcpus_matched);
1998 #endif
2001 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2003 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2006 static void kvm_gen_update_masterclock(struct kvm *kvm)
2008 #ifdef CONFIG_X86_64
2009 int i;
2010 struct kvm_vcpu *vcpu;
2011 struct kvm_arch *ka = &kvm->arch;
2013 spin_lock(&ka->pvclock_gtod_sync_lock);
2014 kvm_make_mclock_inprogress_request(kvm);
2015 /* no guest entries from this point */
2016 pvclock_update_vm_gtod_copy(kvm);
2018 kvm_for_each_vcpu(i, vcpu, kvm)
2019 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2021 /* guest entries allowed */
2022 kvm_for_each_vcpu(i, vcpu, kvm)
2023 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2025 spin_unlock(&ka->pvclock_gtod_sync_lock);
2026 #endif
2029 u64 get_kvmclock_ns(struct kvm *kvm)
2031 struct kvm_arch *ka = &kvm->arch;
2032 struct pvclock_vcpu_time_info hv_clock;
2033 u64 ret;
2035 spin_lock(&ka->pvclock_gtod_sync_lock);
2036 if (!ka->use_master_clock) {
2037 spin_unlock(&ka->pvclock_gtod_sync_lock);
2038 return ktime_get_boot_ns() + ka->kvmclock_offset;
2041 hv_clock.tsc_timestamp = ka->master_cycle_now;
2042 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2043 spin_unlock(&ka->pvclock_gtod_sync_lock);
2045 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2046 get_cpu();
2048 if (__this_cpu_read(cpu_tsc_khz)) {
2049 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2050 &hv_clock.tsc_shift,
2051 &hv_clock.tsc_to_system_mul);
2052 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2053 } else
2054 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2056 put_cpu();
2058 return ret;
2061 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2063 struct kvm_vcpu_arch *vcpu = &v->arch;
2064 struct pvclock_vcpu_time_info guest_hv_clock;
2066 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2067 &guest_hv_clock, sizeof(guest_hv_clock))))
2068 return;
2070 /* This VCPU is paused, but it's legal for a guest to read another
2071 * VCPU's kvmclock, so we really have to follow the specification where
2072 * it says that version is odd if data is being modified, and even after
2073 * it is consistent.
2075 * Version field updates must be kept separate. This is because
2076 * kvm_write_guest_cached might use a "rep movs" instruction, and
2077 * writes within a string instruction are weakly ordered. So there
2078 * are three writes overall.
2080 * As a small optimization, only write the version field in the first
2081 * and third write. The vcpu->pv_time cache is still valid, because the
2082 * version field is the first in the struct.
2084 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2086 if (guest_hv_clock.version & 1)
2087 ++guest_hv_clock.version; /* first time write, random junk */
2089 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2090 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2091 &vcpu->hv_clock,
2092 sizeof(vcpu->hv_clock.version));
2094 smp_wmb();
2096 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2097 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2099 if (vcpu->pvclock_set_guest_stopped_request) {
2100 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2101 vcpu->pvclock_set_guest_stopped_request = false;
2104 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2106 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2107 &vcpu->hv_clock,
2108 sizeof(vcpu->hv_clock));
2110 smp_wmb();
2112 vcpu->hv_clock.version++;
2113 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2114 &vcpu->hv_clock,
2115 sizeof(vcpu->hv_clock.version));
2118 static int kvm_guest_time_update(struct kvm_vcpu *v)
2120 unsigned long flags, tgt_tsc_khz;
2121 struct kvm_vcpu_arch *vcpu = &v->arch;
2122 struct kvm_arch *ka = &v->kvm->arch;
2123 s64 kernel_ns;
2124 u64 tsc_timestamp, host_tsc;
2125 u8 pvclock_flags;
2126 bool use_master_clock;
2128 kernel_ns = 0;
2129 host_tsc = 0;
2132 * If the host uses TSC clock, then passthrough TSC as stable
2133 * to the guest.
2135 spin_lock(&ka->pvclock_gtod_sync_lock);
2136 use_master_clock = ka->use_master_clock;
2137 if (use_master_clock) {
2138 host_tsc = ka->master_cycle_now;
2139 kernel_ns = ka->master_kernel_ns;
2141 spin_unlock(&ka->pvclock_gtod_sync_lock);
2143 /* Keep irq disabled to prevent changes to the clock */
2144 local_irq_save(flags);
2145 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2146 if (unlikely(tgt_tsc_khz == 0)) {
2147 local_irq_restore(flags);
2148 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2149 return 1;
2151 if (!use_master_clock) {
2152 host_tsc = rdtsc();
2153 kernel_ns = ktime_get_boot_ns();
2156 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2159 * We may have to catch up the TSC to match elapsed wall clock
2160 * time for two reasons, even if kvmclock is used.
2161 * 1) CPU could have been running below the maximum TSC rate
2162 * 2) Broken TSC compensation resets the base at each VCPU
2163 * entry to avoid unknown leaps of TSC even when running
2164 * again on the same CPU. This may cause apparent elapsed
2165 * time to disappear, and the guest to stand still or run
2166 * very slowly.
2168 if (vcpu->tsc_catchup) {
2169 u64 tsc = compute_guest_tsc(v, kernel_ns);
2170 if (tsc > tsc_timestamp) {
2171 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2172 tsc_timestamp = tsc;
2176 local_irq_restore(flags);
2178 /* With all the info we got, fill in the values */
2180 if (kvm_has_tsc_control)
2181 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2183 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2184 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2185 &vcpu->hv_clock.tsc_shift,
2186 &vcpu->hv_clock.tsc_to_system_mul);
2187 vcpu->hw_tsc_khz = tgt_tsc_khz;
2190 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2191 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2192 vcpu->last_guest_tsc = tsc_timestamp;
2194 /* If the host uses TSC clocksource, then it is stable */
2195 pvclock_flags = 0;
2196 if (use_master_clock)
2197 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2199 vcpu->hv_clock.flags = pvclock_flags;
2201 if (vcpu->pv_time_enabled)
2202 kvm_setup_pvclock_page(v);
2203 if (v == kvm_get_vcpu(v->kvm, 0))
2204 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2205 return 0;
2209 * kvmclock updates which are isolated to a given vcpu, such as
2210 * vcpu->cpu migration, should not allow system_timestamp from
2211 * the rest of the vcpus to remain static. Otherwise ntp frequency
2212 * correction applies to one vcpu's system_timestamp but not
2213 * the others.
2215 * So in those cases, request a kvmclock update for all vcpus.
2216 * We need to rate-limit these requests though, as they can
2217 * considerably slow guests that have a large number of vcpus.
2218 * The time for a remote vcpu to update its kvmclock is bound
2219 * by the delay we use to rate-limit the updates.
2222 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2224 static void kvmclock_update_fn(struct work_struct *work)
2226 int i;
2227 struct delayed_work *dwork = to_delayed_work(work);
2228 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2229 kvmclock_update_work);
2230 struct kvm *kvm = container_of(ka, struct kvm, arch);
2231 struct kvm_vcpu *vcpu;
2233 kvm_for_each_vcpu(i, vcpu, kvm) {
2234 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2235 kvm_vcpu_kick(vcpu);
2239 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2241 struct kvm *kvm = v->kvm;
2243 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2244 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2245 KVMCLOCK_UPDATE_DELAY);
2248 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2250 static void kvmclock_sync_fn(struct work_struct *work)
2252 struct delayed_work *dwork = to_delayed_work(work);
2253 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2254 kvmclock_sync_work);
2255 struct kvm *kvm = container_of(ka, struct kvm, arch);
2257 if (!kvmclock_periodic_sync)
2258 return;
2260 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2261 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2262 KVMCLOCK_SYNC_PERIOD);
2265 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2267 u64 mcg_cap = vcpu->arch.mcg_cap;
2268 unsigned bank_num = mcg_cap & 0xff;
2269 u32 msr = msr_info->index;
2270 u64 data = msr_info->data;
2272 switch (msr) {
2273 case MSR_IA32_MCG_STATUS:
2274 vcpu->arch.mcg_status = data;
2275 break;
2276 case MSR_IA32_MCG_CTL:
2277 if (!(mcg_cap & MCG_CTL_P) &&
2278 (data || !msr_info->host_initiated))
2279 return 1;
2280 if (data != 0 && data != ~(u64)0)
2281 return 1;
2282 vcpu->arch.mcg_ctl = data;
2283 break;
2284 default:
2285 if (msr >= MSR_IA32_MC0_CTL &&
2286 msr < MSR_IA32_MCx_CTL(bank_num)) {
2287 u32 offset = msr - MSR_IA32_MC0_CTL;
2288 /* only 0 or all 1s can be written to IA32_MCi_CTL
2289 * some Linux kernels though clear bit 10 in bank 4 to
2290 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2291 * this to avoid an uncatched #GP in the guest
2293 if ((offset & 0x3) == 0 &&
2294 data != 0 && (data | (1 << 10)) != ~(u64)0)
2295 return -1;
2296 if (!msr_info->host_initiated &&
2297 (offset & 0x3) == 1 && data != 0)
2298 return -1;
2299 vcpu->arch.mce_banks[offset] = data;
2300 break;
2302 return 1;
2304 return 0;
2307 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2309 struct kvm *kvm = vcpu->kvm;
2310 int lm = is_long_mode(vcpu);
2311 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2312 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2313 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2314 : kvm->arch.xen_hvm_config.blob_size_32;
2315 u32 page_num = data & ~PAGE_MASK;
2316 u64 page_addr = data & PAGE_MASK;
2317 u8 *page;
2318 int r;
2320 r = -E2BIG;
2321 if (page_num >= blob_size)
2322 goto out;
2323 r = -ENOMEM;
2324 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2325 if (IS_ERR(page)) {
2326 r = PTR_ERR(page);
2327 goto out;
2329 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2330 goto out_free;
2331 r = 0;
2332 out_free:
2333 kfree(page);
2334 out:
2335 return r;
2338 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2340 gpa_t gpa = data & ~0x3f;
2342 /* Bits 3:5 are reserved, Should be zero */
2343 if (data & 0x38)
2344 return 1;
2346 vcpu->arch.apf.msr_val = data;
2348 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2349 kvm_clear_async_pf_completion_queue(vcpu);
2350 kvm_async_pf_hash_reset(vcpu);
2351 return 0;
2354 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2355 sizeof(u32)))
2356 return 1;
2358 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2359 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2360 kvm_async_pf_wakeup_all(vcpu);
2361 return 0;
2364 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2366 vcpu->arch.pv_time_enabled = false;
2369 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2371 ++vcpu->stat.tlb_flush;
2372 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2375 static void record_steal_time(struct kvm_vcpu *vcpu)
2377 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2378 return;
2380 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2381 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2382 return;
2385 * Doing a TLB flush here, on the guest's behalf, can avoid
2386 * expensive IPIs.
2388 if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2389 kvm_vcpu_flush_tlb(vcpu, false);
2391 if (vcpu->arch.st.steal.version & 1)
2392 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2394 vcpu->arch.st.steal.version += 1;
2396 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2397 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2399 smp_wmb();
2401 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2402 vcpu->arch.st.last_steal;
2403 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2405 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2406 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2408 smp_wmb();
2410 vcpu->arch.st.steal.version += 1;
2412 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2413 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2416 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2418 bool pr = false;
2419 u32 msr = msr_info->index;
2420 u64 data = msr_info->data;
2422 switch (msr) {
2423 case MSR_AMD64_NB_CFG:
2424 case MSR_IA32_UCODE_WRITE:
2425 case MSR_VM_HSAVE_PA:
2426 case MSR_AMD64_PATCH_LOADER:
2427 case MSR_AMD64_BU_CFG2:
2428 case MSR_AMD64_DC_CFG:
2429 break;
2431 case MSR_IA32_UCODE_REV:
2432 if (msr_info->host_initiated)
2433 vcpu->arch.microcode_version = data;
2434 break;
2435 case MSR_EFER:
2436 return set_efer(vcpu, data);
2437 case MSR_K7_HWCR:
2438 data &= ~(u64)0x40; /* ignore flush filter disable */
2439 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2440 data &= ~(u64)0x8; /* ignore TLB cache disable */
2441 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2442 if (data != 0) {
2443 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2444 data);
2445 return 1;
2447 break;
2448 case MSR_FAM10H_MMIO_CONF_BASE:
2449 if (data != 0) {
2450 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2451 "0x%llx\n", data);
2452 return 1;
2454 break;
2455 case MSR_IA32_DEBUGCTLMSR:
2456 if (!data) {
2457 /* We support the non-activated case already */
2458 break;
2459 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2460 /* Values other than LBR and BTF are vendor-specific,
2461 thus reserved and should throw a #GP */
2462 return 1;
2464 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2465 __func__, data);
2466 break;
2467 case 0x200 ... 0x2ff:
2468 return kvm_mtrr_set_msr(vcpu, msr, data);
2469 case MSR_IA32_APICBASE:
2470 return kvm_set_apic_base(vcpu, msr_info);
2471 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2472 return kvm_x2apic_msr_write(vcpu, msr, data);
2473 case MSR_IA32_TSCDEADLINE:
2474 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2475 break;
2476 case MSR_IA32_TSC_ADJUST:
2477 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2478 if (!msr_info->host_initiated) {
2479 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2480 adjust_tsc_offset_guest(vcpu, adj);
2482 vcpu->arch.ia32_tsc_adjust_msr = data;
2484 break;
2485 case MSR_IA32_MISC_ENABLE:
2486 vcpu->arch.ia32_misc_enable_msr = data;
2487 break;
2488 case MSR_IA32_SMBASE:
2489 if (!msr_info->host_initiated)
2490 return 1;
2491 vcpu->arch.smbase = data;
2492 break;
2493 case MSR_IA32_TSC:
2494 kvm_write_tsc(vcpu, msr_info);
2495 break;
2496 case MSR_SMI_COUNT:
2497 if (!msr_info->host_initiated)
2498 return 1;
2499 vcpu->arch.smi_count = data;
2500 break;
2501 case MSR_KVM_WALL_CLOCK_NEW:
2502 case MSR_KVM_WALL_CLOCK:
2503 vcpu->kvm->arch.wall_clock = data;
2504 kvm_write_wall_clock(vcpu->kvm, data);
2505 break;
2506 case MSR_KVM_SYSTEM_TIME_NEW:
2507 case MSR_KVM_SYSTEM_TIME: {
2508 struct kvm_arch *ka = &vcpu->kvm->arch;
2510 kvmclock_reset(vcpu);
2512 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2513 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2515 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2516 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2518 ka->boot_vcpu_runs_old_kvmclock = tmp;
2521 vcpu->arch.time = data;
2522 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2524 /* we verify if the enable bit is set... */
2525 if (!(data & 1))
2526 break;
2528 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2529 &vcpu->arch.pv_time, data & ~1ULL,
2530 sizeof(struct pvclock_vcpu_time_info)))
2531 vcpu->arch.pv_time_enabled = false;
2532 else
2533 vcpu->arch.pv_time_enabled = true;
2535 break;
2537 case MSR_KVM_ASYNC_PF_EN:
2538 if (kvm_pv_enable_async_pf(vcpu, data))
2539 return 1;
2540 break;
2541 case MSR_KVM_STEAL_TIME:
2543 if (unlikely(!sched_info_on()))
2544 return 1;
2546 if (data & KVM_STEAL_RESERVED_MASK)
2547 return 1;
2549 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2550 data & KVM_STEAL_VALID_BITS,
2551 sizeof(struct kvm_steal_time)))
2552 return 1;
2554 vcpu->arch.st.msr_val = data;
2556 if (!(data & KVM_MSR_ENABLED))
2557 break;
2559 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2561 break;
2562 case MSR_KVM_PV_EOI_EN:
2563 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2564 return 1;
2565 break;
2567 case MSR_IA32_MCG_CTL:
2568 case MSR_IA32_MCG_STATUS:
2569 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2570 return set_msr_mce(vcpu, msr_info);
2572 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2573 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2574 pr = true; /* fall through */
2575 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2576 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2577 if (kvm_pmu_is_valid_msr(vcpu, msr))
2578 return kvm_pmu_set_msr(vcpu, msr_info);
2580 if (pr || data != 0)
2581 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2582 "0x%x data 0x%llx\n", msr, data);
2583 break;
2584 case MSR_K7_CLK_CTL:
2586 * Ignore all writes to this no longer documented MSR.
2587 * Writes are only relevant for old K7 processors,
2588 * all pre-dating SVM, but a recommended workaround from
2589 * AMD for these chips. It is possible to specify the
2590 * affected processor models on the command line, hence
2591 * the need to ignore the workaround.
2593 break;
2594 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2595 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2596 case HV_X64_MSR_CRASH_CTL:
2597 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2598 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2599 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2600 case HV_X64_MSR_TSC_EMULATION_STATUS:
2601 return kvm_hv_set_msr_common(vcpu, msr, data,
2602 msr_info->host_initiated);
2603 case MSR_IA32_BBL_CR_CTL3:
2604 /* Drop writes to this legacy MSR -- see rdmsr
2605 * counterpart for further detail.
2607 if (report_ignored_msrs)
2608 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2609 msr, data);
2610 break;
2611 case MSR_AMD64_OSVW_ID_LENGTH:
2612 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2613 return 1;
2614 vcpu->arch.osvw.length = data;
2615 break;
2616 case MSR_AMD64_OSVW_STATUS:
2617 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2618 return 1;
2619 vcpu->arch.osvw.status = data;
2620 break;
2621 case MSR_PLATFORM_INFO:
2622 if (!msr_info->host_initiated ||
2623 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2624 cpuid_fault_enabled(vcpu)))
2625 return 1;
2626 vcpu->arch.msr_platform_info = data;
2627 break;
2628 case MSR_MISC_FEATURES_ENABLES:
2629 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2630 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2631 !supports_cpuid_fault(vcpu)))
2632 return 1;
2633 vcpu->arch.msr_misc_features_enables = data;
2634 break;
2635 default:
2636 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2637 return xen_hvm_config(vcpu, data);
2638 if (kvm_pmu_is_valid_msr(vcpu, msr))
2639 return kvm_pmu_set_msr(vcpu, msr_info);
2640 if (!ignore_msrs) {
2641 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2642 msr, data);
2643 return 1;
2644 } else {
2645 if (report_ignored_msrs)
2646 vcpu_unimpl(vcpu,
2647 "ignored wrmsr: 0x%x data 0x%llx\n",
2648 msr, data);
2649 break;
2652 return 0;
2654 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2658 * Reads an msr value (of 'msr_index') into 'pdata'.
2659 * Returns 0 on success, non-0 otherwise.
2660 * Assumes vcpu_load() was already called.
2662 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2664 return kvm_x86_ops->get_msr(vcpu, msr);
2666 EXPORT_SYMBOL_GPL(kvm_get_msr);
2668 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2670 u64 data;
2671 u64 mcg_cap = vcpu->arch.mcg_cap;
2672 unsigned bank_num = mcg_cap & 0xff;
2674 switch (msr) {
2675 case MSR_IA32_P5_MC_ADDR:
2676 case MSR_IA32_P5_MC_TYPE:
2677 data = 0;
2678 break;
2679 case MSR_IA32_MCG_CAP:
2680 data = vcpu->arch.mcg_cap;
2681 break;
2682 case MSR_IA32_MCG_CTL:
2683 if (!(mcg_cap & MCG_CTL_P) && !host)
2684 return 1;
2685 data = vcpu->arch.mcg_ctl;
2686 break;
2687 case MSR_IA32_MCG_STATUS:
2688 data = vcpu->arch.mcg_status;
2689 break;
2690 default:
2691 if (msr >= MSR_IA32_MC0_CTL &&
2692 msr < MSR_IA32_MCx_CTL(bank_num)) {
2693 u32 offset = msr - MSR_IA32_MC0_CTL;
2694 data = vcpu->arch.mce_banks[offset];
2695 break;
2697 return 1;
2699 *pdata = data;
2700 return 0;
2703 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2705 switch (msr_info->index) {
2706 case MSR_IA32_PLATFORM_ID:
2707 case MSR_IA32_EBL_CR_POWERON:
2708 case MSR_IA32_DEBUGCTLMSR:
2709 case MSR_IA32_LASTBRANCHFROMIP:
2710 case MSR_IA32_LASTBRANCHTOIP:
2711 case MSR_IA32_LASTINTFROMIP:
2712 case MSR_IA32_LASTINTTOIP:
2713 case MSR_K8_SYSCFG:
2714 case MSR_K8_TSEG_ADDR:
2715 case MSR_K8_TSEG_MASK:
2716 case MSR_K7_HWCR:
2717 case MSR_VM_HSAVE_PA:
2718 case MSR_K8_INT_PENDING_MSG:
2719 case MSR_AMD64_NB_CFG:
2720 case MSR_FAM10H_MMIO_CONF_BASE:
2721 case MSR_AMD64_BU_CFG2:
2722 case MSR_IA32_PERF_CTL:
2723 case MSR_AMD64_DC_CFG:
2724 msr_info->data = 0;
2725 break;
2726 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2727 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2728 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2729 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2730 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2731 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2732 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2733 msr_info->data = 0;
2734 break;
2735 case MSR_IA32_UCODE_REV:
2736 msr_info->data = vcpu->arch.microcode_version;
2737 break;
2738 case MSR_IA32_TSC:
2739 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2740 break;
2741 case MSR_MTRRcap:
2742 case 0x200 ... 0x2ff:
2743 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2744 case 0xcd: /* fsb frequency */
2745 msr_info->data = 3;
2746 break;
2748 * MSR_EBC_FREQUENCY_ID
2749 * Conservative value valid for even the basic CPU models.
2750 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2751 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2752 * and 266MHz for model 3, or 4. Set Core Clock
2753 * Frequency to System Bus Frequency Ratio to 1 (bits
2754 * 31:24) even though these are only valid for CPU
2755 * models > 2, however guests may end up dividing or
2756 * multiplying by zero otherwise.
2758 case MSR_EBC_FREQUENCY_ID:
2759 msr_info->data = 1 << 24;
2760 break;
2761 case MSR_IA32_APICBASE:
2762 msr_info->data = kvm_get_apic_base(vcpu);
2763 break;
2764 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2765 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2766 break;
2767 case MSR_IA32_TSCDEADLINE:
2768 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2769 break;
2770 case MSR_IA32_TSC_ADJUST:
2771 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2772 break;
2773 case MSR_IA32_MISC_ENABLE:
2774 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2775 break;
2776 case MSR_IA32_SMBASE:
2777 if (!msr_info->host_initiated)
2778 return 1;
2779 msr_info->data = vcpu->arch.smbase;
2780 break;
2781 case MSR_SMI_COUNT:
2782 msr_info->data = vcpu->arch.smi_count;
2783 break;
2784 case MSR_IA32_PERF_STATUS:
2785 /* TSC increment by tick */
2786 msr_info->data = 1000ULL;
2787 /* CPU multiplier */
2788 msr_info->data |= (((uint64_t)4ULL) << 40);
2789 break;
2790 case MSR_EFER:
2791 msr_info->data = vcpu->arch.efer;
2792 break;
2793 case MSR_KVM_WALL_CLOCK:
2794 case MSR_KVM_WALL_CLOCK_NEW:
2795 msr_info->data = vcpu->kvm->arch.wall_clock;
2796 break;
2797 case MSR_KVM_SYSTEM_TIME:
2798 case MSR_KVM_SYSTEM_TIME_NEW:
2799 msr_info->data = vcpu->arch.time;
2800 break;
2801 case MSR_KVM_ASYNC_PF_EN:
2802 msr_info->data = vcpu->arch.apf.msr_val;
2803 break;
2804 case MSR_KVM_STEAL_TIME:
2805 msr_info->data = vcpu->arch.st.msr_val;
2806 break;
2807 case MSR_KVM_PV_EOI_EN:
2808 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2809 break;
2810 case MSR_IA32_P5_MC_ADDR:
2811 case MSR_IA32_P5_MC_TYPE:
2812 case MSR_IA32_MCG_CAP:
2813 case MSR_IA32_MCG_CTL:
2814 case MSR_IA32_MCG_STATUS:
2815 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2816 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2817 msr_info->host_initiated);
2818 case MSR_K7_CLK_CTL:
2820 * Provide expected ramp-up count for K7. All other
2821 * are set to zero, indicating minimum divisors for
2822 * every field.
2824 * This prevents guest kernels on AMD host with CPU
2825 * type 6, model 8 and higher from exploding due to
2826 * the rdmsr failing.
2828 msr_info->data = 0x20000000;
2829 break;
2830 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2831 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2832 case HV_X64_MSR_CRASH_CTL:
2833 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2834 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2835 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2836 case HV_X64_MSR_TSC_EMULATION_STATUS:
2837 return kvm_hv_get_msr_common(vcpu,
2838 msr_info->index, &msr_info->data,
2839 msr_info->host_initiated);
2840 break;
2841 case MSR_IA32_BBL_CR_CTL3:
2842 /* This legacy MSR exists but isn't fully documented in current
2843 * silicon. It is however accessed by winxp in very narrow
2844 * scenarios where it sets bit #19, itself documented as
2845 * a "reserved" bit. Best effort attempt to source coherent
2846 * read data here should the balance of the register be
2847 * interpreted by the guest:
2849 * L2 cache control register 3: 64GB range, 256KB size,
2850 * enabled, latency 0x1, configured
2852 msr_info->data = 0xbe702111;
2853 break;
2854 case MSR_AMD64_OSVW_ID_LENGTH:
2855 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2856 return 1;
2857 msr_info->data = vcpu->arch.osvw.length;
2858 break;
2859 case MSR_AMD64_OSVW_STATUS:
2860 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2861 return 1;
2862 msr_info->data = vcpu->arch.osvw.status;
2863 break;
2864 case MSR_PLATFORM_INFO:
2865 if (!msr_info->host_initiated &&
2866 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2867 return 1;
2868 msr_info->data = vcpu->arch.msr_platform_info;
2869 break;
2870 case MSR_MISC_FEATURES_ENABLES:
2871 msr_info->data = vcpu->arch.msr_misc_features_enables;
2872 break;
2873 default:
2874 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2875 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2876 if (!ignore_msrs) {
2877 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2878 msr_info->index);
2879 return 1;
2880 } else {
2881 if (report_ignored_msrs)
2882 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2883 msr_info->index);
2884 msr_info->data = 0;
2886 break;
2888 return 0;
2890 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2893 * Read or write a bunch of msrs. All parameters are kernel addresses.
2895 * @return number of msrs set successfully.
2897 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2898 struct kvm_msr_entry *entries,
2899 int (*do_msr)(struct kvm_vcpu *vcpu,
2900 unsigned index, u64 *data))
2902 int i;
2904 for (i = 0; i < msrs->nmsrs; ++i)
2905 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2906 break;
2908 return i;
2912 * Read or write a bunch of msrs. Parameters are user addresses.
2914 * @return number of msrs set successfully.
2916 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2917 int (*do_msr)(struct kvm_vcpu *vcpu,
2918 unsigned index, u64 *data),
2919 int writeback)
2921 struct kvm_msrs msrs;
2922 struct kvm_msr_entry *entries;
2923 int r, n;
2924 unsigned size;
2926 r = -EFAULT;
2927 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
2928 goto out;
2930 r = -E2BIG;
2931 if (msrs.nmsrs >= MAX_IO_MSRS)
2932 goto out;
2934 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2935 entries = memdup_user(user_msrs->entries, size);
2936 if (IS_ERR(entries)) {
2937 r = PTR_ERR(entries);
2938 goto out;
2941 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2942 if (r < 0)
2943 goto out_free;
2945 r = -EFAULT;
2946 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2947 goto out_free;
2949 r = n;
2951 out_free:
2952 kfree(entries);
2953 out:
2954 return r;
2957 static inline bool kvm_can_mwait_in_guest(void)
2959 return boot_cpu_has(X86_FEATURE_MWAIT) &&
2960 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2961 boot_cpu_has(X86_FEATURE_ARAT);
2964 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2966 int r = 0;
2968 switch (ext) {
2969 case KVM_CAP_IRQCHIP:
2970 case KVM_CAP_HLT:
2971 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2972 case KVM_CAP_SET_TSS_ADDR:
2973 case KVM_CAP_EXT_CPUID:
2974 case KVM_CAP_EXT_EMUL_CPUID:
2975 case KVM_CAP_CLOCKSOURCE:
2976 case KVM_CAP_PIT:
2977 case KVM_CAP_NOP_IO_DELAY:
2978 case KVM_CAP_MP_STATE:
2979 case KVM_CAP_SYNC_MMU:
2980 case KVM_CAP_USER_NMI:
2981 case KVM_CAP_REINJECT_CONTROL:
2982 case KVM_CAP_IRQ_INJECT_STATUS:
2983 case KVM_CAP_IOEVENTFD:
2984 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2985 case KVM_CAP_PIT2:
2986 case KVM_CAP_PIT_STATE2:
2987 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2988 case KVM_CAP_XEN_HVM:
2989 case KVM_CAP_VCPU_EVENTS:
2990 case KVM_CAP_HYPERV:
2991 case KVM_CAP_HYPERV_VAPIC:
2992 case KVM_CAP_HYPERV_SPIN:
2993 case KVM_CAP_HYPERV_SYNIC:
2994 case KVM_CAP_HYPERV_SYNIC2:
2995 case KVM_CAP_HYPERV_VP_INDEX:
2996 case KVM_CAP_HYPERV_EVENTFD:
2997 case KVM_CAP_HYPERV_TLBFLUSH:
2998 case KVM_CAP_HYPERV_SEND_IPI:
2999 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3000 case KVM_CAP_PCI_SEGMENT:
3001 case KVM_CAP_DEBUGREGS:
3002 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3003 case KVM_CAP_XSAVE:
3004 case KVM_CAP_ASYNC_PF:
3005 case KVM_CAP_GET_TSC_KHZ:
3006 case KVM_CAP_KVMCLOCK_CTRL:
3007 case KVM_CAP_READONLY_MEM:
3008 case KVM_CAP_HYPERV_TIME:
3009 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3010 case KVM_CAP_TSC_DEADLINE_TIMER:
3011 case KVM_CAP_ENABLE_CAP_VM:
3012 case KVM_CAP_DISABLE_QUIRKS:
3013 case KVM_CAP_SET_BOOT_CPU_ID:
3014 case KVM_CAP_SPLIT_IRQCHIP:
3015 case KVM_CAP_IMMEDIATE_EXIT:
3016 case KVM_CAP_GET_MSR_FEATURES:
3017 case KVM_CAP_MSR_PLATFORM_INFO:
3018 case KVM_CAP_EXCEPTION_PAYLOAD:
3019 r = 1;
3020 break;
3021 case KVM_CAP_SYNC_REGS:
3022 r = KVM_SYNC_X86_VALID_FIELDS;
3023 break;
3024 case KVM_CAP_ADJUST_CLOCK:
3025 r = KVM_CLOCK_TSC_STABLE;
3026 break;
3027 case KVM_CAP_X86_DISABLE_EXITS:
3028 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3029 if(kvm_can_mwait_in_guest())
3030 r |= KVM_X86_DISABLE_EXITS_MWAIT;
3031 break;
3032 case KVM_CAP_X86_SMM:
3033 /* SMBASE is usually relocated above 1M on modern chipsets,
3034 * and SMM handlers might indeed rely on 4G segment limits,
3035 * so do not report SMM to be available if real mode is
3036 * emulated via vm86 mode. Still, do not go to great lengths
3037 * to avoid userspace's usage of the feature, because it is a
3038 * fringe case that is not enabled except via specific settings
3039 * of the module parameters.
3041 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3042 break;
3043 case KVM_CAP_VAPIC:
3044 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3045 break;
3046 case KVM_CAP_NR_VCPUS:
3047 r = KVM_SOFT_MAX_VCPUS;
3048 break;
3049 case KVM_CAP_MAX_VCPUS:
3050 r = KVM_MAX_VCPUS;
3051 break;
3052 case KVM_CAP_NR_MEMSLOTS:
3053 r = KVM_USER_MEM_SLOTS;
3054 break;
3055 case KVM_CAP_PV_MMU: /* obsolete */
3056 r = 0;
3057 break;
3058 case KVM_CAP_MCE:
3059 r = KVM_MAX_MCE_BANKS;
3060 break;
3061 case KVM_CAP_XCRS:
3062 r = boot_cpu_has(X86_FEATURE_XSAVE);
3063 break;
3064 case KVM_CAP_TSC_CONTROL:
3065 r = kvm_has_tsc_control;
3066 break;
3067 case KVM_CAP_X2APIC_API:
3068 r = KVM_X2APIC_API_VALID_FLAGS;
3069 break;
3070 case KVM_CAP_NESTED_STATE:
3071 r = kvm_x86_ops->get_nested_state ?
3072 kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
3073 break;
3074 default:
3075 break;
3077 return r;
3081 long kvm_arch_dev_ioctl(struct file *filp,
3082 unsigned int ioctl, unsigned long arg)
3084 void __user *argp = (void __user *)arg;
3085 long r;
3087 switch (ioctl) {
3088 case KVM_GET_MSR_INDEX_LIST: {
3089 struct kvm_msr_list __user *user_msr_list = argp;
3090 struct kvm_msr_list msr_list;
3091 unsigned n;
3093 r = -EFAULT;
3094 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3095 goto out;
3096 n = msr_list.nmsrs;
3097 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3098 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3099 goto out;
3100 r = -E2BIG;
3101 if (n < msr_list.nmsrs)
3102 goto out;
3103 r = -EFAULT;
3104 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3105 num_msrs_to_save * sizeof(u32)))
3106 goto out;
3107 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3108 &emulated_msrs,
3109 num_emulated_msrs * sizeof(u32)))
3110 goto out;
3111 r = 0;
3112 break;
3114 case KVM_GET_SUPPORTED_CPUID:
3115 case KVM_GET_EMULATED_CPUID: {
3116 struct kvm_cpuid2 __user *cpuid_arg = argp;
3117 struct kvm_cpuid2 cpuid;
3119 r = -EFAULT;
3120 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3121 goto out;
3123 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3124 ioctl);
3125 if (r)
3126 goto out;
3128 r = -EFAULT;
3129 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3130 goto out;
3131 r = 0;
3132 break;
3134 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3135 r = -EFAULT;
3136 if (copy_to_user(argp, &kvm_mce_cap_supported,
3137 sizeof(kvm_mce_cap_supported)))
3138 goto out;
3139 r = 0;
3140 break;
3141 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3142 struct kvm_msr_list __user *user_msr_list = argp;
3143 struct kvm_msr_list msr_list;
3144 unsigned int n;
3146 r = -EFAULT;
3147 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3148 goto out;
3149 n = msr_list.nmsrs;
3150 msr_list.nmsrs = num_msr_based_features;
3151 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3152 goto out;
3153 r = -E2BIG;
3154 if (n < msr_list.nmsrs)
3155 goto out;
3156 r = -EFAULT;
3157 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3158 num_msr_based_features * sizeof(u32)))
3159 goto out;
3160 r = 0;
3161 break;
3163 case KVM_GET_MSRS:
3164 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3165 break;
3167 default:
3168 r = -EINVAL;
3170 out:
3171 return r;
3174 static void wbinvd_ipi(void *garbage)
3176 wbinvd();
3179 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3181 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3184 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3186 /* Address WBINVD may be executed by guest */
3187 if (need_emulate_wbinvd(vcpu)) {
3188 if (kvm_x86_ops->has_wbinvd_exit())
3189 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3190 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3191 smp_call_function_single(vcpu->cpu,
3192 wbinvd_ipi, NULL, 1);
3195 kvm_x86_ops->vcpu_load(vcpu, cpu);
3197 /* Apply any externally detected TSC adjustments (due to suspend) */
3198 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3199 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3200 vcpu->arch.tsc_offset_adjustment = 0;
3201 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3204 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3205 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3206 rdtsc() - vcpu->arch.last_host_tsc;
3207 if (tsc_delta < 0)
3208 mark_tsc_unstable("KVM discovered backwards TSC");
3210 if (kvm_check_tsc_unstable()) {
3211 u64 offset = kvm_compute_tsc_offset(vcpu,
3212 vcpu->arch.last_guest_tsc);
3213 kvm_vcpu_write_tsc_offset(vcpu, offset);
3214 vcpu->arch.tsc_catchup = 1;
3217 if (kvm_lapic_hv_timer_in_use(vcpu))
3218 kvm_lapic_restart_hv_timer(vcpu);
3221 * On a host with synchronized TSC, there is no need to update
3222 * kvmclock on vcpu->cpu migration
3224 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3225 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3226 if (vcpu->cpu != cpu)
3227 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3228 vcpu->cpu = cpu;
3231 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3234 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3236 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3237 return;
3239 vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3241 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3242 &vcpu->arch.st.steal.preempted,
3243 offsetof(struct kvm_steal_time, preempted),
3244 sizeof(vcpu->arch.st.steal.preempted));
3247 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3249 int idx;
3251 if (vcpu->preempted)
3252 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3255 * Disable page faults because we're in atomic context here.
3256 * kvm_write_guest_offset_cached() would call might_fault()
3257 * that relies on pagefault_disable() to tell if there's a
3258 * bug. NOTE: the write to guest memory may not go through if
3259 * during postcopy live migration or if there's heavy guest
3260 * paging.
3262 pagefault_disable();
3264 * kvm_memslots() will be called by
3265 * kvm_write_guest_offset_cached() so take the srcu lock.
3267 idx = srcu_read_lock(&vcpu->kvm->srcu);
3268 kvm_steal_time_set_preempted(vcpu);
3269 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3270 pagefault_enable();
3271 kvm_x86_ops->vcpu_put(vcpu);
3272 vcpu->arch.last_host_tsc = rdtsc();
3274 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3275 * on every vmexit, but if not, we might have a stale dr6 from the
3276 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3278 set_debugreg(0, 6);
3281 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3282 struct kvm_lapic_state *s)
3284 if (vcpu->arch.apicv_active)
3285 kvm_x86_ops->sync_pir_to_irr(vcpu);
3287 return kvm_apic_get_state(vcpu, s);
3290 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3291 struct kvm_lapic_state *s)
3293 int r;
3295 r = kvm_apic_set_state(vcpu, s);
3296 if (r)
3297 return r;
3298 update_cr8_intercept(vcpu);
3300 return 0;
3303 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3305 return (!lapic_in_kernel(vcpu) ||
3306 kvm_apic_accept_pic_intr(vcpu));
3310 * if userspace requested an interrupt window, check that the
3311 * interrupt window is open.
3313 * No need to exit to userspace if we already have an interrupt queued.
3315 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3317 return kvm_arch_interrupt_allowed(vcpu) &&
3318 !kvm_cpu_has_interrupt(vcpu) &&
3319 !kvm_event_needs_reinjection(vcpu) &&
3320 kvm_cpu_accept_dm_intr(vcpu);
3323 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3324 struct kvm_interrupt *irq)
3326 if (irq->irq >= KVM_NR_INTERRUPTS)
3327 return -EINVAL;
3329 if (!irqchip_in_kernel(vcpu->kvm)) {
3330 kvm_queue_interrupt(vcpu, irq->irq, false);
3331 kvm_make_request(KVM_REQ_EVENT, vcpu);
3332 return 0;
3336 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3337 * fail for in-kernel 8259.
3339 if (pic_in_kernel(vcpu->kvm))
3340 return -ENXIO;
3342 if (vcpu->arch.pending_external_vector != -1)
3343 return -EEXIST;
3345 vcpu->arch.pending_external_vector = irq->irq;
3346 kvm_make_request(KVM_REQ_EVENT, vcpu);
3347 return 0;
3350 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3352 kvm_inject_nmi(vcpu);
3354 return 0;
3357 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3359 kvm_make_request(KVM_REQ_SMI, vcpu);
3361 return 0;
3364 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3365 struct kvm_tpr_access_ctl *tac)
3367 if (tac->flags)
3368 return -EINVAL;
3369 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3370 return 0;
3373 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3374 u64 mcg_cap)
3376 int r;
3377 unsigned bank_num = mcg_cap & 0xff, bank;
3379 r = -EINVAL;
3380 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3381 goto out;
3382 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3383 goto out;
3384 r = 0;
3385 vcpu->arch.mcg_cap = mcg_cap;
3386 /* Init IA32_MCG_CTL to all 1s */
3387 if (mcg_cap & MCG_CTL_P)
3388 vcpu->arch.mcg_ctl = ~(u64)0;
3389 /* Init IA32_MCi_CTL to all 1s */
3390 for (bank = 0; bank < bank_num; bank++)
3391 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3393 if (kvm_x86_ops->setup_mce)
3394 kvm_x86_ops->setup_mce(vcpu);
3395 out:
3396 return r;
3399 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3400 struct kvm_x86_mce *mce)
3402 u64 mcg_cap = vcpu->arch.mcg_cap;
3403 unsigned bank_num = mcg_cap & 0xff;
3404 u64 *banks = vcpu->arch.mce_banks;
3406 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3407 return -EINVAL;
3409 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3410 * reporting is disabled
3412 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3413 vcpu->arch.mcg_ctl != ~(u64)0)
3414 return 0;
3415 banks += 4 * mce->bank;
3417 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3418 * reporting is disabled for the bank
3420 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3421 return 0;
3422 if (mce->status & MCI_STATUS_UC) {
3423 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3424 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3425 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3426 return 0;
3428 if (banks[1] & MCI_STATUS_VAL)
3429 mce->status |= MCI_STATUS_OVER;
3430 banks[2] = mce->addr;
3431 banks[3] = mce->misc;
3432 vcpu->arch.mcg_status = mce->mcg_status;
3433 banks[1] = mce->status;
3434 kvm_queue_exception(vcpu, MC_VECTOR);
3435 } else if (!(banks[1] & MCI_STATUS_VAL)
3436 || !(banks[1] & MCI_STATUS_UC)) {
3437 if (banks[1] & MCI_STATUS_VAL)
3438 mce->status |= MCI_STATUS_OVER;
3439 banks[2] = mce->addr;
3440 banks[3] = mce->misc;
3441 banks[1] = mce->status;
3442 } else
3443 banks[1] |= MCI_STATUS_OVER;
3444 return 0;
3447 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3448 struct kvm_vcpu_events *events)
3450 process_nmi(vcpu);
3453 * The API doesn't provide the instruction length for software
3454 * exceptions, so don't report them. As long as the guest RIP
3455 * isn't advanced, we should expect to encounter the exception
3456 * again.
3458 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3459 events->exception.injected = 0;
3460 events->exception.pending = 0;
3461 } else {
3462 events->exception.injected = vcpu->arch.exception.injected;
3463 events->exception.pending = vcpu->arch.exception.pending;
3465 * For ABI compatibility, deliberately conflate
3466 * pending and injected exceptions when
3467 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3469 if (!vcpu->kvm->arch.exception_payload_enabled)
3470 events->exception.injected |=
3471 vcpu->arch.exception.pending;
3473 events->exception.nr = vcpu->arch.exception.nr;
3474 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3475 events->exception.error_code = vcpu->arch.exception.error_code;
3476 events->exception_has_payload = vcpu->arch.exception.has_payload;
3477 events->exception_payload = vcpu->arch.exception.payload;
3479 events->interrupt.injected =
3480 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3481 events->interrupt.nr = vcpu->arch.interrupt.nr;
3482 events->interrupt.soft = 0;
3483 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3485 events->nmi.injected = vcpu->arch.nmi_injected;
3486 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3487 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3488 events->nmi.pad = 0;
3490 events->sipi_vector = 0; /* never valid when reporting to user space */
3492 events->smi.smm = is_smm(vcpu);
3493 events->smi.pending = vcpu->arch.smi_pending;
3494 events->smi.smm_inside_nmi =
3495 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3496 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3498 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3499 | KVM_VCPUEVENT_VALID_SHADOW
3500 | KVM_VCPUEVENT_VALID_SMM);
3501 if (vcpu->kvm->arch.exception_payload_enabled)
3502 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3504 memset(&events->reserved, 0, sizeof(events->reserved));
3507 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3509 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3510 struct kvm_vcpu_events *events)
3512 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3513 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3514 | KVM_VCPUEVENT_VALID_SHADOW
3515 | KVM_VCPUEVENT_VALID_SMM
3516 | KVM_VCPUEVENT_VALID_PAYLOAD))
3517 return -EINVAL;
3519 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3520 if (!vcpu->kvm->arch.exception_payload_enabled)
3521 return -EINVAL;
3522 if (events->exception.pending)
3523 events->exception.injected = 0;
3524 else
3525 events->exception_has_payload = 0;
3526 } else {
3527 events->exception.pending = 0;
3528 events->exception_has_payload = 0;
3531 if ((events->exception.injected || events->exception.pending) &&
3532 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3533 return -EINVAL;
3535 /* INITs are latched while in SMM */
3536 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3537 (events->smi.smm || events->smi.pending) &&
3538 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3539 return -EINVAL;
3541 process_nmi(vcpu);
3542 vcpu->arch.exception.injected = events->exception.injected;
3543 vcpu->arch.exception.pending = events->exception.pending;
3544 vcpu->arch.exception.nr = events->exception.nr;
3545 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3546 vcpu->arch.exception.error_code = events->exception.error_code;
3547 vcpu->arch.exception.has_payload = events->exception_has_payload;
3548 vcpu->arch.exception.payload = events->exception_payload;
3550 vcpu->arch.interrupt.injected = events->interrupt.injected;
3551 vcpu->arch.interrupt.nr = events->interrupt.nr;
3552 vcpu->arch.interrupt.soft = events->interrupt.soft;
3553 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3554 kvm_x86_ops->set_interrupt_shadow(vcpu,
3555 events->interrupt.shadow);
3557 vcpu->arch.nmi_injected = events->nmi.injected;
3558 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3559 vcpu->arch.nmi_pending = events->nmi.pending;
3560 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3562 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3563 lapic_in_kernel(vcpu))
3564 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3566 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3567 u32 hflags = vcpu->arch.hflags;
3568 if (events->smi.smm)
3569 hflags |= HF_SMM_MASK;
3570 else
3571 hflags &= ~HF_SMM_MASK;
3572 kvm_set_hflags(vcpu, hflags);
3574 vcpu->arch.smi_pending = events->smi.pending;
3576 if (events->smi.smm) {
3577 if (events->smi.smm_inside_nmi)
3578 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3579 else
3580 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3581 if (lapic_in_kernel(vcpu)) {
3582 if (events->smi.latched_init)
3583 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3584 else
3585 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3590 kvm_make_request(KVM_REQ_EVENT, vcpu);
3592 return 0;
3595 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3596 struct kvm_debugregs *dbgregs)
3598 unsigned long val;
3600 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3601 kvm_get_dr(vcpu, 6, &val);
3602 dbgregs->dr6 = val;
3603 dbgregs->dr7 = vcpu->arch.dr7;
3604 dbgregs->flags = 0;
3605 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3608 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3609 struct kvm_debugregs *dbgregs)
3611 if (dbgregs->flags)
3612 return -EINVAL;
3614 if (dbgregs->dr6 & ~0xffffffffull)
3615 return -EINVAL;
3616 if (dbgregs->dr7 & ~0xffffffffull)
3617 return -EINVAL;
3619 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3620 kvm_update_dr0123(vcpu);
3621 vcpu->arch.dr6 = dbgregs->dr6;
3622 kvm_update_dr6(vcpu);
3623 vcpu->arch.dr7 = dbgregs->dr7;
3624 kvm_update_dr7(vcpu);
3626 return 0;
3629 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3631 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3633 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3634 u64 xstate_bv = xsave->header.xfeatures;
3635 u64 valid;
3638 * Copy legacy XSAVE area, to avoid complications with CPUID
3639 * leaves 0 and 1 in the loop below.
3641 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3643 /* Set XSTATE_BV */
3644 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3645 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3648 * Copy each region from the possibly compacted offset to the
3649 * non-compacted offset.
3651 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3652 while (valid) {
3653 u64 feature = valid & -valid;
3654 int index = fls64(feature) - 1;
3655 void *src = get_xsave_addr(xsave, feature);
3657 if (src) {
3658 u32 size, offset, ecx, edx;
3659 cpuid_count(XSTATE_CPUID, index,
3660 &size, &offset, &ecx, &edx);
3661 if (feature == XFEATURE_MASK_PKRU)
3662 memcpy(dest + offset, &vcpu->arch.pkru,
3663 sizeof(vcpu->arch.pkru));
3664 else
3665 memcpy(dest + offset, src, size);
3669 valid -= feature;
3673 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3675 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3676 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3677 u64 valid;
3680 * Copy legacy XSAVE area, to avoid complications with CPUID
3681 * leaves 0 and 1 in the loop below.
3683 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3685 /* Set XSTATE_BV and possibly XCOMP_BV. */
3686 xsave->header.xfeatures = xstate_bv;
3687 if (boot_cpu_has(X86_FEATURE_XSAVES))
3688 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3691 * Copy each region from the non-compacted offset to the
3692 * possibly compacted offset.
3694 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3695 while (valid) {
3696 u64 feature = valid & -valid;
3697 int index = fls64(feature) - 1;
3698 void *dest = get_xsave_addr(xsave, feature);
3700 if (dest) {
3701 u32 size, offset, ecx, edx;
3702 cpuid_count(XSTATE_CPUID, index,
3703 &size, &offset, &ecx, &edx);
3704 if (feature == XFEATURE_MASK_PKRU)
3705 memcpy(&vcpu->arch.pkru, src + offset,
3706 sizeof(vcpu->arch.pkru));
3707 else
3708 memcpy(dest, src + offset, size);
3711 valid -= feature;
3715 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3716 struct kvm_xsave *guest_xsave)
3718 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3719 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3720 fill_xsave((u8 *) guest_xsave->region, vcpu);
3721 } else {
3722 memcpy(guest_xsave->region,
3723 &vcpu->arch.guest_fpu.state.fxsave,
3724 sizeof(struct fxregs_state));
3725 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3726 XFEATURE_MASK_FPSSE;
3730 #define XSAVE_MXCSR_OFFSET 24
3732 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3733 struct kvm_xsave *guest_xsave)
3735 u64 xstate_bv =
3736 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3737 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3739 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3741 * Here we allow setting states that are not present in
3742 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3743 * with old userspace.
3745 if (xstate_bv & ~kvm_supported_xcr0() ||
3746 mxcsr & ~mxcsr_feature_mask)
3747 return -EINVAL;
3748 load_xsave(vcpu, (u8 *)guest_xsave->region);
3749 } else {
3750 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3751 mxcsr & ~mxcsr_feature_mask)
3752 return -EINVAL;
3753 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3754 guest_xsave->region, sizeof(struct fxregs_state));
3756 return 0;
3759 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3760 struct kvm_xcrs *guest_xcrs)
3762 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3763 guest_xcrs->nr_xcrs = 0;
3764 return;
3767 guest_xcrs->nr_xcrs = 1;
3768 guest_xcrs->flags = 0;
3769 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3770 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3773 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3774 struct kvm_xcrs *guest_xcrs)
3776 int i, r = 0;
3778 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3779 return -EINVAL;
3781 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3782 return -EINVAL;
3784 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3785 /* Only support XCR0 currently */
3786 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3787 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3788 guest_xcrs->xcrs[i].value);
3789 break;
3791 if (r)
3792 r = -EINVAL;
3793 return r;
3797 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3798 * stopped by the hypervisor. This function will be called from the host only.
3799 * EINVAL is returned when the host attempts to set the flag for a guest that
3800 * does not support pv clocks.
3802 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3804 if (!vcpu->arch.pv_time_enabled)
3805 return -EINVAL;
3806 vcpu->arch.pvclock_set_guest_stopped_request = true;
3807 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3808 return 0;
3811 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3812 struct kvm_enable_cap *cap)
3814 int r;
3815 uint16_t vmcs_version;
3816 void __user *user_ptr;
3818 if (cap->flags)
3819 return -EINVAL;
3821 switch (cap->cap) {
3822 case KVM_CAP_HYPERV_SYNIC2:
3823 if (cap->args[0])
3824 return -EINVAL;
3825 case KVM_CAP_HYPERV_SYNIC:
3826 if (!irqchip_in_kernel(vcpu->kvm))
3827 return -EINVAL;
3828 return kvm_hv_activate_synic(vcpu, cap->cap ==
3829 KVM_CAP_HYPERV_SYNIC2);
3830 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3831 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3832 if (!r) {
3833 user_ptr = (void __user *)(uintptr_t)cap->args[0];
3834 if (copy_to_user(user_ptr, &vmcs_version,
3835 sizeof(vmcs_version)))
3836 r = -EFAULT;
3838 return r;
3840 default:
3841 return -EINVAL;
3845 long kvm_arch_vcpu_ioctl(struct file *filp,
3846 unsigned int ioctl, unsigned long arg)
3848 struct kvm_vcpu *vcpu = filp->private_data;
3849 void __user *argp = (void __user *)arg;
3850 int r;
3851 union {
3852 struct kvm_lapic_state *lapic;
3853 struct kvm_xsave *xsave;
3854 struct kvm_xcrs *xcrs;
3855 void *buffer;
3856 } u;
3858 vcpu_load(vcpu);
3860 u.buffer = NULL;
3861 switch (ioctl) {
3862 case KVM_GET_LAPIC: {
3863 r = -EINVAL;
3864 if (!lapic_in_kernel(vcpu))
3865 goto out;
3866 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3868 r = -ENOMEM;
3869 if (!u.lapic)
3870 goto out;
3871 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3872 if (r)
3873 goto out;
3874 r = -EFAULT;
3875 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3876 goto out;
3877 r = 0;
3878 break;
3880 case KVM_SET_LAPIC: {
3881 r = -EINVAL;
3882 if (!lapic_in_kernel(vcpu))
3883 goto out;
3884 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3885 if (IS_ERR(u.lapic)) {
3886 r = PTR_ERR(u.lapic);
3887 goto out_nofree;
3890 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3891 break;
3893 case KVM_INTERRUPT: {
3894 struct kvm_interrupt irq;
3896 r = -EFAULT;
3897 if (copy_from_user(&irq, argp, sizeof(irq)))
3898 goto out;
3899 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3900 break;
3902 case KVM_NMI: {
3903 r = kvm_vcpu_ioctl_nmi(vcpu);
3904 break;
3906 case KVM_SMI: {
3907 r = kvm_vcpu_ioctl_smi(vcpu);
3908 break;
3910 case KVM_SET_CPUID: {
3911 struct kvm_cpuid __user *cpuid_arg = argp;
3912 struct kvm_cpuid cpuid;
3914 r = -EFAULT;
3915 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3916 goto out;
3917 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3918 break;
3920 case KVM_SET_CPUID2: {
3921 struct kvm_cpuid2 __user *cpuid_arg = argp;
3922 struct kvm_cpuid2 cpuid;
3924 r = -EFAULT;
3925 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3926 goto out;
3927 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3928 cpuid_arg->entries);
3929 break;
3931 case KVM_GET_CPUID2: {
3932 struct kvm_cpuid2 __user *cpuid_arg = argp;
3933 struct kvm_cpuid2 cpuid;
3935 r = -EFAULT;
3936 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3937 goto out;
3938 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3939 cpuid_arg->entries);
3940 if (r)
3941 goto out;
3942 r = -EFAULT;
3943 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3944 goto out;
3945 r = 0;
3946 break;
3948 case KVM_GET_MSRS: {
3949 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3950 r = msr_io(vcpu, argp, do_get_msr, 1);
3951 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3952 break;
3954 case KVM_SET_MSRS: {
3955 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3956 r = msr_io(vcpu, argp, do_set_msr, 0);
3957 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3958 break;
3960 case KVM_TPR_ACCESS_REPORTING: {
3961 struct kvm_tpr_access_ctl tac;
3963 r = -EFAULT;
3964 if (copy_from_user(&tac, argp, sizeof(tac)))
3965 goto out;
3966 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3967 if (r)
3968 goto out;
3969 r = -EFAULT;
3970 if (copy_to_user(argp, &tac, sizeof(tac)))
3971 goto out;
3972 r = 0;
3973 break;
3975 case KVM_SET_VAPIC_ADDR: {
3976 struct kvm_vapic_addr va;
3977 int idx;
3979 r = -EINVAL;
3980 if (!lapic_in_kernel(vcpu))
3981 goto out;
3982 r = -EFAULT;
3983 if (copy_from_user(&va, argp, sizeof(va)))
3984 goto out;
3985 idx = srcu_read_lock(&vcpu->kvm->srcu);
3986 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3987 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3988 break;
3990 case KVM_X86_SETUP_MCE: {
3991 u64 mcg_cap;
3993 r = -EFAULT;
3994 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
3995 goto out;
3996 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3997 break;
3999 case KVM_X86_SET_MCE: {
4000 struct kvm_x86_mce mce;
4002 r = -EFAULT;
4003 if (copy_from_user(&mce, argp, sizeof(mce)))
4004 goto out;
4005 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4006 break;
4008 case KVM_GET_VCPU_EVENTS: {
4009 struct kvm_vcpu_events events;
4011 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4013 r = -EFAULT;
4014 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4015 break;
4016 r = 0;
4017 break;
4019 case KVM_SET_VCPU_EVENTS: {
4020 struct kvm_vcpu_events events;
4022 r = -EFAULT;
4023 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4024 break;
4026 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4027 break;
4029 case KVM_GET_DEBUGREGS: {
4030 struct kvm_debugregs dbgregs;
4032 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4034 r = -EFAULT;
4035 if (copy_to_user(argp, &dbgregs,
4036 sizeof(struct kvm_debugregs)))
4037 break;
4038 r = 0;
4039 break;
4041 case KVM_SET_DEBUGREGS: {
4042 struct kvm_debugregs dbgregs;
4044 r = -EFAULT;
4045 if (copy_from_user(&dbgregs, argp,
4046 sizeof(struct kvm_debugregs)))
4047 break;
4049 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4050 break;
4052 case KVM_GET_XSAVE: {
4053 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
4054 r = -ENOMEM;
4055 if (!u.xsave)
4056 break;
4058 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4060 r = -EFAULT;
4061 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4062 break;
4063 r = 0;
4064 break;
4066 case KVM_SET_XSAVE: {
4067 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4068 if (IS_ERR(u.xsave)) {
4069 r = PTR_ERR(u.xsave);
4070 goto out_nofree;
4073 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4074 break;
4076 case KVM_GET_XCRS: {
4077 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
4078 r = -ENOMEM;
4079 if (!u.xcrs)
4080 break;
4082 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4084 r = -EFAULT;
4085 if (copy_to_user(argp, u.xcrs,
4086 sizeof(struct kvm_xcrs)))
4087 break;
4088 r = 0;
4089 break;
4091 case KVM_SET_XCRS: {
4092 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4093 if (IS_ERR(u.xcrs)) {
4094 r = PTR_ERR(u.xcrs);
4095 goto out_nofree;
4098 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4099 break;
4101 case KVM_SET_TSC_KHZ: {
4102 u32 user_tsc_khz;
4104 r = -EINVAL;
4105 user_tsc_khz = (u32)arg;
4107 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4108 goto out;
4110 if (user_tsc_khz == 0)
4111 user_tsc_khz = tsc_khz;
4113 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4114 r = 0;
4116 goto out;
4118 case KVM_GET_TSC_KHZ: {
4119 r = vcpu->arch.virtual_tsc_khz;
4120 goto out;
4122 case KVM_KVMCLOCK_CTRL: {
4123 r = kvm_set_guest_paused(vcpu);
4124 goto out;
4126 case KVM_ENABLE_CAP: {
4127 struct kvm_enable_cap cap;
4129 r = -EFAULT;
4130 if (copy_from_user(&cap, argp, sizeof(cap)))
4131 goto out;
4132 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4133 break;
4135 case KVM_GET_NESTED_STATE: {
4136 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4137 u32 user_data_size;
4139 r = -EINVAL;
4140 if (!kvm_x86_ops->get_nested_state)
4141 break;
4143 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4144 r = -EFAULT;
4145 if (get_user(user_data_size, &user_kvm_nested_state->size))
4146 break;
4148 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4149 user_data_size);
4150 if (r < 0)
4151 break;
4153 if (r > user_data_size) {
4154 if (put_user(r, &user_kvm_nested_state->size))
4155 r = -EFAULT;
4156 else
4157 r = -E2BIG;
4158 break;
4161 r = 0;
4162 break;
4164 case KVM_SET_NESTED_STATE: {
4165 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4166 struct kvm_nested_state kvm_state;
4168 r = -EINVAL;
4169 if (!kvm_x86_ops->set_nested_state)
4170 break;
4172 r = -EFAULT;
4173 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4174 break;
4176 r = -EINVAL;
4177 if (kvm_state.size < sizeof(kvm_state))
4178 break;
4180 if (kvm_state.flags &
4181 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4182 | KVM_STATE_NESTED_EVMCS))
4183 break;
4185 /* nested_run_pending implies guest_mode. */
4186 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4187 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4188 break;
4190 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4191 break;
4193 default:
4194 r = -EINVAL;
4196 out:
4197 kfree(u.buffer);
4198 out_nofree:
4199 vcpu_put(vcpu);
4200 return r;
4203 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4205 return VM_FAULT_SIGBUS;
4208 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4210 int ret;
4212 if (addr > (unsigned int)(-3 * PAGE_SIZE))
4213 return -EINVAL;
4214 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4215 return ret;
4218 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4219 u64 ident_addr)
4221 return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4224 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4225 u32 kvm_nr_mmu_pages)
4227 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4228 return -EINVAL;
4230 mutex_lock(&kvm->slots_lock);
4232 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4233 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4235 mutex_unlock(&kvm->slots_lock);
4236 return 0;
4239 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4241 return kvm->arch.n_max_mmu_pages;
4244 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4246 struct kvm_pic *pic = kvm->arch.vpic;
4247 int r;
4249 r = 0;
4250 switch (chip->chip_id) {
4251 case KVM_IRQCHIP_PIC_MASTER:
4252 memcpy(&chip->chip.pic, &pic->pics[0],
4253 sizeof(struct kvm_pic_state));
4254 break;
4255 case KVM_IRQCHIP_PIC_SLAVE:
4256 memcpy(&chip->chip.pic, &pic->pics[1],
4257 sizeof(struct kvm_pic_state));
4258 break;
4259 case KVM_IRQCHIP_IOAPIC:
4260 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4261 break;
4262 default:
4263 r = -EINVAL;
4264 break;
4266 return r;
4269 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4271 struct kvm_pic *pic = kvm->arch.vpic;
4272 int r;
4274 r = 0;
4275 switch (chip->chip_id) {
4276 case KVM_IRQCHIP_PIC_MASTER:
4277 spin_lock(&pic->lock);
4278 memcpy(&pic->pics[0], &chip->chip.pic,
4279 sizeof(struct kvm_pic_state));
4280 spin_unlock(&pic->lock);
4281 break;
4282 case KVM_IRQCHIP_PIC_SLAVE:
4283 spin_lock(&pic->lock);
4284 memcpy(&pic->pics[1], &chip->chip.pic,
4285 sizeof(struct kvm_pic_state));
4286 spin_unlock(&pic->lock);
4287 break;
4288 case KVM_IRQCHIP_IOAPIC:
4289 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4290 break;
4291 default:
4292 r = -EINVAL;
4293 break;
4295 kvm_pic_update_irq(pic);
4296 return r;
4299 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4301 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4303 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4305 mutex_lock(&kps->lock);
4306 memcpy(ps, &kps->channels, sizeof(*ps));
4307 mutex_unlock(&kps->lock);
4308 return 0;
4311 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4313 int i;
4314 struct kvm_pit *pit = kvm->arch.vpit;
4316 mutex_lock(&pit->pit_state.lock);
4317 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4318 for (i = 0; i < 3; i++)
4319 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4320 mutex_unlock(&pit->pit_state.lock);
4321 return 0;
4324 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4326 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4327 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4328 sizeof(ps->channels));
4329 ps->flags = kvm->arch.vpit->pit_state.flags;
4330 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4331 memset(&ps->reserved, 0, sizeof(ps->reserved));
4332 return 0;
4335 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4337 int start = 0;
4338 int i;
4339 u32 prev_legacy, cur_legacy;
4340 struct kvm_pit *pit = kvm->arch.vpit;
4342 mutex_lock(&pit->pit_state.lock);
4343 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4344 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4345 if (!prev_legacy && cur_legacy)
4346 start = 1;
4347 memcpy(&pit->pit_state.channels, &ps->channels,
4348 sizeof(pit->pit_state.channels));
4349 pit->pit_state.flags = ps->flags;
4350 for (i = 0; i < 3; i++)
4351 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4352 start && i == 0);
4353 mutex_unlock(&pit->pit_state.lock);
4354 return 0;
4357 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4358 struct kvm_reinject_control *control)
4360 struct kvm_pit *pit = kvm->arch.vpit;
4362 if (!pit)
4363 return -ENXIO;
4365 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4366 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4367 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4369 mutex_lock(&pit->pit_state.lock);
4370 kvm_pit_set_reinject(pit, control->pit_reinject);
4371 mutex_unlock(&pit->pit_state.lock);
4373 return 0;
4377 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4378 * @kvm: kvm instance
4379 * @log: slot id and address to which we copy the log
4381 * Steps 1-4 below provide general overview of dirty page logging. See
4382 * kvm_get_dirty_log_protect() function description for additional details.
4384 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4385 * always flush the TLB (step 4) even if previous step failed and the dirty
4386 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4387 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4388 * writes will be marked dirty for next log read.
4390 * 1. Take a snapshot of the bit and clear it if needed.
4391 * 2. Write protect the corresponding page.
4392 * 3. Copy the snapshot to the userspace.
4393 * 4. Flush TLB's if needed.
4395 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4397 bool is_dirty = false;
4398 int r;
4400 mutex_lock(&kvm->slots_lock);
4403 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4405 if (kvm_x86_ops->flush_log_dirty)
4406 kvm_x86_ops->flush_log_dirty(kvm);
4408 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4411 * All the TLBs can be flushed out of mmu lock, see the comments in
4412 * kvm_mmu_slot_remove_write_access().
4414 lockdep_assert_held(&kvm->slots_lock);
4415 if (is_dirty)
4416 kvm_flush_remote_tlbs(kvm);
4418 mutex_unlock(&kvm->slots_lock);
4419 return r;
4422 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4423 bool line_status)
4425 if (!irqchip_in_kernel(kvm))
4426 return -ENXIO;
4428 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4429 irq_event->irq, irq_event->level,
4430 line_status);
4431 return 0;
4434 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4435 struct kvm_enable_cap *cap)
4437 int r;
4439 if (cap->flags)
4440 return -EINVAL;
4442 switch (cap->cap) {
4443 case KVM_CAP_DISABLE_QUIRKS:
4444 kvm->arch.disabled_quirks = cap->args[0];
4445 r = 0;
4446 break;
4447 case KVM_CAP_SPLIT_IRQCHIP: {
4448 mutex_lock(&kvm->lock);
4449 r = -EINVAL;
4450 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4451 goto split_irqchip_unlock;
4452 r = -EEXIST;
4453 if (irqchip_in_kernel(kvm))
4454 goto split_irqchip_unlock;
4455 if (kvm->created_vcpus)
4456 goto split_irqchip_unlock;
4457 r = kvm_setup_empty_irq_routing(kvm);
4458 if (r)
4459 goto split_irqchip_unlock;
4460 /* Pairs with irqchip_in_kernel. */
4461 smp_wmb();
4462 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4463 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4464 r = 0;
4465 split_irqchip_unlock:
4466 mutex_unlock(&kvm->lock);
4467 break;
4469 case KVM_CAP_X2APIC_API:
4470 r = -EINVAL;
4471 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4472 break;
4474 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4475 kvm->arch.x2apic_format = true;
4476 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4477 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4479 r = 0;
4480 break;
4481 case KVM_CAP_X86_DISABLE_EXITS:
4482 r = -EINVAL;
4483 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4484 break;
4486 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4487 kvm_can_mwait_in_guest())
4488 kvm->arch.mwait_in_guest = true;
4489 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4490 kvm->arch.hlt_in_guest = true;
4491 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4492 kvm->arch.pause_in_guest = true;
4493 r = 0;
4494 break;
4495 case KVM_CAP_MSR_PLATFORM_INFO:
4496 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4497 r = 0;
4498 break;
4499 case KVM_CAP_EXCEPTION_PAYLOAD:
4500 kvm->arch.exception_payload_enabled = cap->args[0];
4501 r = 0;
4502 break;
4503 default:
4504 r = -EINVAL;
4505 break;
4507 return r;
4510 long kvm_arch_vm_ioctl(struct file *filp,
4511 unsigned int ioctl, unsigned long arg)
4513 struct kvm *kvm = filp->private_data;
4514 void __user *argp = (void __user *)arg;
4515 int r = -ENOTTY;
4517 * This union makes it completely explicit to gcc-3.x
4518 * that these two variables' stack usage should be
4519 * combined, not added together.
4521 union {
4522 struct kvm_pit_state ps;
4523 struct kvm_pit_state2 ps2;
4524 struct kvm_pit_config pit_config;
4525 } u;
4527 switch (ioctl) {
4528 case KVM_SET_TSS_ADDR:
4529 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4530 break;
4531 case KVM_SET_IDENTITY_MAP_ADDR: {
4532 u64 ident_addr;
4534 mutex_lock(&kvm->lock);
4535 r = -EINVAL;
4536 if (kvm->created_vcpus)
4537 goto set_identity_unlock;
4538 r = -EFAULT;
4539 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4540 goto set_identity_unlock;
4541 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4542 set_identity_unlock:
4543 mutex_unlock(&kvm->lock);
4544 break;
4546 case KVM_SET_NR_MMU_PAGES:
4547 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4548 break;
4549 case KVM_GET_NR_MMU_PAGES:
4550 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4551 break;
4552 case KVM_CREATE_IRQCHIP: {
4553 mutex_lock(&kvm->lock);
4555 r = -EEXIST;
4556 if (irqchip_in_kernel(kvm))
4557 goto create_irqchip_unlock;
4559 r = -EINVAL;
4560 if (kvm->created_vcpus)
4561 goto create_irqchip_unlock;
4563 r = kvm_pic_init(kvm);
4564 if (r)
4565 goto create_irqchip_unlock;
4567 r = kvm_ioapic_init(kvm);
4568 if (r) {
4569 kvm_pic_destroy(kvm);
4570 goto create_irqchip_unlock;
4573 r = kvm_setup_default_irq_routing(kvm);
4574 if (r) {
4575 kvm_ioapic_destroy(kvm);
4576 kvm_pic_destroy(kvm);
4577 goto create_irqchip_unlock;
4579 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4580 smp_wmb();
4581 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4582 create_irqchip_unlock:
4583 mutex_unlock(&kvm->lock);
4584 break;
4586 case KVM_CREATE_PIT:
4587 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4588 goto create_pit;
4589 case KVM_CREATE_PIT2:
4590 r = -EFAULT;
4591 if (copy_from_user(&u.pit_config, argp,
4592 sizeof(struct kvm_pit_config)))
4593 goto out;
4594 create_pit:
4595 mutex_lock(&kvm->lock);
4596 r = -EEXIST;
4597 if (kvm->arch.vpit)
4598 goto create_pit_unlock;
4599 r = -ENOMEM;
4600 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4601 if (kvm->arch.vpit)
4602 r = 0;
4603 create_pit_unlock:
4604 mutex_unlock(&kvm->lock);
4605 break;
4606 case KVM_GET_IRQCHIP: {
4607 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4608 struct kvm_irqchip *chip;
4610 chip = memdup_user(argp, sizeof(*chip));
4611 if (IS_ERR(chip)) {
4612 r = PTR_ERR(chip);
4613 goto out;
4616 r = -ENXIO;
4617 if (!irqchip_kernel(kvm))
4618 goto get_irqchip_out;
4619 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4620 if (r)
4621 goto get_irqchip_out;
4622 r = -EFAULT;
4623 if (copy_to_user(argp, chip, sizeof(*chip)))
4624 goto get_irqchip_out;
4625 r = 0;
4626 get_irqchip_out:
4627 kfree(chip);
4628 break;
4630 case KVM_SET_IRQCHIP: {
4631 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4632 struct kvm_irqchip *chip;
4634 chip = memdup_user(argp, sizeof(*chip));
4635 if (IS_ERR(chip)) {
4636 r = PTR_ERR(chip);
4637 goto out;
4640 r = -ENXIO;
4641 if (!irqchip_kernel(kvm))
4642 goto set_irqchip_out;
4643 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4644 if (r)
4645 goto set_irqchip_out;
4646 r = 0;
4647 set_irqchip_out:
4648 kfree(chip);
4649 break;
4651 case KVM_GET_PIT: {
4652 r = -EFAULT;
4653 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4654 goto out;
4655 r = -ENXIO;
4656 if (!kvm->arch.vpit)
4657 goto out;
4658 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4659 if (r)
4660 goto out;
4661 r = -EFAULT;
4662 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4663 goto out;
4664 r = 0;
4665 break;
4667 case KVM_SET_PIT: {
4668 r = -EFAULT;
4669 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4670 goto out;
4671 r = -ENXIO;
4672 if (!kvm->arch.vpit)
4673 goto out;
4674 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4675 break;
4677 case KVM_GET_PIT2: {
4678 r = -ENXIO;
4679 if (!kvm->arch.vpit)
4680 goto out;
4681 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4682 if (r)
4683 goto out;
4684 r = -EFAULT;
4685 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4686 goto out;
4687 r = 0;
4688 break;
4690 case KVM_SET_PIT2: {
4691 r = -EFAULT;
4692 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4693 goto out;
4694 r = -ENXIO;
4695 if (!kvm->arch.vpit)
4696 goto out;
4697 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4698 break;
4700 case KVM_REINJECT_CONTROL: {
4701 struct kvm_reinject_control control;
4702 r = -EFAULT;
4703 if (copy_from_user(&control, argp, sizeof(control)))
4704 goto out;
4705 r = kvm_vm_ioctl_reinject(kvm, &control);
4706 break;
4708 case KVM_SET_BOOT_CPU_ID:
4709 r = 0;
4710 mutex_lock(&kvm->lock);
4711 if (kvm->created_vcpus)
4712 r = -EBUSY;
4713 else
4714 kvm->arch.bsp_vcpu_id = arg;
4715 mutex_unlock(&kvm->lock);
4716 break;
4717 case KVM_XEN_HVM_CONFIG: {
4718 struct kvm_xen_hvm_config xhc;
4719 r = -EFAULT;
4720 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4721 goto out;
4722 r = -EINVAL;
4723 if (xhc.flags)
4724 goto out;
4725 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4726 r = 0;
4727 break;
4729 case KVM_SET_CLOCK: {
4730 struct kvm_clock_data user_ns;
4731 u64 now_ns;
4733 r = -EFAULT;
4734 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4735 goto out;
4737 r = -EINVAL;
4738 if (user_ns.flags)
4739 goto out;
4741 r = 0;
4743 * TODO: userspace has to take care of races with VCPU_RUN, so
4744 * kvm_gen_update_masterclock() can be cut down to locked
4745 * pvclock_update_vm_gtod_copy().
4747 kvm_gen_update_masterclock(kvm);
4748 now_ns = get_kvmclock_ns(kvm);
4749 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4750 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4751 break;
4753 case KVM_GET_CLOCK: {
4754 struct kvm_clock_data user_ns;
4755 u64 now_ns;
4757 now_ns = get_kvmclock_ns(kvm);
4758 user_ns.clock = now_ns;
4759 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4760 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4762 r = -EFAULT;
4763 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4764 goto out;
4765 r = 0;
4766 break;
4768 case KVM_ENABLE_CAP: {
4769 struct kvm_enable_cap cap;
4771 r = -EFAULT;
4772 if (copy_from_user(&cap, argp, sizeof(cap)))
4773 goto out;
4774 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4775 break;
4777 case KVM_MEMORY_ENCRYPT_OP: {
4778 r = -ENOTTY;
4779 if (kvm_x86_ops->mem_enc_op)
4780 r = kvm_x86_ops->mem_enc_op(kvm, argp);
4781 break;
4783 case KVM_MEMORY_ENCRYPT_REG_REGION: {
4784 struct kvm_enc_region region;
4786 r = -EFAULT;
4787 if (copy_from_user(&region, argp, sizeof(region)))
4788 goto out;
4790 r = -ENOTTY;
4791 if (kvm_x86_ops->mem_enc_reg_region)
4792 r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4793 break;
4795 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4796 struct kvm_enc_region region;
4798 r = -EFAULT;
4799 if (copy_from_user(&region, argp, sizeof(region)))
4800 goto out;
4802 r = -ENOTTY;
4803 if (kvm_x86_ops->mem_enc_unreg_region)
4804 r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4805 break;
4807 case KVM_HYPERV_EVENTFD: {
4808 struct kvm_hyperv_eventfd hvevfd;
4810 r = -EFAULT;
4811 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4812 goto out;
4813 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4814 break;
4816 default:
4817 r = -ENOTTY;
4819 out:
4820 return r;
4823 static void kvm_init_msr_list(void)
4825 u32 dummy[2];
4826 unsigned i, j;
4828 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4829 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4830 continue;
4833 * Even MSRs that are valid in the host may not be exposed
4834 * to the guests in some cases.
4836 switch (msrs_to_save[i]) {
4837 case MSR_IA32_BNDCFGS:
4838 if (!kvm_mpx_supported())
4839 continue;
4840 break;
4841 case MSR_TSC_AUX:
4842 if (!kvm_x86_ops->rdtscp_supported())
4843 continue;
4844 break;
4845 default:
4846 break;
4849 if (j < i)
4850 msrs_to_save[j] = msrs_to_save[i];
4851 j++;
4853 num_msrs_to_save = j;
4855 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4856 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4857 continue;
4859 if (j < i)
4860 emulated_msrs[j] = emulated_msrs[i];
4861 j++;
4863 num_emulated_msrs = j;
4865 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4866 struct kvm_msr_entry msr;
4868 msr.index = msr_based_features[i];
4869 if (kvm_get_msr_feature(&msr))
4870 continue;
4872 if (j < i)
4873 msr_based_features[j] = msr_based_features[i];
4874 j++;
4876 num_msr_based_features = j;
4879 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4880 const void *v)
4882 int handled = 0;
4883 int n;
4885 do {
4886 n = min(len, 8);
4887 if (!(lapic_in_kernel(vcpu) &&
4888 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4889 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4890 break;
4891 handled += n;
4892 addr += n;
4893 len -= n;
4894 v += n;
4895 } while (len);
4897 return handled;
4900 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4902 int handled = 0;
4903 int n;
4905 do {
4906 n = min(len, 8);
4907 if (!(lapic_in_kernel(vcpu) &&
4908 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4909 addr, n, v))
4910 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4911 break;
4912 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4913 handled += n;
4914 addr += n;
4915 len -= n;
4916 v += n;
4917 } while (len);
4919 return handled;
4922 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4923 struct kvm_segment *var, int seg)
4925 kvm_x86_ops->set_segment(vcpu, var, seg);
4928 void kvm_get_segment(struct kvm_vcpu *vcpu,
4929 struct kvm_segment *var, int seg)
4931 kvm_x86_ops->get_segment(vcpu, var, seg);
4934 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4935 struct x86_exception *exception)
4937 gpa_t t_gpa;
4939 BUG_ON(!mmu_is_nested(vcpu));
4941 /* NPT walks are always user-walks */
4942 access |= PFERR_USER_MASK;
4943 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
4945 return t_gpa;
4948 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4949 struct x86_exception *exception)
4951 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4952 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4955 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4956 struct x86_exception *exception)
4958 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4959 access |= PFERR_FETCH_MASK;
4960 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4963 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4964 struct x86_exception *exception)
4966 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4967 access |= PFERR_WRITE_MASK;
4968 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4971 /* uses this to access any guest's mapped memory without checking CPL */
4972 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4973 struct x86_exception *exception)
4975 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4978 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4979 struct kvm_vcpu *vcpu, u32 access,
4980 struct x86_exception *exception)
4982 void *data = val;
4983 int r = X86EMUL_CONTINUE;
4985 while (bytes) {
4986 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4987 exception);
4988 unsigned offset = addr & (PAGE_SIZE-1);
4989 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4990 int ret;
4992 if (gpa == UNMAPPED_GVA)
4993 return X86EMUL_PROPAGATE_FAULT;
4994 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4995 offset, toread);
4996 if (ret < 0) {
4997 r = X86EMUL_IO_NEEDED;
4998 goto out;
5001 bytes -= toread;
5002 data += toread;
5003 addr += toread;
5005 out:
5006 return r;
5009 /* used for instruction fetching */
5010 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5011 gva_t addr, void *val, unsigned int bytes,
5012 struct x86_exception *exception)
5014 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5015 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5016 unsigned offset;
5017 int ret;
5019 /* Inline kvm_read_guest_virt_helper for speed. */
5020 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5021 exception);
5022 if (unlikely(gpa == UNMAPPED_GVA))
5023 return X86EMUL_PROPAGATE_FAULT;
5025 offset = addr & (PAGE_SIZE-1);
5026 if (WARN_ON(offset + bytes > PAGE_SIZE))
5027 bytes = (unsigned)PAGE_SIZE - offset;
5028 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5029 offset, bytes);
5030 if (unlikely(ret < 0))
5031 return X86EMUL_IO_NEEDED;
5033 return X86EMUL_CONTINUE;
5036 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5037 gva_t addr, void *val, unsigned int bytes,
5038 struct x86_exception *exception)
5040 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5042 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5043 exception);
5045 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5047 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5048 gva_t addr, void *val, unsigned int bytes,
5049 struct x86_exception *exception, bool system)
5051 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5052 u32 access = 0;
5054 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5055 access |= PFERR_USER_MASK;
5057 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5060 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5061 unsigned long addr, void *val, unsigned int bytes)
5063 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5064 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5066 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5069 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5070 struct kvm_vcpu *vcpu, u32 access,
5071 struct x86_exception *exception)
5073 void *data = val;
5074 int r = X86EMUL_CONTINUE;
5076 while (bytes) {
5077 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5078 access,
5079 exception);
5080 unsigned offset = addr & (PAGE_SIZE-1);
5081 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5082 int ret;
5084 if (gpa == UNMAPPED_GVA)
5085 return X86EMUL_PROPAGATE_FAULT;
5086 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5087 if (ret < 0) {
5088 r = X86EMUL_IO_NEEDED;
5089 goto out;
5092 bytes -= towrite;
5093 data += towrite;
5094 addr += towrite;
5096 out:
5097 return r;
5100 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5101 unsigned int bytes, struct x86_exception *exception,
5102 bool system)
5104 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5105 u32 access = PFERR_WRITE_MASK;
5107 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5108 access |= PFERR_USER_MASK;
5110 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5111 access, exception);
5114 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5115 unsigned int bytes, struct x86_exception *exception)
5117 /* kvm_write_guest_virt_system can pull in tons of pages. */
5118 vcpu->arch.l1tf_flush_l1d = true;
5120 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5121 PFERR_WRITE_MASK, exception);
5123 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5125 int handle_ud(struct kvm_vcpu *vcpu)
5127 int emul_type = EMULTYPE_TRAP_UD;
5128 enum emulation_result er;
5129 char sig[5]; /* ud2; .ascii "kvm" */
5130 struct x86_exception e;
5132 if (force_emulation_prefix &&
5133 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5134 sig, sizeof(sig), &e) == 0 &&
5135 memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5136 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5137 emul_type = 0;
5140 er = kvm_emulate_instruction(vcpu, emul_type);
5141 if (er == EMULATE_USER_EXIT)
5142 return 0;
5143 if (er != EMULATE_DONE)
5144 kvm_queue_exception(vcpu, UD_VECTOR);
5145 return 1;
5147 EXPORT_SYMBOL_GPL(handle_ud);
5149 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5150 gpa_t gpa, bool write)
5152 /* For APIC access vmexit */
5153 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5154 return 1;
5156 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5157 trace_vcpu_match_mmio(gva, gpa, write, true);
5158 return 1;
5161 return 0;
5164 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5165 gpa_t *gpa, struct x86_exception *exception,
5166 bool write)
5168 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5169 | (write ? PFERR_WRITE_MASK : 0);
5172 * currently PKRU is only applied to ept enabled guest so
5173 * there is no pkey in EPT page table for L1 guest or EPT
5174 * shadow page table for L2 guest.
5176 if (vcpu_match_mmio_gva(vcpu, gva)
5177 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5178 vcpu->arch.access, 0, access)) {
5179 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5180 (gva & (PAGE_SIZE - 1));
5181 trace_vcpu_match_mmio(gva, *gpa, write, false);
5182 return 1;
5185 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5187 if (*gpa == UNMAPPED_GVA)
5188 return -1;
5190 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5193 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5194 const void *val, int bytes)
5196 int ret;
5198 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5199 if (ret < 0)
5200 return 0;
5201 kvm_page_track_write(vcpu, gpa, val, bytes);
5202 return 1;
5205 struct read_write_emulator_ops {
5206 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5207 int bytes);
5208 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5209 void *val, int bytes);
5210 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5211 int bytes, void *val);
5212 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5213 void *val, int bytes);
5214 bool write;
5217 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5219 if (vcpu->mmio_read_completed) {
5220 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5221 vcpu->mmio_fragments[0].gpa, val);
5222 vcpu->mmio_read_completed = 0;
5223 return 1;
5226 return 0;
5229 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5230 void *val, int bytes)
5232 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5235 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5236 void *val, int bytes)
5238 return emulator_write_phys(vcpu, gpa, val, bytes);
5241 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5243 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5244 return vcpu_mmio_write(vcpu, gpa, bytes, val);
5247 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5248 void *val, int bytes)
5250 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5251 return X86EMUL_IO_NEEDED;
5254 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5255 void *val, int bytes)
5257 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5259 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5260 return X86EMUL_CONTINUE;
5263 static const struct read_write_emulator_ops read_emultor = {
5264 .read_write_prepare = read_prepare,
5265 .read_write_emulate = read_emulate,
5266 .read_write_mmio = vcpu_mmio_read,
5267 .read_write_exit_mmio = read_exit_mmio,
5270 static const struct read_write_emulator_ops write_emultor = {
5271 .read_write_emulate = write_emulate,
5272 .read_write_mmio = write_mmio,
5273 .read_write_exit_mmio = write_exit_mmio,
5274 .write = true,
5277 static int emulator_read_write_onepage(unsigned long addr, void *val,
5278 unsigned int bytes,
5279 struct x86_exception *exception,
5280 struct kvm_vcpu *vcpu,
5281 const struct read_write_emulator_ops *ops)
5283 gpa_t gpa;
5284 int handled, ret;
5285 bool write = ops->write;
5286 struct kvm_mmio_fragment *frag;
5287 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5290 * If the exit was due to a NPF we may already have a GPA.
5291 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5292 * Note, this cannot be used on string operations since string
5293 * operation using rep will only have the initial GPA from the NPF
5294 * occurred.
5296 if (vcpu->arch.gpa_available &&
5297 emulator_can_use_gpa(ctxt) &&
5298 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5299 gpa = vcpu->arch.gpa_val;
5300 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5301 } else {
5302 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5303 if (ret < 0)
5304 return X86EMUL_PROPAGATE_FAULT;
5307 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5308 return X86EMUL_CONTINUE;
5311 * Is this MMIO handled locally?
5313 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5314 if (handled == bytes)
5315 return X86EMUL_CONTINUE;
5317 gpa += handled;
5318 bytes -= handled;
5319 val += handled;
5321 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5322 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5323 frag->gpa = gpa;
5324 frag->data = val;
5325 frag->len = bytes;
5326 return X86EMUL_CONTINUE;
5329 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5330 unsigned long addr,
5331 void *val, unsigned int bytes,
5332 struct x86_exception *exception,
5333 const struct read_write_emulator_ops *ops)
5335 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5336 gpa_t gpa;
5337 int rc;
5339 if (ops->read_write_prepare &&
5340 ops->read_write_prepare(vcpu, val, bytes))
5341 return X86EMUL_CONTINUE;
5343 vcpu->mmio_nr_fragments = 0;
5345 /* Crossing a page boundary? */
5346 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5347 int now;
5349 now = -addr & ~PAGE_MASK;
5350 rc = emulator_read_write_onepage(addr, val, now, exception,
5351 vcpu, ops);
5353 if (rc != X86EMUL_CONTINUE)
5354 return rc;
5355 addr += now;
5356 if (ctxt->mode != X86EMUL_MODE_PROT64)
5357 addr = (u32)addr;
5358 val += now;
5359 bytes -= now;
5362 rc = emulator_read_write_onepage(addr, val, bytes, exception,
5363 vcpu, ops);
5364 if (rc != X86EMUL_CONTINUE)
5365 return rc;
5367 if (!vcpu->mmio_nr_fragments)
5368 return rc;
5370 gpa = vcpu->mmio_fragments[0].gpa;
5372 vcpu->mmio_needed = 1;
5373 vcpu->mmio_cur_fragment = 0;
5375 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5376 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5377 vcpu->run->exit_reason = KVM_EXIT_MMIO;
5378 vcpu->run->mmio.phys_addr = gpa;
5380 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5383 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5384 unsigned long addr,
5385 void *val,
5386 unsigned int bytes,
5387 struct x86_exception *exception)
5389 return emulator_read_write(ctxt, addr, val, bytes,
5390 exception, &read_emultor);
5393 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5394 unsigned long addr,
5395 const void *val,
5396 unsigned int bytes,
5397 struct x86_exception *exception)
5399 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5400 exception, &write_emultor);
5403 #define CMPXCHG_TYPE(t, ptr, old, new) \
5404 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5406 #ifdef CONFIG_X86_64
5407 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5408 #else
5409 # define CMPXCHG64(ptr, old, new) \
5410 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5411 #endif
5413 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5414 unsigned long addr,
5415 const void *old,
5416 const void *new,
5417 unsigned int bytes,
5418 struct x86_exception *exception)
5420 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5421 gpa_t gpa;
5422 struct page *page;
5423 char *kaddr;
5424 bool exchanged;
5426 /* guests cmpxchg8b have to be emulated atomically */
5427 if (bytes > 8 || (bytes & (bytes - 1)))
5428 goto emul_write;
5430 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5432 if (gpa == UNMAPPED_GVA ||
5433 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5434 goto emul_write;
5436 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5437 goto emul_write;
5439 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5440 if (is_error_page(page))
5441 goto emul_write;
5443 kaddr = kmap_atomic(page);
5444 kaddr += offset_in_page(gpa);
5445 switch (bytes) {
5446 case 1:
5447 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5448 break;
5449 case 2:
5450 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5451 break;
5452 case 4:
5453 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5454 break;
5455 case 8:
5456 exchanged = CMPXCHG64(kaddr, old, new);
5457 break;
5458 default:
5459 BUG();
5461 kunmap_atomic(kaddr);
5462 kvm_release_page_dirty(page);
5464 if (!exchanged)
5465 return X86EMUL_CMPXCHG_FAILED;
5467 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5468 kvm_page_track_write(vcpu, gpa, new, bytes);
5470 return X86EMUL_CONTINUE;
5472 emul_write:
5473 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5475 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5478 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5480 int r = 0, i;
5482 for (i = 0; i < vcpu->arch.pio.count; i++) {
5483 if (vcpu->arch.pio.in)
5484 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5485 vcpu->arch.pio.size, pd);
5486 else
5487 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5488 vcpu->arch.pio.port, vcpu->arch.pio.size,
5489 pd);
5490 if (r)
5491 break;
5492 pd += vcpu->arch.pio.size;
5494 return r;
5497 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5498 unsigned short port, void *val,
5499 unsigned int count, bool in)
5501 vcpu->arch.pio.port = port;
5502 vcpu->arch.pio.in = in;
5503 vcpu->arch.pio.count = count;
5504 vcpu->arch.pio.size = size;
5506 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5507 vcpu->arch.pio.count = 0;
5508 return 1;
5511 vcpu->run->exit_reason = KVM_EXIT_IO;
5512 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5513 vcpu->run->io.size = size;
5514 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5515 vcpu->run->io.count = count;
5516 vcpu->run->io.port = port;
5518 return 0;
5521 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5522 int size, unsigned short port, void *val,
5523 unsigned int count)
5525 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5526 int ret;
5528 if (vcpu->arch.pio.count)
5529 goto data_avail;
5531 memset(vcpu->arch.pio_data, 0, size * count);
5533 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5534 if (ret) {
5535 data_avail:
5536 memcpy(val, vcpu->arch.pio_data, size * count);
5537 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5538 vcpu->arch.pio.count = 0;
5539 return 1;
5542 return 0;
5545 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5546 int size, unsigned short port,
5547 const void *val, unsigned int count)
5549 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5551 memcpy(vcpu->arch.pio_data, val, size * count);
5552 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5553 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5556 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5558 return kvm_x86_ops->get_segment_base(vcpu, seg);
5561 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5563 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5566 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5568 if (!need_emulate_wbinvd(vcpu))
5569 return X86EMUL_CONTINUE;
5571 if (kvm_x86_ops->has_wbinvd_exit()) {
5572 int cpu = get_cpu();
5574 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5575 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5576 wbinvd_ipi, NULL, 1);
5577 put_cpu();
5578 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5579 } else
5580 wbinvd();
5581 return X86EMUL_CONTINUE;
5584 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5586 kvm_emulate_wbinvd_noskip(vcpu);
5587 return kvm_skip_emulated_instruction(vcpu);
5589 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5593 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5595 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5598 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5599 unsigned long *dest)
5601 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5604 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5605 unsigned long value)
5608 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5611 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5613 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5616 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5618 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5619 unsigned long value;
5621 switch (cr) {
5622 case 0:
5623 value = kvm_read_cr0(vcpu);
5624 break;
5625 case 2:
5626 value = vcpu->arch.cr2;
5627 break;
5628 case 3:
5629 value = kvm_read_cr3(vcpu);
5630 break;
5631 case 4:
5632 value = kvm_read_cr4(vcpu);
5633 break;
5634 case 8:
5635 value = kvm_get_cr8(vcpu);
5636 break;
5637 default:
5638 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5639 return 0;
5642 return value;
5645 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5647 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5648 int res = 0;
5650 switch (cr) {
5651 case 0:
5652 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5653 break;
5654 case 2:
5655 vcpu->arch.cr2 = val;
5656 break;
5657 case 3:
5658 res = kvm_set_cr3(vcpu, val);
5659 break;
5660 case 4:
5661 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5662 break;
5663 case 8:
5664 res = kvm_set_cr8(vcpu, val);
5665 break;
5666 default:
5667 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5668 res = -1;
5671 return res;
5674 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5676 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5679 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5681 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5684 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5686 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5689 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5691 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5694 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5696 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5699 static unsigned long emulator_get_cached_segment_base(
5700 struct x86_emulate_ctxt *ctxt, int seg)
5702 return get_segment_base(emul_to_vcpu(ctxt), seg);
5705 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5706 struct desc_struct *desc, u32 *base3,
5707 int seg)
5709 struct kvm_segment var;
5711 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5712 *selector = var.selector;
5714 if (var.unusable) {
5715 memset(desc, 0, sizeof(*desc));
5716 if (base3)
5717 *base3 = 0;
5718 return false;
5721 if (var.g)
5722 var.limit >>= 12;
5723 set_desc_limit(desc, var.limit);
5724 set_desc_base(desc, (unsigned long)var.base);
5725 #ifdef CONFIG_X86_64
5726 if (base3)
5727 *base3 = var.base >> 32;
5728 #endif
5729 desc->type = var.type;
5730 desc->s = var.s;
5731 desc->dpl = var.dpl;
5732 desc->p = var.present;
5733 desc->avl = var.avl;
5734 desc->l = var.l;
5735 desc->d = var.db;
5736 desc->g = var.g;
5738 return true;
5741 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5742 struct desc_struct *desc, u32 base3,
5743 int seg)
5745 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5746 struct kvm_segment var;
5748 var.selector = selector;
5749 var.base = get_desc_base(desc);
5750 #ifdef CONFIG_X86_64
5751 var.base |= ((u64)base3) << 32;
5752 #endif
5753 var.limit = get_desc_limit(desc);
5754 if (desc->g)
5755 var.limit = (var.limit << 12) | 0xfff;
5756 var.type = desc->type;
5757 var.dpl = desc->dpl;
5758 var.db = desc->d;
5759 var.s = desc->s;
5760 var.l = desc->l;
5761 var.g = desc->g;
5762 var.avl = desc->avl;
5763 var.present = desc->p;
5764 var.unusable = !var.present;
5765 var.padding = 0;
5767 kvm_set_segment(vcpu, &var, seg);
5768 return;
5771 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5772 u32 msr_index, u64 *pdata)
5774 struct msr_data msr;
5775 int r;
5777 msr.index = msr_index;
5778 msr.host_initiated = false;
5779 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5780 if (r)
5781 return r;
5783 *pdata = msr.data;
5784 return 0;
5787 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5788 u32 msr_index, u64 data)
5790 struct msr_data msr;
5792 msr.data = data;
5793 msr.index = msr_index;
5794 msr.host_initiated = false;
5795 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5798 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5800 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5802 return vcpu->arch.smbase;
5805 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5807 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5809 vcpu->arch.smbase = smbase;
5812 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5813 u32 pmc)
5815 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5818 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5819 u32 pmc, u64 *pdata)
5821 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5824 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5826 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5829 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5830 struct x86_instruction_info *info,
5831 enum x86_intercept_stage stage)
5833 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5836 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5837 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5839 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5842 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5844 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5847 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5849 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5852 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5854 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5857 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5859 return emul_to_vcpu(ctxt)->arch.hflags;
5862 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5864 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5867 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5869 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5872 static const struct x86_emulate_ops emulate_ops = {
5873 .read_gpr = emulator_read_gpr,
5874 .write_gpr = emulator_write_gpr,
5875 .read_std = emulator_read_std,
5876 .write_std = emulator_write_std,
5877 .read_phys = kvm_read_guest_phys_system,
5878 .fetch = kvm_fetch_guest_virt,
5879 .read_emulated = emulator_read_emulated,
5880 .write_emulated = emulator_write_emulated,
5881 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5882 .invlpg = emulator_invlpg,
5883 .pio_in_emulated = emulator_pio_in_emulated,
5884 .pio_out_emulated = emulator_pio_out_emulated,
5885 .get_segment = emulator_get_segment,
5886 .set_segment = emulator_set_segment,
5887 .get_cached_segment_base = emulator_get_cached_segment_base,
5888 .get_gdt = emulator_get_gdt,
5889 .get_idt = emulator_get_idt,
5890 .set_gdt = emulator_set_gdt,
5891 .set_idt = emulator_set_idt,
5892 .get_cr = emulator_get_cr,
5893 .set_cr = emulator_set_cr,
5894 .cpl = emulator_get_cpl,
5895 .get_dr = emulator_get_dr,
5896 .set_dr = emulator_set_dr,
5897 .get_smbase = emulator_get_smbase,
5898 .set_smbase = emulator_set_smbase,
5899 .set_msr = emulator_set_msr,
5900 .get_msr = emulator_get_msr,
5901 .check_pmc = emulator_check_pmc,
5902 .read_pmc = emulator_read_pmc,
5903 .halt = emulator_halt,
5904 .wbinvd = emulator_wbinvd,
5905 .fix_hypercall = emulator_fix_hypercall,
5906 .intercept = emulator_intercept,
5907 .get_cpuid = emulator_get_cpuid,
5908 .set_nmi_mask = emulator_set_nmi_mask,
5909 .get_hflags = emulator_get_hflags,
5910 .set_hflags = emulator_set_hflags,
5911 .pre_leave_smm = emulator_pre_leave_smm,
5914 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5916 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5918 * an sti; sti; sequence only disable interrupts for the first
5919 * instruction. So, if the last instruction, be it emulated or
5920 * not, left the system with the INT_STI flag enabled, it
5921 * means that the last instruction is an sti. We should not
5922 * leave the flag on in this case. The same goes for mov ss
5924 if (int_shadow & mask)
5925 mask = 0;
5926 if (unlikely(int_shadow || mask)) {
5927 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5928 if (!mask)
5929 kvm_make_request(KVM_REQ_EVENT, vcpu);
5933 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5935 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5936 if (ctxt->exception.vector == PF_VECTOR)
5937 return kvm_propagate_fault(vcpu, &ctxt->exception);
5939 if (ctxt->exception.error_code_valid)
5940 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5941 ctxt->exception.error_code);
5942 else
5943 kvm_queue_exception(vcpu, ctxt->exception.vector);
5944 return false;
5947 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5949 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5950 int cs_db, cs_l;
5952 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5954 ctxt->eflags = kvm_get_rflags(vcpu);
5955 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5957 ctxt->eip = kvm_rip_read(vcpu);
5958 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5959 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5960 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5961 cs_db ? X86EMUL_MODE_PROT32 :
5962 X86EMUL_MODE_PROT16;
5963 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5964 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5965 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5967 init_decode_cache(ctxt);
5968 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5971 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5973 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5974 int ret;
5976 init_emulate_ctxt(vcpu);
5978 ctxt->op_bytes = 2;
5979 ctxt->ad_bytes = 2;
5980 ctxt->_eip = ctxt->eip + inc_eip;
5981 ret = emulate_int_real(ctxt, irq);
5983 if (ret != X86EMUL_CONTINUE)
5984 return EMULATE_FAIL;
5986 ctxt->eip = ctxt->_eip;
5987 kvm_rip_write(vcpu, ctxt->eip);
5988 kvm_set_rflags(vcpu, ctxt->eflags);
5990 return EMULATE_DONE;
5992 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5994 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5996 int r = EMULATE_DONE;
5998 ++vcpu->stat.insn_emulation_fail;
5999 trace_kvm_emulate_insn_failed(vcpu);
6001 if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6002 return EMULATE_FAIL;
6004 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6005 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6006 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6007 vcpu->run->internal.ndata = 0;
6008 r = EMULATE_USER_EXIT;
6011 kvm_queue_exception(vcpu, UD_VECTOR);
6013 return r;
6016 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6017 bool write_fault_to_shadow_pgtable,
6018 int emulation_type)
6020 gpa_t gpa = cr2;
6021 kvm_pfn_t pfn;
6023 if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6024 return false;
6026 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6027 return false;
6029 if (!vcpu->arch.mmu->direct_map) {
6031 * Write permission should be allowed since only
6032 * write access need to be emulated.
6034 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6037 * If the mapping is invalid in guest, let cpu retry
6038 * it to generate fault.
6040 if (gpa == UNMAPPED_GVA)
6041 return true;
6045 * Do not retry the unhandleable instruction if it faults on the
6046 * readonly host memory, otherwise it will goto a infinite loop:
6047 * retry instruction -> write #PF -> emulation fail -> retry
6048 * instruction -> ...
6050 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6053 * If the instruction failed on the error pfn, it can not be fixed,
6054 * report the error to userspace.
6056 if (is_error_noslot_pfn(pfn))
6057 return false;
6059 kvm_release_pfn_clean(pfn);
6061 /* The instructions are well-emulated on direct mmu. */
6062 if (vcpu->arch.mmu->direct_map) {
6063 unsigned int indirect_shadow_pages;
6065 spin_lock(&vcpu->kvm->mmu_lock);
6066 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6067 spin_unlock(&vcpu->kvm->mmu_lock);
6069 if (indirect_shadow_pages)
6070 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6072 return true;
6076 * if emulation was due to access to shadowed page table
6077 * and it failed try to unshadow page and re-enter the
6078 * guest to let CPU execute the instruction.
6080 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6083 * If the access faults on its page table, it can not
6084 * be fixed by unprotecting shadow page and it should
6085 * be reported to userspace.
6087 return !write_fault_to_shadow_pgtable;
6090 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6091 unsigned long cr2, int emulation_type)
6093 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6094 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6096 last_retry_eip = vcpu->arch.last_retry_eip;
6097 last_retry_addr = vcpu->arch.last_retry_addr;
6100 * If the emulation is caused by #PF and it is non-page_table
6101 * writing instruction, it means the VM-EXIT is caused by shadow
6102 * page protected, we can zap the shadow page and retry this
6103 * instruction directly.
6105 * Note: if the guest uses a non-page-table modifying instruction
6106 * on the PDE that points to the instruction, then we will unmap
6107 * the instruction and go to an infinite loop. So, we cache the
6108 * last retried eip and the last fault address, if we meet the eip
6109 * and the address again, we can break out of the potential infinite
6110 * loop.
6112 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6114 if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6115 return false;
6117 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6118 return false;
6120 if (x86_page_table_writing_insn(ctxt))
6121 return false;
6123 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6124 return false;
6126 vcpu->arch.last_retry_eip = ctxt->eip;
6127 vcpu->arch.last_retry_addr = cr2;
6129 if (!vcpu->arch.mmu->direct_map)
6130 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6132 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6134 return true;
6137 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6138 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6140 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6142 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6143 /* This is a good place to trace that we are exiting SMM. */
6144 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6146 /* Process a latched INIT or SMI, if any. */
6147 kvm_make_request(KVM_REQ_EVENT, vcpu);
6150 kvm_mmu_reset_context(vcpu);
6153 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
6155 unsigned changed = vcpu->arch.hflags ^ emul_flags;
6157 vcpu->arch.hflags = emul_flags;
6159 if (changed & HF_SMM_MASK)
6160 kvm_smm_changed(vcpu);
6163 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6164 unsigned long *db)
6166 u32 dr6 = 0;
6167 int i;
6168 u32 enable, rwlen;
6170 enable = dr7;
6171 rwlen = dr7 >> 16;
6172 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6173 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6174 dr6 |= (1 << i);
6175 return dr6;
6178 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6180 struct kvm_run *kvm_run = vcpu->run;
6182 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6183 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6184 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6185 kvm_run->debug.arch.exception = DB_VECTOR;
6186 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6187 *r = EMULATE_USER_EXIT;
6188 } else {
6189 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6193 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6195 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6196 int r = EMULATE_DONE;
6198 kvm_x86_ops->skip_emulated_instruction(vcpu);
6201 * rflags is the old, "raw" value of the flags. The new value has
6202 * not been saved yet.
6204 * This is correct even for TF set by the guest, because "the
6205 * processor will not generate this exception after the instruction
6206 * that sets the TF flag".
6208 if (unlikely(rflags & X86_EFLAGS_TF))
6209 kvm_vcpu_do_singlestep(vcpu, &r);
6210 return r == EMULATE_DONE;
6212 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6214 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6216 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6217 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6218 struct kvm_run *kvm_run = vcpu->run;
6219 unsigned long eip = kvm_get_linear_rip(vcpu);
6220 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6221 vcpu->arch.guest_debug_dr7,
6222 vcpu->arch.eff_db);
6224 if (dr6 != 0) {
6225 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6226 kvm_run->debug.arch.pc = eip;
6227 kvm_run->debug.arch.exception = DB_VECTOR;
6228 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6229 *r = EMULATE_USER_EXIT;
6230 return true;
6234 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6235 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6236 unsigned long eip = kvm_get_linear_rip(vcpu);
6237 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6238 vcpu->arch.dr7,
6239 vcpu->arch.db);
6241 if (dr6 != 0) {
6242 vcpu->arch.dr6 &= ~15;
6243 vcpu->arch.dr6 |= dr6 | DR6_RTM;
6244 kvm_queue_exception(vcpu, DB_VECTOR);
6245 *r = EMULATE_DONE;
6246 return true;
6250 return false;
6253 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6255 switch (ctxt->opcode_len) {
6256 case 1:
6257 switch (ctxt->b) {
6258 case 0xe4: /* IN */
6259 case 0xe5:
6260 case 0xec:
6261 case 0xed:
6262 case 0xe6: /* OUT */
6263 case 0xe7:
6264 case 0xee:
6265 case 0xef:
6266 case 0x6c: /* INS */
6267 case 0x6d:
6268 case 0x6e: /* OUTS */
6269 case 0x6f:
6270 return true;
6272 break;
6273 case 2:
6274 switch (ctxt->b) {
6275 case 0x33: /* RDPMC */
6276 return true;
6278 break;
6281 return false;
6284 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6285 unsigned long cr2,
6286 int emulation_type,
6287 void *insn,
6288 int insn_len)
6290 int r;
6291 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6292 bool writeback = true;
6293 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6295 vcpu->arch.l1tf_flush_l1d = true;
6298 * Clear write_fault_to_shadow_pgtable here to ensure it is
6299 * never reused.
6301 vcpu->arch.write_fault_to_shadow_pgtable = false;
6302 kvm_clear_exception_queue(vcpu);
6304 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6305 init_emulate_ctxt(vcpu);
6308 * We will reenter on the same instruction since
6309 * we do not set complete_userspace_io. This does not
6310 * handle watchpoints yet, those would be handled in
6311 * the emulate_ops.
6313 if (!(emulation_type & EMULTYPE_SKIP) &&
6314 kvm_vcpu_check_breakpoint(vcpu, &r))
6315 return r;
6317 ctxt->interruptibility = 0;
6318 ctxt->have_exception = false;
6319 ctxt->exception.vector = -1;
6320 ctxt->perm_ok = false;
6322 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6324 r = x86_decode_insn(ctxt, insn, insn_len);
6326 trace_kvm_emulate_insn_start(vcpu);
6327 ++vcpu->stat.insn_emulation;
6328 if (r != EMULATION_OK) {
6329 if (emulation_type & EMULTYPE_TRAP_UD)
6330 return EMULATE_FAIL;
6331 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6332 emulation_type))
6333 return EMULATE_DONE;
6334 if (ctxt->have_exception && inject_emulated_exception(vcpu))
6335 return EMULATE_DONE;
6336 if (emulation_type & EMULTYPE_SKIP)
6337 return EMULATE_FAIL;
6338 return handle_emulation_failure(vcpu, emulation_type);
6342 if ((emulation_type & EMULTYPE_VMWARE) &&
6343 !is_vmware_backdoor_opcode(ctxt))
6344 return EMULATE_FAIL;
6346 if (emulation_type & EMULTYPE_SKIP) {
6347 kvm_rip_write(vcpu, ctxt->_eip);
6348 if (ctxt->eflags & X86_EFLAGS_RF)
6349 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6350 return EMULATE_DONE;
6353 if (retry_instruction(ctxt, cr2, emulation_type))
6354 return EMULATE_DONE;
6356 /* this is needed for vmware backdoor interface to work since it
6357 changes registers values during IO operation */
6358 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6359 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6360 emulator_invalidate_register_cache(ctxt);
6363 restart:
6364 /* Save the faulting GPA (cr2) in the address field */
6365 ctxt->exception.address = cr2;
6367 r = x86_emulate_insn(ctxt);
6369 if (r == EMULATION_INTERCEPTED)
6370 return EMULATE_DONE;
6372 if (r == EMULATION_FAILED) {
6373 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6374 emulation_type))
6375 return EMULATE_DONE;
6377 return handle_emulation_failure(vcpu, emulation_type);
6380 if (ctxt->have_exception) {
6381 r = EMULATE_DONE;
6382 if (inject_emulated_exception(vcpu))
6383 return r;
6384 } else if (vcpu->arch.pio.count) {
6385 if (!vcpu->arch.pio.in) {
6386 /* FIXME: return into emulator if single-stepping. */
6387 vcpu->arch.pio.count = 0;
6388 } else {
6389 writeback = false;
6390 vcpu->arch.complete_userspace_io = complete_emulated_pio;
6392 r = EMULATE_USER_EXIT;
6393 } else if (vcpu->mmio_needed) {
6394 if (!vcpu->mmio_is_write)
6395 writeback = false;
6396 r = EMULATE_USER_EXIT;
6397 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6398 } else if (r == EMULATION_RESTART)
6399 goto restart;
6400 else
6401 r = EMULATE_DONE;
6403 if (writeback) {
6404 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6405 toggle_interruptibility(vcpu, ctxt->interruptibility);
6406 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6407 kvm_rip_write(vcpu, ctxt->eip);
6408 if (r == EMULATE_DONE &&
6409 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6410 kvm_vcpu_do_singlestep(vcpu, &r);
6411 if (!ctxt->have_exception ||
6412 exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6413 __kvm_set_rflags(vcpu, ctxt->eflags);
6416 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6417 * do nothing, and it will be requested again as soon as
6418 * the shadow expires. But we still need to check here,
6419 * because POPF has no interrupt shadow.
6421 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6422 kvm_make_request(KVM_REQ_EVENT, vcpu);
6423 } else
6424 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6426 return r;
6429 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6431 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6433 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6435 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6436 void *insn, int insn_len)
6438 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6440 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6442 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6443 unsigned short port)
6445 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6446 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6447 size, port, &val, 1);
6448 /* do not return to emulator after return from userspace */
6449 vcpu->arch.pio.count = 0;
6450 return ret;
6453 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6455 unsigned long val;
6457 /* We should only ever be called with arch.pio.count equal to 1 */
6458 BUG_ON(vcpu->arch.pio.count != 1);
6460 /* For size less than 4 we merge, else we zero extend */
6461 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6462 : 0;
6465 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6466 * the copy and tracing
6468 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6469 vcpu->arch.pio.port, &val, 1);
6470 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6472 return 1;
6475 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6476 unsigned short port)
6478 unsigned long val;
6479 int ret;
6481 /* For size less than 4 we merge, else we zero extend */
6482 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6484 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6485 &val, 1);
6486 if (ret) {
6487 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6488 return ret;
6491 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6493 return 0;
6496 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6498 int ret = kvm_skip_emulated_instruction(vcpu);
6501 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6502 * KVM_EXIT_DEBUG here.
6504 if (in)
6505 return kvm_fast_pio_in(vcpu, size, port) && ret;
6506 else
6507 return kvm_fast_pio_out(vcpu, size, port) && ret;
6509 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6511 static int kvmclock_cpu_down_prep(unsigned int cpu)
6513 __this_cpu_write(cpu_tsc_khz, 0);
6514 return 0;
6517 static void tsc_khz_changed(void *data)
6519 struct cpufreq_freqs *freq = data;
6520 unsigned long khz = 0;
6522 if (data)
6523 khz = freq->new;
6524 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6525 khz = cpufreq_quick_get(raw_smp_processor_id());
6526 if (!khz)
6527 khz = tsc_khz;
6528 __this_cpu_write(cpu_tsc_khz, khz);
6531 #ifdef CONFIG_X86_64
6532 static void kvm_hyperv_tsc_notifier(void)
6534 struct kvm *kvm;
6535 struct kvm_vcpu *vcpu;
6536 int cpu;
6538 spin_lock(&kvm_lock);
6539 list_for_each_entry(kvm, &vm_list, vm_list)
6540 kvm_make_mclock_inprogress_request(kvm);
6542 hyperv_stop_tsc_emulation();
6544 /* TSC frequency always matches when on Hyper-V */
6545 for_each_present_cpu(cpu)
6546 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6547 kvm_max_guest_tsc_khz = tsc_khz;
6549 list_for_each_entry(kvm, &vm_list, vm_list) {
6550 struct kvm_arch *ka = &kvm->arch;
6552 spin_lock(&ka->pvclock_gtod_sync_lock);
6554 pvclock_update_vm_gtod_copy(kvm);
6556 kvm_for_each_vcpu(cpu, vcpu, kvm)
6557 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6559 kvm_for_each_vcpu(cpu, vcpu, kvm)
6560 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6562 spin_unlock(&ka->pvclock_gtod_sync_lock);
6564 spin_unlock(&kvm_lock);
6566 #endif
6568 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6569 void *data)
6571 struct cpufreq_freqs *freq = data;
6572 struct kvm *kvm;
6573 struct kvm_vcpu *vcpu;
6574 int i, send_ipi = 0;
6577 * We allow guests to temporarily run on slowing clocks,
6578 * provided we notify them after, or to run on accelerating
6579 * clocks, provided we notify them before. Thus time never
6580 * goes backwards.
6582 * However, we have a problem. We can't atomically update
6583 * the frequency of a given CPU from this function; it is
6584 * merely a notifier, which can be called from any CPU.
6585 * Changing the TSC frequency at arbitrary points in time
6586 * requires a recomputation of local variables related to
6587 * the TSC for each VCPU. We must flag these local variables
6588 * to be updated and be sure the update takes place with the
6589 * new frequency before any guests proceed.
6591 * Unfortunately, the combination of hotplug CPU and frequency
6592 * change creates an intractable locking scenario; the order
6593 * of when these callouts happen is undefined with respect to
6594 * CPU hotplug, and they can race with each other. As such,
6595 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6596 * undefined; you can actually have a CPU frequency change take
6597 * place in between the computation of X and the setting of the
6598 * variable. To protect against this problem, all updates of
6599 * the per_cpu tsc_khz variable are done in an interrupt
6600 * protected IPI, and all callers wishing to update the value
6601 * must wait for a synchronous IPI to complete (which is trivial
6602 * if the caller is on the CPU already). This establishes the
6603 * necessary total order on variable updates.
6605 * Note that because a guest time update may take place
6606 * anytime after the setting of the VCPU's request bit, the
6607 * correct TSC value must be set before the request. However,
6608 * to ensure the update actually makes it to any guest which
6609 * starts running in hardware virtualization between the set
6610 * and the acquisition of the spinlock, we must also ping the
6611 * CPU after setting the request bit.
6615 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6616 return 0;
6617 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6618 return 0;
6620 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6622 spin_lock(&kvm_lock);
6623 list_for_each_entry(kvm, &vm_list, vm_list) {
6624 kvm_for_each_vcpu(i, vcpu, kvm) {
6625 if (vcpu->cpu != freq->cpu)
6626 continue;
6627 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6628 if (vcpu->cpu != smp_processor_id())
6629 send_ipi = 1;
6632 spin_unlock(&kvm_lock);
6634 if (freq->old < freq->new && send_ipi) {
6636 * We upscale the frequency. Must make the guest
6637 * doesn't see old kvmclock values while running with
6638 * the new frequency, otherwise we risk the guest sees
6639 * time go backwards.
6641 * In case we update the frequency for another cpu
6642 * (which might be in guest context) send an interrupt
6643 * to kick the cpu out of guest context. Next time
6644 * guest context is entered kvmclock will be updated,
6645 * so the guest will not see stale values.
6647 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6649 return 0;
6652 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6653 .notifier_call = kvmclock_cpufreq_notifier
6656 static int kvmclock_cpu_online(unsigned int cpu)
6658 tsc_khz_changed(NULL);
6659 return 0;
6662 static void kvm_timer_init(void)
6664 max_tsc_khz = tsc_khz;
6666 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6667 #ifdef CONFIG_CPU_FREQ
6668 struct cpufreq_policy policy;
6669 int cpu;
6671 memset(&policy, 0, sizeof(policy));
6672 cpu = get_cpu();
6673 cpufreq_get_policy(&policy, cpu);
6674 if (policy.cpuinfo.max_freq)
6675 max_tsc_khz = policy.cpuinfo.max_freq;
6676 put_cpu();
6677 #endif
6678 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6679 CPUFREQ_TRANSITION_NOTIFIER);
6681 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6683 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6684 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6687 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6688 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6690 int kvm_is_in_guest(void)
6692 return __this_cpu_read(current_vcpu) != NULL;
6695 static int kvm_is_user_mode(void)
6697 int user_mode = 3;
6699 if (__this_cpu_read(current_vcpu))
6700 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6702 return user_mode != 0;
6705 static unsigned long kvm_get_guest_ip(void)
6707 unsigned long ip = 0;
6709 if (__this_cpu_read(current_vcpu))
6710 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6712 return ip;
6715 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6716 .is_in_guest = kvm_is_in_guest,
6717 .is_user_mode = kvm_is_user_mode,
6718 .get_guest_ip = kvm_get_guest_ip,
6721 static void kvm_set_mmio_spte_mask(void)
6723 u64 mask;
6724 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6727 * Set the reserved bits and the present bit of an paging-structure
6728 * entry to generate page fault with PFER.RSV = 1.
6732 * Mask the uppermost physical address bit, which would be reserved as
6733 * long as the supported physical address width is less than 52.
6735 mask = 1ull << 51;
6737 /* Set the present bit. */
6738 mask |= 1ull;
6741 * If reserved bit is not supported, clear the present bit to disable
6742 * mmio page fault.
6744 if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6745 mask &= ~1ull;
6747 kvm_mmu_set_mmio_spte_mask(mask, mask);
6750 #ifdef CONFIG_X86_64
6751 static void pvclock_gtod_update_fn(struct work_struct *work)
6753 struct kvm *kvm;
6755 struct kvm_vcpu *vcpu;
6756 int i;
6758 spin_lock(&kvm_lock);
6759 list_for_each_entry(kvm, &vm_list, vm_list)
6760 kvm_for_each_vcpu(i, vcpu, kvm)
6761 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6762 atomic_set(&kvm_guest_has_master_clock, 0);
6763 spin_unlock(&kvm_lock);
6766 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6769 * Notification about pvclock gtod data update.
6771 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6772 void *priv)
6774 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6775 struct timekeeper *tk = priv;
6777 update_pvclock_gtod(tk);
6779 /* disable master clock if host does not trust, or does not
6780 * use, TSC based clocksource.
6782 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6783 atomic_read(&kvm_guest_has_master_clock) != 0)
6784 queue_work(system_long_wq, &pvclock_gtod_work);
6786 return 0;
6789 static struct notifier_block pvclock_gtod_notifier = {
6790 .notifier_call = pvclock_gtod_notify,
6792 #endif
6794 int kvm_arch_init(void *opaque)
6796 int r;
6797 struct kvm_x86_ops *ops = opaque;
6799 if (kvm_x86_ops) {
6800 printk(KERN_ERR "kvm: already loaded the other module\n");
6801 r = -EEXIST;
6802 goto out;
6805 if (!ops->cpu_has_kvm_support()) {
6806 printk(KERN_ERR "kvm: no hardware support\n");
6807 r = -EOPNOTSUPP;
6808 goto out;
6810 if (ops->disabled_by_bios()) {
6811 printk(KERN_ERR "kvm: disabled by bios\n");
6812 r = -EOPNOTSUPP;
6813 goto out;
6816 r = -ENOMEM;
6817 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6818 if (!shared_msrs) {
6819 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6820 goto out;
6823 r = kvm_mmu_module_init();
6824 if (r)
6825 goto out_free_percpu;
6827 kvm_set_mmio_spte_mask();
6829 kvm_x86_ops = ops;
6831 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6832 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6833 PT_PRESENT_MASK, 0, sme_me_mask);
6834 kvm_timer_init();
6836 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6838 if (boot_cpu_has(X86_FEATURE_XSAVE))
6839 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6841 kvm_lapic_init();
6842 #ifdef CONFIG_X86_64
6843 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6845 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6846 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6847 #endif
6849 return 0;
6851 out_free_percpu:
6852 free_percpu(shared_msrs);
6853 out:
6854 return r;
6857 void kvm_arch_exit(void)
6859 #ifdef CONFIG_X86_64
6860 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6861 clear_hv_tscchange_cb();
6862 #endif
6863 kvm_lapic_exit();
6864 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6866 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6867 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6868 CPUFREQ_TRANSITION_NOTIFIER);
6869 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6870 #ifdef CONFIG_X86_64
6871 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6872 #endif
6873 kvm_x86_ops = NULL;
6874 kvm_mmu_module_exit();
6875 free_percpu(shared_msrs);
6878 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6880 ++vcpu->stat.halt_exits;
6881 if (lapic_in_kernel(vcpu)) {
6882 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6883 return 1;
6884 } else {
6885 vcpu->run->exit_reason = KVM_EXIT_HLT;
6886 return 0;
6889 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6891 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6893 int ret = kvm_skip_emulated_instruction(vcpu);
6895 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6896 * KVM_EXIT_DEBUG here.
6898 return kvm_vcpu_halt(vcpu) && ret;
6900 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6902 #ifdef CONFIG_X86_64
6903 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6904 unsigned long clock_type)
6906 struct kvm_clock_pairing clock_pairing;
6907 struct timespec64 ts;
6908 u64 cycle;
6909 int ret;
6911 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6912 return -KVM_EOPNOTSUPP;
6914 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6915 return -KVM_EOPNOTSUPP;
6917 clock_pairing.sec = ts.tv_sec;
6918 clock_pairing.nsec = ts.tv_nsec;
6919 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6920 clock_pairing.flags = 0;
6921 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
6923 ret = 0;
6924 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6925 sizeof(struct kvm_clock_pairing)))
6926 ret = -KVM_EFAULT;
6928 return ret;
6930 #endif
6933 * kvm_pv_kick_cpu_op: Kick a vcpu.
6935 * @apicid - apicid of vcpu to be kicked.
6937 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6939 struct kvm_lapic_irq lapic_irq;
6941 lapic_irq.shorthand = 0;
6942 lapic_irq.dest_mode = 0;
6943 lapic_irq.level = 0;
6944 lapic_irq.dest_id = apicid;
6945 lapic_irq.msi_redir_hint = false;
6947 lapic_irq.delivery_mode = APIC_DM_REMRD;
6948 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6951 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6953 vcpu->arch.apicv_active = false;
6954 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6957 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6959 unsigned long nr, a0, a1, a2, a3, ret;
6960 int op_64_bit;
6962 if (kvm_hv_hypercall_enabled(vcpu->kvm))
6963 return kvm_hv_hypercall(vcpu);
6965 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6966 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6967 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6968 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6969 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6971 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6973 op_64_bit = is_64_bit_mode(vcpu);
6974 if (!op_64_bit) {
6975 nr &= 0xFFFFFFFF;
6976 a0 &= 0xFFFFFFFF;
6977 a1 &= 0xFFFFFFFF;
6978 a2 &= 0xFFFFFFFF;
6979 a3 &= 0xFFFFFFFF;
6982 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6983 ret = -KVM_EPERM;
6984 goto out;
6987 switch (nr) {
6988 case KVM_HC_VAPIC_POLL_IRQ:
6989 ret = 0;
6990 break;
6991 case KVM_HC_KICK_CPU:
6992 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6993 ret = 0;
6994 break;
6995 #ifdef CONFIG_X86_64
6996 case KVM_HC_CLOCK_PAIRING:
6997 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6998 break;
6999 case KVM_HC_SEND_IPI:
7000 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7001 break;
7002 #endif
7003 default:
7004 ret = -KVM_ENOSYS;
7005 break;
7007 out:
7008 if (!op_64_bit)
7009 ret = (u32)ret;
7010 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
7012 ++vcpu->stat.hypercalls;
7013 return kvm_skip_emulated_instruction(vcpu);
7015 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7017 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7019 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7020 char instruction[3];
7021 unsigned long rip = kvm_rip_read(vcpu);
7023 kvm_x86_ops->patch_hypercall(vcpu, instruction);
7025 return emulator_write_emulated(ctxt, rip, instruction, 3,
7026 &ctxt->exception);
7029 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7031 return vcpu->run->request_interrupt_window &&
7032 likely(!pic_in_kernel(vcpu->kvm));
7035 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7037 struct kvm_run *kvm_run = vcpu->run;
7039 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7040 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7041 kvm_run->cr8 = kvm_get_cr8(vcpu);
7042 kvm_run->apic_base = kvm_get_apic_base(vcpu);
7043 kvm_run->ready_for_interrupt_injection =
7044 pic_in_kernel(vcpu->kvm) ||
7045 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7048 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7050 int max_irr, tpr;
7052 if (!kvm_x86_ops->update_cr8_intercept)
7053 return;
7055 if (!lapic_in_kernel(vcpu))
7056 return;
7058 if (vcpu->arch.apicv_active)
7059 return;
7061 if (!vcpu->arch.apic->vapic_addr)
7062 max_irr = kvm_lapic_find_highest_irr(vcpu);
7063 else
7064 max_irr = -1;
7066 if (max_irr != -1)
7067 max_irr >>= 4;
7069 tpr = kvm_lapic_get_cr8(vcpu);
7071 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7074 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7076 int r;
7078 /* try to reinject previous events if any */
7080 if (vcpu->arch.exception.injected)
7081 kvm_x86_ops->queue_exception(vcpu);
7083 * Do not inject an NMI or interrupt if there is a pending
7084 * exception. Exceptions and interrupts are recognized at
7085 * instruction boundaries, i.e. the start of an instruction.
7086 * Trap-like exceptions, e.g. #DB, have higher priority than
7087 * NMIs and interrupts, i.e. traps are recognized before an
7088 * NMI/interrupt that's pending on the same instruction.
7089 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7090 * priority, but are only generated (pended) during instruction
7091 * execution, i.e. a pending fault-like exception means the
7092 * fault occurred on the *previous* instruction and must be
7093 * serviced prior to recognizing any new events in order to
7094 * fully complete the previous instruction.
7096 else if (!vcpu->arch.exception.pending) {
7097 if (vcpu->arch.nmi_injected)
7098 kvm_x86_ops->set_nmi(vcpu);
7099 else if (vcpu->arch.interrupt.injected)
7100 kvm_x86_ops->set_irq(vcpu);
7104 * Call check_nested_events() even if we reinjected a previous event
7105 * in order for caller to determine if it should require immediate-exit
7106 * from L2 to L1 due to pending L1 events which require exit
7107 * from L2 to L1.
7109 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7110 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7111 if (r != 0)
7112 return r;
7115 /* try to inject new event if pending */
7116 if (vcpu->arch.exception.pending) {
7117 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7118 vcpu->arch.exception.has_error_code,
7119 vcpu->arch.exception.error_code);
7121 WARN_ON_ONCE(vcpu->arch.exception.injected);
7122 vcpu->arch.exception.pending = false;
7123 vcpu->arch.exception.injected = true;
7125 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7126 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7127 X86_EFLAGS_RF);
7129 if (vcpu->arch.exception.nr == DB_VECTOR) {
7131 * This code assumes that nSVM doesn't use
7132 * check_nested_events(). If it does, the
7133 * DR6/DR7 changes should happen before L1
7134 * gets a #VMEXIT for an intercepted #DB in
7135 * L2. (Under VMX, on the other hand, the
7136 * DR6/DR7 changes should not happen in the
7137 * event of a VM-exit to L1 for an intercepted
7138 * #DB in L2.)
7140 kvm_deliver_exception_payload(vcpu);
7141 if (vcpu->arch.dr7 & DR7_GD) {
7142 vcpu->arch.dr7 &= ~DR7_GD;
7143 kvm_update_dr7(vcpu);
7147 kvm_x86_ops->queue_exception(vcpu);
7150 /* Don't consider new event if we re-injected an event */
7151 if (kvm_event_needs_reinjection(vcpu))
7152 return 0;
7154 if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7155 kvm_x86_ops->smi_allowed(vcpu)) {
7156 vcpu->arch.smi_pending = false;
7157 ++vcpu->arch.smi_count;
7158 enter_smm(vcpu);
7159 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7160 --vcpu->arch.nmi_pending;
7161 vcpu->arch.nmi_injected = true;
7162 kvm_x86_ops->set_nmi(vcpu);
7163 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7165 * Because interrupts can be injected asynchronously, we are
7166 * calling check_nested_events again here to avoid a race condition.
7167 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7168 * proposal and current concerns. Perhaps we should be setting
7169 * KVM_REQ_EVENT only on certain events and not unconditionally?
7171 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7172 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7173 if (r != 0)
7174 return r;
7176 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7177 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7178 false);
7179 kvm_x86_ops->set_irq(vcpu);
7183 return 0;
7186 static void process_nmi(struct kvm_vcpu *vcpu)
7188 unsigned limit = 2;
7191 * x86 is limited to one NMI running, and one NMI pending after it.
7192 * If an NMI is already in progress, limit further NMIs to just one.
7193 * Otherwise, allow two (and we'll inject the first one immediately).
7195 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7196 limit = 1;
7198 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7199 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7200 kvm_make_request(KVM_REQ_EVENT, vcpu);
7203 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7205 u32 flags = 0;
7206 flags |= seg->g << 23;
7207 flags |= seg->db << 22;
7208 flags |= seg->l << 21;
7209 flags |= seg->avl << 20;
7210 flags |= seg->present << 15;
7211 flags |= seg->dpl << 13;
7212 flags |= seg->s << 12;
7213 flags |= seg->type << 8;
7214 return flags;
7217 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7219 struct kvm_segment seg;
7220 int offset;
7222 kvm_get_segment(vcpu, &seg, n);
7223 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7225 if (n < 3)
7226 offset = 0x7f84 + n * 12;
7227 else
7228 offset = 0x7f2c + (n - 3) * 12;
7230 put_smstate(u32, buf, offset + 8, seg.base);
7231 put_smstate(u32, buf, offset + 4, seg.limit);
7232 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7235 #ifdef CONFIG_X86_64
7236 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7238 struct kvm_segment seg;
7239 int offset;
7240 u16 flags;
7242 kvm_get_segment(vcpu, &seg, n);
7243 offset = 0x7e00 + n * 16;
7245 flags = enter_smm_get_segment_flags(&seg) >> 8;
7246 put_smstate(u16, buf, offset, seg.selector);
7247 put_smstate(u16, buf, offset + 2, flags);
7248 put_smstate(u32, buf, offset + 4, seg.limit);
7249 put_smstate(u64, buf, offset + 8, seg.base);
7251 #endif
7253 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7255 struct desc_ptr dt;
7256 struct kvm_segment seg;
7257 unsigned long val;
7258 int i;
7260 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7261 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7262 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7263 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7265 for (i = 0; i < 8; i++)
7266 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7268 kvm_get_dr(vcpu, 6, &val);
7269 put_smstate(u32, buf, 0x7fcc, (u32)val);
7270 kvm_get_dr(vcpu, 7, &val);
7271 put_smstate(u32, buf, 0x7fc8, (u32)val);
7273 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7274 put_smstate(u32, buf, 0x7fc4, seg.selector);
7275 put_smstate(u32, buf, 0x7f64, seg.base);
7276 put_smstate(u32, buf, 0x7f60, seg.limit);
7277 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7279 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7280 put_smstate(u32, buf, 0x7fc0, seg.selector);
7281 put_smstate(u32, buf, 0x7f80, seg.base);
7282 put_smstate(u32, buf, 0x7f7c, seg.limit);
7283 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7285 kvm_x86_ops->get_gdt(vcpu, &dt);
7286 put_smstate(u32, buf, 0x7f74, dt.address);
7287 put_smstate(u32, buf, 0x7f70, dt.size);
7289 kvm_x86_ops->get_idt(vcpu, &dt);
7290 put_smstate(u32, buf, 0x7f58, dt.address);
7291 put_smstate(u32, buf, 0x7f54, dt.size);
7293 for (i = 0; i < 6; i++)
7294 enter_smm_save_seg_32(vcpu, buf, i);
7296 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7298 /* revision id */
7299 put_smstate(u32, buf, 0x7efc, 0x00020000);
7300 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7303 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7305 #ifdef CONFIG_X86_64
7306 struct desc_ptr dt;
7307 struct kvm_segment seg;
7308 unsigned long val;
7309 int i;
7311 for (i = 0; i < 16; i++)
7312 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7314 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7315 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7317 kvm_get_dr(vcpu, 6, &val);
7318 put_smstate(u64, buf, 0x7f68, val);
7319 kvm_get_dr(vcpu, 7, &val);
7320 put_smstate(u64, buf, 0x7f60, val);
7322 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7323 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7324 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7326 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7328 /* revision id */
7329 put_smstate(u32, buf, 0x7efc, 0x00020064);
7331 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7333 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7334 put_smstate(u16, buf, 0x7e90, seg.selector);
7335 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7336 put_smstate(u32, buf, 0x7e94, seg.limit);
7337 put_smstate(u64, buf, 0x7e98, seg.base);
7339 kvm_x86_ops->get_idt(vcpu, &dt);
7340 put_smstate(u32, buf, 0x7e84, dt.size);
7341 put_smstate(u64, buf, 0x7e88, dt.address);
7343 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7344 put_smstate(u16, buf, 0x7e70, seg.selector);
7345 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7346 put_smstate(u32, buf, 0x7e74, seg.limit);
7347 put_smstate(u64, buf, 0x7e78, seg.base);
7349 kvm_x86_ops->get_gdt(vcpu, &dt);
7350 put_smstate(u32, buf, 0x7e64, dt.size);
7351 put_smstate(u64, buf, 0x7e68, dt.address);
7353 for (i = 0; i < 6; i++)
7354 enter_smm_save_seg_64(vcpu, buf, i);
7355 #else
7356 WARN_ON_ONCE(1);
7357 #endif
7360 static void enter_smm(struct kvm_vcpu *vcpu)
7362 struct kvm_segment cs, ds;
7363 struct desc_ptr dt;
7364 char buf[512];
7365 u32 cr0;
7367 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7368 memset(buf, 0, 512);
7369 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7370 enter_smm_save_state_64(vcpu, buf);
7371 else
7372 enter_smm_save_state_32(vcpu, buf);
7375 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7376 * vCPU state (e.g. leave guest mode) after we've saved the state into
7377 * the SMM state-save area.
7379 kvm_x86_ops->pre_enter_smm(vcpu, buf);
7381 vcpu->arch.hflags |= HF_SMM_MASK;
7382 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7384 if (kvm_x86_ops->get_nmi_mask(vcpu))
7385 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7386 else
7387 kvm_x86_ops->set_nmi_mask(vcpu, true);
7389 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7390 kvm_rip_write(vcpu, 0x8000);
7392 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7393 kvm_x86_ops->set_cr0(vcpu, cr0);
7394 vcpu->arch.cr0 = cr0;
7396 kvm_x86_ops->set_cr4(vcpu, 0);
7398 /* Undocumented: IDT limit is set to zero on entry to SMM. */
7399 dt.address = dt.size = 0;
7400 kvm_x86_ops->set_idt(vcpu, &dt);
7402 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7404 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7405 cs.base = vcpu->arch.smbase;
7407 ds.selector = 0;
7408 ds.base = 0;
7410 cs.limit = ds.limit = 0xffffffff;
7411 cs.type = ds.type = 0x3;
7412 cs.dpl = ds.dpl = 0;
7413 cs.db = ds.db = 0;
7414 cs.s = ds.s = 1;
7415 cs.l = ds.l = 0;
7416 cs.g = ds.g = 1;
7417 cs.avl = ds.avl = 0;
7418 cs.present = ds.present = 1;
7419 cs.unusable = ds.unusable = 0;
7420 cs.padding = ds.padding = 0;
7422 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7423 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7424 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7425 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7426 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7427 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7429 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7430 kvm_x86_ops->set_efer(vcpu, 0);
7432 kvm_update_cpuid(vcpu);
7433 kvm_mmu_reset_context(vcpu);
7436 static void process_smi(struct kvm_vcpu *vcpu)
7438 vcpu->arch.smi_pending = true;
7439 kvm_make_request(KVM_REQ_EVENT, vcpu);
7442 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7444 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7447 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7449 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7450 return;
7452 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7454 if (irqchip_split(vcpu->kvm))
7455 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7456 else {
7457 if (vcpu->arch.apicv_active)
7458 kvm_x86_ops->sync_pir_to_irr(vcpu);
7459 if (ioapic_in_kernel(vcpu->kvm))
7460 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7463 if (is_guest_mode(vcpu))
7464 vcpu->arch.load_eoi_exitmap_pending = true;
7465 else
7466 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7469 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7471 u64 eoi_exit_bitmap[4];
7473 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7474 return;
7476 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7477 vcpu_to_synic(vcpu)->vec_bitmap, 256);
7478 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7481 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7482 unsigned long start, unsigned long end,
7483 bool blockable)
7485 unsigned long apic_address;
7488 * The physical address of apic access page is stored in the VMCS.
7489 * Update it when it becomes invalid.
7491 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7492 if (start <= apic_address && apic_address < end)
7493 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7495 return 0;
7498 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7500 struct page *page = NULL;
7502 if (!lapic_in_kernel(vcpu))
7503 return;
7505 if (!kvm_x86_ops->set_apic_access_page_addr)
7506 return;
7508 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7509 if (is_error_page(page))
7510 return;
7511 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7514 * Do not pin apic access page in memory, the MMU notifier
7515 * will call us again if it is migrated or swapped out.
7517 put_page(page);
7519 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7521 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7523 smp_send_reschedule(vcpu->cpu);
7525 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7528 * Returns 1 to let vcpu_run() continue the guest execution loop without
7529 * exiting to the userspace. Otherwise, the value will be returned to the
7530 * userspace.
7532 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7534 int r;
7535 bool req_int_win =
7536 dm_request_for_irq_injection(vcpu) &&
7537 kvm_cpu_accept_dm_intr(vcpu);
7539 bool req_immediate_exit = false;
7541 if (kvm_request_pending(vcpu)) {
7542 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7543 kvm_x86_ops->get_vmcs12_pages(vcpu);
7544 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7545 kvm_mmu_unload(vcpu);
7546 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7547 __kvm_migrate_timers(vcpu);
7548 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7549 kvm_gen_update_masterclock(vcpu->kvm);
7550 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7551 kvm_gen_kvmclock_update(vcpu);
7552 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7553 r = kvm_guest_time_update(vcpu);
7554 if (unlikely(r))
7555 goto out;
7557 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7558 kvm_mmu_sync_roots(vcpu);
7559 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7560 kvm_mmu_load_cr3(vcpu);
7561 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7562 kvm_vcpu_flush_tlb(vcpu, true);
7563 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7564 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7565 r = 0;
7566 goto out;
7568 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7569 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7570 vcpu->mmio_needed = 0;
7571 r = 0;
7572 goto out;
7574 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7575 /* Page is swapped out. Do synthetic halt */
7576 vcpu->arch.apf.halted = true;
7577 r = 1;
7578 goto out;
7580 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7581 record_steal_time(vcpu);
7582 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7583 process_smi(vcpu);
7584 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7585 process_nmi(vcpu);
7586 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7587 kvm_pmu_handle_event(vcpu);
7588 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7589 kvm_pmu_deliver_pmi(vcpu);
7590 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7591 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7592 if (test_bit(vcpu->arch.pending_ioapic_eoi,
7593 vcpu->arch.ioapic_handled_vectors)) {
7594 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7595 vcpu->run->eoi.vector =
7596 vcpu->arch.pending_ioapic_eoi;
7597 r = 0;
7598 goto out;
7601 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7602 vcpu_scan_ioapic(vcpu);
7603 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7604 vcpu_load_eoi_exitmap(vcpu);
7605 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7606 kvm_vcpu_reload_apic_access_page(vcpu);
7607 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7608 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7609 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7610 r = 0;
7611 goto out;
7613 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7614 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7615 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7616 r = 0;
7617 goto out;
7619 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7620 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7621 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7622 r = 0;
7623 goto out;
7627 * KVM_REQ_HV_STIMER has to be processed after
7628 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7629 * depend on the guest clock being up-to-date
7631 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7632 kvm_hv_process_stimers(vcpu);
7635 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7636 ++vcpu->stat.req_event;
7637 kvm_apic_accept_events(vcpu);
7638 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7639 r = 1;
7640 goto out;
7643 if (inject_pending_event(vcpu, req_int_win) != 0)
7644 req_immediate_exit = true;
7645 else {
7646 /* Enable SMI/NMI/IRQ window open exits if needed.
7648 * SMIs have three cases:
7649 * 1) They can be nested, and then there is nothing to
7650 * do here because RSM will cause a vmexit anyway.
7651 * 2) There is an ISA-specific reason why SMI cannot be
7652 * injected, and the moment when this changes can be
7653 * intercepted.
7654 * 3) Or the SMI can be pending because
7655 * inject_pending_event has completed the injection
7656 * of an IRQ or NMI from the previous vmexit, and
7657 * then we request an immediate exit to inject the
7658 * SMI.
7660 if (vcpu->arch.smi_pending && !is_smm(vcpu))
7661 if (!kvm_x86_ops->enable_smi_window(vcpu))
7662 req_immediate_exit = true;
7663 if (vcpu->arch.nmi_pending)
7664 kvm_x86_ops->enable_nmi_window(vcpu);
7665 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7666 kvm_x86_ops->enable_irq_window(vcpu);
7667 WARN_ON(vcpu->arch.exception.pending);
7670 if (kvm_lapic_enabled(vcpu)) {
7671 update_cr8_intercept(vcpu);
7672 kvm_lapic_sync_to_vapic(vcpu);
7676 r = kvm_mmu_reload(vcpu);
7677 if (unlikely(r)) {
7678 goto cancel_injection;
7681 preempt_disable();
7683 kvm_x86_ops->prepare_guest_switch(vcpu);
7686 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7687 * IPI are then delayed after guest entry, which ensures that they
7688 * result in virtual interrupt delivery.
7690 local_irq_disable();
7691 vcpu->mode = IN_GUEST_MODE;
7693 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7696 * 1) We should set ->mode before checking ->requests. Please see
7697 * the comment in kvm_vcpu_exiting_guest_mode().
7699 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7700 * pairs with the memory barrier implicit in pi_test_and_set_on
7701 * (see vmx_deliver_posted_interrupt).
7703 * 3) This also orders the write to mode from any reads to the page
7704 * tables done while the VCPU is running. Please see the comment
7705 * in kvm_flush_remote_tlbs.
7707 smp_mb__after_srcu_read_unlock();
7710 * This handles the case where a posted interrupt was
7711 * notified with kvm_vcpu_kick.
7713 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7714 kvm_x86_ops->sync_pir_to_irr(vcpu);
7716 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7717 || need_resched() || signal_pending(current)) {
7718 vcpu->mode = OUTSIDE_GUEST_MODE;
7719 smp_wmb();
7720 local_irq_enable();
7721 preempt_enable();
7722 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7723 r = 1;
7724 goto cancel_injection;
7727 kvm_load_guest_xcr0(vcpu);
7729 if (req_immediate_exit) {
7730 kvm_make_request(KVM_REQ_EVENT, vcpu);
7731 kvm_x86_ops->request_immediate_exit(vcpu);
7734 trace_kvm_entry(vcpu->vcpu_id);
7735 if (lapic_timer_advance_ns)
7736 wait_lapic_expire(vcpu);
7737 guest_enter_irqoff();
7739 if (unlikely(vcpu->arch.switch_db_regs)) {
7740 set_debugreg(0, 7);
7741 set_debugreg(vcpu->arch.eff_db[0], 0);
7742 set_debugreg(vcpu->arch.eff_db[1], 1);
7743 set_debugreg(vcpu->arch.eff_db[2], 2);
7744 set_debugreg(vcpu->arch.eff_db[3], 3);
7745 set_debugreg(vcpu->arch.dr6, 6);
7746 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7749 kvm_x86_ops->run(vcpu);
7752 * Do this here before restoring debug registers on the host. And
7753 * since we do this before handling the vmexit, a DR access vmexit
7754 * can (a) read the correct value of the debug registers, (b) set
7755 * KVM_DEBUGREG_WONT_EXIT again.
7757 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7758 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7759 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7760 kvm_update_dr0123(vcpu);
7761 kvm_update_dr6(vcpu);
7762 kvm_update_dr7(vcpu);
7763 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7767 * If the guest has used debug registers, at least dr7
7768 * will be disabled while returning to the host.
7769 * If we don't have active breakpoints in the host, we don't
7770 * care about the messed up debug address registers. But if
7771 * we have some of them active, restore the old state.
7773 if (hw_breakpoint_active())
7774 hw_breakpoint_restore();
7776 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7778 vcpu->mode = OUTSIDE_GUEST_MODE;
7779 smp_wmb();
7781 kvm_put_guest_xcr0(vcpu);
7783 kvm_before_interrupt(vcpu);
7784 kvm_x86_ops->handle_external_intr(vcpu);
7785 kvm_after_interrupt(vcpu);
7787 ++vcpu->stat.exits;
7789 guest_exit_irqoff();
7791 local_irq_enable();
7792 preempt_enable();
7794 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7797 * Profile KVM exit RIPs:
7799 if (unlikely(prof_on == KVM_PROFILING)) {
7800 unsigned long rip = kvm_rip_read(vcpu);
7801 profile_hit(KVM_PROFILING, (void *)rip);
7804 if (unlikely(vcpu->arch.tsc_always_catchup))
7805 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7807 if (vcpu->arch.apic_attention)
7808 kvm_lapic_sync_from_vapic(vcpu);
7810 vcpu->arch.gpa_available = false;
7811 r = kvm_x86_ops->handle_exit(vcpu);
7812 return r;
7814 cancel_injection:
7815 kvm_x86_ops->cancel_injection(vcpu);
7816 if (unlikely(vcpu->arch.apic_attention))
7817 kvm_lapic_sync_from_vapic(vcpu);
7818 out:
7819 return r;
7822 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7824 if (!kvm_arch_vcpu_runnable(vcpu) &&
7825 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7826 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7827 kvm_vcpu_block(vcpu);
7828 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7830 if (kvm_x86_ops->post_block)
7831 kvm_x86_ops->post_block(vcpu);
7833 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7834 return 1;
7837 kvm_apic_accept_events(vcpu);
7838 switch(vcpu->arch.mp_state) {
7839 case KVM_MP_STATE_HALTED:
7840 vcpu->arch.pv.pv_unhalted = false;
7841 vcpu->arch.mp_state =
7842 KVM_MP_STATE_RUNNABLE;
7843 case KVM_MP_STATE_RUNNABLE:
7844 vcpu->arch.apf.halted = false;
7845 break;
7846 case KVM_MP_STATE_INIT_RECEIVED:
7847 break;
7848 default:
7849 return -EINTR;
7850 break;
7852 return 1;
7855 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7857 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7858 kvm_x86_ops->check_nested_events(vcpu, false);
7860 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7861 !vcpu->arch.apf.halted);
7864 static int vcpu_run(struct kvm_vcpu *vcpu)
7866 int r;
7867 struct kvm *kvm = vcpu->kvm;
7869 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7870 vcpu->arch.l1tf_flush_l1d = true;
7872 for (;;) {
7873 if (kvm_vcpu_running(vcpu)) {
7874 r = vcpu_enter_guest(vcpu);
7875 } else {
7876 r = vcpu_block(kvm, vcpu);
7879 if (r <= 0)
7880 break;
7882 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7883 if (kvm_cpu_has_pending_timer(vcpu))
7884 kvm_inject_pending_timer_irqs(vcpu);
7886 if (dm_request_for_irq_injection(vcpu) &&
7887 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7888 r = 0;
7889 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7890 ++vcpu->stat.request_irq_exits;
7891 break;
7894 kvm_check_async_pf_completion(vcpu);
7896 if (signal_pending(current)) {
7897 r = -EINTR;
7898 vcpu->run->exit_reason = KVM_EXIT_INTR;
7899 ++vcpu->stat.signal_exits;
7900 break;
7902 if (need_resched()) {
7903 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7904 cond_resched();
7905 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7909 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7911 return r;
7914 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7916 int r;
7917 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7918 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7919 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7920 if (r != EMULATE_DONE)
7921 return 0;
7922 return 1;
7925 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7927 BUG_ON(!vcpu->arch.pio.count);
7929 return complete_emulated_io(vcpu);
7933 * Implements the following, as a state machine:
7935 * read:
7936 * for each fragment
7937 * for each mmio piece in the fragment
7938 * write gpa, len
7939 * exit
7940 * copy data
7941 * execute insn
7943 * write:
7944 * for each fragment
7945 * for each mmio piece in the fragment
7946 * write gpa, len
7947 * copy data
7948 * exit
7950 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7952 struct kvm_run *run = vcpu->run;
7953 struct kvm_mmio_fragment *frag;
7954 unsigned len;
7956 BUG_ON(!vcpu->mmio_needed);
7958 /* Complete previous fragment */
7959 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7960 len = min(8u, frag->len);
7961 if (!vcpu->mmio_is_write)
7962 memcpy(frag->data, run->mmio.data, len);
7964 if (frag->len <= 8) {
7965 /* Switch to the next fragment. */
7966 frag++;
7967 vcpu->mmio_cur_fragment++;
7968 } else {
7969 /* Go forward to the next mmio piece. */
7970 frag->data += len;
7971 frag->gpa += len;
7972 frag->len -= len;
7975 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7976 vcpu->mmio_needed = 0;
7978 /* FIXME: return into emulator if single-stepping. */
7979 if (vcpu->mmio_is_write)
7980 return 1;
7981 vcpu->mmio_read_completed = 1;
7982 return complete_emulated_io(vcpu);
7985 run->exit_reason = KVM_EXIT_MMIO;
7986 run->mmio.phys_addr = frag->gpa;
7987 if (vcpu->mmio_is_write)
7988 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7989 run->mmio.len = min(8u, frag->len);
7990 run->mmio.is_write = vcpu->mmio_is_write;
7991 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7992 return 0;
7995 /* Swap (qemu) user FPU context for the guest FPU context. */
7996 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7998 preempt_disable();
7999 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8000 /* PKRU is separately restored in kvm_x86_ops->run. */
8001 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8002 ~XFEATURE_MASK_PKRU);
8003 preempt_enable();
8004 trace_kvm_fpu(1);
8007 /* When vcpu_run ends, restore user space FPU context. */
8008 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8010 preempt_disable();
8011 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8012 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8013 preempt_enable();
8014 ++vcpu->stat.fpu_reload;
8015 trace_kvm_fpu(0);
8018 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8020 int r;
8022 vcpu_load(vcpu);
8023 kvm_sigset_activate(vcpu);
8024 kvm_load_guest_fpu(vcpu);
8026 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8027 if (kvm_run->immediate_exit) {
8028 r = -EINTR;
8029 goto out;
8031 kvm_vcpu_block(vcpu);
8032 kvm_apic_accept_events(vcpu);
8033 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8034 r = -EAGAIN;
8035 if (signal_pending(current)) {
8036 r = -EINTR;
8037 vcpu->run->exit_reason = KVM_EXIT_INTR;
8038 ++vcpu->stat.signal_exits;
8040 goto out;
8043 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8044 r = -EINVAL;
8045 goto out;
8048 if (vcpu->run->kvm_dirty_regs) {
8049 r = sync_regs(vcpu);
8050 if (r != 0)
8051 goto out;
8054 /* re-sync apic's tpr */
8055 if (!lapic_in_kernel(vcpu)) {
8056 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8057 r = -EINVAL;
8058 goto out;
8062 if (unlikely(vcpu->arch.complete_userspace_io)) {
8063 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8064 vcpu->arch.complete_userspace_io = NULL;
8065 r = cui(vcpu);
8066 if (r <= 0)
8067 goto out;
8068 } else
8069 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8071 if (kvm_run->immediate_exit)
8072 r = -EINTR;
8073 else
8074 r = vcpu_run(vcpu);
8076 out:
8077 kvm_put_guest_fpu(vcpu);
8078 if (vcpu->run->kvm_valid_regs)
8079 store_regs(vcpu);
8080 post_kvm_run_save(vcpu);
8081 kvm_sigset_deactivate(vcpu);
8083 vcpu_put(vcpu);
8084 return r;
8087 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8089 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8091 * We are here if userspace calls get_regs() in the middle of
8092 * instruction emulation. Registers state needs to be copied
8093 * back from emulation context to vcpu. Userspace shouldn't do
8094 * that usually, but some bad designed PV devices (vmware
8095 * backdoor interface) need this to work
8097 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8098 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8100 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
8101 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
8102 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
8103 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
8104 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
8105 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
8106 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8107 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
8108 #ifdef CONFIG_X86_64
8109 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
8110 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
8111 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
8112 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
8113 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
8114 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
8115 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
8116 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
8117 #endif
8119 regs->rip = kvm_rip_read(vcpu);
8120 regs->rflags = kvm_get_rflags(vcpu);
8123 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8125 vcpu_load(vcpu);
8126 __get_regs(vcpu, regs);
8127 vcpu_put(vcpu);
8128 return 0;
8131 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8133 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8134 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8136 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
8137 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
8138 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
8139 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
8140 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
8141 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
8142 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
8143 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8144 #ifdef CONFIG_X86_64
8145 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8146 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8147 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8148 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8149 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8150 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8151 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8152 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8153 #endif
8155 kvm_rip_write(vcpu, regs->rip);
8156 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8158 vcpu->arch.exception.pending = false;
8160 kvm_make_request(KVM_REQ_EVENT, vcpu);
8163 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8165 vcpu_load(vcpu);
8166 __set_regs(vcpu, regs);
8167 vcpu_put(vcpu);
8168 return 0;
8171 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8173 struct kvm_segment cs;
8175 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8176 *db = cs.db;
8177 *l = cs.l;
8179 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8181 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8183 struct desc_ptr dt;
8185 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8186 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8187 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8188 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8189 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8190 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8192 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8193 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8195 kvm_x86_ops->get_idt(vcpu, &dt);
8196 sregs->idt.limit = dt.size;
8197 sregs->idt.base = dt.address;
8198 kvm_x86_ops->get_gdt(vcpu, &dt);
8199 sregs->gdt.limit = dt.size;
8200 sregs->gdt.base = dt.address;
8202 sregs->cr0 = kvm_read_cr0(vcpu);
8203 sregs->cr2 = vcpu->arch.cr2;
8204 sregs->cr3 = kvm_read_cr3(vcpu);
8205 sregs->cr4 = kvm_read_cr4(vcpu);
8206 sregs->cr8 = kvm_get_cr8(vcpu);
8207 sregs->efer = vcpu->arch.efer;
8208 sregs->apic_base = kvm_get_apic_base(vcpu);
8210 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8212 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8213 set_bit(vcpu->arch.interrupt.nr,
8214 (unsigned long *)sregs->interrupt_bitmap);
8217 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8218 struct kvm_sregs *sregs)
8220 vcpu_load(vcpu);
8221 __get_sregs(vcpu, sregs);
8222 vcpu_put(vcpu);
8223 return 0;
8226 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8227 struct kvm_mp_state *mp_state)
8229 vcpu_load(vcpu);
8231 kvm_apic_accept_events(vcpu);
8232 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8233 vcpu->arch.pv.pv_unhalted)
8234 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8235 else
8236 mp_state->mp_state = vcpu->arch.mp_state;
8238 vcpu_put(vcpu);
8239 return 0;
8242 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8243 struct kvm_mp_state *mp_state)
8245 int ret = -EINVAL;
8247 vcpu_load(vcpu);
8249 if (!lapic_in_kernel(vcpu) &&
8250 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8251 goto out;
8253 /* INITs are latched while in SMM */
8254 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8255 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8256 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8257 goto out;
8259 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8260 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8261 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8262 } else
8263 vcpu->arch.mp_state = mp_state->mp_state;
8264 kvm_make_request(KVM_REQ_EVENT, vcpu);
8266 ret = 0;
8267 out:
8268 vcpu_put(vcpu);
8269 return ret;
8272 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8273 int reason, bool has_error_code, u32 error_code)
8275 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8276 int ret;
8278 init_emulate_ctxt(vcpu);
8280 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8281 has_error_code, error_code);
8283 if (ret)
8284 return EMULATE_FAIL;
8286 kvm_rip_write(vcpu, ctxt->eip);
8287 kvm_set_rflags(vcpu, ctxt->eflags);
8288 kvm_make_request(KVM_REQ_EVENT, vcpu);
8289 return EMULATE_DONE;
8291 EXPORT_SYMBOL_GPL(kvm_task_switch);
8293 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8295 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8296 (sregs->cr4 & X86_CR4_OSXSAVE))
8297 return -EINVAL;
8299 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8301 * When EFER.LME and CR0.PG are set, the processor is in
8302 * 64-bit mode (though maybe in a 32-bit code segment).
8303 * CR4.PAE and EFER.LMA must be set.
8305 if (!(sregs->cr4 & X86_CR4_PAE)
8306 || !(sregs->efer & EFER_LMA))
8307 return -EINVAL;
8308 } else {
8310 * Not in 64-bit mode: EFER.LMA is clear and the code
8311 * segment cannot be 64-bit.
8313 if (sregs->efer & EFER_LMA || sregs->cs.l)
8314 return -EINVAL;
8317 return 0;
8320 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8322 struct msr_data apic_base_msr;
8323 int mmu_reset_needed = 0;
8324 int cpuid_update_needed = 0;
8325 int pending_vec, max_bits, idx;
8326 struct desc_ptr dt;
8327 int ret = -EINVAL;
8329 if (kvm_valid_sregs(vcpu, sregs))
8330 goto out;
8332 apic_base_msr.data = sregs->apic_base;
8333 apic_base_msr.host_initiated = true;
8334 if (kvm_set_apic_base(vcpu, &apic_base_msr))
8335 goto out;
8337 dt.size = sregs->idt.limit;
8338 dt.address = sregs->idt.base;
8339 kvm_x86_ops->set_idt(vcpu, &dt);
8340 dt.size = sregs->gdt.limit;
8341 dt.address = sregs->gdt.base;
8342 kvm_x86_ops->set_gdt(vcpu, &dt);
8344 vcpu->arch.cr2 = sregs->cr2;
8345 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8346 vcpu->arch.cr3 = sregs->cr3;
8347 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8349 kvm_set_cr8(vcpu, sregs->cr8);
8351 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8352 kvm_x86_ops->set_efer(vcpu, sregs->efer);
8354 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8355 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8356 vcpu->arch.cr0 = sregs->cr0;
8358 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8359 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8360 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8361 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8362 if (cpuid_update_needed)
8363 kvm_update_cpuid(vcpu);
8365 idx = srcu_read_lock(&vcpu->kvm->srcu);
8366 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8367 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8368 mmu_reset_needed = 1;
8370 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8372 if (mmu_reset_needed)
8373 kvm_mmu_reset_context(vcpu);
8375 max_bits = KVM_NR_INTERRUPTS;
8376 pending_vec = find_first_bit(
8377 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8378 if (pending_vec < max_bits) {
8379 kvm_queue_interrupt(vcpu, pending_vec, false);
8380 pr_debug("Set back pending irq %d\n", pending_vec);
8383 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8384 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8385 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8386 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8387 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8388 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8390 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8391 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8393 update_cr8_intercept(vcpu);
8395 /* Older userspace won't unhalt the vcpu on reset. */
8396 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8397 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8398 !is_protmode(vcpu))
8399 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8401 kvm_make_request(KVM_REQ_EVENT, vcpu);
8403 ret = 0;
8404 out:
8405 return ret;
8408 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8409 struct kvm_sregs *sregs)
8411 int ret;
8413 vcpu_load(vcpu);
8414 ret = __set_sregs(vcpu, sregs);
8415 vcpu_put(vcpu);
8416 return ret;
8419 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8420 struct kvm_guest_debug *dbg)
8422 unsigned long rflags;
8423 int i, r;
8425 vcpu_load(vcpu);
8427 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8428 r = -EBUSY;
8429 if (vcpu->arch.exception.pending)
8430 goto out;
8431 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8432 kvm_queue_exception(vcpu, DB_VECTOR);
8433 else
8434 kvm_queue_exception(vcpu, BP_VECTOR);
8438 * Read rflags as long as potentially injected trace flags are still
8439 * filtered out.
8441 rflags = kvm_get_rflags(vcpu);
8443 vcpu->guest_debug = dbg->control;
8444 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8445 vcpu->guest_debug = 0;
8447 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8448 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8449 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8450 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8451 } else {
8452 for (i = 0; i < KVM_NR_DB_REGS; i++)
8453 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8455 kvm_update_dr7(vcpu);
8457 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8458 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8459 get_segment_base(vcpu, VCPU_SREG_CS);
8462 * Trigger an rflags update that will inject or remove the trace
8463 * flags.
8465 kvm_set_rflags(vcpu, rflags);
8467 kvm_x86_ops->update_bp_intercept(vcpu);
8469 r = 0;
8471 out:
8472 vcpu_put(vcpu);
8473 return r;
8477 * Translate a guest virtual address to a guest physical address.
8479 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8480 struct kvm_translation *tr)
8482 unsigned long vaddr = tr->linear_address;
8483 gpa_t gpa;
8484 int idx;
8486 vcpu_load(vcpu);
8488 idx = srcu_read_lock(&vcpu->kvm->srcu);
8489 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8490 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8491 tr->physical_address = gpa;
8492 tr->valid = gpa != UNMAPPED_GVA;
8493 tr->writeable = 1;
8494 tr->usermode = 0;
8496 vcpu_put(vcpu);
8497 return 0;
8500 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8502 struct fxregs_state *fxsave;
8504 vcpu_load(vcpu);
8506 fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8507 memcpy(fpu->fpr, fxsave->st_space, 128);
8508 fpu->fcw = fxsave->cwd;
8509 fpu->fsw = fxsave->swd;
8510 fpu->ftwx = fxsave->twd;
8511 fpu->last_opcode = fxsave->fop;
8512 fpu->last_ip = fxsave->rip;
8513 fpu->last_dp = fxsave->rdp;
8514 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8516 vcpu_put(vcpu);
8517 return 0;
8520 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8522 struct fxregs_state *fxsave;
8524 vcpu_load(vcpu);
8526 fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8528 memcpy(fxsave->st_space, fpu->fpr, 128);
8529 fxsave->cwd = fpu->fcw;
8530 fxsave->swd = fpu->fsw;
8531 fxsave->twd = fpu->ftwx;
8532 fxsave->fop = fpu->last_opcode;
8533 fxsave->rip = fpu->last_ip;
8534 fxsave->rdp = fpu->last_dp;
8535 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8537 vcpu_put(vcpu);
8538 return 0;
8541 static void store_regs(struct kvm_vcpu *vcpu)
8543 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8545 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8546 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8548 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8549 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8551 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8552 kvm_vcpu_ioctl_x86_get_vcpu_events(
8553 vcpu, &vcpu->run->s.regs.events);
8556 static int sync_regs(struct kvm_vcpu *vcpu)
8558 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8559 return -EINVAL;
8561 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8562 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8563 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8565 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8566 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8567 return -EINVAL;
8568 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8570 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8571 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8572 vcpu, &vcpu->run->s.regs.events))
8573 return -EINVAL;
8574 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8577 return 0;
8580 static void fx_init(struct kvm_vcpu *vcpu)
8582 fpstate_init(&vcpu->arch.guest_fpu.state);
8583 if (boot_cpu_has(X86_FEATURE_XSAVES))
8584 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8585 host_xcr0 | XSTATE_COMPACTION_ENABLED;
8588 * Ensure guest xcr0 is valid for loading
8590 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8592 vcpu->arch.cr0 |= X86_CR0_ET;
8595 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8597 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8599 kvmclock_reset(vcpu);
8601 kvm_x86_ops->vcpu_free(vcpu);
8602 free_cpumask_var(wbinvd_dirty_mask);
8605 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8606 unsigned int id)
8608 struct kvm_vcpu *vcpu;
8610 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8611 printk_once(KERN_WARNING
8612 "kvm: SMP vm created on host with unstable TSC; "
8613 "guest TSC will not be reliable\n");
8615 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8617 return vcpu;
8620 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8622 kvm_vcpu_mtrr_init(vcpu);
8623 vcpu_load(vcpu);
8624 kvm_vcpu_reset(vcpu, false);
8625 kvm_init_mmu(vcpu, false);
8626 vcpu_put(vcpu);
8627 return 0;
8630 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8632 struct msr_data msr;
8633 struct kvm *kvm = vcpu->kvm;
8635 kvm_hv_vcpu_postcreate(vcpu);
8637 if (mutex_lock_killable(&vcpu->mutex))
8638 return;
8639 vcpu_load(vcpu);
8640 msr.data = 0x0;
8641 msr.index = MSR_IA32_TSC;
8642 msr.host_initiated = true;
8643 kvm_write_tsc(vcpu, &msr);
8644 vcpu_put(vcpu);
8645 mutex_unlock(&vcpu->mutex);
8647 if (!kvmclock_periodic_sync)
8648 return;
8650 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8651 KVMCLOCK_SYNC_PERIOD);
8654 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8656 vcpu->arch.apf.msr_val = 0;
8658 vcpu_load(vcpu);
8659 kvm_mmu_unload(vcpu);
8660 vcpu_put(vcpu);
8662 kvm_x86_ops->vcpu_free(vcpu);
8665 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8667 kvm_lapic_reset(vcpu, init_event);
8669 vcpu->arch.hflags = 0;
8671 vcpu->arch.smi_pending = 0;
8672 vcpu->arch.smi_count = 0;
8673 atomic_set(&vcpu->arch.nmi_queued, 0);
8674 vcpu->arch.nmi_pending = 0;
8675 vcpu->arch.nmi_injected = false;
8676 kvm_clear_interrupt_queue(vcpu);
8677 kvm_clear_exception_queue(vcpu);
8678 vcpu->arch.exception.pending = false;
8680 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8681 kvm_update_dr0123(vcpu);
8682 vcpu->arch.dr6 = DR6_INIT;
8683 kvm_update_dr6(vcpu);
8684 vcpu->arch.dr7 = DR7_FIXED_1;
8685 kvm_update_dr7(vcpu);
8687 vcpu->arch.cr2 = 0;
8689 kvm_make_request(KVM_REQ_EVENT, vcpu);
8690 vcpu->arch.apf.msr_val = 0;
8691 vcpu->arch.st.msr_val = 0;
8693 kvmclock_reset(vcpu);
8695 kvm_clear_async_pf_completion_queue(vcpu);
8696 kvm_async_pf_hash_reset(vcpu);
8697 vcpu->arch.apf.halted = false;
8699 if (kvm_mpx_supported()) {
8700 void *mpx_state_buffer;
8703 * To avoid have the INIT path from kvm_apic_has_events() that be
8704 * called with loaded FPU and does not let userspace fix the state.
8706 if (init_event)
8707 kvm_put_guest_fpu(vcpu);
8708 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8709 XFEATURE_MASK_BNDREGS);
8710 if (mpx_state_buffer)
8711 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8712 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8713 XFEATURE_MASK_BNDCSR);
8714 if (mpx_state_buffer)
8715 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8716 if (init_event)
8717 kvm_load_guest_fpu(vcpu);
8720 if (!init_event) {
8721 kvm_pmu_reset(vcpu);
8722 vcpu->arch.smbase = 0x30000;
8724 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8725 vcpu->arch.msr_misc_features_enables = 0;
8727 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8730 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8731 vcpu->arch.regs_avail = ~0;
8732 vcpu->arch.regs_dirty = ~0;
8734 vcpu->arch.ia32_xss = 0;
8736 kvm_x86_ops->vcpu_reset(vcpu, init_event);
8739 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8741 struct kvm_segment cs;
8743 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8744 cs.selector = vector << 8;
8745 cs.base = vector << 12;
8746 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8747 kvm_rip_write(vcpu, 0);
8750 int kvm_arch_hardware_enable(void)
8752 struct kvm *kvm;
8753 struct kvm_vcpu *vcpu;
8754 int i;
8755 int ret;
8756 u64 local_tsc;
8757 u64 max_tsc = 0;
8758 bool stable, backwards_tsc = false;
8760 kvm_shared_msr_cpu_online();
8761 ret = kvm_x86_ops->hardware_enable();
8762 if (ret != 0)
8763 return ret;
8765 local_tsc = rdtsc();
8766 stable = !kvm_check_tsc_unstable();
8767 list_for_each_entry(kvm, &vm_list, vm_list) {
8768 kvm_for_each_vcpu(i, vcpu, kvm) {
8769 if (!stable && vcpu->cpu == smp_processor_id())
8770 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8771 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8772 backwards_tsc = true;
8773 if (vcpu->arch.last_host_tsc > max_tsc)
8774 max_tsc = vcpu->arch.last_host_tsc;
8780 * Sometimes, even reliable TSCs go backwards. This happens on
8781 * platforms that reset TSC during suspend or hibernate actions, but
8782 * maintain synchronization. We must compensate. Fortunately, we can
8783 * detect that condition here, which happens early in CPU bringup,
8784 * before any KVM threads can be running. Unfortunately, we can't
8785 * bring the TSCs fully up to date with real time, as we aren't yet far
8786 * enough into CPU bringup that we know how much real time has actually
8787 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8788 * variables that haven't been updated yet.
8790 * So we simply find the maximum observed TSC above, then record the
8791 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8792 * the adjustment will be applied. Note that we accumulate
8793 * adjustments, in case multiple suspend cycles happen before some VCPU
8794 * gets a chance to run again. In the event that no KVM threads get a
8795 * chance to run, we will miss the entire elapsed period, as we'll have
8796 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8797 * loose cycle time. This isn't too big a deal, since the loss will be
8798 * uniform across all VCPUs (not to mention the scenario is extremely
8799 * unlikely). It is possible that a second hibernate recovery happens
8800 * much faster than a first, causing the observed TSC here to be
8801 * smaller; this would require additional padding adjustment, which is
8802 * why we set last_host_tsc to the local tsc observed here.
8804 * N.B. - this code below runs only on platforms with reliable TSC,
8805 * as that is the only way backwards_tsc is set above. Also note
8806 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8807 * have the same delta_cyc adjustment applied if backwards_tsc
8808 * is detected. Note further, this adjustment is only done once,
8809 * as we reset last_host_tsc on all VCPUs to stop this from being
8810 * called multiple times (one for each physical CPU bringup).
8812 * Platforms with unreliable TSCs don't have to deal with this, they
8813 * will be compensated by the logic in vcpu_load, which sets the TSC to
8814 * catchup mode. This will catchup all VCPUs to real time, but cannot
8815 * guarantee that they stay in perfect synchronization.
8817 if (backwards_tsc) {
8818 u64 delta_cyc = max_tsc - local_tsc;
8819 list_for_each_entry(kvm, &vm_list, vm_list) {
8820 kvm->arch.backwards_tsc_observed = true;
8821 kvm_for_each_vcpu(i, vcpu, kvm) {
8822 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8823 vcpu->arch.last_host_tsc = local_tsc;
8824 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8828 * We have to disable TSC offset matching.. if you were
8829 * booting a VM while issuing an S4 host suspend....
8830 * you may have some problem. Solving this issue is
8831 * left as an exercise to the reader.
8833 kvm->arch.last_tsc_nsec = 0;
8834 kvm->arch.last_tsc_write = 0;
8838 return 0;
8841 void kvm_arch_hardware_disable(void)
8843 kvm_x86_ops->hardware_disable();
8844 drop_user_return_notifiers();
8847 int kvm_arch_hardware_setup(void)
8849 int r;
8851 r = kvm_x86_ops->hardware_setup();
8852 if (r != 0)
8853 return r;
8855 if (kvm_has_tsc_control) {
8857 * Make sure the user can only configure tsc_khz values that
8858 * fit into a signed integer.
8859 * A min value is not calculated because it will always
8860 * be 1 on all machines.
8862 u64 max = min(0x7fffffffULL,
8863 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8864 kvm_max_guest_tsc_khz = max;
8866 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8869 kvm_init_msr_list();
8870 return 0;
8873 void kvm_arch_hardware_unsetup(void)
8875 kvm_x86_ops->hardware_unsetup();
8878 void kvm_arch_check_processor_compat(void *rtn)
8880 kvm_x86_ops->check_processor_compatibility(rtn);
8883 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8885 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8887 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8889 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8891 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8894 struct static_key kvm_no_apic_vcpu __read_mostly;
8895 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8897 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8899 struct page *page;
8900 int r;
8902 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8903 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8904 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8905 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8906 else
8907 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8909 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8910 if (!page) {
8911 r = -ENOMEM;
8912 goto fail;
8914 vcpu->arch.pio_data = page_address(page);
8916 kvm_set_tsc_khz(vcpu, max_tsc_khz);
8918 r = kvm_mmu_create(vcpu);
8919 if (r < 0)
8920 goto fail_free_pio_data;
8922 if (irqchip_in_kernel(vcpu->kvm)) {
8923 r = kvm_create_lapic(vcpu);
8924 if (r < 0)
8925 goto fail_mmu_destroy;
8926 } else
8927 static_key_slow_inc(&kvm_no_apic_vcpu);
8929 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8930 GFP_KERNEL);
8931 if (!vcpu->arch.mce_banks) {
8932 r = -ENOMEM;
8933 goto fail_free_lapic;
8935 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8937 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8938 r = -ENOMEM;
8939 goto fail_free_mce_banks;
8942 fx_init(vcpu);
8944 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8946 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8948 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8950 kvm_async_pf_hash_reset(vcpu);
8951 kvm_pmu_init(vcpu);
8953 vcpu->arch.pending_external_vector = -1;
8954 vcpu->arch.preempted_in_kernel = false;
8956 kvm_hv_vcpu_init(vcpu);
8958 return 0;
8960 fail_free_mce_banks:
8961 kfree(vcpu->arch.mce_banks);
8962 fail_free_lapic:
8963 kvm_free_lapic(vcpu);
8964 fail_mmu_destroy:
8965 kvm_mmu_destroy(vcpu);
8966 fail_free_pio_data:
8967 free_page((unsigned long)vcpu->arch.pio_data);
8968 fail:
8969 return r;
8972 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8974 int idx;
8976 kvm_hv_vcpu_uninit(vcpu);
8977 kvm_pmu_destroy(vcpu);
8978 kfree(vcpu->arch.mce_banks);
8979 kvm_free_lapic(vcpu);
8980 idx = srcu_read_lock(&vcpu->kvm->srcu);
8981 kvm_mmu_destroy(vcpu);
8982 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8983 free_page((unsigned long)vcpu->arch.pio_data);
8984 if (!lapic_in_kernel(vcpu))
8985 static_key_slow_dec(&kvm_no_apic_vcpu);
8988 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8990 vcpu->arch.l1tf_flush_l1d = true;
8991 kvm_x86_ops->sched_in(vcpu, cpu);
8994 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8996 if (type)
8997 return -EINVAL;
8999 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9000 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9001 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9002 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9003 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9005 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9006 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9007 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9008 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9009 &kvm->arch.irq_sources_bitmap);
9011 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9012 mutex_init(&kvm->arch.apic_map_lock);
9013 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9015 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9016 pvclock_update_vm_gtod_copy(kvm);
9018 kvm->arch.guest_can_read_msr_platform_info = true;
9020 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9021 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9023 kvm_hv_init_vm(kvm);
9024 kvm_page_track_init(kvm);
9025 kvm_mmu_init_vm(kvm);
9027 if (kvm_x86_ops->vm_init)
9028 return kvm_x86_ops->vm_init(kvm);
9030 return 0;
9033 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9035 vcpu_load(vcpu);
9036 kvm_mmu_unload(vcpu);
9037 vcpu_put(vcpu);
9040 static void kvm_free_vcpus(struct kvm *kvm)
9042 unsigned int i;
9043 struct kvm_vcpu *vcpu;
9046 * Unpin any mmu pages first.
9048 kvm_for_each_vcpu(i, vcpu, kvm) {
9049 kvm_clear_async_pf_completion_queue(vcpu);
9050 kvm_unload_vcpu_mmu(vcpu);
9052 kvm_for_each_vcpu(i, vcpu, kvm)
9053 kvm_arch_vcpu_free(vcpu);
9055 mutex_lock(&kvm->lock);
9056 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9057 kvm->vcpus[i] = NULL;
9059 atomic_set(&kvm->online_vcpus, 0);
9060 mutex_unlock(&kvm->lock);
9063 void kvm_arch_sync_events(struct kvm *kvm)
9065 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9066 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9067 kvm_free_pit(kvm);
9070 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9072 int i, r;
9073 unsigned long hva;
9074 struct kvm_memslots *slots = kvm_memslots(kvm);
9075 struct kvm_memory_slot *slot, old;
9077 /* Called with kvm->slots_lock held. */
9078 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9079 return -EINVAL;
9081 slot = id_to_memslot(slots, id);
9082 if (size) {
9083 if (slot->npages)
9084 return -EEXIST;
9087 * MAP_SHARED to prevent internal slot pages from being moved
9088 * by fork()/COW.
9090 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9091 MAP_SHARED | MAP_ANONYMOUS, 0);
9092 if (IS_ERR((void *)hva))
9093 return PTR_ERR((void *)hva);
9094 } else {
9095 if (!slot->npages)
9096 return 0;
9098 hva = 0;
9101 old = *slot;
9102 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9103 struct kvm_userspace_memory_region m;
9105 m.slot = id | (i << 16);
9106 m.flags = 0;
9107 m.guest_phys_addr = gpa;
9108 m.userspace_addr = hva;
9109 m.memory_size = size;
9110 r = __kvm_set_memory_region(kvm, &m);
9111 if (r < 0)
9112 return r;
9115 if (!size)
9116 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9118 return 0;
9120 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9122 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9124 int r;
9126 mutex_lock(&kvm->slots_lock);
9127 r = __x86_set_memory_region(kvm, id, gpa, size);
9128 mutex_unlock(&kvm->slots_lock);
9130 return r;
9132 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9134 void kvm_arch_destroy_vm(struct kvm *kvm)
9136 if (current->mm == kvm->mm) {
9138 * Free memory regions allocated on behalf of userspace,
9139 * unless the the memory map has changed due to process exit
9140 * or fd copying.
9142 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9143 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9144 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9146 if (kvm_x86_ops->vm_destroy)
9147 kvm_x86_ops->vm_destroy(kvm);
9148 kvm_pic_destroy(kvm);
9149 kvm_ioapic_destroy(kvm);
9150 kvm_free_vcpus(kvm);
9151 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9152 kvm_mmu_uninit_vm(kvm);
9153 kvm_page_track_cleanup(kvm);
9154 kvm_hv_destroy_vm(kvm);
9157 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9158 struct kvm_memory_slot *dont)
9160 int i;
9162 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9163 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9164 kvfree(free->arch.rmap[i]);
9165 free->arch.rmap[i] = NULL;
9167 if (i == 0)
9168 continue;
9170 if (!dont || free->arch.lpage_info[i - 1] !=
9171 dont->arch.lpage_info[i - 1]) {
9172 kvfree(free->arch.lpage_info[i - 1]);
9173 free->arch.lpage_info[i - 1] = NULL;
9177 kvm_page_track_free_memslot(free, dont);
9180 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9181 unsigned long npages)
9183 int i;
9185 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9186 struct kvm_lpage_info *linfo;
9187 unsigned long ugfn;
9188 int lpages;
9189 int level = i + 1;
9191 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9192 slot->base_gfn, level) + 1;
9194 slot->arch.rmap[i] =
9195 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9196 GFP_KERNEL);
9197 if (!slot->arch.rmap[i])
9198 goto out_free;
9199 if (i == 0)
9200 continue;
9202 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
9203 if (!linfo)
9204 goto out_free;
9206 slot->arch.lpage_info[i - 1] = linfo;
9208 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9209 linfo[0].disallow_lpage = 1;
9210 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9211 linfo[lpages - 1].disallow_lpage = 1;
9212 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9214 * If the gfn and userspace address are not aligned wrt each
9215 * other, or if explicitly asked to, disable large page
9216 * support for this slot
9218 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9219 !kvm_largepages_enabled()) {
9220 unsigned long j;
9222 for (j = 0; j < lpages; ++j)
9223 linfo[j].disallow_lpage = 1;
9227 if (kvm_page_track_create_memslot(slot, npages))
9228 goto out_free;
9230 return 0;
9232 out_free:
9233 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9234 kvfree(slot->arch.rmap[i]);
9235 slot->arch.rmap[i] = NULL;
9236 if (i == 0)
9237 continue;
9239 kvfree(slot->arch.lpage_info[i - 1]);
9240 slot->arch.lpage_info[i - 1] = NULL;
9242 return -ENOMEM;
9245 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
9248 * memslots->generation has been incremented.
9249 * mmio generation may have reached its maximum value.
9251 kvm_mmu_invalidate_mmio_sptes(kvm, slots);
9254 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9255 struct kvm_memory_slot *memslot,
9256 const struct kvm_userspace_memory_region *mem,
9257 enum kvm_mr_change change)
9259 return 0;
9262 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9263 struct kvm_memory_slot *new)
9265 /* Still write protect RO slot */
9266 if (new->flags & KVM_MEM_READONLY) {
9267 kvm_mmu_slot_remove_write_access(kvm, new);
9268 return;
9272 * Call kvm_x86_ops dirty logging hooks when they are valid.
9274 * kvm_x86_ops->slot_disable_log_dirty is called when:
9276 * - KVM_MR_CREATE with dirty logging is disabled
9277 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9279 * The reason is, in case of PML, we need to set D-bit for any slots
9280 * with dirty logging disabled in order to eliminate unnecessary GPA
9281 * logging in PML buffer (and potential PML buffer full VMEXT). This
9282 * guarantees leaving PML enabled during guest's lifetime won't have
9283 * any additonal overhead from PML when guest is running with dirty
9284 * logging disabled for memory slots.
9286 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9287 * to dirty logging mode.
9289 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9291 * In case of write protect:
9293 * Write protect all pages for dirty logging.
9295 * All the sptes including the large sptes which point to this
9296 * slot are set to readonly. We can not create any new large
9297 * spte on this slot until the end of the logging.
9299 * See the comments in fast_page_fault().
9301 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9302 if (kvm_x86_ops->slot_enable_log_dirty)
9303 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9304 else
9305 kvm_mmu_slot_remove_write_access(kvm, new);
9306 } else {
9307 if (kvm_x86_ops->slot_disable_log_dirty)
9308 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9312 void kvm_arch_commit_memory_region(struct kvm *kvm,
9313 const struct kvm_userspace_memory_region *mem,
9314 const struct kvm_memory_slot *old,
9315 const struct kvm_memory_slot *new,
9316 enum kvm_mr_change change)
9318 int nr_mmu_pages = 0;
9320 if (!kvm->arch.n_requested_mmu_pages)
9321 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9323 if (nr_mmu_pages)
9324 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9327 * Dirty logging tracks sptes in 4k granularity, meaning that large
9328 * sptes have to be split. If live migration is successful, the guest
9329 * in the source machine will be destroyed and large sptes will be
9330 * created in the destination. However, if the guest continues to run
9331 * in the source machine (for example if live migration fails), small
9332 * sptes will remain around and cause bad performance.
9334 * Scan sptes if dirty logging has been stopped, dropping those
9335 * which can be collapsed into a single large-page spte. Later
9336 * page faults will create the large-page sptes.
9338 if ((change != KVM_MR_DELETE) &&
9339 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9340 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9341 kvm_mmu_zap_collapsible_sptes(kvm, new);
9344 * Set up write protection and/or dirty logging for the new slot.
9346 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9347 * been zapped so no dirty logging staff is needed for old slot. For
9348 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9349 * new and it's also covered when dealing with the new slot.
9351 * FIXME: const-ify all uses of struct kvm_memory_slot.
9353 if (change != KVM_MR_DELETE)
9354 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9357 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9359 kvm_mmu_invalidate_zap_all_pages(kvm);
9362 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9363 struct kvm_memory_slot *slot)
9365 kvm_page_track_flush_slot(kvm, slot);
9368 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9370 return (is_guest_mode(vcpu) &&
9371 kvm_x86_ops->guest_apic_has_interrupt &&
9372 kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9375 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9377 if (!list_empty_careful(&vcpu->async_pf.done))
9378 return true;
9380 if (kvm_apic_has_events(vcpu))
9381 return true;
9383 if (vcpu->arch.pv.pv_unhalted)
9384 return true;
9386 if (vcpu->arch.exception.pending)
9387 return true;
9389 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9390 (vcpu->arch.nmi_pending &&
9391 kvm_x86_ops->nmi_allowed(vcpu)))
9392 return true;
9394 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9395 (vcpu->arch.smi_pending && !is_smm(vcpu)))
9396 return true;
9398 if (kvm_arch_interrupt_allowed(vcpu) &&
9399 (kvm_cpu_has_interrupt(vcpu) ||
9400 kvm_guest_apic_has_interrupt(vcpu)))
9401 return true;
9403 if (kvm_hv_has_stimer_pending(vcpu))
9404 return true;
9406 return false;
9409 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9411 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9414 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9416 return vcpu->arch.preempted_in_kernel;
9419 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9421 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9424 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9426 return kvm_x86_ops->interrupt_allowed(vcpu);
9429 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9431 if (is_64_bit_mode(vcpu))
9432 return kvm_rip_read(vcpu);
9433 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9434 kvm_rip_read(vcpu));
9436 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9438 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9440 return kvm_get_linear_rip(vcpu) == linear_rip;
9442 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9444 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9446 unsigned long rflags;
9448 rflags = kvm_x86_ops->get_rflags(vcpu);
9449 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9450 rflags &= ~X86_EFLAGS_TF;
9451 return rflags;
9453 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9455 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9457 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9458 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9459 rflags |= X86_EFLAGS_TF;
9460 kvm_x86_ops->set_rflags(vcpu, rflags);
9463 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9465 __kvm_set_rflags(vcpu, rflags);
9466 kvm_make_request(KVM_REQ_EVENT, vcpu);
9468 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9470 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9472 int r;
9474 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9475 work->wakeup_all)
9476 return;
9478 r = kvm_mmu_reload(vcpu);
9479 if (unlikely(r))
9480 return;
9482 if (!vcpu->arch.mmu->direct_map &&
9483 work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9484 return;
9486 vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9489 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9491 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9494 static inline u32 kvm_async_pf_next_probe(u32 key)
9496 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9499 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9501 u32 key = kvm_async_pf_hash_fn(gfn);
9503 while (vcpu->arch.apf.gfns[key] != ~0)
9504 key = kvm_async_pf_next_probe(key);
9506 vcpu->arch.apf.gfns[key] = gfn;
9509 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9511 int i;
9512 u32 key = kvm_async_pf_hash_fn(gfn);
9514 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9515 (vcpu->arch.apf.gfns[key] != gfn &&
9516 vcpu->arch.apf.gfns[key] != ~0); i++)
9517 key = kvm_async_pf_next_probe(key);
9519 return key;
9522 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9524 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9527 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9529 u32 i, j, k;
9531 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9532 while (true) {
9533 vcpu->arch.apf.gfns[i] = ~0;
9534 do {
9535 j = kvm_async_pf_next_probe(j);
9536 if (vcpu->arch.apf.gfns[j] == ~0)
9537 return;
9538 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9540 * k lies cyclically in ]i,j]
9541 * | i.k.j |
9542 * |....j i.k.| or |.k..j i...|
9544 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9545 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9546 i = j;
9550 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9553 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9554 sizeof(val));
9557 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9560 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9561 sizeof(u32));
9564 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9565 struct kvm_async_pf *work)
9567 struct x86_exception fault;
9569 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9570 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9572 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9573 (vcpu->arch.apf.send_user_only &&
9574 kvm_x86_ops->get_cpl(vcpu) == 0))
9575 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9576 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9577 fault.vector = PF_VECTOR;
9578 fault.error_code_valid = true;
9579 fault.error_code = 0;
9580 fault.nested_page_fault = false;
9581 fault.address = work->arch.token;
9582 fault.async_page_fault = true;
9583 kvm_inject_page_fault(vcpu, &fault);
9587 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9588 struct kvm_async_pf *work)
9590 struct x86_exception fault;
9591 u32 val;
9593 if (work->wakeup_all)
9594 work->arch.token = ~0; /* broadcast wakeup */
9595 else
9596 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9597 trace_kvm_async_pf_ready(work->arch.token, work->gva);
9599 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9600 !apf_get_user(vcpu, &val)) {
9601 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9602 vcpu->arch.exception.pending &&
9603 vcpu->arch.exception.nr == PF_VECTOR &&
9604 !apf_put_user(vcpu, 0)) {
9605 vcpu->arch.exception.injected = false;
9606 vcpu->arch.exception.pending = false;
9607 vcpu->arch.exception.nr = 0;
9608 vcpu->arch.exception.has_error_code = false;
9609 vcpu->arch.exception.error_code = 0;
9610 vcpu->arch.exception.has_payload = false;
9611 vcpu->arch.exception.payload = 0;
9612 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9613 fault.vector = PF_VECTOR;
9614 fault.error_code_valid = true;
9615 fault.error_code = 0;
9616 fault.nested_page_fault = false;
9617 fault.address = work->arch.token;
9618 fault.async_page_fault = true;
9619 kvm_inject_page_fault(vcpu, &fault);
9622 vcpu->arch.apf.halted = false;
9623 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9626 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9628 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9629 return true;
9630 else
9631 return kvm_can_do_async_pf(vcpu);
9634 void kvm_arch_start_assignment(struct kvm *kvm)
9636 atomic_inc(&kvm->arch.assigned_device_count);
9638 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9640 void kvm_arch_end_assignment(struct kvm *kvm)
9642 atomic_dec(&kvm->arch.assigned_device_count);
9644 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9646 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9648 return atomic_read(&kvm->arch.assigned_device_count);
9650 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9652 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9654 atomic_inc(&kvm->arch.noncoherent_dma_count);
9656 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9658 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9660 atomic_dec(&kvm->arch.noncoherent_dma_count);
9662 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9664 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9666 return atomic_read(&kvm->arch.noncoherent_dma_count);
9668 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9670 bool kvm_arch_has_irq_bypass(void)
9672 return kvm_x86_ops->update_pi_irte != NULL;
9675 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9676 struct irq_bypass_producer *prod)
9678 struct kvm_kernel_irqfd *irqfd =
9679 container_of(cons, struct kvm_kernel_irqfd, consumer);
9681 irqfd->producer = prod;
9683 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9684 prod->irq, irqfd->gsi, 1);
9687 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9688 struct irq_bypass_producer *prod)
9690 int ret;
9691 struct kvm_kernel_irqfd *irqfd =
9692 container_of(cons, struct kvm_kernel_irqfd, consumer);
9694 WARN_ON(irqfd->producer != prod);
9695 irqfd->producer = NULL;
9698 * When producer of consumer is unregistered, we change back to
9699 * remapped mode, so we can re-use the current implementation
9700 * when the irq is masked/disabled or the consumer side (KVM
9701 * int this case doesn't want to receive the interrupts.
9703 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9704 if (ret)
9705 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9706 " fails: %d\n", irqfd->consumer.token, ret);
9709 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9710 uint32_t guest_irq, bool set)
9712 if (!kvm_x86_ops->update_pi_irte)
9713 return -EINVAL;
9715 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9718 bool kvm_vector_hashing_enabled(void)
9720 return vector_hashing;
9722 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9724 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9725 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9738 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9739 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9740 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9741 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9742 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);