tools uapi asm: Update asm-generic/unistd.h copy
[linux/fpc-iii.git] / arch / x86 / mm / kasan_init_64.c
blob04a9cf6b034fe4ec8b0d451416a759e6c21ee051
1 // SPDX-License-Identifier: GPL-2.0
2 #define DISABLE_BRANCH_PROFILING
3 #define pr_fmt(fmt) "kasan: " fmt
5 /* cpu_feature_enabled() cannot be used this early */
6 #define USE_EARLY_PGTABLE_L5
8 #include <linux/memblock.h>
9 #include <linux/kasan.h>
10 #include <linux/kdebug.h>
11 #include <linux/mm.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task.h>
14 #include <linux/vmalloc.h>
16 #include <asm/e820/types.h>
17 #include <asm/pgalloc.h>
18 #include <asm/tlbflush.h>
19 #include <asm/sections.h>
20 #include <asm/pgtable.h>
21 #include <asm/cpu_entry_area.h>
23 extern struct range pfn_mapped[E820_MAX_ENTRIES];
25 static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
27 static __init void *early_alloc(size_t size, int nid, bool panic)
29 if (panic)
30 return memblock_alloc_try_nid(size, size,
31 __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
32 else
33 return memblock_alloc_try_nid_nopanic(size, size,
34 __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
37 static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
38 unsigned long end, int nid)
40 pte_t *pte;
42 if (pmd_none(*pmd)) {
43 void *p;
45 if (boot_cpu_has(X86_FEATURE_PSE) &&
46 ((end - addr) == PMD_SIZE) &&
47 IS_ALIGNED(addr, PMD_SIZE)) {
48 p = early_alloc(PMD_SIZE, nid, false);
49 if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
50 return;
51 else if (p)
52 memblock_free(__pa(p), PMD_SIZE);
55 p = early_alloc(PAGE_SIZE, nid, true);
56 pmd_populate_kernel(&init_mm, pmd, p);
59 pte = pte_offset_kernel(pmd, addr);
60 do {
61 pte_t entry;
62 void *p;
64 if (!pte_none(*pte))
65 continue;
67 p = early_alloc(PAGE_SIZE, nid, true);
68 entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
69 set_pte_at(&init_mm, addr, pte, entry);
70 } while (pte++, addr += PAGE_SIZE, addr != end);
73 static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
74 unsigned long end, int nid)
76 pmd_t *pmd;
77 unsigned long next;
79 if (pud_none(*pud)) {
80 void *p;
82 if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
83 ((end - addr) == PUD_SIZE) &&
84 IS_ALIGNED(addr, PUD_SIZE)) {
85 p = early_alloc(PUD_SIZE, nid, false);
86 if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
87 return;
88 else if (p)
89 memblock_free(__pa(p), PUD_SIZE);
92 p = early_alloc(PAGE_SIZE, nid, true);
93 pud_populate(&init_mm, pud, p);
96 pmd = pmd_offset(pud, addr);
97 do {
98 next = pmd_addr_end(addr, end);
99 if (!pmd_large(*pmd))
100 kasan_populate_pmd(pmd, addr, next, nid);
101 } while (pmd++, addr = next, addr != end);
104 static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
105 unsigned long end, int nid)
107 pud_t *pud;
108 unsigned long next;
110 if (p4d_none(*p4d)) {
111 void *p = early_alloc(PAGE_SIZE, nid, true);
113 p4d_populate(&init_mm, p4d, p);
116 pud = pud_offset(p4d, addr);
117 do {
118 next = pud_addr_end(addr, end);
119 if (!pud_large(*pud))
120 kasan_populate_pud(pud, addr, next, nid);
121 } while (pud++, addr = next, addr != end);
124 static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
125 unsigned long end, int nid)
127 void *p;
128 p4d_t *p4d;
129 unsigned long next;
131 if (pgd_none(*pgd)) {
132 p = early_alloc(PAGE_SIZE, nid, true);
133 pgd_populate(&init_mm, pgd, p);
136 p4d = p4d_offset(pgd, addr);
137 do {
138 next = p4d_addr_end(addr, end);
139 kasan_populate_p4d(p4d, addr, next, nid);
140 } while (p4d++, addr = next, addr != end);
143 static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
144 int nid)
146 pgd_t *pgd;
147 unsigned long next;
149 addr = addr & PAGE_MASK;
150 end = round_up(end, PAGE_SIZE);
151 pgd = pgd_offset_k(addr);
152 do {
153 next = pgd_addr_end(addr, end);
154 kasan_populate_pgd(pgd, addr, next, nid);
155 } while (pgd++, addr = next, addr != end);
158 static void __init map_range(struct range *range)
160 unsigned long start;
161 unsigned long end;
163 start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
164 end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
166 kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
169 static void __init clear_pgds(unsigned long start,
170 unsigned long end)
172 pgd_t *pgd;
173 /* See comment in kasan_init() */
174 unsigned long pgd_end = end & PGDIR_MASK;
176 for (; start < pgd_end; start += PGDIR_SIZE) {
177 pgd = pgd_offset_k(start);
179 * With folded p4d, pgd_clear() is nop, use p4d_clear()
180 * instead.
182 if (pgtable_l5_enabled())
183 pgd_clear(pgd);
184 else
185 p4d_clear(p4d_offset(pgd, start));
188 pgd = pgd_offset_k(start);
189 for (; start < end; start += P4D_SIZE)
190 p4d_clear(p4d_offset(pgd, start));
193 static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
195 unsigned long p4d;
197 if (!pgtable_l5_enabled())
198 return (p4d_t *)pgd;
200 p4d = __pa_nodebug(pgd_val(*pgd)) & PTE_PFN_MASK;
201 p4d += __START_KERNEL_map - phys_base;
202 return (p4d_t *)p4d + p4d_index(addr);
205 static void __init kasan_early_p4d_populate(pgd_t *pgd,
206 unsigned long addr,
207 unsigned long end)
209 pgd_t pgd_entry;
210 p4d_t *p4d, p4d_entry;
211 unsigned long next;
213 if (pgd_none(*pgd)) {
214 pgd_entry = __pgd(_KERNPG_TABLE | __pa_nodebug(kasan_zero_p4d));
215 set_pgd(pgd, pgd_entry);
218 p4d = early_p4d_offset(pgd, addr);
219 do {
220 next = p4d_addr_end(addr, end);
222 if (!p4d_none(*p4d))
223 continue;
225 p4d_entry = __p4d(_KERNPG_TABLE | __pa_nodebug(kasan_zero_pud));
226 set_p4d(p4d, p4d_entry);
227 } while (p4d++, addr = next, addr != end && p4d_none(*p4d));
230 static void __init kasan_map_early_shadow(pgd_t *pgd)
232 /* See comment in kasan_init() */
233 unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
234 unsigned long end = KASAN_SHADOW_END;
235 unsigned long next;
237 pgd += pgd_index(addr);
238 do {
239 next = pgd_addr_end(addr, end);
240 kasan_early_p4d_populate(pgd, addr, next);
241 } while (pgd++, addr = next, addr != end);
244 #ifdef CONFIG_KASAN_INLINE
245 static int kasan_die_handler(struct notifier_block *self,
246 unsigned long val,
247 void *data)
249 if (val == DIE_GPF) {
250 pr_emerg("CONFIG_KASAN_INLINE enabled\n");
251 pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
253 return NOTIFY_OK;
256 static struct notifier_block kasan_die_notifier = {
257 .notifier_call = kasan_die_handler,
259 #endif
261 void __init kasan_early_init(void)
263 int i;
264 pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL | _PAGE_ENC;
265 pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE;
266 pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE;
267 p4dval_t p4d_val = __pa_nodebug(kasan_zero_pud) | _KERNPG_TABLE;
269 /* Mask out unsupported __PAGE_KERNEL bits: */
270 pte_val &= __default_kernel_pte_mask;
271 pmd_val &= __default_kernel_pte_mask;
272 pud_val &= __default_kernel_pte_mask;
273 p4d_val &= __default_kernel_pte_mask;
275 for (i = 0; i < PTRS_PER_PTE; i++)
276 kasan_zero_pte[i] = __pte(pte_val);
278 for (i = 0; i < PTRS_PER_PMD; i++)
279 kasan_zero_pmd[i] = __pmd(pmd_val);
281 for (i = 0; i < PTRS_PER_PUD; i++)
282 kasan_zero_pud[i] = __pud(pud_val);
284 for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
285 kasan_zero_p4d[i] = __p4d(p4d_val);
287 kasan_map_early_shadow(early_top_pgt);
288 kasan_map_early_shadow(init_top_pgt);
291 void __init kasan_init(void)
293 int i;
294 void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
296 #ifdef CONFIG_KASAN_INLINE
297 register_die_notifier(&kasan_die_notifier);
298 #endif
300 memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
303 * We use the same shadow offset for 4- and 5-level paging to
304 * facilitate boot-time switching between paging modes.
305 * As result in 5-level paging mode KASAN_SHADOW_START and
306 * KASAN_SHADOW_END are not aligned to PGD boundary.
308 * KASAN_SHADOW_START doesn't share PGD with anything else.
309 * We claim whole PGD entry to make things easier.
311 * KASAN_SHADOW_END lands in the last PGD entry and it collides with
312 * bunch of things like kernel code, modules, EFI mapping, etc.
313 * We need to take extra steps to not overwrite them.
315 if (pgtable_l5_enabled()) {
316 void *ptr;
318 ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
319 memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
320 set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
321 __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
324 load_cr3(early_top_pgt);
325 __flush_tlb_all();
327 clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
329 kasan_populate_zero_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
330 kasan_mem_to_shadow((void *)PAGE_OFFSET));
332 for (i = 0; i < E820_MAX_ENTRIES; i++) {
333 if (pfn_mapped[i].end == 0)
334 break;
336 map_range(&pfn_mapped[i]);
339 shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
340 shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
341 shadow_cpu_entry_begin = (void *)round_down((unsigned long)shadow_cpu_entry_begin,
342 PAGE_SIZE);
344 shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
345 CPU_ENTRY_AREA_MAP_SIZE);
346 shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
347 shadow_cpu_entry_end = (void *)round_up((unsigned long)shadow_cpu_entry_end,
348 PAGE_SIZE);
350 kasan_populate_zero_shadow(
351 kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
352 shadow_cpu_entry_begin);
354 kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
355 (unsigned long)shadow_cpu_entry_end, 0);
357 kasan_populate_zero_shadow(shadow_cpu_entry_end,
358 kasan_mem_to_shadow((void *)__START_KERNEL_map));
360 kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
361 (unsigned long)kasan_mem_to_shadow(_end),
362 early_pfn_to_nid(__pa(_stext)));
364 kasan_populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END),
365 (void *)KASAN_SHADOW_END);
367 load_cr3(init_top_pgt);
368 __flush_tlb_all();
371 * kasan_zero_page has been used as early shadow memory, thus it may
372 * contain some garbage. Now we can clear and write protect it, since
373 * after the TLB flush no one should write to it.
375 memset(kasan_zero_page, 0, PAGE_SIZE);
376 for (i = 0; i < PTRS_PER_PTE; i++) {
377 pte_t pte;
378 pgprot_t prot;
380 prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
381 pgprot_val(prot) &= __default_kernel_pte_mask;
383 pte = __pte(__pa(kasan_zero_page) | pgprot_val(prot));
384 set_pte(&kasan_zero_pte[i], pte);
386 /* Flush TLBs again to be sure that write protection applied. */
387 __flush_tlb_all();
389 init_task.kasan_depth = 0;
390 pr_info("KernelAddressSanitizer initialized\n");