USB: gadget: section mismatch warning fixed
[linux/fpc-iii.git] / drivers / net / cassini.c
blob28c88eeec757361fb2fa3db11a63b57c97b892fb
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
25 * the gem chip:
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
37 * on them.
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
40 * to make them happy.
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
46 * the page.
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
56 * ioctl.
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
64 * instead.
66 * by default, the selective clear mask is set up to process rx packets.
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/vmalloc.h>
79 #include <linux/ioport.h>
80 #include <linux/pci.h>
81 #include <linux/mm.h>
82 #include <linux/highmem.h>
83 #include <linux/list.h>
84 #include <linux/dma-mapping.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 #include <linux/ethtool.h>
90 #include <linux/crc32.h>
91 #include <linux/random.h>
92 #include <linux/mii.h>
93 #include <linux/ip.h>
94 #include <linux/tcp.h>
95 #include <linux/mutex.h>
96 #include <linux/firmware.h>
98 #include <net/checksum.h>
100 #include <asm/atomic.h>
101 #include <asm/system.h>
102 #include <asm/io.h>
103 #include <asm/byteorder.h>
104 #include <asm/uaccess.h>
106 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
107 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
108 #define CAS_NCPUS num_online_cpus()
110 #define cas_skb_release(x) netif_rx(x)
112 /* select which firmware to use */
113 #define USE_HP_WORKAROUND
114 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
115 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
117 #include "cassini.h"
119 #define USE_TX_COMPWB /* use completion writeback registers */
120 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
121 #define USE_RX_BLANK /* hw interrupt mitigation */
122 #undef USE_ENTROPY_DEV /* don't test for entropy device */
124 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
125 * also, we need to make cp->lock finer-grained.
127 #undef USE_PCI_INTB
128 #undef USE_PCI_INTC
129 #undef USE_PCI_INTD
130 #undef USE_QOS
132 #undef USE_VPD_DEBUG /* debug vpd information if defined */
134 /* rx processing options */
135 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
136 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
137 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
138 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
139 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
141 #define DRV_MODULE_NAME "cassini"
142 #define DRV_MODULE_VERSION "1.6"
143 #define DRV_MODULE_RELDATE "21 May 2008"
145 #define CAS_DEF_MSG_ENABLE \
146 (NETIF_MSG_DRV | \
147 NETIF_MSG_PROBE | \
148 NETIF_MSG_LINK | \
149 NETIF_MSG_TIMER | \
150 NETIF_MSG_IFDOWN | \
151 NETIF_MSG_IFUP | \
152 NETIF_MSG_RX_ERR | \
153 NETIF_MSG_TX_ERR)
155 /* length of time before we decide the hardware is borked,
156 * and dev->tx_timeout() should be called to fix the problem
158 #define CAS_TX_TIMEOUT (HZ)
159 #define CAS_LINK_TIMEOUT (22*HZ/10)
160 #define CAS_LINK_FAST_TIMEOUT (1)
162 /* timeout values for state changing. these specify the number
163 * of 10us delays to be used before giving up.
165 #define STOP_TRIES_PHY 1000
166 #define STOP_TRIES 5000
168 /* specify a minimum frame size to deal with some fifo issues
169 * max mtu == 2 * page size - ethernet header - 64 - swivel =
170 * 2 * page_size - 0x50
172 #define CAS_MIN_FRAME 97
173 #define CAS_1000MB_MIN_FRAME 255
174 #define CAS_MIN_MTU 60
175 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
177 #if 1
179 * Eliminate these and use separate atomic counters for each, to
180 * avoid a race condition.
182 #else
183 #define CAS_RESET_MTU 1
184 #define CAS_RESET_ALL 2
185 #define CAS_RESET_SPARE 3
186 #endif
188 static char version[] __devinitdata =
189 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
191 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
192 static int link_mode;
194 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
195 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
196 MODULE_LICENSE("GPL");
197 MODULE_FIRMWARE("sun/cassini.bin");
198 module_param(cassini_debug, int, 0);
199 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
200 module_param(link_mode, int, 0);
201 MODULE_PARM_DESC(link_mode, "default link mode");
204 * Work around for a PCS bug in which the link goes down due to the chip
205 * being confused and never showing a link status of "up."
207 #define DEFAULT_LINKDOWN_TIMEOUT 5
209 * Value in seconds, for user input.
211 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
212 module_param(linkdown_timeout, int, 0);
213 MODULE_PARM_DESC(linkdown_timeout,
214 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
217 * value in 'ticks' (units used by jiffies). Set when we init the
218 * module because 'HZ' in actually a function call on some flavors of
219 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
221 static int link_transition_timeout;
225 static u16 link_modes[] __devinitdata = {
226 BMCR_ANENABLE, /* 0 : autoneg */
227 0, /* 1 : 10bt half duplex */
228 BMCR_SPEED100, /* 2 : 100bt half duplex */
229 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
230 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
231 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
234 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
235 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
237 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239 { 0, }
242 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
244 static void cas_set_link_modes(struct cas *cp);
246 static inline void cas_lock_tx(struct cas *cp)
248 int i;
250 for (i = 0; i < N_TX_RINGS; i++)
251 spin_lock(&cp->tx_lock[i]);
254 static inline void cas_lock_all(struct cas *cp)
256 spin_lock_irq(&cp->lock);
257 cas_lock_tx(cp);
260 /* WTZ: QA was finding deadlock problems with the previous
261 * versions after long test runs with multiple cards per machine.
262 * See if replacing cas_lock_all with safer versions helps. The
263 * symptoms QA is reporting match those we'd expect if interrupts
264 * aren't being properly restored, and we fixed a previous deadlock
265 * with similar symptoms by using save/restore versions in other
266 * places.
268 #define cas_lock_all_save(cp, flags) \
269 do { \
270 struct cas *xxxcp = (cp); \
271 spin_lock_irqsave(&xxxcp->lock, flags); \
272 cas_lock_tx(xxxcp); \
273 } while (0)
275 static inline void cas_unlock_tx(struct cas *cp)
277 int i;
279 for (i = N_TX_RINGS; i > 0; i--)
280 spin_unlock(&cp->tx_lock[i - 1]);
283 static inline void cas_unlock_all(struct cas *cp)
285 cas_unlock_tx(cp);
286 spin_unlock_irq(&cp->lock);
289 #define cas_unlock_all_restore(cp, flags) \
290 do { \
291 struct cas *xxxcp = (cp); \
292 cas_unlock_tx(xxxcp); \
293 spin_unlock_irqrestore(&xxxcp->lock, flags); \
294 } while (0)
296 static void cas_disable_irq(struct cas *cp, const int ring)
298 /* Make sure we won't get any more interrupts */
299 if (ring == 0) {
300 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
301 return;
304 /* disable completion interrupts and selectively mask */
305 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
306 switch (ring) {
307 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
308 #ifdef USE_PCI_INTB
309 case 1:
310 #endif
311 #ifdef USE_PCI_INTC
312 case 2:
313 #endif
314 #ifdef USE_PCI_INTD
315 case 3:
316 #endif
317 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
318 cp->regs + REG_PLUS_INTRN_MASK(ring));
319 break;
320 #endif
321 default:
322 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
323 REG_PLUS_INTRN_MASK(ring));
324 break;
329 static inline void cas_mask_intr(struct cas *cp)
331 int i;
333 for (i = 0; i < N_RX_COMP_RINGS; i++)
334 cas_disable_irq(cp, i);
337 static void cas_enable_irq(struct cas *cp, const int ring)
339 if (ring == 0) { /* all but TX_DONE */
340 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
341 return;
344 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
345 switch (ring) {
346 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
347 #ifdef USE_PCI_INTB
348 case 1:
349 #endif
350 #ifdef USE_PCI_INTC
351 case 2:
352 #endif
353 #ifdef USE_PCI_INTD
354 case 3:
355 #endif
356 writel(INTRN_MASK_RX_EN, cp->regs +
357 REG_PLUS_INTRN_MASK(ring));
358 break;
359 #endif
360 default:
361 break;
366 static inline void cas_unmask_intr(struct cas *cp)
368 int i;
370 for (i = 0; i < N_RX_COMP_RINGS; i++)
371 cas_enable_irq(cp, i);
374 static inline void cas_entropy_gather(struct cas *cp)
376 #ifdef USE_ENTROPY_DEV
377 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
378 return;
380 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
381 readl(cp->regs + REG_ENTROPY_IV),
382 sizeof(uint64_t)*8);
383 #endif
386 static inline void cas_entropy_reset(struct cas *cp)
388 #ifdef USE_ENTROPY_DEV
389 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
390 return;
392 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
393 cp->regs + REG_BIM_LOCAL_DEV_EN);
394 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
395 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
397 /* if we read back 0x0, we don't have an entropy device */
398 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
399 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
400 #endif
403 /* access to the phy. the following assumes that we've initialized the MIF to
404 * be in frame rather than bit-bang mode
406 static u16 cas_phy_read(struct cas *cp, int reg)
408 u32 cmd;
409 int limit = STOP_TRIES_PHY;
411 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
412 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
413 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
414 cmd |= MIF_FRAME_TURN_AROUND_MSB;
415 writel(cmd, cp->regs + REG_MIF_FRAME);
417 /* poll for completion */
418 while (limit-- > 0) {
419 udelay(10);
420 cmd = readl(cp->regs + REG_MIF_FRAME);
421 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
422 return (cmd & MIF_FRAME_DATA_MASK);
424 return 0xFFFF; /* -1 */
427 static int cas_phy_write(struct cas *cp, int reg, u16 val)
429 int limit = STOP_TRIES_PHY;
430 u32 cmd;
432 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
433 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
434 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
435 cmd |= MIF_FRAME_TURN_AROUND_MSB;
436 cmd |= val & MIF_FRAME_DATA_MASK;
437 writel(cmd, cp->regs + REG_MIF_FRAME);
439 /* poll for completion */
440 while (limit-- > 0) {
441 udelay(10);
442 cmd = readl(cp->regs + REG_MIF_FRAME);
443 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
444 return 0;
446 return -1;
449 static void cas_phy_powerup(struct cas *cp)
451 u16 ctl = cas_phy_read(cp, MII_BMCR);
453 if ((ctl & BMCR_PDOWN) == 0)
454 return;
455 ctl &= ~BMCR_PDOWN;
456 cas_phy_write(cp, MII_BMCR, ctl);
459 static void cas_phy_powerdown(struct cas *cp)
461 u16 ctl = cas_phy_read(cp, MII_BMCR);
463 if (ctl & BMCR_PDOWN)
464 return;
465 ctl |= BMCR_PDOWN;
466 cas_phy_write(cp, MII_BMCR, ctl);
469 /* cp->lock held. note: the last put_page will free the buffer */
470 static int cas_page_free(struct cas *cp, cas_page_t *page)
472 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
473 PCI_DMA_FROMDEVICE);
474 __free_pages(page->buffer, cp->page_order);
475 kfree(page);
476 return 0;
479 #ifdef RX_COUNT_BUFFERS
480 #define RX_USED_ADD(x, y) ((x)->used += (y))
481 #define RX_USED_SET(x, y) ((x)->used = (y))
482 #else
483 #define RX_USED_ADD(x, y)
484 #define RX_USED_SET(x, y)
485 #endif
487 /* local page allocation routines for the receive buffers. jumbo pages
488 * require at least 8K contiguous and 8K aligned buffers.
490 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
492 cas_page_t *page;
494 page = kmalloc(sizeof(cas_page_t), flags);
495 if (!page)
496 return NULL;
498 INIT_LIST_HEAD(&page->list);
499 RX_USED_SET(page, 0);
500 page->buffer = alloc_pages(flags, cp->page_order);
501 if (!page->buffer)
502 goto page_err;
503 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
504 cp->page_size, PCI_DMA_FROMDEVICE);
505 return page;
507 page_err:
508 kfree(page);
509 return NULL;
512 /* initialize spare pool of rx buffers, but allocate during the open */
513 static void cas_spare_init(struct cas *cp)
515 spin_lock(&cp->rx_inuse_lock);
516 INIT_LIST_HEAD(&cp->rx_inuse_list);
517 spin_unlock(&cp->rx_inuse_lock);
519 spin_lock(&cp->rx_spare_lock);
520 INIT_LIST_HEAD(&cp->rx_spare_list);
521 cp->rx_spares_needed = RX_SPARE_COUNT;
522 spin_unlock(&cp->rx_spare_lock);
525 /* used on close. free all the spare buffers. */
526 static void cas_spare_free(struct cas *cp)
528 struct list_head list, *elem, *tmp;
530 /* free spare buffers */
531 INIT_LIST_HEAD(&list);
532 spin_lock(&cp->rx_spare_lock);
533 list_splice_init(&cp->rx_spare_list, &list);
534 spin_unlock(&cp->rx_spare_lock);
535 list_for_each_safe(elem, tmp, &list) {
536 cas_page_free(cp, list_entry(elem, cas_page_t, list));
539 INIT_LIST_HEAD(&list);
540 #if 1
542 * Looks like Adrian had protected this with a different
543 * lock than used everywhere else to manipulate this list.
545 spin_lock(&cp->rx_inuse_lock);
546 list_splice_init(&cp->rx_inuse_list, &list);
547 spin_unlock(&cp->rx_inuse_lock);
548 #else
549 spin_lock(&cp->rx_spare_lock);
550 list_splice_init(&cp->rx_inuse_list, &list);
551 spin_unlock(&cp->rx_spare_lock);
552 #endif
553 list_for_each_safe(elem, tmp, &list) {
554 cas_page_free(cp, list_entry(elem, cas_page_t, list));
558 /* replenish spares if needed */
559 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
561 struct list_head list, *elem, *tmp;
562 int needed, i;
564 /* check inuse list. if we don't need any more free buffers,
565 * just free it
568 /* make a local copy of the list */
569 INIT_LIST_HEAD(&list);
570 spin_lock(&cp->rx_inuse_lock);
571 list_splice_init(&cp->rx_inuse_list, &list);
572 spin_unlock(&cp->rx_inuse_lock);
574 list_for_each_safe(elem, tmp, &list) {
575 cas_page_t *page = list_entry(elem, cas_page_t, list);
578 * With the lockless pagecache, cassini buffering scheme gets
579 * slightly less accurate: we might find that a page has an
580 * elevated reference count here, due to a speculative ref,
581 * and skip it as in-use. Ideally we would be able to reclaim
582 * it. However this would be such a rare case, it doesn't
583 * matter too much as we should pick it up the next time round.
585 * Importantly, if we find that the page has a refcount of 1
586 * here (our refcount), then we know it is definitely not inuse
587 * so we can reuse it.
589 if (page_count(page->buffer) > 1)
590 continue;
592 list_del(elem);
593 spin_lock(&cp->rx_spare_lock);
594 if (cp->rx_spares_needed > 0) {
595 list_add(elem, &cp->rx_spare_list);
596 cp->rx_spares_needed--;
597 spin_unlock(&cp->rx_spare_lock);
598 } else {
599 spin_unlock(&cp->rx_spare_lock);
600 cas_page_free(cp, page);
604 /* put any inuse buffers back on the list */
605 if (!list_empty(&list)) {
606 spin_lock(&cp->rx_inuse_lock);
607 list_splice(&list, &cp->rx_inuse_list);
608 spin_unlock(&cp->rx_inuse_lock);
611 spin_lock(&cp->rx_spare_lock);
612 needed = cp->rx_spares_needed;
613 spin_unlock(&cp->rx_spare_lock);
614 if (!needed)
615 return;
617 /* we still need spares, so try to allocate some */
618 INIT_LIST_HEAD(&list);
619 i = 0;
620 while (i < needed) {
621 cas_page_t *spare = cas_page_alloc(cp, flags);
622 if (!spare)
623 break;
624 list_add(&spare->list, &list);
625 i++;
628 spin_lock(&cp->rx_spare_lock);
629 list_splice(&list, &cp->rx_spare_list);
630 cp->rx_spares_needed -= i;
631 spin_unlock(&cp->rx_spare_lock);
634 /* pull a page from the list. */
635 static cas_page_t *cas_page_dequeue(struct cas *cp)
637 struct list_head *entry;
638 int recover;
640 spin_lock(&cp->rx_spare_lock);
641 if (list_empty(&cp->rx_spare_list)) {
642 /* try to do a quick recovery */
643 spin_unlock(&cp->rx_spare_lock);
644 cas_spare_recover(cp, GFP_ATOMIC);
645 spin_lock(&cp->rx_spare_lock);
646 if (list_empty(&cp->rx_spare_list)) {
647 netif_err(cp, rx_err, cp->dev,
648 "no spare buffers available\n");
649 spin_unlock(&cp->rx_spare_lock);
650 return NULL;
654 entry = cp->rx_spare_list.next;
655 list_del(entry);
656 recover = ++cp->rx_spares_needed;
657 spin_unlock(&cp->rx_spare_lock);
659 /* trigger the timer to do the recovery */
660 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
661 #if 1
662 atomic_inc(&cp->reset_task_pending);
663 atomic_inc(&cp->reset_task_pending_spare);
664 schedule_work(&cp->reset_task);
665 #else
666 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
667 schedule_work(&cp->reset_task);
668 #endif
670 return list_entry(entry, cas_page_t, list);
674 static void cas_mif_poll(struct cas *cp, const int enable)
676 u32 cfg;
678 cfg = readl(cp->regs + REG_MIF_CFG);
679 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
681 if (cp->phy_type & CAS_PHY_MII_MDIO1)
682 cfg |= MIF_CFG_PHY_SELECT;
684 /* poll and interrupt on link status change. */
685 if (enable) {
686 cfg |= MIF_CFG_POLL_EN;
687 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
688 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
690 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
691 cp->regs + REG_MIF_MASK);
692 writel(cfg, cp->regs + REG_MIF_CFG);
695 /* Must be invoked under cp->lock */
696 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
698 u16 ctl;
699 #if 1
700 int lcntl;
701 int changed = 0;
702 int oldstate = cp->lstate;
703 int link_was_not_down = !(oldstate == link_down);
704 #endif
705 /* Setup link parameters */
706 if (!ep)
707 goto start_aneg;
708 lcntl = cp->link_cntl;
709 if (ep->autoneg == AUTONEG_ENABLE)
710 cp->link_cntl = BMCR_ANENABLE;
711 else {
712 cp->link_cntl = 0;
713 if (ep->speed == SPEED_100)
714 cp->link_cntl |= BMCR_SPEED100;
715 else if (ep->speed == SPEED_1000)
716 cp->link_cntl |= CAS_BMCR_SPEED1000;
717 if (ep->duplex == DUPLEX_FULL)
718 cp->link_cntl |= BMCR_FULLDPLX;
720 #if 1
721 changed = (lcntl != cp->link_cntl);
722 #endif
723 start_aneg:
724 if (cp->lstate == link_up) {
725 netdev_info(cp->dev, "PCS link down\n");
726 } else {
727 if (changed) {
728 netdev_info(cp->dev, "link configuration changed\n");
731 cp->lstate = link_down;
732 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
733 if (!cp->hw_running)
734 return;
735 #if 1
737 * WTZ: If the old state was link_up, we turn off the carrier
738 * to replicate everything we do elsewhere on a link-down
739 * event when we were already in a link-up state..
741 if (oldstate == link_up)
742 netif_carrier_off(cp->dev);
743 if (changed && link_was_not_down) {
745 * WTZ: This branch will simply schedule a full reset after
746 * we explicitly changed link modes in an ioctl. See if this
747 * fixes the link-problems we were having for forced mode.
749 atomic_inc(&cp->reset_task_pending);
750 atomic_inc(&cp->reset_task_pending_all);
751 schedule_work(&cp->reset_task);
752 cp->timer_ticks = 0;
753 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
754 return;
756 #endif
757 if (cp->phy_type & CAS_PHY_SERDES) {
758 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
760 if (cp->link_cntl & BMCR_ANENABLE) {
761 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
762 cp->lstate = link_aneg;
763 } else {
764 if (cp->link_cntl & BMCR_FULLDPLX)
765 val |= PCS_MII_CTRL_DUPLEX;
766 val &= ~PCS_MII_AUTONEG_EN;
767 cp->lstate = link_force_ok;
769 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
770 writel(val, cp->regs + REG_PCS_MII_CTRL);
772 } else {
773 cas_mif_poll(cp, 0);
774 ctl = cas_phy_read(cp, MII_BMCR);
775 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
776 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
777 ctl |= cp->link_cntl;
778 if (ctl & BMCR_ANENABLE) {
779 ctl |= BMCR_ANRESTART;
780 cp->lstate = link_aneg;
781 } else {
782 cp->lstate = link_force_ok;
784 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
785 cas_phy_write(cp, MII_BMCR, ctl);
786 cas_mif_poll(cp, 1);
789 cp->timer_ticks = 0;
790 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
793 /* Must be invoked under cp->lock. */
794 static int cas_reset_mii_phy(struct cas *cp)
796 int limit = STOP_TRIES_PHY;
797 u16 val;
799 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
800 udelay(100);
801 while (--limit) {
802 val = cas_phy_read(cp, MII_BMCR);
803 if ((val & BMCR_RESET) == 0)
804 break;
805 udelay(10);
807 return (limit <= 0);
810 static int cas_saturn_firmware_init(struct cas *cp)
812 const struct firmware *fw;
813 const char fw_name[] = "sun/cassini.bin";
814 int err;
816 if (PHY_NS_DP83065 != cp->phy_id)
817 return 0;
819 err = request_firmware(&fw, fw_name, &cp->pdev->dev);
820 if (err) {
821 pr_err("Failed to load firmware \"%s\"\n",
822 fw_name);
823 return err;
825 if (fw->size < 2) {
826 pr_err("bogus length %zu in \"%s\"\n",
827 fw->size, fw_name);
828 err = -EINVAL;
829 goto out;
831 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
832 cp->fw_size = fw->size - 2;
833 cp->fw_data = vmalloc(cp->fw_size);
834 if (!cp->fw_data) {
835 err = -ENOMEM;
836 pr_err("\"%s\" Failed %d\n", fw_name, err);
837 goto out;
839 memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
840 out:
841 release_firmware(fw);
842 return err;
845 static void cas_saturn_firmware_load(struct cas *cp)
847 int i;
849 cas_phy_powerdown(cp);
851 /* expanded memory access mode */
852 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
854 /* pointer configuration for new firmware */
855 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
856 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
857 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
858 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
859 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
860 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
861 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
862 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
864 /* download new firmware */
865 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
866 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
867 for (i = 0; i < cp->fw_size; i++)
868 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
870 /* enable firmware */
871 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
872 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
876 /* phy initialization */
877 static void cas_phy_init(struct cas *cp)
879 u16 val;
881 /* if we're in MII/GMII mode, set up phy */
882 if (CAS_PHY_MII(cp->phy_type)) {
883 writel(PCS_DATAPATH_MODE_MII,
884 cp->regs + REG_PCS_DATAPATH_MODE);
886 cas_mif_poll(cp, 0);
887 cas_reset_mii_phy(cp); /* take out of isolate mode */
889 if (PHY_LUCENT_B0 == cp->phy_id) {
890 /* workaround link up/down issue with lucent */
891 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
892 cas_phy_write(cp, MII_BMCR, 0x00f1);
893 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
895 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
896 /* workarounds for broadcom phy */
897 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
898 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
899 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
900 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
901 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
902 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
903 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
904 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
905 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
906 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
907 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
909 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
910 val = cas_phy_read(cp, BROADCOM_MII_REG4);
911 val = cas_phy_read(cp, BROADCOM_MII_REG4);
912 if (val & 0x0080) {
913 /* link workaround */
914 cas_phy_write(cp, BROADCOM_MII_REG4,
915 val & ~0x0080);
918 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
919 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
920 SATURN_PCFG_FSI : 0x0,
921 cp->regs + REG_SATURN_PCFG);
923 /* load firmware to address 10Mbps auto-negotiation
924 * issue. NOTE: this will need to be changed if the
925 * default firmware gets fixed.
927 if (PHY_NS_DP83065 == cp->phy_id) {
928 cas_saturn_firmware_load(cp);
930 cas_phy_powerup(cp);
933 /* advertise capabilities */
934 val = cas_phy_read(cp, MII_BMCR);
935 val &= ~BMCR_ANENABLE;
936 cas_phy_write(cp, MII_BMCR, val);
937 udelay(10);
939 cas_phy_write(cp, MII_ADVERTISE,
940 cas_phy_read(cp, MII_ADVERTISE) |
941 (ADVERTISE_10HALF | ADVERTISE_10FULL |
942 ADVERTISE_100HALF | ADVERTISE_100FULL |
943 CAS_ADVERTISE_PAUSE |
944 CAS_ADVERTISE_ASYM_PAUSE));
946 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
947 /* make sure that we don't advertise half
948 * duplex to avoid a chip issue
950 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
951 val &= ~CAS_ADVERTISE_1000HALF;
952 val |= CAS_ADVERTISE_1000FULL;
953 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
956 } else {
957 /* reset pcs for serdes */
958 u32 val;
959 int limit;
961 writel(PCS_DATAPATH_MODE_SERDES,
962 cp->regs + REG_PCS_DATAPATH_MODE);
964 /* enable serdes pins on saturn */
965 if (cp->cas_flags & CAS_FLAG_SATURN)
966 writel(0, cp->regs + REG_SATURN_PCFG);
968 /* Reset PCS unit. */
969 val = readl(cp->regs + REG_PCS_MII_CTRL);
970 val |= PCS_MII_RESET;
971 writel(val, cp->regs + REG_PCS_MII_CTRL);
973 limit = STOP_TRIES;
974 while (--limit > 0) {
975 udelay(10);
976 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
977 PCS_MII_RESET) == 0)
978 break;
980 if (limit <= 0)
981 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
982 readl(cp->regs + REG_PCS_STATE_MACHINE));
984 /* Make sure PCS is disabled while changing advertisement
985 * configuration.
987 writel(0x0, cp->regs + REG_PCS_CFG);
989 /* Advertise all capabilities except half-duplex. */
990 val = readl(cp->regs + REG_PCS_MII_ADVERT);
991 val &= ~PCS_MII_ADVERT_HD;
992 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
993 PCS_MII_ADVERT_ASYM_PAUSE);
994 writel(val, cp->regs + REG_PCS_MII_ADVERT);
996 /* enable PCS */
997 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
999 /* pcs workaround: enable sync detect */
1000 writel(PCS_SERDES_CTRL_SYNCD_EN,
1001 cp->regs + REG_PCS_SERDES_CTRL);
1006 static int cas_pcs_link_check(struct cas *cp)
1008 u32 stat, state_machine;
1009 int retval = 0;
1011 /* The link status bit latches on zero, so you must
1012 * read it twice in such a case to see a transition
1013 * to the link being up.
1015 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1016 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1017 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1019 /* The remote-fault indication is only valid
1020 * when autoneg has completed.
1022 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1023 PCS_MII_STATUS_REMOTE_FAULT)) ==
1024 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1025 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1027 /* work around link detection issue by querying the PCS state
1028 * machine directly.
1030 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1031 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1032 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1033 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1034 stat |= PCS_MII_STATUS_LINK_STATUS;
1037 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1038 if (cp->lstate != link_up) {
1039 if (cp->opened) {
1040 cp->lstate = link_up;
1041 cp->link_transition = LINK_TRANSITION_LINK_UP;
1043 cas_set_link_modes(cp);
1044 netif_carrier_on(cp->dev);
1047 } else if (cp->lstate == link_up) {
1048 cp->lstate = link_down;
1049 if (link_transition_timeout != 0 &&
1050 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1051 !cp->link_transition_jiffies_valid) {
1053 * force a reset, as a workaround for the
1054 * link-failure problem. May want to move this to a
1055 * point a bit earlier in the sequence. If we had
1056 * generated a reset a short time ago, we'll wait for
1057 * the link timer to check the status until a
1058 * timer expires (link_transistion_jiffies_valid is
1059 * true when the timer is running.) Instead of using
1060 * a system timer, we just do a check whenever the
1061 * link timer is running - this clears the flag after
1062 * a suitable delay.
1064 retval = 1;
1065 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1066 cp->link_transition_jiffies = jiffies;
1067 cp->link_transition_jiffies_valid = 1;
1068 } else {
1069 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1071 netif_carrier_off(cp->dev);
1072 if (cp->opened)
1073 netif_info(cp, link, cp->dev, "PCS link down\n");
1075 /* Cassini only: if you force a mode, there can be
1076 * sync problems on link down. to fix that, the following
1077 * things need to be checked:
1078 * 1) read serialink state register
1079 * 2) read pcs status register to verify link down.
1080 * 3) if link down and serial link == 0x03, then you need
1081 * to global reset the chip.
1083 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1084 /* should check to see if we're in a forced mode */
1085 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1086 if (stat == 0x03)
1087 return 1;
1089 } else if (cp->lstate == link_down) {
1090 if (link_transition_timeout != 0 &&
1091 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1092 !cp->link_transition_jiffies_valid) {
1093 /* force a reset, as a workaround for the
1094 * link-failure problem. May want to move
1095 * this to a point a bit earlier in the
1096 * sequence.
1098 retval = 1;
1099 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1100 cp->link_transition_jiffies = jiffies;
1101 cp->link_transition_jiffies_valid = 1;
1102 } else {
1103 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1107 return retval;
1110 static int cas_pcs_interrupt(struct net_device *dev,
1111 struct cas *cp, u32 status)
1113 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1115 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1116 return 0;
1117 return cas_pcs_link_check(cp);
1120 static int cas_txmac_interrupt(struct net_device *dev,
1121 struct cas *cp, u32 status)
1123 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1125 if (!txmac_stat)
1126 return 0;
1128 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1129 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1131 /* Defer timer expiration is quite normal,
1132 * don't even log the event.
1134 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1135 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1136 return 0;
1138 spin_lock(&cp->stat_lock[0]);
1139 if (txmac_stat & MAC_TX_UNDERRUN) {
1140 netdev_err(dev, "TX MAC xmit underrun\n");
1141 cp->net_stats[0].tx_fifo_errors++;
1144 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1145 netdev_err(dev, "TX MAC max packet size error\n");
1146 cp->net_stats[0].tx_errors++;
1149 /* The rest are all cases of one of the 16-bit TX
1150 * counters expiring.
1152 if (txmac_stat & MAC_TX_COLL_NORMAL)
1153 cp->net_stats[0].collisions += 0x10000;
1155 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1156 cp->net_stats[0].tx_aborted_errors += 0x10000;
1157 cp->net_stats[0].collisions += 0x10000;
1160 if (txmac_stat & MAC_TX_COLL_LATE) {
1161 cp->net_stats[0].tx_aborted_errors += 0x10000;
1162 cp->net_stats[0].collisions += 0x10000;
1164 spin_unlock(&cp->stat_lock[0]);
1166 /* We do not keep track of MAC_TX_COLL_FIRST and
1167 * MAC_TX_PEAK_ATTEMPTS events.
1169 return 0;
1172 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1174 cas_hp_inst_t *inst;
1175 u32 val;
1176 int i;
1178 i = 0;
1179 while ((inst = firmware) && inst->note) {
1180 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1182 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1183 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1184 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1186 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1187 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1188 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1189 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1190 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1191 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1192 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1193 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1195 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1196 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1197 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1198 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1199 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1200 ++firmware;
1201 ++i;
1205 static void cas_init_rx_dma(struct cas *cp)
1207 u64 desc_dma = cp->block_dvma;
1208 u32 val;
1209 int i, size;
1211 /* rx free descriptors */
1212 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1213 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1214 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1215 if ((N_RX_DESC_RINGS > 1) &&
1216 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1217 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1218 writel(val, cp->regs + REG_RX_CFG);
1220 val = (unsigned long) cp->init_rxds[0] -
1221 (unsigned long) cp->init_block;
1222 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1223 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1224 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1226 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1227 /* rx desc 2 is for IPSEC packets. however,
1228 * we don't it that for that purpose.
1230 val = (unsigned long) cp->init_rxds[1] -
1231 (unsigned long) cp->init_block;
1232 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1233 writel((desc_dma + val) & 0xffffffff, cp->regs +
1234 REG_PLUS_RX_DB1_LOW);
1235 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1236 REG_PLUS_RX_KICK1);
1239 /* rx completion registers */
1240 val = (unsigned long) cp->init_rxcs[0] -
1241 (unsigned long) cp->init_block;
1242 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1243 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1245 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1246 /* rx comp 2-4 */
1247 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1248 val = (unsigned long) cp->init_rxcs[i] -
1249 (unsigned long) cp->init_block;
1250 writel((desc_dma + val) >> 32, cp->regs +
1251 REG_PLUS_RX_CBN_HI(i));
1252 writel((desc_dma + val) & 0xffffffff, cp->regs +
1253 REG_PLUS_RX_CBN_LOW(i));
1257 /* read selective clear regs to prevent spurious interrupts
1258 * on reset because complete == kick.
1259 * selective clear set up to prevent interrupts on resets
1261 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1262 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1263 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1264 for (i = 1; i < N_RX_COMP_RINGS; i++)
1265 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1267 /* 2 is different from 3 and 4 */
1268 if (N_RX_COMP_RINGS > 1)
1269 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1270 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1272 for (i = 2; i < N_RX_COMP_RINGS; i++)
1273 writel(INTR_RX_DONE_ALT,
1274 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1277 /* set up pause thresholds */
1278 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1279 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1280 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1281 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1282 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1284 /* zero out dma reassembly buffers */
1285 for (i = 0; i < 64; i++) {
1286 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1287 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1288 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1289 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1292 /* make sure address register is 0 for normal operation */
1293 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1294 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1296 /* interrupt mitigation */
1297 #ifdef USE_RX_BLANK
1298 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1299 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1300 writel(val, cp->regs + REG_RX_BLANK);
1301 #else
1302 writel(0x0, cp->regs + REG_RX_BLANK);
1303 #endif
1305 /* interrupt generation as a function of low water marks for
1306 * free desc and completion entries. these are used to trigger
1307 * housekeeping for rx descs. we don't use the free interrupt
1308 * as it's not very useful
1310 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1311 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1312 writel(val, cp->regs + REG_RX_AE_THRESH);
1313 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1314 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1315 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1318 /* Random early detect registers. useful for congestion avoidance.
1319 * this should be tunable.
1321 writel(0x0, cp->regs + REG_RX_RED);
1323 /* receive page sizes. default == 2K (0x800) */
1324 val = 0;
1325 if (cp->page_size == 0x1000)
1326 val = 0x1;
1327 else if (cp->page_size == 0x2000)
1328 val = 0x2;
1329 else if (cp->page_size == 0x4000)
1330 val = 0x3;
1332 /* round mtu + offset. constrain to page size. */
1333 size = cp->dev->mtu + 64;
1334 if (size > cp->page_size)
1335 size = cp->page_size;
1337 if (size <= 0x400)
1338 i = 0x0;
1339 else if (size <= 0x800)
1340 i = 0x1;
1341 else if (size <= 0x1000)
1342 i = 0x2;
1343 else
1344 i = 0x3;
1346 cp->mtu_stride = 1 << (i + 10);
1347 val = CAS_BASE(RX_PAGE_SIZE, val);
1348 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1349 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1350 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1351 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1353 /* enable the header parser if desired */
1354 if (CAS_HP_FIRMWARE == cas_prog_null)
1355 return;
1357 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1358 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1359 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1360 writel(val, cp->regs + REG_HP_CFG);
1363 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1365 memset(rxc, 0, sizeof(*rxc));
1366 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1369 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1370 * flipping is protected by the fact that the chip will not
1371 * hand back the same page index while it's being processed.
1373 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1375 cas_page_t *page = cp->rx_pages[1][index];
1376 cas_page_t *new;
1378 if (page_count(page->buffer) == 1)
1379 return page;
1381 new = cas_page_dequeue(cp);
1382 if (new) {
1383 spin_lock(&cp->rx_inuse_lock);
1384 list_add(&page->list, &cp->rx_inuse_list);
1385 spin_unlock(&cp->rx_inuse_lock);
1387 return new;
1390 /* this needs to be changed if we actually use the ENC RX DESC ring */
1391 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1392 const int index)
1394 cas_page_t **page0 = cp->rx_pages[0];
1395 cas_page_t **page1 = cp->rx_pages[1];
1397 /* swap if buffer is in use */
1398 if (page_count(page0[index]->buffer) > 1) {
1399 cas_page_t *new = cas_page_spare(cp, index);
1400 if (new) {
1401 page1[index] = page0[index];
1402 page0[index] = new;
1405 RX_USED_SET(page0[index], 0);
1406 return page0[index];
1409 static void cas_clean_rxds(struct cas *cp)
1411 /* only clean ring 0 as ring 1 is used for spare buffers */
1412 struct cas_rx_desc *rxd = cp->init_rxds[0];
1413 int i, size;
1415 /* release all rx flows */
1416 for (i = 0; i < N_RX_FLOWS; i++) {
1417 struct sk_buff *skb;
1418 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1419 cas_skb_release(skb);
1423 /* initialize descriptors */
1424 size = RX_DESC_RINGN_SIZE(0);
1425 for (i = 0; i < size; i++) {
1426 cas_page_t *page = cas_page_swap(cp, 0, i);
1427 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1428 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1429 CAS_BASE(RX_INDEX_RING, 0));
1432 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1433 cp->rx_last[0] = 0;
1434 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1437 static void cas_clean_rxcs(struct cas *cp)
1439 int i, j;
1441 /* take ownership of rx comp descriptors */
1442 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1443 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1444 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1445 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1446 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1447 cas_rxc_init(rxc + j);
1452 #if 0
1453 /* When we get a RX fifo overflow, the RX unit is probably hung
1454 * so we do the following.
1456 * If any part of the reset goes wrong, we return 1 and that causes the
1457 * whole chip to be reset.
1459 static int cas_rxmac_reset(struct cas *cp)
1461 struct net_device *dev = cp->dev;
1462 int limit;
1463 u32 val;
1465 /* First, reset MAC RX. */
1466 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1467 for (limit = 0; limit < STOP_TRIES; limit++) {
1468 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1469 break;
1470 udelay(10);
1472 if (limit == STOP_TRIES) {
1473 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1474 return 1;
1477 /* Second, disable RX DMA. */
1478 writel(0, cp->regs + REG_RX_CFG);
1479 for (limit = 0; limit < STOP_TRIES; limit++) {
1480 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1481 break;
1482 udelay(10);
1484 if (limit == STOP_TRIES) {
1485 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1486 return 1;
1489 mdelay(5);
1491 /* Execute RX reset command. */
1492 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1493 for (limit = 0; limit < STOP_TRIES; limit++) {
1494 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1495 break;
1496 udelay(10);
1498 if (limit == STOP_TRIES) {
1499 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1500 return 1;
1503 /* reset driver rx state */
1504 cas_clean_rxds(cp);
1505 cas_clean_rxcs(cp);
1507 /* Now, reprogram the rest of RX unit. */
1508 cas_init_rx_dma(cp);
1510 /* re-enable */
1511 val = readl(cp->regs + REG_RX_CFG);
1512 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1513 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1514 val = readl(cp->regs + REG_MAC_RX_CFG);
1515 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1516 return 0;
1518 #endif
1520 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1521 u32 status)
1523 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1525 if (!stat)
1526 return 0;
1528 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1530 /* these are all rollovers */
1531 spin_lock(&cp->stat_lock[0]);
1532 if (stat & MAC_RX_ALIGN_ERR)
1533 cp->net_stats[0].rx_frame_errors += 0x10000;
1535 if (stat & MAC_RX_CRC_ERR)
1536 cp->net_stats[0].rx_crc_errors += 0x10000;
1538 if (stat & MAC_RX_LEN_ERR)
1539 cp->net_stats[0].rx_length_errors += 0x10000;
1541 if (stat & MAC_RX_OVERFLOW) {
1542 cp->net_stats[0].rx_over_errors++;
1543 cp->net_stats[0].rx_fifo_errors++;
1546 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1547 * events.
1549 spin_unlock(&cp->stat_lock[0]);
1550 return 0;
1553 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1554 u32 status)
1556 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1558 if (!stat)
1559 return 0;
1561 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1562 "mac interrupt, stat: 0x%x\n", stat);
1564 /* This interrupt is just for pause frame and pause
1565 * tracking. It is useful for diagnostics and debug
1566 * but probably by default we will mask these events.
1568 if (stat & MAC_CTRL_PAUSE_STATE)
1569 cp->pause_entered++;
1571 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1572 cp->pause_last_time_recvd = (stat >> 16);
1574 return 0;
1578 /* Must be invoked under cp->lock. */
1579 static inline int cas_mdio_link_not_up(struct cas *cp)
1581 u16 val;
1583 switch (cp->lstate) {
1584 case link_force_ret:
1585 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1586 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1587 cp->timer_ticks = 5;
1588 cp->lstate = link_force_ok;
1589 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1590 break;
1592 case link_aneg:
1593 val = cas_phy_read(cp, MII_BMCR);
1595 /* Try forced modes. we try things in the following order:
1596 * 1000 full -> 100 full/half -> 10 half
1598 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1599 val |= BMCR_FULLDPLX;
1600 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1601 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1602 cas_phy_write(cp, MII_BMCR, val);
1603 cp->timer_ticks = 5;
1604 cp->lstate = link_force_try;
1605 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1606 break;
1608 case link_force_try:
1609 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1610 val = cas_phy_read(cp, MII_BMCR);
1611 cp->timer_ticks = 5;
1612 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1613 val &= ~CAS_BMCR_SPEED1000;
1614 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1615 cas_phy_write(cp, MII_BMCR, val);
1616 break;
1619 if (val & BMCR_SPEED100) {
1620 if (val & BMCR_FULLDPLX) /* fd failed */
1621 val &= ~BMCR_FULLDPLX;
1622 else { /* 100Mbps failed */
1623 val &= ~BMCR_SPEED100;
1625 cas_phy_write(cp, MII_BMCR, val);
1626 break;
1628 default:
1629 break;
1631 return 0;
1635 /* must be invoked with cp->lock held */
1636 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1638 int restart;
1640 if (bmsr & BMSR_LSTATUS) {
1641 /* Ok, here we got a link. If we had it due to a forced
1642 * fallback, and we were configured for autoneg, we
1643 * retry a short autoneg pass. If you know your hub is
1644 * broken, use ethtool ;)
1646 if ((cp->lstate == link_force_try) &&
1647 (cp->link_cntl & BMCR_ANENABLE)) {
1648 cp->lstate = link_force_ret;
1649 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1650 cas_mif_poll(cp, 0);
1651 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1652 cp->timer_ticks = 5;
1653 if (cp->opened)
1654 netif_info(cp, link, cp->dev,
1655 "Got link after fallback, retrying autoneg once...\n");
1656 cas_phy_write(cp, MII_BMCR,
1657 cp->link_fcntl | BMCR_ANENABLE |
1658 BMCR_ANRESTART);
1659 cas_mif_poll(cp, 1);
1661 } else if (cp->lstate != link_up) {
1662 cp->lstate = link_up;
1663 cp->link_transition = LINK_TRANSITION_LINK_UP;
1665 if (cp->opened) {
1666 cas_set_link_modes(cp);
1667 netif_carrier_on(cp->dev);
1670 return 0;
1673 /* link not up. if the link was previously up, we restart the
1674 * whole process
1676 restart = 0;
1677 if (cp->lstate == link_up) {
1678 cp->lstate = link_down;
1679 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1681 netif_carrier_off(cp->dev);
1682 if (cp->opened)
1683 netif_info(cp, link, cp->dev, "Link down\n");
1684 restart = 1;
1686 } else if (++cp->timer_ticks > 10)
1687 cas_mdio_link_not_up(cp);
1689 return restart;
1692 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1693 u32 status)
1695 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1696 u16 bmsr;
1698 /* check for a link change */
1699 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1700 return 0;
1702 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1703 return cas_mii_link_check(cp, bmsr);
1706 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1707 u32 status)
1709 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1711 if (!stat)
1712 return 0;
1714 netdev_err(dev, "PCI error [%04x:%04x]",
1715 stat, readl(cp->regs + REG_BIM_DIAG));
1717 /* cassini+ has this reserved */
1718 if ((stat & PCI_ERR_BADACK) &&
1719 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1720 pr_cont(" <No ACK64# during ABS64 cycle>");
1722 if (stat & PCI_ERR_DTRTO)
1723 pr_cont(" <Delayed transaction timeout>");
1724 if (stat & PCI_ERR_OTHER)
1725 pr_cont(" <other>");
1726 if (stat & PCI_ERR_BIM_DMA_WRITE)
1727 pr_cont(" <BIM DMA 0 write req>");
1728 if (stat & PCI_ERR_BIM_DMA_READ)
1729 pr_cont(" <BIM DMA 0 read req>");
1730 pr_cont("\n");
1732 if (stat & PCI_ERR_OTHER) {
1733 u16 cfg;
1735 /* Interrogate PCI config space for the
1736 * true cause.
1738 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1739 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1740 if (cfg & PCI_STATUS_PARITY)
1741 netdev_err(dev, "PCI parity error detected\n");
1742 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1743 netdev_err(dev, "PCI target abort\n");
1744 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1745 netdev_err(dev, "PCI master acks target abort\n");
1746 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1747 netdev_err(dev, "PCI master abort\n");
1748 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1749 netdev_err(dev, "PCI system error SERR#\n");
1750 if (cfg & PCI_STATUS_DETECTED_PARITY)
1751 netdev_err(dev, "PCI parity error\n");
1753 /* Write the error bits back to clear them. */
1754 cfg &= (PCI_STATUS_PARITY |
1755 PCI_STATUS_SIG_TARGET_ABORT |
1756 PCI_STATUS_REC_TARGET_ABORT |
1757 PCI_STATUS_REC_MASTER_ABORT |
1758 PCI_STATUS_SIG_SYSTEM_ERROR |
1759 PCI_STATUS_DETECTED_PARITY);
1760 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1763 /* For all PCI errors, we should reset the chip. */
1764 return 1;
1767 /* All non-normal interrupt conditions get serviced here.
1768 * Returns non-zero if we should just exit the interrupt
1769 * handler right now (ie. if we reset the card which invalidates
1770 * all of the other original irq status bits).
1772 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1773 u32 status)
1775 if (status & INTR_RX_TAG_ERROR) {
1776 /* corrupt RX tag framing */
1777 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1778 "corrupt rx tag framing\n");
1779 spin_lock(&cp->stat_lock[0]);
1780 cp->net_stats[0].rx_errors++;
1781 spin_unlock(&cp->stat_lock[0]);
1782 goto do_reset;
1785 if (status & INTR_RX_LEN_MISMATCH) {
1786 /* length mismatch. */
1787 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1788 "length mismatch for rx frame\n");
1789 spin_lock(&cp->stat_lock[0]);
1790 cp->net_stats[0].rx_errors++;
1791 spin_unlock(&cp->stat_lock[0]);
1792 goto do_reset;
1795 if (status & INTR_PCS_STATUS) {
1796 if (cas_pcs_interrupt(dev, cp, status))
1797 goto do_reset;
1800 if (status & INTR_TX_MAC_STATUS) {
1801 if (cas_txmac_interrupt(dev, cp, status))
1802 goto do_reset;
1805 if (status & INTR_RX_MAC_STATUS) {
1806 if (cas_rxmac_interrupt(dev, cp, status))
1807 goto do_reset;
1810 if (status & INTR_MAC_CTRL_STATUS) {
1811 if (cas_mac_interrupt(dev, cp, status))
1812 goto do_reset;
1815 if (status & INTR_MIF_STATUS) {
1816 if (cas_mif_interrupt(dev, cp, status))
1817 goto do_reset;
1820 if (status & INTR_PCI_ERROR_STATUS) {
1821 if (cas_pci_interrupt(dev, cp, status))
1822 goto do_reset;
1824 return 0;
1826 do_reset:
1827 #if 1
1828 atomic_inc(&cp->reset_task_pending);
1829 atomic_inc(&cp->reset_task_pending_all);
1830 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1831 schedule_work(&cp->reset_task);
1832 #else
1833 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1834 netdev_err(dev, "reset called in cas_abnormal_irq\n");
1835 schedule_work(&cp->reset_task);
1836 #endif
1837 return 1;
1840 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1841 * determining whether to do a netif_stop/wakeup
1843 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1844 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1845 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1846 const int len)
1848 unsigned long off = addr + len;
1850 if (CAS_TABORT(cp) == 1)
1851 return 0;
1852 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1853 return 0;
1854 return TX_TARGET_ABORT_LEN;
1857 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1859 struct cas_tx_desc *txds;
1860 struct sk_buff **skbs;
1861 struct net_device *dev = cp->dev;
1862 int entry, count;
1864 spin_lock(&cp->tx_lock[ring]);
1865 txds = cp->init_txds[ring];
1866 skbs = cp->tx_skbs[ring];
1867 entry = cp->tx_old[ring];
1869 count = TX_BUFF_COUNT(ring, entry, limit);
1870 while (entry != limit) {
1871 struct sk_buff *skb = skbs[entry];
1872 dma_addr_t daddr;
1873 u32 dlen;
1874 int frag;
1876 if (!skb) {
1877 /* this should never occur */
1878 entry = TX_DESC_NEXT(ring, entry);
1879 continue;
1882 /* however, we might get only a partial skb release. */
1883 count -= skb_shinfo(skb)->nr_frags +
1884 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1885 if (count < 0)
1886 break;
1888 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1889 "tx[%d] done, slot %d\n", ring, entry);
1891 skbs[entry] = NULL;
1892 cp->tx_tiny_use[ring][entry].nbufs = 0;
1894 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1895 struct cas_tx_desc *txd = txds + entry;
1897 daddr = le64_to_cpu(txd->buffer);
1898 dlen = CAS_VAL(TX_DESC_BUFLEN,
1899 le64_to_cpu(txd->control));
1900 pci_unmap_page(cp->pdev, daddr, dlen,
1901 PCI_DMA_TODEVICE);
1902 entry = TX_DESC_NEXT(ring, entry);
1904 /* tiny buffer may follow */
1905 if (cp->tx_tiny_use[ring][entry].used) {
1906 cp->tx_tiny_use[ring][entry].used = 0;
1907 entry = TX_DESC_NEXT(ring, entry);
1911 spin_lock(&cp->stat_lock[ring]);
1912 cp->net_stats[ring].tx_packets++;
1913 cp->net_stats[ring].tx_bytes += skb->len;
1914 spin_unlock(&cp->stat_lock[ring]);
1915 dev_kfree_skb_irq(skb);
1917 cp->tx_old[ring] = entry;
1919 /* this is wrong for multiple tx rings. the net device needs
1920 * multiple queues for this to do the right thing. we wait
1921 * for 2*packets to be available when using tiny buffers
1923 if (netif_queue_stopped(dev) &&
1924 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1925 netif_wake_queue(dev);
1926 spin_unlock(&cp->tx_lock[ring]);
1929 static void cas_tx(struct net_device *dev, struct cas *cp,
1930 u32 status)
1932 int limit, ring;
1933 #ifdef USE_TX_COMPWB
1934 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1935 #endif
1936 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1937 "tx interrupt, status: 0x%x, %llx\n",
1938 status, (unsigned long long)compwb);
1939 /* process all the rings */
1940 for (ring = 0; ring < N_TX_RINGS; ring++) {
1941 #ifdef USE_TX_COMPWB
1942 /* use the completion writeback registers */
1943 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1944 CAS_VAL(TX_COMPWB_LSB, compwb);
1945 compwb = TX_COMPWB_NEXT(compwb);
1946 #else
1947 limit = readl(cp->regs + REG_TX_COMPN(ring));
1948 #endif
1949 if (cp->tx_old[ring] != limit)
1950 cas_tx_ringN(cp, ring, limit);
1955 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1956 int entry, const u64 *words,
1957 struct sk_buff **skbref)
1959 int dlen, hlen, len, i, alloclen;
1960 int off, swivel = RX_SWIVEL_OFF_VAL;
1961 struct cas_page *page;
1962 struct sk_buff *skb;
1963 void *addr, *crcaddr;
1964 __sum16 csum;
1965 char *p;
1967 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1968 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1969 len = hlen + dlen;
1971 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1972 alloclen = len;
1973 else
1974 alloclen = max(hlen, RX_COPY_MIN);
1976 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1977 if (skb == NULL)
1978 return -1;
1980 *skbref = skb;
1981 skb_reserve(skb, swivel);
1983 p = skb->data;
1984 addr = crcaddr = NULL;
1985 if (hlen) { /* always copy header pages */
1986 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1987 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1988 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1989 swivel;
1991 i = hlen;
1992 if (!dlen) /* attach FCS */
1993 i += cp->crc_size;
1994 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1995 PCI_DMA_FROMDEVICE);
1996 addr = cas_page_map(page->buffer);
1997 memcpy(p, addr + off, i);
1998 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1999 PCI_DMA_FROMDEVICE);
2000 cas_page_unmap(addr);
2001 RX_USED_ADD(page, 0x100);
2002 p += hlen;
2003 swivel = 0;
2007 if (alloclen < (hlen + dlen)) {
2008 skb_frag_t *frag = skb_shinfo(skb)->frags;
2010 /* normal or jumbo packets. we use frags */
2011 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2012 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2013 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2015 hlen = min(cp->page_size - off, dlen);
2016 if (hlen < 0) {
2017 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2018 "rx page overflow: %d\n", hlen);
2019 dev_kfree_skb_irq(skb);
2020 return -1;
2022 i = hlen;
2023 if (i == dlen) /* attach FCS */
2024 i += cp->crc_size;
2025 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2026 PCI_DMA_FROMDEVICE);
2028 /* make sure we always copy a header */
2029 swivel = 0;
2030 if (p == (char *) skb->data) { /* not split */
2031 addr = cas_page_map(page->buffer);
2032 memcpy(p, addr + off, RX_COPY_MIN);
2033 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2034 PCI_DMA_FROMDEVICE);
2035 cas_page_unmap(addr);
2036 off += RX_COPY_MIN;
2037 swivel = RX_COPY_MIN;
2038 RX_USED_ADD(page, cp->mtu_stride);
2039 } else {
2040 RX_USED_ADD(page, hlen);
2042 skb_put(skb, alloclen);
2044 skb_shinfo(skb)->nr_frags++;
2045 skb->data_len += hlen - swivel;
2046 skb->truesize += hlen - swivel;
2047 skb->len += hlen - swivel;
2049 get_page(page->buffer);
2050 frag->page = page->buffer;
2051 frag->page_offset = off;
2052 frag->size = hlen - swivel;
2054 /* any more data? */
2055 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2056 hlen = dlen;
2057 off = 0;
2059 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2060 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2061 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2062 hlen + cp->crc_size,
2063 PCI_DMA_FROMDEVICE);
2064 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2065 hlen + cp->crc_size,
2066 PCI_DMA_FROMDEVICE);
2068 skb_shinfo(skb)->nr_frags++;
2069 skb->data_len += hlen;
2070 skb->len += hlen;
2071 frag++;
2073 get_page(page->buffer);
2074 frag->page = page->buffer;
2075 frag->page_offset = 0;
2076 frag->size = hlen;
2077 RX_USED_ADD(page, hlen + cp->crc_size);
2080 if (cp->crc_size) {
2081 addr = cas_page_map(page->buffer);
2082 crcaddr = addr + off + hlen;
2085 } else {
2086 /* copying packet */
2087 if (!dlen)
2088 goto end_copy_pkt;
2090 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2091 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2092 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2093 hlen = min(cp->page_size - off, dlen);
2094 if (hlen < 0) {
2095 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2096 "rx page overflow: %d\n", hlen);
2097 dev_kfree_skb_irq(skb);
2098 return -1;
2100 i = hlen;
2101 if (i == dlen) /* attach FCS */
2102 i += cp->crc_size;
2103 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2104 PCI_DMA_FROMDEVICE);
2105 addr = cas_page_map(page->buffer);
2106 memcpy(p, addr + off, i);
2107 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2108 PCI_DMA_FROMDEVICE);
2109 cas_page_unmap(addr);
2110 if (p == (char *) skb->data) /* not split */
2111 RX_USED_ADD(page, cp->mtu_stride);
2112 else
2113 RX_USED_ADD(page, i);
2115 /* any more data? */
2116 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2117 p += hlen;
2118 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2119 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2120 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2121 dlen + cp->crc_size,
2122 PCI_DMA_FROMDEVICE);
2123 addr = cas_page_map(page->buffer);
2124 memcpy(p, addr, dlen + cp->crc_size);
2125 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2126 dlen + cp->crc_size,
2127 PCI_DMA_FROMDEVICE);
2128 cas_page_unmap(addr);
2129 RX_USED_ADD(page, dlen + cp->crc_size);
2131 end_copy_pkt:
2132 if (cp->crc_size) {
2133 addr = NULL;
2134 crcaddr = skb->data + alloclen;
2136 skb_put(skb, alloclen);
2139 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2140 if (cp->crc_size) {
2141 /* checksum includes FCS. strip it out. */
2142 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2143 csum_unfold(csum)));
2144 if (addr)
2145 cas_page_unmap(addr);
2147 skb->protocol = eth_type_trans(skb, cp->dev);
2148 if (skb->protocol == htons(ETH_P_IP)) {
2149 skb->csum = csum_unfold(~csum);
2150 skb->ip_summed = CHECKSUM_COMPLETE;
2151 } else
2152 skb->ip_summed = CHECKSUM_NONE;
2153 return len;
2157 /* we can handle up to 64 rx flows at a time. we do the same thing
2158 * as nonreassm except that we batch up the buffers.
2159 * NOTE: we currently just treat each flow as a bunch of packets that
2160 * we pass up. a better way would be to coalesce the packets
2161 * into a jumbo packet. to do that, we need to do the following:
2162 * 1) the first packet will have a clean split between header and
2163 * data. save both.
2164 * 2) each time the next flow packet comes in, extend the
2165 * data length and merge the checksums.
2166 * 3) on flow release, fix up the header.
2167 * 4) make sure the higher layer doesn't care.
2168 * because packets get coalesced, we shouldn't run into fragment count
2169 * issues.
2171 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2172 struct sk_buff *skb)
2174 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2175 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2177 /* this is protected at a higher layer, so no need to
2178 * do any additional locking here. stick the buffer
2179 * at the end.
2181 __skb_queue_tail(flow, skb);
2182 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2183 while ((skb = __skb_dequeue(flow))) {
2184 cas_skb_release(skb);
2189 /* put rx descriptor back on ring. if a buffer is in use by a higher
2190 * layer, this will need to put in a replacement.
2192 static void cas_post_page(struct cas *cp, const int ring, const int index)
2194 cas_page_t *new;
2195 int entry;
2197 entry = cp->rx_old[ring];
2199 new = cas_page_swap(cp, ring, index);
2200 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2201 cp->init_rxds[ring][entry].index =
2202 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2203 CAS_BASE(RX_INDEX_RING, ring));
2205 entry = RX_DESC_ENTRY(ring, entry + 1);
2206 cp->rx_old[ring] = entry;
2208 if (entry % 4)
2209 return;
2211 if (ring == 0)
2212 writel(entry, cp->regs + REG_RX_KICK);
2213 else if ((N_RX_DESC_RINGS > 1) &&
2214 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2215 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2219 /* only when things are bad */
2220 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2222 unsigned int entry, last, count, released;
2223 int cluster;
2224 cas_page_t **page = cp->rx_pages[ring];
2226 entry = cp->rx_old[ring];
2228 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2229 "rxd[%d] interrupt, done: %d\n", ring, entry);
2231 cluster = -1;
2232 count = entry & 0x3;
2233 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2234 released = 0;
2235 while (entry != last) {
2236 /* make a new buffer if it's still in use */
2237 if (page_count(page[entry]->buffer) > 1) {
2238 cas_page_t *new = cas_page_dequeue(cp);
2239 if (!new) {
2240 /* let the timer know that we need to
2241 * do this again
2243 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2244 if (!timer_pending(&cp->link_timer))
2245 mod_timer(&cp->link_timer, jiffies +
2246 CAS_LINK_FAST_TIMEOUT);
2247 cp->rx_old[ring] = entry;
2248 cp->rx_last[ring] = num ? num - released : 0;
2249 return -ENOMEM;
2251 spin_lock(&cp->rx_inuse_lock);
2252 list_add(&page[entry]->list, &cp->rx_inuse_list);
2253 spin_unlock(&cp->rx_inuse_lock);
2254 cp->init_rxds[ring][entry].buffer =
2255 cpu_to_le64(new->dma_addr);
2256 page[entry] = new;
2260 if (++count == 4) {
2261 cluster = entry;
2262 count = 0;
2264 released++;
2265 entry = RX_DESC_ENTRY(ring, entry + 1);
2267 cp->rx_old[ring] = entry;
2269 if (cluster < 0)
2270 return 0;
2272 if (ring == 0)
2273 writel(cluster, cp->regs + REG_RX_KICK);
2274 else if ((N_RX_DESC_RINGS > 1) &&
2275 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2276 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2277 return 0;
2281 /* process a completion ring. packets are set up in three basic ways:
2282 * small packets: should be copied header + data in single buffer.
2283 * large packets: header and data in a single buffer.
2284 * split packets: header in a separate buffer from data.
2285 * data may be in multiple pages. data may be > 256
2286 * bytes but in a single page.
2288 * NOTE: RX page posting is done in this routine as well. while there's
2289 * the capability of using multiple RX completion rings, it isn't
2290 * really worthwhile due to the fact that the page posting will
2291 * force serialization on the single descriptor ring.
2293 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2295 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2296 int entry, drops;
2297 int npackets = 0;
2299 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2300 "rx[%d] interrupt, done: %d/%d\n",
2301 ring,
2302 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2304 entry = cp->rx_new[ring];
2305 drops = 0;
2306 while (1) {
2307 struct cas_rx_comp *rxc = rxcs + entry;
2308 struct sk_buff *uninitialized_var(skb);
2309 int type, len;
2310 u64 words[4];
2311 int i, dring;
2313 words[0] = le64_to_cpu(rxc->word1);
2314 words[1] = le64_to_cpu(rxc->word2);
2315 words[2] = le64_to_cpu(rxc->word3);
2316 words[3] = le64_to_cpu(rxc->word4);
2318 /* don't touch if still owned by hw */
2319 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2320 if (type == 0)
2321 break;
2323 /* hw hasn't cleared the zero bit yet */
2324 if (words[3] & RX_COMP4_ZERO) {
2325 break;
2328 /* get info on the packet */
2329 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2330 spin_lock(&cp->stat_lock[ring]);
2331 cp->net_stats[ring].rx_errors++;
2332 if (words[3] & RX_COMP4_LEN_MISMATCH)
2333 cp->net_stats[ring].rx_length_errors++;
2334 if (words[3] & RX_COMP4_BAD)
2335 cp->net_stats[ring].rx_crc_errors++;
2336 spin_unlock(&cp->stat_lock[ring]);
2338 /* We'll just return it to Cassini. */
2339 drop_it:
2340 spin_lock(&cp->stat_lock[ring]);
2341 ++cp->net_stats[ring].rx_dropped;
2342 spin_unlock(&cp->stat_lock[ring]);
2343 goto next;
2346 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2347 if (len < 0) {
2348 ++drops;
2349 goto drop_it;
2352 /* see if it's a flow re-assembly or not. the driver
2353 * itself handles release back up.
2355 if (RX_DONT_BATCH || (type == 0x2)) {
2356 /* non-reassm: these always get released */
2357 cas_skb_release(skb);
2358 } else {
2359 cas_rx_flow_pkt(cp, words, skb);
2362 spin_lock(&cp->stat_lock[ring]);
2363 cp->net_stats[ring].rx_packets++;
2364 cp->net_stats[ring].rx_bytes += len;
2365 spin_unlock(&cp->stat_lock[ring]);
2367 next:
2368 npackets++;
2370 /* should it be released? */
2371 if (words[0] & RX_COMP1_RELEASE_HDR) {
2372 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2373 dring = CAS_VAL(RX_INDEX_RING, i);
2374 i = CAS_VAL(RX_INDEX_NUM, i);
2375 cas_post_page(cp, dring, i);
2378 if (words[0] & RX_COMP1_RELEASE_DATA) {
2379 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2380 dring = CAS_VAL(RX_INDEX_RING, i);
2381 i = CAS_VAL(RX_INDEX_NUM, i);
2382 cas_post_page(cp, dring, i);
2385 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2386 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2387 dring = CAS_VAL(RX_INDEX_RING, i);
2388 i = CAS_VAL(RX_INDEX_NUM, i);
2389 cas_post_page(cp, dring, i);
2392 /* skip to the next entry */
2393 entry = RX_COMP_ENTRY(ring, entry + 1 +
2394 CAS_VAL(RX_COMP1_SKIP, words[0]));
2395 #ifdef USE_NAPI
2396 if (budget && (npackets >= budget))
2397 break;
2398 #endif
2400 cp->rx_new[ring] = entry;
2402 if (drops)
2403 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2404 return npackets;
2408 /* put completion entries back on the ring */
2409 static void cas_post_rxcs_ringN(struct net_device *dev,
2410 struct cas *cp, int ring)
2412 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2413 int last, entry;
2415 last = cp->rx_cur[ring];
2416 entry = cp->rx_new[ring];
2417 netif_printk(cp, intr, KERN_DEBUG, dev,
2418 "rxc[%d] interrupt, done: %d/%d\n",
2419 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2421 /* zero and re-mark descriptors */
2422 while (last != entry) {
2423 cas_rxc_init(rxc + last);
2424 last = RX_COMP_ENTRY(ring, last + 1);
2426 cp->rx_cur[ring] = last;
2428 if (ring == 0)
2429 writel(last, cp->regs + REG_RX_COMP_TAIL);
2430 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2431 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2436 /* cassini can use all four PCI interrupts for the completion ring.
2437 * rings 3 and 4 are identical
2439 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2440 static inline void cas_handle_irqN(struct net_device *dev,
2441 struct cas *cp, const u32 status,
2442 const int ring)
2444 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2445 cas_post_rxcs_ringN(dev, cp, ring);
2448 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2450 struct net_device *dev = dev_id;
2451 struct cas *cp = netdev_priv(dev);
2452 unsigned long flags;
2453 int ring;
2454 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2456 /* check for shared irq */
2457 if (status == 0)
2458 return IRQ_NONE;
2460 ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2461 spin_lock_irqsave(&cp->lock, flags);
2462 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2463 #ifdef USE_NAPI
2464 cas_mask_intr(cp);
2465 napi_schedule(&cp->napi);
2466 #else
2467 cas_rx_ringN(cp, ring, 0);
2468 #endif
2469 status &= ~INTR_RX_DONE_ALT;
2472 if (status)
2473 cas_handle_irqN(dev, cp, status, ring);
2474 spin_unlock_irqrestore(&cp->lock, flags);
2475 return IRQ_HANDLED;
2477 #endif
2479 #ifdef USE_PCI_INTB
2480 /* everything but rx packets */
2481 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2483 if (status & INTR_RX_BUF_UNAVAIL_1) {
2484 /* Frame arrived, no free RX buffers available.
2485 * NOTE: we can get this on a link transition. */
2486 cas_post_rxds_ringN(cp, 1, 0);
2487 spin_lock(&cp->stat_lock[1]);
2488 cp->net_stats[1].rx_dropped++;
2489 spin_unlock(&cp->stat_lock[1]);
2492 if (status & INTR_RX_BUF_AE_1)
2493 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2494 RX_AE_FREEN_VAL(1));
2496 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2497 cas_post_rxcs_ringN(cp, 1);
2500 /* ring 2 handles a few more events than 3 and 4 */
2501 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2503 struct net_device *dev = dev_id;
2504 struct cas *cp = netdev_priv(dev);
2505 unsigned long flags;
2506 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2508 /* check for shared interrupt */
2509 if (status == 0)
2510 return IRQ_NONE;
2512 spin_lock_irqsave(&cp->lock, flags);
2513 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2514 #ifdef USE_NAPI
2515 cas_mask_intr(cp);
2516 napi_schedule(&cp->napi);
2517 #else
2518 cas_rx_ringN(cp, 1, 0);
2519 #endif
2520 status &= ~INTR_RX_DONE_ALT;
2522 if (status)
2523 cas_handle_irq1(cp, status);
2524 spin_unlock_irqrestore(&cp->lock, flags);
2525 return IRQ_HANDLED;
2527 #endif
2529 static inline void cas_handle_irq(struct net_device *dev,
2530 struct cas *cp, const u32 status)
2532 /* housekeeping interrupts */
2533 if (status & INTR_ERROR_MASK)
2534 cas_abnormal_irq(dev, cp, status);
2536 if (status & INTR_RX_BUF_UNAVAIL) {
2537 /* Frame arrived, no free RX buffers available.
2538 * NOTE: we can get this on a link transition.
2540 cas_post_rxds_ringN(cp, 0, 0);
2541 spin_lock(&cp->stat_lock[0]);
2542 cp->net_stats[0].rx_dropped++;
2543 spin_unlock(&cp->stat_lock[0]);
2544 } else if (status & INTR_RX_BUF_AE) {
2545 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2546 RX_AE_FREEN_VAL(0));
2549 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2550 cas_post_rxcs_ringN(dev, cp, 0);
2553 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2555 struct net_device *dev = dev_id;
2556 struct cas *cp = netdev_priv(dev);
2557 unsigned long flags;
2558 u32 status = readl(cp->regs + REG_INTR_STATUS);
2560 if (status == 0)
2561 return IRQ_NONE;
2563 spin_lock_irqsave(&cp->lock, flags);
2564 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2565 cas_tx(dev, cp, status);
2566 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2569 if (status & INTR_RX_DONE) {
2570 #ifdef USE_NAPI
2571 cas_mask_intr(cp);
2572 napi_schedule(&cp->napi);
2573 #else
2574 cas_rx_ringN(cp, 0, 0);
2575 #endif
2576 status &= ~INTR_RX_DONE;
2579 if (status)
2580 cas_handle_irq(dev, cp, status);
2581 spin_unlock_irqrestore(&cp->lock, flags);
2582 return IRQ_HANDLED;
2586 #ifdef USE_NAPI
2587 static int cas_poll(struct napi_struct *napi, int budget)
2589 struct cas *cp = container_of(napi, struct cas, napi);
2590 struct net_device *dev = cp->dev;
2591 int i, enable_intr, credits;
2592 u32 status = readl(cp->regs + REG_INTR_STATUS);
2593 unsigned long flags;
2595 spin_lock_irqsave(&cp->lock, flags);
2596 cas_tx(dev, cp, status);
2597 spin_unlock_irqrestore(&cp->lock, flags);
2599 /* NAPI rx packets. we spread the credits across all of the
2600 * rxc rings
2602 * to make sure we're fair with the work we loop through each
2603 * ring N_RX_COMP_RING times with a request of
2604 * budget / N_RX_COMP_RINGS
2606 enable_intr = 1;
2607 credits = 0;
2608 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2609 int j;
2610 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2611 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2612 if (credits >= budget) {
2613 enable_intr = 0;
2614 goto rx_comp;
2619 rx_comp:
2620 /* final rx completion */
2621 spin_lock_irqsave(&cp->lock, flags);
2622 if (status)
2623 cas_handle_irq(dev, cp, status);
2625 #ifdef USE_PCI_INTB
2626 if (N_RX_COMP_RINGS > 1) {
2627 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2628 if (status)
2629 cas_handle_irq1(dev, cp, status);
2631 #endif
2633 #ifdef USE_PCI_INTC
2634 if (N_RX_COMP_RINGS > 2) {
2635 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2636 if (status)
2637 cas_handle_irqN(dev, cp, status, 2);
2639 #endif
2641 #ifdef USE_PCI_INTD
2642 if (N_RX_COMP_RINGS > 3) {
2643 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2644 if (status)
2645 cas_handle_irqN(dev, cp, status, 3);
2647 #endif
2648 spin_unlock_irqrestore(&cp->lock, flags);
2649 if (enable_intr) {
2650 napi_complete(napi);
2651 cas_unmask_intr(cp);
2653 return credits;
2655 #endif
2657 #ifdef CONFIG_NET_POLL_CONTROLLER
2658 static void cas_netpoll(struct net_device *dev)
2660 struct cas *cp = netdev_priv(dev);
2662 cas_disable_irq(cp, 0);
2663 cas_interrupt(cp->pdev->irq, dev);
2664 cas_enable_irq(cp, 0);
2666 #ifdef USE_PCI_INTB
2667 if (N_RX_COMP_RINGS > 1) {
2668 /* cas_interrupt1(); */
2670 #endif
2671 #ifdef USE_PCI_INTC
2672 if (N_RX_COMP_RINGS > 2) {
2673 /* cas_interruptN(); */
2675 #endif
2676 #ifdef USE_PCI_INTD
2677 if (N_RX_COMP_RINGS > 3) {
2678 /* cas_interruptN(); */
2680 #endif
2682 #endif
2684 static void cas_tx_timeout(struct net_device *dev)
2686 struct cas *cp = netdev_priv(dev);
2688 netdev_err(dev, "transmit timed out, resetting\n");
2689 if (!cp->hw_running) {
2690 netdev_err(dev, "hrm.. hw not running!\n");
2691 return;
2694 netdev_err(dev, "MIF_STATE[%08x]\n",
2695 readl(cp->regs + REG_MIF_STATE_MACHINE));
2697 netdev_err(dev, "MAC_STATE[%08x]\n",
2698 readl(cp->regs + REG_MAC_STATE_MACHINE));
2700 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2701 readl(cp->regs + REG_TX_CFG),
2702 readl(cp->regs + REG_MAC_TX_STATUS),
2703 readl(cp->regs + REG_MAC_TX_CFG),
2704 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2705 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2706 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2707 readl(cp->regs + REG_TX_SM_1),
2708 readl(cp->regs + REG_TX_SM_2));
2710 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2711 readl(cp->regs + REG_RX_CFG),
2712 readl(cp->regs + REG_MAC_RX_STATUS),
2713 readl(cp->regs + REG_MAC_RX_CFG));
2715 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2716 readl(cp->regs + REG_HP_STATE_MACHINE),
2717 readl(cp->regs + REG_HP_STATUS0),
2718 readl(cp->regs + REG_HP_STATUS1),
2719 readl(cp->regs + REG_HP_STATUS2));
2721 #if 1
2722 atomic_inc(&cp->reset_task_pending);
2723 atomic_inc(&cp->reset_task_pending_all);
2724 schedule_work(&cp->reset_task);
2725 #else
2726 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2727 schedule_work(&cp->reset_task);
2728 #endif
2731 static inline int cas_intme(int ring, int entry)
2733 /* Algorithm: IRQ every 1/2 of descriptors. */
2734 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2735 return 1;
2736 return 0;
2740 static void cas_write_txd(struct cas *cp, int ring, int entry,
2741 dma_addr_t mapping, int len, u64 ctrl, int last)
2743 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2745 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2746 if (cas_intme(ring, entry))
2747 ctrl |= TX_DESC_INTME;
2748 if (last)
2749 ctrl |= TX_DESC_EOF;
2750 txd->control = cpu_to_le64(ctrl);
2751 txd->buffer = cpu_to_le64(mapping);
2754 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2755 const int entry)
2757 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2760 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2761 const int entry, const int tentry)
2763 cp->tx_tiny_use[ring][tentry].nbufs++;
2764 cp->tx_tiny_use[ring][entry].used = 1;
2765 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2768 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2769 struct sk_buff *skb)
2771 struct net_device *dev = cp->dev;
2772 int entry, nr_frags, frag, tabort, tentry;
2773 dma_addr_t mapping;
2774 unsigned long flags;
2775 u64 ctrl;
2776 u32 len;
2778 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2780 /* This is a hard error, log it. */
2781 if (TX_BUFFS_AVAIL(cp, ring) <=
2782 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2783 netif_stop_queue(dev);
2784 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2785 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2786 return 1;
2789 ctrl = 0;
2790 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2791 const u64 csum_start_off = skb_transport_offset(skb);
2792 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2794 ctrl = TX_DESC_CSUM_EN |
2795 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2796 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2799 entry = cp->tx_new[ring];
2800 cp->tx_skbs[ring][entry] = skb;
2802 nr_frags = skb_shinfo(skb)->nr_frags;
2803 len = skb_headlen(skb);
2804 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2805 offset_in_page(skb->data), len,
2806 PCI_DMA_TODEVICE);
2808 tentry = entry;
2809 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2810 if (unlikely(tabort)) {
2811 /* NOTE: len is always > tabort */
2812 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2813 ctrl | TX_DESC_SOF, 0);
2814 entry = TX_DESC_NEXT(ring, entry);
2816 skb_copy_from_linear_data_offset(skb, len - tabort,
2817 tx_tiny_buf(cp, ring, entry), tabort);
2818 mapping = tx_tiny_map(cp, ring, entry, tentry);
2819 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2820 (nr_frags == 0));
2821 } else {
2822 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2823 TX_DESC_SOF, (nr_frags == 0));
2825 entry = TX_DESC_NEXT(ring, entry);
2827 for (frag = 0; frag < nr_frags; frag++) {
2828 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2830 len = fragp->size;
2831 mapping = pci_map_page(cp->pdev, fragp->page,
2832 fragp->page_offset, len,
2833 PCI_DMA_TODEVICE);
2835 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2836 if (unlikely(tabort)) {
2837 void *addr;
2839 /* NOTE: len is always > tabort */
2840 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2841 ctrl, 0);
2842 entry = TX_DESC_NEXT(ring, entry);
2844 addr = cas_page_map(fragp->page);
2845 memcpy(tx_tiny_buf(cp, ring, entry),
2846 addr + fragp->page_offset + len - tabort,
2847 tabort);
2848 cas_page_unmap(addr);
2849 mapping = tx_tiny_map(cp, ring, entry, tentry);
2850 len = tabort;
2853 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2854 (frag + 1 == nr_frags));
2855 entry = TX_DESC_NEXT(ring, entry);
2858 cp->tx_new[ring] = entry;
2859 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2860 netif_stop_queue(dev);
2862 netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2863 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2864 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2865 writel(entry, cp->regs + REG_TX_KICKN(ring));
2866 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2867 return 0;
2870 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2872 struct cas *cp = netdev_priv(dev);
2874 /* this is only used as a load-balancing hint, so it doesn't
2875 * need to be SMP safe
2877 static int ring;
2879 if (skb_padto(skb, cp->min_frame_size))
2880 return NETDEV_TX_OK;
2882 /* XXX: we need some higher-level QoS hooks to steer packets to
2883 * individual queues.
2885 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2886 return NETDEV_TX_BUSY;
2887 return NETDEV_TX_OK;
2890 static void cas_init_tx_dma(struct cas *cp)
2892 u64 desc_dma = cp->block_dvma;
2893 unsigned long off;
2894 u32 val;
2895 int i;
2897 /* set up tx completion writeback registers. must be 8-byte aligned */
2898 #ifdef USE_TX_COMPWB
2899 off = offsetof(struct cas_init_block, tx_compwb);
2900 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2901 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2902 #endif
2904 /* enable completion writebacks, enable paced mode,
2905 * disable read pipe, and disable pre-interrupt compwbs
2907 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2908 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2909 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2910 TX_CFG_INTR_COMPWB_DIS;
2912 /* write out tx ring info and tx desc bases */
2913 for (i = 0; i < MAX_TX_RINGS; i++) {
2914 off = (unsigned long) cp->init_txds[i] -
2915 (unsigned long) cp->init_block;
2917 val |= CAS_TX_RINGN_BASE(i);
2918 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2919 writel((desc_dma + off) & 0xffffffff, cp->regs +
2920 REG_TX_DBN_LOW(i));
2921 /* don't zero out the kick register here as the system
2922 * will wedge
2925 writel(val, cp->regs + REG_TX_CFG);
2927 /* program max burst sizes. these numbers should be different
2928 * if doing QoS.
2930 #ifdef USE_QOS
2931 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2932 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2933 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2934 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2935 #else
2936 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2937 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2938 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2939 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2940 #endif
2943 /* Must be invoked under cp->lock. */
2944 static inline void cas_init_dma(struct cas *cp)
2946 cas_init_tx_dma(cp);
2947 cas_init_rx_dma(cp);
2950 static void cas_process_mc_list(struct cas *cp)
2952 u16 hash_table[16];
2953 u32 crc;
2954 struct netdev_hw_addr *ha;
2955 int i = 1;
2957 memset(hash_table, 0, sizeof(hash_table));
2958 netdev_for_each_mc_addr(ha, cp->dev) {
2959 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2960 /* use the alternate mac address registers for the
2961 * first 15 multicast addresses
2963 writel((ha->addr[4] << 8) | ha->addr[5],
2964 cp->regs + REG_MAC_ADDRN(i*3 + 0));
2965 writel((ha->addr[2] << 8) | ha->addr[3],
2966 cp->regs + REG_MAC_ADDRN(i*3 + 1));
2967 writel((ha->addr[0] << 8) | ha->addr[1],
2968 cp->regs + REG_MAC_ADDRN(i*3 + 2));
2969 i++;
2971 else {
2972 /* use hw hash table for the next series of
2973 * multicast addresses
2975 crc = ether_crc_le(ETH_ALEN, ha->addr);
2976 crc >>= 24;
2977 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2980 for (i = 0; i < 16; i++)
2981 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2984 /* Must be invoked under cp->lock. */
2985 static u32 cas_setup_multicast(struct cas *cp)
2987 u32 rxcfg = 0;
2988 int i;
2990 if (cp->dev->flags & IFF_PROMISC) {
2991 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2993 } else if (cp->dev->flags & IFF_ALLMULTI) {
2994 for (i=0; i < 16; i++)
2995 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2996 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2998 } else {
2999 cas_process_mc_list(cp);
3000 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3003 return rxcfg;
3006 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3007 static void cas_clear_mac_err(struct cas *cp)
3009 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3010 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3011 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3012 writel(0, cp->regs + REG_MAC_COLL_LATE);
3013 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3014 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3015 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3016 writel(0, cp->regs + REG_MAC_LEN_ERR);
3017 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3018 writel(0, cp->regs + REG_MAC_FCS_ERR);
3019 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3023 static void cas_mac_reset(struct cas *cp)
3025 int i;
3027 /* do both TX and RX reset */
3028 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3029 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3031 /* wait for TX */
3032 i = STOP_TRIES;
3033 while (i-- > 0) {
3034 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3035 break;
3036 udelay(10);
3039 /* wait for RX */
3040 i = STOP_TRIES;
3041 while (i-- > 0) {
3042 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3043 break;
3044 udelay(10);
3047 if (readl(cp->regs + REG_MAC_TX_RESET) |
3048 readl(cp->regs + REG_MAC_RX_RESET))
3049 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3050 readl(cp->regs + REG_MAC_TX_RESET),
3051 readl(cp->regs + REG_MAC_RX_RESET),
3052 readl(cp->regs + REG_MAC_STATE_MACHINE));
3056 /* Must be invoked under cp->lock. */
3057 static void cas_init_mac(struct cas *cp)
3059 unsigned char *e = &cp->dev->dev_addr[0];
3060 int i;
3061 cas_mac_reset(cp);
3063 /* setup core arbitration weight register */
3064 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3066 /* XXX Use pci_dma_burst_advice() */
3067 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3068 /* set the infinite burst register for chips that don't have
3069 * pci issues.
3071 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3072 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3073 #endif
3075 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3077 writel(0x00, cp->regs + REG_MAC_IPG0);
3078 writel(0x08, cp->regs + REG_MAC_IPG1);
3079 writel(0x04, cp->regs + REG_MAC_IPG2);
3081 /* change later for 802.3z */
3082 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3084 /* min frame + FCS */
3085 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3087 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3088 * specify the maximum frame size to prevent RX tag errors on
3089 * oversized frames.
3091 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3092 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3093 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3094 cp->regs + REG_MAC_FRAMESIZE_MAX);
3096 /* NOTE: crc_size is used as a surrogate for half-duplex.
3097 * workaround saturn half-duplex issue by increasing preamble
3098 * size to 65 bytes.
3100 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3101 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3102 else
3103 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3104 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3105 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3106 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3108 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3110 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3111 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3112 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3113 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3114 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3116 /* setup mac address in perfect filter array */
3117 for (i = 0; i < 45; i++)
3118 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3120 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3121 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3122 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3124 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3125 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3126 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3128 cp->mac_rx_cfg = cas_setup_multicast(cp);
3130 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3131 cas_clear_mac_err(cp);
3132 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3134 /* Setup MAC interrupts. We want to get all of the interesting
3135 * counter expiration events, but we do not want to hear about
3136 * normal rx/tx as the DMA engine tells us that.
3138 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3139 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3141 /* Don't enable even the PAUSE interrupts for now, we
3142 * make no use of those events other than to record them.
3144 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3147 /* Must be invoked under cp->lock. */
3148 static void cas_init_pause_thresholds(struct cas *cp)
3150 /* Calculate pause thresholds. Setting the OFF threshold to the
3151 * full RX fifo size effectively disables PAUSE generation
3153 if (cp->rx_fifo_size <= (2 * 1024)) {
3154 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3155 } else {
3156 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3157 if (max_frame * 3 > cp->rx_fifo_size) {
3158 cp->rx_pause_off = 7104;
3159 cp->rx_pause_on = 960;
3160 } else {
3161 int off = (cp->rx_fifo_size - (max_frame * 2));
3162 int on = off - max_frame;
3163 cp->rx_pause_off = off;
3164 cp->rx_pause_on = on;
3169 static int cas_vpd_match(const void __iomem *p, const char *str)
3171 int len = strlen(str) + 1;
3172 int i;
3174 for (i = 0; i < len; i++) {
3175 if (readb(p + i) != str[i])
3176 return 0;
3178 return 1;
3182 /* get the mac address by reading the vpd information in the rom.
3183 * also get the phy type and determine if there's an entropy generator.
3184 * NOTE: this is a bit convoluted for the following reasons:
3185 * 1) vpd info has order-dependent mac addresses for multinic cards
3186 * 2) the only way to determine the nic order is to use the slot
3187 * number.
3188 * 3) fiber cards don't have bridges, so their slot numbers don't
3189 * mean anything.
3190 * 4) we don't actually know we have a fiber card until after
3191 * the mac addresses are parsed.
3193 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3194 const int offset)
3196 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3197 void __iomem *base, *kstart;
3198 int i, len;
3199 int found = 0;
3200 #define VPD_FOUND_MAC 0x01
3201 #define VPD_FOUND_PHY 0x02
3203 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3204 int mac_off = 0;
3206 /* give us access to the PROM */
3207 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3208 cp->regs + REG_BIM_LOCAL_DEV_EN);
3210 /* check for an expansion rom */
3211 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3212 goto use_random_mac_addr;
3214 /* search for beginning of vpd */
3215 base = NULL;
3216 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3217 /* check for PCIR */
3218 if ((readb(p + i + 0) == 0x50) &&
3219 (readb(p + i + 1) == 0x43) &&
3220 (readb(p + i + 2) == 0x49) &&
3221 (readb(p + i + 3) == 0x52)) {
3222 base = p + (readb(p + i + 8) |
3223 (readb(p + i + 9) << 8));
3224 break;
3228 if (!base || (readb(base) != 0x82))
3229 goto use_random_mac_addr;
3231 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3232 while (i < EXPANSION_ROM_SIZE) {
3233 if (readb(base + i) != 0x90) /* no vpd found */
3234 goto use_random_mac_addr;
3236 /* found a vpd field */
3237 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3239 /* extract keywords */
3240 kstart = base + i + 3;
3241 p = kstart;
3242 while ((p - kstart) < len) {
3243 int klen = readb(p + 2);
3244 int j;
3245 char type;
3247 p += 3;
3249 /* look for the following things:
3250 * -- correct length == 29
3251 * 3 (type) + 2 (size) +
3252 * 18 (strlen("local-mac-address") + 1) +
3253 * 6 (mac addr)
3254 * -- VPD Instance 'I'
3255 * -- VPD Type Bytes 'B'
3256 * -- VPD data length == 6
3257 * -- property string == local-mac-address
3259 * -- correct length == 24
3260 * 3 (type) + 2 (size) +
3261 * 12 (strlen("entropy-dev") + 1) +
3262 * 7 (strlen("vms110") + 1)
3263 * -- VPD Instance 'I'
3264 * -- VPD Type String 'B'
3265 * -- VPD data length == 7
3266 * -- property string == entropy-dev
3268 * -- correct length == 18
3269 * 3 (type) + 2 (size) +
3270 * 9 (strlen("phy-type") + 1) +
3271 * 4 (strlen("pcs") + 1)
3272 * -- VPD Instance 'I'
3273 * -- VPD Type String 'S'
3274 * -- VPD data length == 4
3275 * -- property string == phy-type
3277 * -- correct length == 23
3278 * 3 (type) + 2 (size) +
3279 * 14 (strlen("phy-interface") + 1) +
3280 * 4 (strlen("pcs") + 1)
3281 * -- VPD Instance 'I'
3282 * -- VPD Type String 'S'
3283 * -- VPD data length == 4
3284 * -- property string == phy-interface
3286 if (readb(p) != 'I')
3287 goto next;
3289 /* finally, check string and length */
3290 type = readb(p + 3);
3291 if (type == 'B') {
3292 if ((klen == 29) && readb(p + 4) == 6 &&
3293 cas_vpd_match(p + 5,
3294 "local-mac-address")) {
3295 if (mac_off++ > offset)
3296 goto next;
3298 /* set mac address */
3299 for (j = 0; j < 6; j++)
3300 dev_addr[j] =
3301 readb(p + 23 + j);
3302 goto found_mac;
3306 if (type != 'S')
3307 goto next;
3309 #ifdef USE_ENTROPY_DEV
3310 if ((klen == 24) &&
3311 cas_vpd_match(p + 5, "entropy-dev") &&
3312 cas_vpd_match(p + 17, "vms110")) {
3313 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3314 goto next;
3316 #endif
3318 if (found & VPD_FOUND_PHY)
3319 goto next;
3321 if ((klen == 18) && readb(p + 4) == 4 &&
3322 cas_vpd_match(p + 5, "phy-type")) {
3323 if (cas_vpd_match(p + 14, "pcs")) {
3324 phy_type = CAS_PHY_SERDES;
3325 goto found_phy;
3329 if ((klen == 23) && readb(p + 4) == 4 &&
3330 cas_vpd_match(p + 5, "phy-interface")) {
3331 if (cas_vpd_match(p + 19, "pcs")) {
3332 phy_type = CAS_PHY_SERDES;
3333 goto found_phy;
3336 found_mac:
3337 found |= VPD_FOUND_MAC;
3338 goto next;
3340 found_phy:
3341 found |= VPD_FOUND_PHY;
3343 next:
3344 p += klen;
3346 i += len + 3;
3349 use_random_mac_addr:
3350 if (found & VPD_FOUND_MAC)
3351 goto done;
3353 /* Sun MAC prefix then 3 random bytes. */
3354 pr_info("MAC address not found in ROM VPD\n");
3355 dev_addr[0] = 0x08;
3356 dev_addr[1] = 0x00;
3357 dev_addr[2] = 0x20;
3358 get_random_bytes(dev_addr + 3, 3);
3360 done:
3361 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3362 return phy_type;
3365 /* check pci invariants */
3366 static void cas_check_pci_invariants(struct cas *cp)
3368 struct pci_dev *pdev = cp->pdev;
3370 cp->cas_flags = 0;
3371 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3372 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3373 if (pdev->revision >= CAS_ID_REVPLUS)
3374 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3375 if (pdev->revision < CAS_ID_REVPLUS02u)
3376 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3378 /* Original Cassini supports HW CSUM, but it's not
3379 * enabled by default as it can trigger TX hangs.
3381 if (pdev->revision < CAS_ID_REV2)
3382 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3383 } else {
3384 /* Only sun has original cassini chips. */
3385 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3387 /* We use a flag because the same phy might be externally
3388 * connected.
3390 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3391 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3392 cp->cas_flags |= CAS_FLAG_SATURN;
3397 static int cas_check_invariants(struct cas *cp)
3399 struct pci_dev *pdev = cp->pdev;
3400 u32 cfg;
3401 int i;
3403 /* get page size for rx buffers. */
3404 cp->page_order = 0;
3405 #ifdef USE_PAGE_ORDER
3406 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3407 /* see if we can allocate larger pages */
3408 struct page *page = alloc_pages(GFP_ATOMIC,
3409 CAS_JUMBO_PAGE_SHIFT -
3410 PAGE_SHIFT);
3411 if (page) {
3412 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3413 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3414 } else {
3415 printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3418 #endif
3419 cp->page_size = (PAGE_SIZE << cp->page_order);
3421 /* Fetch the FIFO configurations. */
3422 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3423 cp->rx_fifo_size = RX_FIFO_SIZE;
3425 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3426 * they're both connected.
3428 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3429 PCI_SLOT(pdev->devfn));
3430 if (cp->phy_type & CAS_PHY_SERDES) {
3431 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3432 return 0; /* no more checking needed */
3435 /* MII */
3436 cfg = readl(cp->regs + REG_MIF_CFG);
3437 if (cfg & MIF_CFG_MDIO_1) {
3438 cp->phy_type = CAS_PHY_MII_MDIO1;
3439 } else if (cfg & MIF_CFG_MDIO_0) {
3440 cp->phy_type = CAS_PHY_MII_MDIO0;
3443 cas_mif_poll(cp, 0);
3444 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3446 for (i = 0; i < 32; i++) {
3447 u32 phy_id;
3448 int j;
3450 for (j = 0; j < 3; j++) {
3451 cp->phy_addr = i;
3452 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3453 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3454 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3455 cp->phy_id = phy_id;
3456 goto done;
3460 pr_err("MII phy did not respond [%08x]\n",
3461 readl(cp->regs + REG_MIF_STATE_MACHINE));
3462 return -1;
3464 done:
3465 /* see if we can do gigabit */
3466 cfg = cas_phy_read(cp, MII_BMSR);
3467 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3468 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3469 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3470 return 0;
3473 /* Must be invoked under cp->lock. */
3474 static inline void cas_start_dma(struct cas *cp)
3476 int i;
3477 u32 val;
3478 int txfailed = 0;
3480 /* enable dma */
3481 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3482 writel(val, cp->regs + REG_TX_CFG);
3483 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3484 writel(val, cp->regs + REG_RX_CFG);
3486 /* enable the mac */
3487 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3488 writel(val, cp->regs + REG_MAC_TX_CFG);
3489 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3490 writel(val, cp->regs + REG_MAC_RX_CFG);
3492 i = STOP_TRIES;
3493 while (i-- > 0) {
3494 val = readl(cp->regs + REG_MAC_TX_CFG);
3495 if ((val & MAC_TX_CFG_EN))
3496 break;
3497 udelay(10);
3499 if (i < 0) txfailed = 1;
3500 i = STOP_TRIES;
3501 while (i-- > 0) {
3502 val = readl(cp->regs + REG_MAC_RX_CFG);
3503 if ((val & MAC_RX_CFG_EN)) {
3504 if (txfailed) {
3505 netdev_err(cp->dev,
3506 "enabling mac failed [tx:%08x:%08x]\n",
3507 readl(cp->regs + REG_MIF_STATE_MACHINE),
3508 readl(cp->regs + REG_MAC_STATE_MACHINE));
3510 goto enable_rx_done;
3512 udelay(10);
3514 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3515 (txfailed ? "tx,rx" : "rx"),
3516 readl(cp->regs + REG_MIF_STATE_MACHINE),
3517 readl(cp->regs + REG_MAC_STATE_MACHINE));
3519 enable_rx_done:
3520 cas_unmask_intr(cp); /* enable interrupts */
3521 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3522 writel(0, cp->regs + REG_RX_COMP_TAIL);
3524 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3525 if (N_RX_DESC_RINGS > 1)
3526 writel(RX_DESC_RINGN_SIZE(1) - 4,
3527 cp->regs + REG_PLUS_RX_KICK1);
3529 for (i = 1; i < N_RX_COMP_RINGS; i++)
3530 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3534 /* Must be invoked under cp->lock. */
3535 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3536 int *pause)
3538 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3539 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3540 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3541 if (val & PCS_MII_LPA_ASYM_PAUSE)
3542 *pause |= 0x10;
3543 *spd = 1000;
3546 /* Must be invoked under cp->lock. */
3547 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3548 int *pause)
3550 u32 val;
3552 *fd = 0;
3553 *spd = 10;
3554 *pause = 0;
3556 /* use GMII registers */
3557 val = cas_phy_read(cp, MII_LPA);
3558 if (val & CAS_LPA_PAUSE)
3559 *pause = 0x01;
3561 if (val & CAS_LPA_ASYM_PAUSE)
3562 *pause |= 0x10;
3564 if (val & LPA_DUPLEX)
3565 *fd = 1;
3566 if (val & LPA_100)
3567 *spd = 100;
3569 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3570 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3571 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3572 *spd = 1000;
3573 if (val & CAS_LPA_1000FULL)
3574 *fd = 1;
3578 /* A link-up condition has occurred, initialize and enable the
3579 * rest of the chip.
3581 * Must be invoked under cp->lock.
3583 static void cas_set_link_modes(struct cas *cp)
3585 u32 val;
3586 int full_duplex, speed, pause;
3588 full_duplex = 0;
3589 speed = 10;
3590 pause = 0;
3592 if (CAS_PHY_MII(cp->phy_type)) {
3593 cas_mif_poll(cp, 0);
3594 val = cas_phy_read(cp, MII_BMCR);
3595 if (val & BMCR_ANENABLE) {
3596 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3597 &pause);
3598 } else {
3599 if (val & BMCR_FULLDPLX)
3600 full_duplex = 1;
3602 if (val & BMCR_SPEED100)
3603 speed = 100;
3604 else if (val & CAS_BMCR_SPEED1000)
3605 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3606 1000 : 100;
3608 cas_mif_poll(cp, 1);
3610 } else {
3611 val = readl(cp->regs + REG_PCS_MII_CTRL);
3612 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3613 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3614 if (val & PCS_MII_CTRL_DUPLEX)
3615 full_duplex = 1;
3619 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3620 speed, full_duplex ? "full" : "half");
3622 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3623 if (CAS_PHY_MII(cp->phy_type)) {
3624 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3625 if (!full_duplex)
3626 val |= MAC_XIF_DISABLE_ECHO;
3628 if (full_duplex)
3629 val |= MAC_XIF_FDPLX_LED;
3630 if (speed == 1000)
3631 val |= MAC_XIF_GMII_MODE;
3632 writel(val, cp->regs + REG_MAC_XIF_CFG);
3634 /* deal with carrier and collision detect. */
3635 val = MAC_TX_CFG_IPG_EN;
3636 if (full_duplex) {
3637 val |= MAC_TX_CFG_IGNORE_CARRIER;
3638 val |= MAC_TX_CFG_IGNORE_COLL;
3639 } else {
3640 #ifndef USE_CSMA_CD_PROTO
3641 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3642 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3643 #endif
3645 /* val now set up for REG_MAC_TX_CFG */
3647 /* If gigabit and half-duplex, enable carrier extension
3648 * mode. increase slot time to 512 bytes as well.
3649 * else, disable it and make sure slot time is 64 bytes.
3650 * also activate checksum bug workaround
3652 if ((speed == 1000) && !full_duplex) {
3653 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3654 cp->regs + REG_MAC_TX_CFG);
3656 val = readl(cp->regs + REG_MAC_RX_CFG);
3657 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3658 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3659 cp->regs + REG_MAC_RX_CFG);
3661 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3663 cp->crc_size = 4;
3664 /* minimum size gigabit frame at half duplex */
3665 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3667 } else {
3668 writel(val, cp->regs + REG_MAC_TX_CFG);
3670 /* checksum bug workaround. don't strip FCS when in
3671 * half-duplex mode
3673 val = readl(cp->regs + REG_MAC_RX_CFG);
3674 if (full_duplex) {
3675 val |= MAC_RX_CFG_STRIP_FCS;
3676 cp->crc_size = 0;
3677 cp->min_frame_size = CAS_MIN_MTU;
3678 } else {
3679 val &= ~MAC_RX_CFG_STRIP_FCS;
3680 cp->crc_size = 4;
3681 cp->min_frame_size = CAS_MIN_FRAME;
3683 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3684 cp->regs + REG_MAC_RX_CFG);
3685 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3688 if (netif_msg_link(cp)) {
3689 if (pause & 0x01) {
3690 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3691 cp->rx_fifo_size,
3692 cp->rx_pause_off,
3693 cp->rx_pause_on);
3694 } else if (pause & 0x10) {
3695 netdev_info(cp->dev, "TX pause enabled\n");
3696 } else {
3697 netdev_info(cp->dev, "Pause is disabled\n");
3701 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3702 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3703 if (pause) { /* symmetric or asymmetric pause */
3704 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3705 if (pause & 0x01) { /* symmetric pause */
3706 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3709 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3710 cas_start_dma(cp);
3713 /* Must be invoked under cp->lock. */
3714 static void cas_init_hw(struct cas *cp, int restart_link)
3716 if (restart_link)
3717 cas_phy_init(cp);
3719 cas_init_pause_thresholds(cp);
3720 cas_init_mac(cp);
3721 cas_init_dma(cp);
3723 if (restart_link) {
3724 /* Default aneg parameters */
3725 cp->timer_ticks = 0;
3726 cas_begin_auto_negotiation(cp, NULL);
3727 } else if (cp->lstate == link_up) {
3728 cas_set_link_modes(cp);
3729 netif_carrier_on(cp->dev);
3733 /* Must be invoked under cp->lock. on earlier cassini boards,
3734 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3735 * let it settle out, and then restore pci state.
3737 static void cas_hard_reset(struct cas *cp)
3739 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3740 udelay(20);
3741 pci_restore_state(cp->pdev);
3745 static void cas_global_reset(struct cas *cp, int blkflag)
3747 int limit;
3749 /* issue a global reset. don't use RSTOUT. */
3750 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3751 /* For PCS, when the blkflag is set, we should set the
3752 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3753 * the last autonegotiation from being cleared. We'll
3754 * need some special handling if the chip is set into a
3755 * loopback mode.
3757 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3758 cp->regs + REG_SW_RESET);
3759 } else {
3760 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3763 /* need to wait at least 3ms before polling register */
3764 mdelay(3);
3766 limit = STOP_TRIES;
3767 while (limit-- > 0) {
3768 u32 val = readl(cp->regs + REG_SW_RESET);
3769 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3770 goto done;
3771 udelay(10);
3773 netdev_err(cp->dev, "sw reset failed\n");
3775 done:
3776 /* enable various BIM interrupts */
3777 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3778 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3780 /* clear out pci error status mask for handled errors.
3781 * we don't deal with DMA counter overflows as they happen
3782 * all the time.
3784 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3785 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3786 PCI_ERR_BIM_DMA_READ), cp->regs +
3787 REG_PCI_ERR_STATUS_MASK);
3789 /* set up for MII by default to address mac rx reset timeout
3790 * issue
3792 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3795 static void cas_reset(struct cas *cp, int blkflag)
3797 u32 val;
3799 cas_mask_intr(cp);
3800 cas_global_reset(cp, blkflag);
3801 cas_mac_reset(cp);
3802 cas_entropy_reset(cp);
3804 /* disable dma engines. */
3805 val = readl(cp->regs + REG_TX_CFG);
3806 val &= ~TX_CFG_DMA_EN;
3807 writel(val, cp->regs + REG_TX_CFG);
3809 val = readl(cp->regs + REG_RX_CFG);
3810 val &= ~RX_CFG_DMA_EN;
3811 writel(val, cp->regs + REG_RX_CFG);
3813 /* program header parser */
3814 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3815 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3816 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3817 } else {
3818 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3821 /* clear out error registers */
3822 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3823 cas_clear_mac_err(cp);
3824 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3827 /* Shut down the chip, must be called with pm_mutex held. */
3828 static void cas_shutdown(struct cas *cp)
3830 unsigned long flags;
3832 /* Make us not-running to avoid timers respawning */
3833 cp->hw_running = 0;
3835 del_timer_sync(&cp->link_timer);
3837 /* Stop the reset task */
3838 #if 0
3839 while (atomic_read(&cp->reset_task_pending_mtu) ||
3840 atomic_read(&cp->reset_task_pending_spare) ||
3841 atomic_read(&cp->reset_task_pending_all))
3842 schedule();
3844 #else
3845 while (atomic_read(&cp->reset_task_pending))
3846 schedule();
3847 #endif
3848 /* Actually stop the chip */
3849 cas_lock_all_save(cp, flags);
3850 cas_reset(cp, 0);
3851 if (cp->cas_flags & CAS_FLAG_SATURN)
3852 cas_phy_powerdown(cp);
3853 cas_unlock_all_restore(cp, flags);
3856 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3858 struct cas *cp = netdev_priv(dev);
3860 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3861 return -EINVAL;
3863 dev->mtu = new_mtu;
3864 if (!netif_running(dev) || !netif_device_present(dev))
3865 return 0;
3867 /* let the reset task handle it */
3868 #if 1
3869 atomic_inc(&cp->reset_task_pending);
3870 if ((cp->phy_type & CAS_PHY_SERDES)) {
3871 atomic_inc(&cp->reset_task_pending_all);
3872 } else {
3873 atomic_inc(&cp->reset_task_pending_mtu);
3875 schedule_work(&cp->reset_task);
3876 #else
3877 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3878 CAS_RESET_ALL : CAS_RESET_MTU);
3879 pr_err("reset called in cas_change_mtu\n");
3880 schedule_work(&cp->reset_task);
3881 #endif
3883 flush_scheduled_work();
3884 return 0;
3887 static void cas_clean_txd(struct cas *cp, int ring)
3889 struct cas_tx_desc *txd = cp->init_txds[ring];
3890 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3891 u64 daddr, dlen;
3892 int i, size;
3894 size = TX_DESC_RINGN_SIZE(ring);
3895 for (i = 0; i < size; i++) {
3896 int frag;
3898 if (skbs[i] == NULL)
3899 continue;
3901 skb = skbs[i];
3902 skbs[i] = NULL;
3904 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3905 int ent = i & (size - 1);
3907 /* first buffer is never a tiny buffer and so
3908 * needs to be unmapped.
3910 daddr = le64_to_cpu(txd[ent].buffer);
3911 dlen = CAS_VAL(TX_DESC_BUFLEN,
3912 le64_to_cpu(txd[ent].control));
3913 pci_unmap_page(cp->pdev, daddr, dlen,
3914 PCI_DMA_TODEVICE);
3916 if (frag != skb_shinfo(skb)->nr_frags) {
3917 i++;
3919 /* next buffer might by a tiny buffer.
3920 * skip past it.
3922 ent = i & (size - 1);
3923 if (cp->tx_tiny_use[ring][ent].used)
3924 i++;
3927 dev_kfree_skb_any(skb);
3930 /* zero out tiny buf usage */
3931 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3934 /* freed on close */
3935 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3937 cas_page_t **page = cp->rx_pages[ring];
3938 int i, size;
3940 size = RX_DESC_RINGN_SIZE(ring);
3941 for (i = 0; i < size; i++) {
3942 if (page[i]) {
3943 cas_page_free(cp, page[i]);
3944 page[i] = NULL;
3949 static void cas_free_rxds(struct cas *cp)
3951 int i;
3953 for (i = 0; i < N_RX_DESC_RINGS; i++)
3954 cas_free_rx_desc(cp, i);
3957 /* Must be invoked under cp->lock. */
3958 static void cas_clean_rings(struct cas *cp)
3960 int i;
3962 /* need to clean all tx rings */
3963 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3964 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3965 for (i = 0; i < N_TX_RINGS; i++)
3966 cas_clean_txd(cp, i);
3968 /* zero out init block */
3969 memset(cp->init_block, 0, sizeof(struct cas_init_block));
3970 cas_clean_rxds(cp);
3971 cas_clean_rxcs(cp);
3974 /* allocated on open */
3975 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3977 cas_page_t **page = cp->rx_pages[ring];
3978 int size, i = 0;
3980 size = RX_DESC_RINGN_SIZE(ring);
3981 for (i = 0; i < size; i++) {
3982 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3983 return -1;
3985 return 0;
3988 static int cas_alloc_rxds(struct cas *cp)
3990 int i;
3992 for (i = 0; i < N_RX_DESC_RINGS; i++) {
3993 if (cas_alloc_rx_desc(cp, i) < 0) {
3994 cas_free_rxds(cp);
3995 return -1;
3998 return 0;
4001 static void cas_reset_task(struct work_struct *work)
4003 struct cas *cp = container_of(work, struct cas, reset_task);
4004 #if 0
4005 int pending = atomic_read(&cp->reset_task_pending);
4006 #else
4007 int pending_all = atomic_read(&cp->reset_task_pending_all);
4008 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4009 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4011 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4012 /* We can have more tasks scheduled than actually
4013 * needed.
4015 atomic_dec(&cp->reset_task_pending);
4016 return;
4018 #endif
4019 /* The link went down, we reset the ring, but keep
4020 * DMA stopped. Use this function for reset
4021 * on error as well.
4023 if (cp->hw_running) {
4024 unsigned long flags;
4026 /* Make sure we don't get interrupts or tx packets */
4027 netif_device_detach(cp->dev);
4028 cas_lock_all_save(cp, flags);
4030 if (cp->opened) {
4031 /* We call cas_spare_recover when we call cas_open.
4032 * but we do not initialize the lists cas_spare_recover
4033 * uses until cas_open is called.
4035 cas_spare_recover(cp, GFP_ATOMIC);
4037 #if 1
4038 /* test => only pending_spare set */
4039 if (!pending_all && !pending_mtu)
4040 goto done;
4041 #else
4042 if (pending == CAS_RESET_SPARE)
4043 goto done;
4044 #endif
4045 /* when pending == CAS_RESET_ALL, the following
4046 * call to cas_init_hw will restart auto negotiation.
4047 * Setting the second argument of cas_reset to
4048 * !(pending == CAS_RESET_ALL) will set this argument
4049 * to 1 (avoiding reinitializing the PHY for the normal
4050 * PCS case) when auto negotiation is not restarted.
4052 #if 1
4053 cas_reset(cp, !(pending_all > 0));
4054 if (cp->opened)
4055 cas_clean_rings(cp);
4056 cas_init_hw(cp, (pending_all > 0));
4057 #else
4058 cas_reset(cp, !(pending == CAS_RESET_ALL));
4059 if (cp->opened)
4060 cas_clean_rings(cp);
4061 cas_init_hw(cp, pending == CAS_RESET_ALL);
4062 #endif
4064 done:
4065 cas_unlock_all_restore(cp, flags);
4066 netif_device_attach(cp->dev);
4068 #if 1
4069 atomic_sub(pending_all, &cp->reset_task_pending_all);
4070 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4071 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4072 atomic_dec(&cp->reset_task_pending);
4073 #else
4074 atomic_set(&cp->reset_task_pending, 0);
4075 #endif
4078 static void cas_link_timer(unsigned long data)
4080 struct cas *cp = (struct cas *) data;
4081 int mask, pending = 0, reset = 0;
4082 unsigned long flags;
4084 if (link_transition_timeout != 0 &&
4085 cp->link_transition_jiffies_valid &&
4086 ((jiffies - cp->link_transition_jiffies) >
4087 (link_transition_timeout))) {
4088 /* One-second counter so link-down workaround doesn't
4089 * cause resets to occur so fast as to fool the switch
4090 * into thinking the link is down.
4092 cp->link_transition_jiffies_valid = 0;
4095 if (!cp->hw_running)
4096 return;
4098 spin_lock_irqsave(&cp->lock, flags);
4099 cas_lock_tx(cp);
4100 cas_entropy_gather(cp);
4102 /* If the link task is still pending, we just
4103 * reschedule the link timer
4105 #if 1
4106 if (atomic_read(&cp->reset_task_pending_all) ||
4107 atomic_read(&cp->reset_task_pending_spare) ||
4108 atomic_read(&cp->reset_task_pending_mtu))
4109 goto done;
4110 #else
4111 if (atomic_read(&cp->reset_task_pending))
4112 goto done;
4113 #endif
4115 /* check for rx cleaning */
4116 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4117 int i, rmask;
4119 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4120 rmask = CAS_FLAG_RXD_POST(i);
4121 if ((mask & rmask) == 0)
4122 continue;
4124 /* post_rxds will do a mod_timer */
4125 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4126 pending = 1;
4127 continue;
4129 cp->cas_flags &= ~rmask;
4133 if (CAS_PHY_MII(cp->phy_type)) {
4134 u16 bmsr;
4135 cas_mif_poll(cp, 0);
4136 bmsr = cas_phy_read(cp, MII_BMSR);
4137 /* WTZ: Solaris driver reads this twice, but that
4138 * may be due to the PCS case and the use of a
4139 * common implementation. Read it twice here to be
4140 * safe.
4142 bmsr = cas_phy_read(cp, MII_BMSR);
4143 cas_mif_poll(cp, 1);
4144 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4145 reset = cas_mii_link_check(cp, bmsr);
4146 } else {
4147 reset = cas_pcs_link_check(cp);
4150 if (reset)
4151 goto done;
4153 /* check for tx state machine confusion */
4154 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4155 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4156 u32 wptr, rptr;
4157 int tlm = CAS_VAL(MAC_SM_TLM, val);
4159 if (((tlm == 0x5) || (tlm == 0x3)) &&
4160 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4161 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4162 "tx err: MAC_STATE[%08x]\n", val);
4163 reset = 1;
4164 goto done;
4167 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4168 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4169 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4170 if ((val == 0) && (wptr != rptr)) {
4171 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4172 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4173 val, wptr, rptr);
4174 reset = 1;
4177 if (reset)
4178 cas_hard_reset(cp);
4181 done:
4182 if (reset) {
4183 #if 1
4184 atomic_inc(&cp->reset_task_pending);
4185 atomic_inc(&cp->reset_task_pending_all);
4186 schedule_work(&cp->reset_task);
4187 #else
4188 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4189 pr_err("reset called in cas_link_timer\n");
4190 schedule_work(&cp->reset_task);
4191 #endif
4194 if (!pending)
4195 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4196 cas_unlock_tx(cp);
4197 spin_unlock_irqrestore(&cp->lock, flags);
4200 /* tiny buffers are used to avoid target abort issues with
4201 * older cassini's
4203 static void cas_tx_tiny_free(struct cas *cp)
4205 struct pci_dev *pdev = cp->pdev;
4206 int i;
4208 for (i = 0; i < N_TX_RINGS; i++) {
4209 if (!cp->tx_tiny_bufs[i])
4210 continue;
4212 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4213 cp->tx_tiny_bufs[i],
4214 cp->tx_tiny_dvma[i]);
4215 cp->tx_tiny_bufs[i] = NULL;
4219 static int cas_tx_tiny_alloc(struct cas *cp)
4221 struct pci_dev *pdev = cp->pdev;
4222 int i;
4224 for (i = 0; i < N_TX_RINGS; i++) {
4225 cp->tx_tiny_bufs[i] =
4226 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4227 &cp->tx_tiny_dvma[i]);
4228 if (!cp->tx_tiny_bufs[i]) {
4229 cas_tx_tiny_free(cp);
4230 return -1;
4233 return 0;
4237 static int cas_open(struct net_device *dev)
4239 struct cas *cp = netdev_priv(dev);
4240 int hw_was_up, err;
4241 unsigned long flags;
4243 mutex_lock(&cp->pm_mutex);
4245 hw_was_up = cp->hw_running;
4247 /* The power-management mutex protects the hw_running
4248 * etc. state so it is safe to do this bit without cp->lock
4250 if (!cp->hw_running) {
4251 /* Reset the chip */
4252 cas_lock_all_save(cp, flags);
4253 /* We set the second arg to cas_reset to zero
4254 * because cas_init_hw below will have its second
4255 * argument set to non-zero, which will force
4256 * autonegotiation to start.
4258 cas_reset(cp, 0);
4259 cp->hw_running = 1;
4260 cas_unlock_all_restore(cp, flags);
4263 err = -ENOMEM;
4264 if (cas_tx_tiny_alloc(cp) < 0)
4265 goto err_unlock;
4267 /* alloc rx descriptors */
4268 if (cas_alloc_rxds(cp) < 0)
4269 goto err_tx_tiny;
4271 /* allocate spares */
4272 cas_spare_init(cp);
4273 cas_spare_recover(cp, GFP_KERNEL);
4275 /* We can now request the interrupt as we know it's masked
4276 * on the controller. cassini+ has up to 4 interrupts
4277 * that can be used, but you need to do explicit pci interrupt
4278 * mapping to expose them
4280 if (request_irq(cp->pdev->irq, cas_interrupt,
4281 IRQF_SHARED, dev->name, (void *) dev)) {
4282 netdev_err(cp->dev, "failed to request irq !\n");
4283 err = -EAGAIN;
4284 goto err_spare;
4287 #ifdef USE_NAPI
4288 napi_enable(&cp->napi);
4289 #endif
4290 /* init hw */
4291 cas_lock_all_save(cp, flags);
4292 cas_clean_rings(cp);
4293 cas_init_hw(cp, !hw_was_up);
4294 cp->opened = 1;
4295 cas_unlock_all_restore(cp, flags);
4297 netif_start_queue(dev);
4298 mutex_unlock(&cp->pm_mutex);
4299 return 0;
4301 err_spare:
4302 cas_spare_free(cp);
4303 cas_free_rxds(cp);
4304 err_tx_tiny:
4305 cas_tx_tiny_free(cp);
4306 err_unlock:
4307 mutex_unlock(&cp->pm_mutex);
4308 return err;
4311 static int cas_close(struct net_device *dev)
4313 unsigned long flags;
4314 struct cas *cp = netdev_priv(dev);
4316 #ifdef USE_NAPI
4317 napi_disable(&cp->napi);
4318 #endif
4319 /* Make sure we don't get distracted by suspend/resume */
4320 mutex_lock(&cp->pm_mutex);
4322 netif_stop_queue(dev);
4324 /* Stop traffic, mark us closed */
4325 cas_lock_all_save(cp, flags);
4326 cp->opened = 0;
4327 cas_reset(cp, 0);
4328 cas_phy_init(cp);
4329 cas_begin_auto_negotiation(cp, NULL);
4330 cas_clean_rings(cp);
4331 cas_unlock_all_restore(cp, flags);
4333 free_irq(cp->pdev->irq, (void *) dev);
4334 cas_spare_free(cp);
4335 cas_free_rxds(cp);
4336 cas_tx_tiny_free(cp);
4337 mutex_unlock(&cp->pm_mutex);
4338 return 0;
4341 static struct {
4342 const char name[ETH_GSTRING_LEN];
4343 } ethtool_cassini_statnames[] = {
4344 {"collisions"},
4345 {"rx_bytes"},
4346 {"rx_crc_errors"},
4347 {"rx_dropped"},
4348 {"rx_errors"},
4349 {"rx_fifo_errors"},
4350 {"rx_frame_errors"},
4351 {"rx_length_errors"},
4352 {"rx_over_errors"},
4353 {"rx_packets"},
4354 {"tx_aborted_errors"},
4355 {"tx_bytes"},
4356 {"tx_dropped"},
4357 {"tx_errors"},
4358 {"tx_fifo_errors"},
4359 {"tx_packets"}
4361 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4363 static struct {
4364 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4365 } ethtool_register_table[] = {
4366 {-MII_BMSR},
4367 {-MII_BMCR},
4368 {REG_CAWR},
4369 {REG_INF_BURST},
4370 {REG_BIM_CFG},
4371 {REG_RX_CFG},
4372 {REG_HP_CFG},
4373 {REG_MAC_TX_CFG},
4374 {REG_MAC_RX_CFG},
4375 {REG_MAC_CTRL_CFG},
4376 {REG_MAC_XIF_CFG},
4377 {REG_MIF_CFG},
4378 {REG_PCS_CFG},
4379 {REG_SATURN_PCFG},
4380 {REG_PCS_MII_STATUS},
4381 {REG_PCS_STATE_MACHINE},
4382 {REG_MAC_COLL_EXCESS},
4383 {REG_MAC_COLL_LATE}
4385 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4386 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4388 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4390 u8 *p;
4391 int i;
4392 unsigned long flags;
4394 spin_lock_irqsave(&cp->lock, flags);
4395 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4396 u16 hval;
4397 u32 val;
4398 if (ethtool_register_table[i].offsets < 0) {
4399 hval = cas_phy_read(cp,
4400 -ethtool_register_table[i].offsets);
4401 val = hval;
4402 } else {
4403 val= readl(cp->regs+ethtool_register_table[i].offsets);
4405 memcpy(p, (u8 *)&val, sizeof(u32));
4407 spin_unlock_irqrestore(&cp->lock, flags);
4410 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4412 struct cas *cp = netdev_priv(dev);
4413 struct net_device_stats *stats = cp->net_stats;
4414 unsigned long flags;
4415 int i;
4416 unsigned long tmp;
4418 /* we collate all of the stats into net_stats[N_TX_RING] */
4419 if (!cp->hw_running)
4420 return stats + N_TX_RINGS;
4422 /* collect outstanding stats */
4423 /* WTZ: the Cassini spec gives these as 16 bit counters but
4424 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4425 * in case the chip somehow puts any garbage in the other bits.
4426 * Also, counter usage didn't seem to mach what Adrian did
4427 * in the parts of the code that set these quantities. Made
4428 * that consistent.
4430 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4431 stats[N_TX_RINGS].rx_crc_errors +=
4432 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4433 stats[N_TX_RINGS].rx_frame_errors +=
4434 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4435 stats[N_TX_RINGS].rx_length_errors +=
4436 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4437 #if 1
4438 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4439 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4440 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4441 stats[N_TX_RINGS].collisions +=
4442 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4443 #else
4444 stats[N_TX_RINGS].tx_aborted_errors +=
4445 readl(cp->regs + REG_MAC_COLL_EXCESS);
4446 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4447 readl(cp->regs + REG_MAC_COLL_LATE);
4448 #endif
4449 cas_clear_mac_err(cp);
4451 /* saved bits that are unique to ring 0 */
4452 spin_lock(&cp->stat_lock[0]);
4453 stats[N_TX_RINGS].collisions += stats[0].collisions;
4454 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4455 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4456 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4457 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4458 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4459 spin_unlock(&cp->stat_lock[0]);
4461 for (i = 0; i < N_TX_RINGS; i++) {
4462 spin_lock(&cp->stat_lock[i]);
4463 stats[N_TX_RINGS].rx_length_errors +=
4464 stats[i].rx_length_errors;
4465 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4466 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4467 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4468 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4469 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4470 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4471 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4472 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4473 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4474 memset(stats + i, 0, sizeof(struct net_device_stats));
4475 spin_unlock(&cp->stat_lock[i]);
4477 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4478 return stats + N_TX_RINGS;
4482 static void cas_set_multicast(struct net_device *dev)
4484 struct cas *cp = netdev_priv(dev);
4485 u32 rxcfg, rxcfg_new;
4486 unsigned long flags;
4487 int limit = STOP_TRIES;
4489 if (!cp->hw_running)
4490 return;
4492 spin_lock_irqsave(&cp->lock, flags);
4493 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4495 /* disable RX MAC and wait for completion */
4496 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4497 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4498 if (!limit--)
4499 break;
4500 udelay(10);
4503 /* disable hash filter and wait for completion */
4504 limit = STOP_TRIES;
4505 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4506 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4507 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4508 if (!limit--)
4509 break;
4510 udelay(10);
4513 /* program hash filters */
4514 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4515 rxcfg |= rxcfg_new;
4516 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4517 spin_unlock_irqrestore(&cp->lock, flags);
4520 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4522 struct cas *cp = netdev_priv(dev);
4523 strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4524 strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4525 info->fw_version[0] = '\0';
4526 strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4527 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4528 cp->casreg_len : CAS_MAX_REGS;
4529 info->n_stats = CAS_NUM_STAT_KEYS;
4532 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4534 struct cas *cp = netdev_priv(dev);
4535 u16 bmcr;
4536 int full_duplex, speed, pause;
4537 unsigned long flags;
4538 enum link_state linkstate = link_up;
4540 cmd->advertising = 0;
4541 cmd->supported = SUPPORTED_Autoneg;
4542 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4543 cmd->supported |= SUPPORTED_1000baseT_Full;
4544 cmd->advertising |= ADVERTISED_1000baseT_Full;
4547 /* Record PHY settings if HW is on. */
4548 spin_lock_irqsave(&cp->lock, flags);
4549 bmcr = 0;
4550 linkstate = cp->lstate;
4551 if (CAS_PHY_MII(cp->phy_type)) {
4552 cmd->port = PORT_MII;
4553 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4554 XCVR_INTERNAL : XCVR_EXTERNAL;
4555 cmd->phy_address = cp->phy_addr;
4556 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4557 ADVERTISED_10baseT_Half |
4558 ADVERTISED_10baseT_Full |
4559 ADVERTISED_100baseT_Half |
4560 ADVERTISED_100baseT_Full;
4562 cmd->supported |=
4563 (SUPPORTED_10baseT_Half |
4564 SUPPORTED_10baseT_Full |
4565 SUPPORTED_100baseT_Half |
4566 SUPPORTED_100baseT_Full |
4567 SUPPORTED_TP | SUPPORTED_MII);
4569 if (cp->hw_running) {
4570 cas_mif_poll(cp, 0);
4571 bmcr = cas_phy_read(cp, MII_BMCR);
4572 cas_read_mii_link_mode(cp, &full_duplex,
4573 &speed, &pause);
4574 cas_mif_poll(cp, 1);
4577 } else {
4578 cmd->port = PORT_FIBRE;
4579 cmd->transceiver = XCVR_INTERNAL;
4580 cmd->phy_address = 0;
4581 cmd->supported |= SUPPORTED_FIBRE;
4582 cmd->advertising |= ADVERTISED_FIBRE;
4584 if (cp->hw_running) {
4585 /* pcs uses the same bits as mii */
4586 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4587 cas_read_pcs_link_mode(cp, &full_duplex,
4588 &speed, &pause);
4591 spin_unlock_irqrestore(&cp->lock, flags);
4593 if (bmcr & BMCR_ANENABLE) {
4594 cmd->advertising |= ADVERTISED_Autoneg;
4595 cmd->autoneg = AUTONEG_ENABLE;
4596 cmd->speed = ((speed == 10) ?
4597 SPEED_10 :
4598 ((speed == 1000) ?
4599 SPEED_1000 : SPEED_100));
4600 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4601 } else {
4602 cmd->autoneg = AUTONEG_DISABLE;
4603 cmd->speed =
4604 (bmcr & CAS_BMCR_SPEED1000) ?
4605 SPEED_1000 :
4606 ((bmcr & BMCR_SPEED100) ? SPEED_100:
4607 SPEED_10);
4608 cmd->duplex =
4609 (bmcr & BMCR_FULLDPLX) ?
4610 DUPLEX_FULL : DUPLEX_HALF;
4612 if (linkstate != link_up) {
4613 /* Force these to "unknown" if the link is not up and
4614 * autonogotiation in enabled. We can set the link
4615 * speed to 0, but not cmd->duplex,
4616 * because its legal values are 0 and 1. Ethtool will
4617 * print the value reported in parentheses after the
4618 * word "Unknown" for unrecognized values.
4620 * If in forced mode, we report the speed and duplex
4621 * settings that we configured.
4623 if (cp->link_cntl & BMCR_ANENABLE) {
4624 cmd->speed = 0;
4625 cmd->duplex = 0xff;
4626 } else {
4627 cmd->speed = SPEED_10;
4628 if (cp->link_cntl & BMCR_SPEED100) {
4629 cmd->speed = SPEED_100;
4630 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4631 cmd->speed = SPEED_1000;
4633 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4634 DUPLEX_FULL : DUPLEX_HALF;
4637 return 0;
4640 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4642 struct cas *cp = netdev_priv(dev);
4643 unsigned long flags;
4645 /* Verify the settings we care about. */
4646 if (cmd->autoneg != AUTONEG_ENABLE &&
4647 cmd->autoneg != AUTONEG_DISABLE)
4648 return -EINVAL;
4650 if (cmd->autoneg == AUTONEG_DISABLE &&
4651 ((cmd->speed != SPEED_1000 &&
4652 cmd->speed != SPEED_100 &&
4653 cmd->speed != SPEED_10) ||
4654 (cmd->duplex != DUPLEX_HALF &&
4655 cmd->duplex != DUPLEX_FULL)))
4656 return -EINVAL;
4658 /* Apply settings and restart link process. */
4659 spin_lock_irqsave(&cp->lock, flags);
4660 cas_begin_auto_negotiation(cp, cmd);
4661 spin_unlock_irqrestore(&cp->lock, flags);
4662 return 0;
4665 static int cas_nway_reset(struct net_device *dev)
4667 struct cas *cp = netdev_priv(dev);
4668 unsigned long flags;
4670 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4671 return -EINVAL;
4673 /* Restart link process. */
4674 spin_lock_irqsave(&cp->lock, flags);
4675 cas_begin_auto_negotiation(cp, NULL);
4676 spin_unlock_irqrestore(&cp->lock, flags);
4678 return 0;
4681 static u32 cas_get_link(struct net_device *dev)
4683 struct cas *cp = netdev_priv(dev);
4684 return cp->lstate == link_up;
4687 static u32 cas_get_msglevel(struct net_device *dev)
4689 struct cas *cp = netdev_priv(dev);
4690 return cp->msg_enable;
4693 static void cas_set_msglevel(struct net_device *dev, u32 value)
4695 struct cas *cp = netdev_priv(dev);
4696 cp->msg_enable = value;
4699 static int cas_get_regs_len(struct net_device *dev)
4701 struct cas *cp = netdev_priv(dev);
4702 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4705 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4706 void *p)
4708 struct cas *cp = netdev_priv(dev);
4709 regs->version = 0;
4710 /* cas_read_regs handles locks (cp->lock). */
4711 cas_read_regs(cp, p, regs->len / sizeof(u32));
4714 static int cas_get_sset_count(struct net_device *dev, int sset)
4716 switch (sset) {
4717 case ETH_SS_STATS:
4718 return CAS_NUM_STAT_KEYS;
4719 default:
4720 return -EOPNOTSUPP;
4724 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4726 memcpy(data, &ethtool_cassini_statnames,
4727 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4730 static void cas_get_ethtool_stats(struct net_device *dev,
4731 struct ethtool_stats *estats, u64 *data)
4733 struct cas *cp = netdev_priv(dev);
4734 struct net_device_stats *stats = cas_get_stats(cp->dev);
4735 int i = 0;
4736 data[i++] = stats->collisions;
4737 data[i++] = stats->rx_bytes;
4738 data[i++] = stats->rx_crc_errors;
4739 data[i++] = stats->rx_dropped;
4740 data[i++] = stats->rx_errors;
4741 data[i++] = stats->rx_fifo_errors;
4742 data[i++] = stats->rx_frame_errors;
4743 data[i++] = stats->rx_length_errors;
4744 data[i++] = stats->rx_over_errors;
4745 data[i++] = stats->rx_packets;
4746 data[i++] = stats->tx_aborted_errors;
4747 data[i++] = stats->tx_bytes;
4748 data[i++] = stats->tx_dropped;
4749 data[i++] = stats->tx_errors;
4750 data[i++] = stats->tx_fifo_errors;
4751 data[i++] = stats->tx_packets;
4752 BUG_ON(i != CAS_NUM_STAT_KEYS);
4755 static const struct ethtool_ops cas_ethtool_ops = {
4756 .get_drvinfo = cas_get_drvinfo,
4757 .get_settings = cas_get_settings,
4758 .set_settings = cas_set_settings,
4759 .nway_reset = cas_nway_reset,
4760 .get_link = cas_get_link,
4761 .get_msglevel = cas_get_msglevel,
4762 .set_msglevel = cas_set_msglevel,
4763 .get_regs_len = cas_get_regs_len,
4764 .get_regs = cas_get_regs,
4765 .get_sset_count = cas_get_sset_count,
4766 .get_strings = cas_get_strings,
4767 .get_ethtool_stats = cas_get_ethtool_stats,
4770 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4772 struct cas *cp = netdev_priv(dev);
4773 struct mii_ioctl_data *data = if_mii(ifr);
4774 unsigned long flags;
4775 int rc = -EOPNOTSUPP;
4777 /* Hold the PM mutex while doing ioctl's or we may collide
4778 * with open/close and power management and oops.
4780 mutex_lock(&cp->pm_mutex);
4781 switch (cmd) {
4782 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4783 data->phy_id = cp->phy_addr;
4784 /* Fallthrough... */
4786 case SIOCGMIIREG: /* Read MII PHY register. */
4787 spin_lock_irqsave(&cp->lock, flags);
4788 cas_mif_poll(cp, 0);
4789 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4790 cas_mif_poll(cp, 1);
4791 spin_unlock_irqrestore(&cp->lock, flags);
4792 rc = 0;
4793 break;
4795 case SIOCSMIIREG: /* Write MII PHY register. */
4796 spin_lock_irqsave(&cp->lock, flags);
4797 cas_mif_poll(cp, 0);
4798 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4799 cas_mif_poll(cp, 1);
4800 spin_unlock_irqrestore(&cp->lock, flags);
4801 break;
4802 default:
4803 break;
4806 mutex_unlock(&cp->pm_mutex);
4807 return rc;
4810 /* When this chip sits underneath an Intel 31154 bridge, it is the
4811 * only subordinate device and we can tweak the bridge settings to
4812 * reflect that fact.
4814 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4816 struct pci_dev *pdev = cas_pdev->bus->self;
4817 u32 val;
4819 if (!pdev)
4820 return;
4822 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4823 return;
4825 /* Clear bit 10 (Bus Parking Control) in the Secondary
4826 * Arbiter Control/Status Register which lives at offset
4827 * 0x41. Using a 32-bit word read/modify/write at 0x40
4828 * is much simpler so that's how we do this.
4830 pci_read_config_dword(pdev, 0x40, &val);
4831 val &= ~0x00040000;
4832 pci_write_config_dword(pdev, 0x40, val);
4834 /* Max out the Multi-Transaction Timer settings since
4835 * Cassini is the only device present.
4837 * The register is 16-bit and lives at 0x50. When the
4838 * settings are enabled, it extends the GRANT# signal
4839 * for a requestor after a transaction is complete. This
4840 * allows the next request to run without first needing
4841 * to negotiate the GRANT# signal back.
4843 * Bits 12:10 define the grant duration:
4845 * 1 -- 16 clocks
4846 * 2 -- 32 clocks
4847 * 3 -- 64 clocks
4848 * 4 -- 128 clocks
4849 * 5 -- 256 clocks
4851 * All other values are illegal.
4853 * Bits 09:00 define which REQ/GNT signal pairs get the
4854 * GRANT# signal treatment. We set them all.
4856 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4858 /* The Read Prefecth Policy register is 16-bit and sits at
4859 * offset 0x52. It enables a "smart" pre-fetch policy. We
4860 * enable it and max out all of the settings since only one
4861 * device is sitting underneath and thus bandwidth sharing is
4862 * not an issue.
4864 * The register has several 3 bit fields, which indicates a
4865 * multiplier applied to the base amount of prefetching the
4866 * chip would do. These fields are at:
4868 * 15:13 --- ReRead Primary Bus
4869 * 12:10 --- FirstRead Primary Bus
4870 * 09:07 --- ReRead Secondary Bus
4871 * 06:04 --- FirstRead Secondary Bus
4873 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4874 * get enabled on. Bit 3 is a grouped enabler which controls
4875 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4876 * the individual REQ/GNT pairs [2:0].
4878 pci_write_config_word(pdev, 0x52,
4879 (0x7 << 13) |
4880 (0x7 << 10) |
4881 (0x7 << 7) |
4882 (0x7 << 4) |
4883 (0xf << 0));
4885 /* Force cacheline size to 0x8 */
4886 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4888 /* Force latency timer to maximum setting so Cassini can
4889 * sit on the bus as long as it likes.
4891 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4894 static const struct net_device_ops cas_netdev_ops = {
4895 .ndo_open = cas_open,
4896 .ndo_stop = cas_close,
4897 .ndo_start_xmit = cas_start_xmit,
4898 .ndo_get_stats = cas_get_stats,
4899 .ndo_set_multicast_list = cas_set_multicast,
4900 .ndo_do_ioctl = cas_ioctl,
4901 .ndo_tx_timeout = cas_tx_timeout,
4902 .ndo_change_mtu = cas_change_mtu,
4903 .ndo_set_mac_address = eth_mac_addr,
4904 .ndo_validate_addr = eth_validate_addr,
4905 #ifdef CONFIG_NET_POLL_CONTROLLER
4906 .ndo_poll_controller = cas_netpoll,
4907 #endif
4910 static int __devinit cas_init_one(struct pci_dev *pdev,
4911 const struct pci_device_id *ent)
4913 static int cas_version_printed = 0;
4914 unsigned long casreg_len;
4915 struct net_device *dev;
4916 struct cas *cp;
4917 int i, err, pci_using_dac;
4918 u16 pci_cmd;
4919 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4921 if (cas_version_printed++ == 0)
4922 pr_info("%s", version);
4924 err = pci_enable_device(pdev);
4925 if (err) {
4926 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4927 return err;
4930 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4931 dev_err(&pdev->dev, "Cannot find proper PCI device "
4932 "base address, aborting\n");
4933 err = -ENODEV;
4934 goto err_out_disable_pdev;
4937 dev = alloc_etherdev(sizeof(*cp));
4938 if (!dev) {
4939 dev_err(&pdev->dev, "Etherdev alloc failed, aborting\n");
4940 err = -ENOMEM;
4941 goto err_out_disable_pdev;
4943 SET_NETDEV_DEV(dev, &pdev->dev);
4945 err = pci_request_regions(pdev, dev->name);
4946 if (err) {
4947 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4948 goto err_out_free_netdev;
4950 pci_set_master(pdev);
4952 /* we must always turn on parity response or else parity
4953 * doesn't get generated properly. disable SERR/PERR as well.
4954 * in addition, we want to turn MWI on.
4956 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4957 pci_cmd &= ~PCI_COMMAND_SERR;
4958 pci_cmd |= PCI_COMMAND_PARITY;
4959 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4960 if (pci_try_set_mwi(pdev))
4961 pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4963 cas_program_bridge(pdev);
4966 * On some architectures, the default cache line size set
4967 * by pci_try_set_mwi reduces perforamnce. We have to increase
4968 * it for this case. To start, we'll print some configuration
4969 * data.
4971 #if 1
4972 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4973 &orig_cacheline_size);
4974 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4975 cas_cacheline_size =
4976 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4977 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4978 if (pci_write_config_byte(pdev,
4979 PCI_CACHE_LINE_SIZE,
4980 cas_cacheline_size)) {
4981 dev_err(&pdev->dev, "Could not set PCI cache "
4982 "line size\n");
4983 goto err_write_cacheline;
4986 #endif
4989 /* Configure DMA attributes. */
4990 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4991 pci_using_dac = 1;
4992 err = pci_set_consistent_dma_mask(pdev,
4993 DMA_BIT_MASK(64));
4994 if (err < 0) {
4995 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
4996 "for consistent allocations\n");
4997 goto err_out_free_res;
5000 } else {
5001 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5002 if (err) {
5003 dev_err(&pdev->dev, "No usable DMA configuration, "
5004 "aborting\n");
5005 goto err_out_free_res;
5007 pci_using_dac = 0;
5010 casreg_len = pci_resource_len(pdev, 0);
5012 cp = netdev_priv(dev);
5013 cp->pdev = pdev;
5014 #if 1
5015 /* A value of 0 indicates we never explicitly set it */
5016 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5017 #endif
5018 cp->dev = dev;
5019 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5020 cassini_debug;
5022 cp->link_transition = LINK_TRANSITION_UNKNOWN;
5023 cp->link_transition_jiffies_valid = 0;
5025 spin_lock_init(&cp->lock);
5026 spin_lock_init(&cp->rx_inuse_lock);
5027 spin_lock_init(&cp->rx_spare_lock);
5028 for (i = 0; i < N_TX_RINGS; i++) {
5029 spin_lock_init(&cp->stat_lock[i]);
5030 spin_lock_init(&cp->tx_lock[i]);
5032 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5033 mutex_init(&cp->pm_mutex);
5035 init_timer(&cp->link_timer);
5036 cp->link_timer.function = cas_link_timer;
5037 cp->link_timer.data = (unsigned long) cp;
5039 #if 1
5040 /* Just in case the implementation of atomic operations
5041 * change so that an explicit initialization is necessary.
5043 atomic_set(&cp->reset_task_pending, 0);
5044 atomic_set(&cp->reset_task_pending_all, 0);
5045 atomic_set(&cp->reset_task_pending_spare, 0);
5046 atomic_set(&cp->reset_task_pending_mtu, 0);
5047 #endif
5048 INIT_WORK(&cp->reset_task, cas_reset_task);
5050 /* Default link parameters */
5051 if (link_mode >= 0 && link_mode < 6)
5052 cp->link_cntl = link_modes[link_mode];
5053 else
5054 cp->link_cntl = BMCR_ANENABLE;
5055 cp->lstate = link_down;
5056 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5057 netif_carrier_off(cp->dev);
5058 cp->timer_ticks = 0;
5060 /* give us access to cassini registers */
5061 cp->regs = pci_iomap(pdev, 0, casreg_len);
5062 if (!cp->regs) {
5063 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5064 goto err_out_free_res;
5066 cp->casreg_len = casreg_len;
5068 pci_save_state(pdev);
5069 cas_check_pci_invariants(cp);
5070 cas_hard_reset(cp);
5071 cas_reset(cp, 0);
5072 if (cas_check_invariants(cp))
5073 goto err_out_iounmap;
5074 if (cp->cas_flags & CAS_FLAG_SATURN)
5075 if (cas_saturn_firmware_init(cp))
5076 goto err_out_iounmap;
5078 cp->init_block = (struct cas_init_block *)
5079 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5080 &cp->block_dvma);
5081 if (!cp->init_block) {
5082 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5083 goto err_out_iounmap;
5086 for (i = 0; i < N_TX_RINGS; i++)
5087 cp->init_txds[i] = cp->init_block->txds[i];
5089 for (i = 0; i < N_RX_DESC_RINGS; i++)
5090 cp->init_rxds[i] = cp->init_block->rxds[i];
5092 for (i = 0; i < N_RX_COMP_RINGS; i++)
5093 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5095 for (i = 0; i < N_RX_FLOWS; i++)
5096 skb_queue_head_init(&cp->rx_flows[i]);
5098 dev->netdev_ops = &cas_netdev_ops;
5099 dev->ethtool_ops = &cas_ethtool_ops;
5100 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5102 #ifdef USE_NAPI
5103 netif_napi_add(dev, &cp->napi, cas_poll, 64);
5104 #endif
5105 dev->irq = pdev->irq;
5106 dev->dma = 0;
5108 /* Cassini features. */
5109 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5110 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5112 if (pci_using_dac)
5113 dev->features |= NETIF_F_HIGHDMA;
5115 if (register_netdev(dev)) {
5116 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5117 goto err_out_free_consistent;
5120 i = readl(cp->regs + REG_BIM_CFG);
5121 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5122 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5123 (i & BIM_CFG_32BIT) ? "32" : "64",
5124 (i & BIM_CFG_66MHZ) ? "66" : "33",
5125 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5126 dev->dev_addr);
5128 pci_set_drvdata(pdev, dev);
5129 cp->hw_running = 1;
5130 cas_entropy_reset(cp);
5131 cas_phy_init(cp);
5132 cas_begin_auto_negotiation(cp, NULL);
5133 return 0;
5135 err_out_free_consistent:
5136 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5137 cp->init_block, cp->block_dvma);
5139 err_out_iounmap:
5140 mutex_lock(&cp->pm_mutex);
5141 if (cp->hw_running)
5142 cas_shutdown(cp);
5143 mutex_unlock(&cp->pm_mutex);
5145 pci_iounmap(pdev, cp->regs);
5148 err_out_free_res:
5149 pci_release_regions(pdev);
5151 err_write_cacheline:
5152 /* Try to restore it in case the error occured after we
5153 * set it.
5155 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5157 err_out_free_netdev:
5158 free_netdev(dev);
5160 err_out_disable_pdev:
5161 pci_disable_device(pdev);
5162 pci_set_drvdata(pdev, NULL);
5163 return -ENODEV;
5166 static void __devexit cas_remove_one(struct pci_dev *pdev)
5168 struct net_device *dev = pci_get_drvdata(pdev);
5169 struct cas *cp;
5170 if (!dev)
5171 return;
5173 cp = netdev_priv(dev);
5174 unregister_netdev(dev);
5176 if (cp->fw_data)
5177 vfree(cp->fw_data);
5179 mutex_lock(&cp->pm_mutex);
5180 flush_scheduled_work();
5181 if (cp->hw_running)
5182 cas_shutdown(cp);
5183 mutex_unlock(&cp->pm_mutex);
5185 #if 1
5186 if (cp->orig_cacheline_size) {
5187 /* Restore the cache line size if we had modified
5188 * it.
5190 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5191 cp->orig_cacheline_size);
5193 #endif
5194 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5195 cp->init_block, cp->block_dvma);
5196 pci_iounmap(pdev, cp->regs);
5197 free_netdev(dev);
5198 pci_release_regions(pdev);
5199 pci_disable_device(pdev);
5200 pci_set_drvdata(pdev, NULL);
5203 #ifdef CONFIG_PM
5204 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5206 struct net_device *dev = pci_get_drvdata(pdev);
5207 struct cas *cp = netdev_priv(dev);
5208 unsigned long flags;
5210 mutex_lock(&cp->pm_mutex);
5212 /* If the driver is opened, we stop the DMA */
5213 if (cp->opened) {
5214 netif_device_detach(dev);
5216 cas_lock_all_save(cp, flags);
5218 /* We can set the second arg of cas_reset to 0
5219 * because on resume, we'll call cas_init_hw with
5220 * its second arg set so that autonegotiation is
5221 * restarted.
5223 cas_reset(cp, 0);
5224 cas_clean_rings(cp);
5225 cas_unlock_all_restore(cp, flags);
5228 if (cp->hw_running)
5229 cas_shutdown(cp);
5230 mutex_unlock(&cp->pm_mutex);
5232 return 0;
5235 static int cas_resume(struct pci_dev *pdev)
5237 struct net_device *dev = pci_get_drvdata(pdev);
5238 struct cas *cp = netdev_priv(dev);
5240 netdev_info(dev, "resuming\n");
5242 mutex_lock(&cp->pm_mutex);
5243 cas_hard_reset(cp);
5244 if (cp->opened) {
5245 unsigned long flags;
5246 cas_lock_all_save(cp, flags);
5247 cas_reset(cp, 0);
5248 cp->hw_running = 1;
5249 cas_clean_rings(cp);
5250 cas_init_hw(cp, 1);
5251 cas_unlock_all_restore(cp, flags);
5253 netif_device_attach(dev);
5255 mutex_unlock(&cp->pm_mutex);
5256 return 0;
5258 #endif /* CONFIG_PM */
5260 static struct pci_driver cas_driver = {
5261 .name = DRV_MODULE_NAME,
5262 .id_table = cas_pci_tbl,
5263 .probe = cas_init_one,
5264 .remove = __devexit_p(cas_remove_one),
5265 #ifdef CONFIG_PM
5266 .suspend = cas_suspend,
5267 .resume = cas_resume
5268 #endif
5271 static int __init cas_init(void)
5273 if (linkdown_timeout > 0)
5274 link_transition_timeout = linkdown_timeout * HZ;
5275 else
5276 link_transition_timeout = 0;
5278 return pci_register_driver(&cas_driver);
5281 static void __exit cas_cleanup(void)
5283 pci_unregister_driver(&cas_driver);
5286 module_init(cas_init);
5287 module_exit(cas_cleanup);